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THE HADWIGER THEOREM ON CONVEX FUNCTIONS. III

ANDREA COLESANTI, MONIKA LUDWIG, AND FABIAN MUSSNIG

ABSTRACT. A complete family of functional Steiner formulas is established. As applications, an explicit

representation of functional intrinsic volumes using special mixed Monge–Ampère measures and a new

version of the Hadwiger theorem on convex functions are obtained.

2020 AMS subject classification: 52B45 (26B25, 49Q20, 52A41, 52A39)

1. INTRODUCTION AND STATEMENT OF RESULTS

The classical Steiner formula states that the volume of the outer parallel set of a convex body (that

is, a non-empty, compact, convex set) in Rn at distance r > 0 can be expressed as a polynomial in r of

degree at most n. Using that the outer parallel set of a convex body K ⊂ Rn at distance r > 0 is just the

Minkowski (or vector sum) of K and rBn, the ball of radius r, we get

(1.1) Vn(K + rBn) =

n∑

j=0

rn−jκn−jVj(K)

for every r > 0, where Vn is n-dimensional volume or Lebesgue measure and κj is the j-dimensional

volume of the unit ball in Rj (with the convention that κ0 := 1). The coefficients Vj(K) are known

as the intrinsic volumes of K. Up to normalization and numbering, they coincide with the classical

quermassintegrals. In particular, Vn−1(K) is proportional to the surface area of K and V0(K) is the

Euler characteristic of K (that is, V0(K) := 1) for every convex body K in R
n (cf. [43]).

A complete characterization of intrinsic volumes is due to Hadwiger, who in his celebrated theorem

classified all continuous, translation and rotation invariant valuations on the space, Kn, of convex bodies

in Rn. Here, we say that Z: Kn → R is a valuation if

Z(K) + Z(L) = Z(K ∪ L) + Z(K ∩ L)

for every K,L ∈ Kn such that also K ∪ L ∈ Kn. It is translation invariant if Z(τK) = Z(K) for

every K ∈ Kn and translation τ on Rn and rotation invariant if Z(ϑK) = Z(K) for every K ∈ Kn and

ϑ ∈ SO(n). The topology of Kn is induced by the Hausdorff metric.

Theorem 1.1 (Hadwiger [25]). A functional Z: Kn → R is a continuous, translation and rotation

invariant valuation if and only if there exist constants ζ0, . . . , ζn ∈ R such that

Z(K) =
n∑

j=0

ζjVj(K)

for every K ∈ Kn.

In addition to its many applications in convex and integral geometry (see [25,27]), the Hadwiger theorem

can be used to give a simple proof of (1.1).

We remark that the classification of valuations on convex bodies is a classical subject, which is de-

scribed in [43, Chapter 6]. Also see [10, 26] for some newly defined valuations and [2, 3, 5, 7, 8, 23, 24,

30, 31, 34, 35] for some recent classification results.
1
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Recently, the authors [16] introduced functional intrinsic volumes on convex functions. Let

Convsc(R
n) :=

{

u : Rn → (−∞,+∞] : u 6≡ +∞, lim
|x|→+∞

u(x)

|x|
= +∞, u is l.s.c. and convex

}

denote the space of all proper, super-coercive, lower semicontinuous, convex functions on Rn, where | · |
denotes the Euclidean norm. For ζ ∈ Cb((0,∞)), the set of continuous functions with bounded support

on (0,∞), and 0 ≤ j ≤ n, consider the functional

(1.2) u 7→

∫

Rn

ζ(|∇u(x)|)
[
D2u(x)

]

n−j
dx

on Convsc(R
n) ∩ C2

+(R
n), where C2

+(R
n) denotes the set of u ∈ C2(Rn) with positive definite Hessian

matrix D2u and [A]k is the kth elementary symmetric function of the eigenvalues of the symmetric n×n
matrix A (with the convention that [A]0 := 1).

Under suitable conditions on the function ζ , the functional (1.2) continuously extends to the whole

space Convsc(R
n). Here, continuity is understood with respect to epi-convergence (see Subsection 3.2).

In case ζ can be identified with an element of Cc([0,∞)), the set of continuous functions with compact

support on [0,∞), it was shown in [14] that (1.2) continuously extends to Convsc(R
n) by using Hessian

measures (see Subsection 5.2 for the definition).

More recently, the authors proved that (1.2) continuously extends for the following classes of singular

densities ζ . For 0 ≤ j ≤ n− 1, let

Dn
j :=

{

ζ ∈ Cb((0,∞)) : lim
s→0+

sn−jζ(s) = 0, lim
s→0+

∫ ∞

s

tn−j−1ζ(t) dt exists and is finite
}

.

In addition, let Dn
n be the set of all functions ζ ∈ Cb((0,∞)) such that lims→0+ ζ(s) exists and is finite.

For ζ ∈ Dn
n, we set ζ(0) := lims→0+ ζ(s) and identify ζ with the corresponding element of Cc([0,∞)).

Theorem 1.2 ( [16], Theorem 1.2). For 0 ≤ j ≤ n and ζ ∈ Dn
j , there exists a unique, continuous,

epi-translation and rotation invariant valuation Vj,ζ : Convsc(R
n) → R such that

(1.3) Vj,ζ(u) =

∫

Rn

ζ(|∇u(x)|)
[
D2u(x)

]

n−j
dx

for every u ∈ Convsc(R
n) ∩ C2

+(R
n).

Here, we say that Z: Convsc(R
n) → R is a valuation if

Z(u) + Z(v) = Z(u ∨ v) + Z(u ∧ v)

for every u, v ∈ Convsc(R
n) such that also their pointwise maximum u∨v and minimum u∧v belong to

Convsc(R
n). A valuation Z: Convsc(R

n) → R is said to be epi-translation invariant if Z(u ◦ τ−1 + γ) =
Z(u) for every translation τ on R

n, every γ ∈ R and every u ∈ Convsc(R
n) and it is rotation invariant

if Z(u ◦ ϑ−1) = Z(u) for every ϑ ∈ SO(n) and u ∈ Convsc(R
n). We remark that these properties are

natural extensions of the corresponding properties of the classical intrinsic volumes.

A closed representation of the extensions of (1.3) to Convsc(R
n) was obtained for the cases j = 0 and

j = n. For ζ ∈ Dn
0 , the functional V0,ζ is a constant, independent of u ∈ Convsc(R

n), and for ζ ∈ Dn
n,

we have

(1.4) Vn,ζ(u) =

∫

domu

ζ(|∇u(x)|) dx

for every u ∈ Convsc(R
n), where dom u := {x ∈ Rn : u(x) < ∞} is the domain of u (see [14,

Theorem 2]). However, apart from these extremal cases, the functionals Vj,ζ were so far only described
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as continuous extensions of (1.3) and by Cauchy–Kubota formulas, which were recently established

in [17, Theorem 1.6].

In [16], the following functional Hadwiger theorem was established.

Theorem 1.3 ([16], Theorem 1.3). A functional Z: Convsc(R
n) → R is a continuous, epi-translation

and rotation invariant valuation if and only if there exist functions ζ0 ∈ Dn
0 , . . . , ζn ∈ Dn

n such that

Z(u) =
n∑

j=0

Vj,ζj(u)

for every u ∈ Convsc(R
n).

Using the notion of epi-homogeneity of degree j (see Subsection 3.2), we see that Theorems 1.1 and

1.3 imply that for 0 ≤ j ≤ n, the functionals Vj,ζ for ζ ∈ Dn
j correspond to multiples of the classical

intrinsic volumes Vj . Hence, we call Vj,ζ for 0 ≤ j ≤ n and ζ ∈ Dn
j a jth functional intrinsic volume.

Moreover, the family {Vj,ζ : ζ ∈ Dn
j } describes all continuous, epi-translation and rotation invariant

valuations on Convsc(R
n) that are epi-homogeneous of degree j and is, in this sense, canonical.

We remark that the classification of valuations on function spaces has only been started to be studied

recently. The first classification results for valuations on classical function spaces were obtained for Lp
and Sobolev spaces, and for Lipschitz and continuous functions (see [18, 19, 32, 33, 48, 49]). Results on

valuations on convex functions can be found in [4, 12–14, 28, 29, 37, 38].

In this article we present a new, complete family of Steiner formulas for functional intrinsic volumes

and its applications. For ζ ∈ Dn
n (or equivalently, ζ ∈ Cc([0,∞))), the functional Steiner formula is the

following result.

Theorem 1.4. If ζ ∈ Dn
n, then

(1.5) Vn,ζ(u� (r IBn)) =

n∑

j=0

rn−jκn−j Vj,ζj(u)

for every u ∈ Convsc(R
n) and r > 0, where ζj ∈ Dn

j is given by

(1.6) ζj(s) :=
1

κn−j

(
ζ(s)

sn−j
− (n− j)

∫ ∞

s

ζ(t)

tn−j+1
dt

)

for s > 0 and 0 ≤ j ≤ n.

Here, u�w is the infimal convolution of u, w ∈ Convsc(R
n) and r w is obtained by epi-multiplication of

w with r > 0 while IBn is the convex indicator function of the Euclidean unit ballBn (see Subsection 3.2

for the precise definitions). Note that

(1.7) epi(u� (r IBn)) = epi u+ r(Bn × R),

where epiw := {(x, t) ∈ Rn ×R : t ≥ w(x)} is the epi-graph of w : Rn → (−∞,+∞] and the addition

on the right side of (1.7) is Minkowski addition in Rn × R.

We give two proofs of Theorem 1.4. In Section 7, we give a direct proof (not using the functional

Hadwiger theorem, Theorem 1.3) and in Section 8, we prove Theorem 1.4 using Theorem 1.3. This

corresponds to the fact that the classical Steiner formula can be proved both directly and as a consequence

of the Hadwiger theorem.

Equation (1.5) corresponds to the classical Steiner formula (1.1). Indeed, we will see that (1.1) can be

easily retrieved from (1.5). Furthermore, by properties of the transform (1.6), every functional intrinsic

volume Vj,ζj for 1 ≤ j ≤ n and ζj ∈ Dn
j will appear exactly once on the right side of (1.5) as ζ ranges

in Dn
n. In this sense, Theorem 1.4 provides a complete description of functional intrinsic volumes on
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Convsc(R
n). We remark that Steiner formulas for convex functions are also obtained if we replace IBn in

(1.5) by other radially symmetric, super-coercive, convex functions. However, in general such formulas

do not give rise to all functional intrinsic volumes. For more details, see Subsection 8.4.

As an immediate consequence of Theorem 1.4, equation (1.4) and properties of the transform (1.6)

(see Lemma 3.2), we obtain the following new representation of the functionals Vj,ζ .

Corollary 1.5. If 0 ≤ j < n and ζ ∈ Dn
j , then

Vj,ζ(u) =
j!

n!

dn−j

drn−j

∣
∣
∣
r=0

Vn,α(u� (r IBn))

=
j!

n!

dn−j

drn−j

∣
∣
∣
r=0

∫

dom(u�(r IBn ))

α
(∣
∣∇

(
u� (r IBn)

)∣
∣
)
dx

for every u ∈ Convsc(R
n), where α ∈ Cc([0,∞)) is given by

α(s) :=

(
n

j

)(

sn−jζ(s) + (n− j)

∫ ∞

s

tn−j−1ζ(t) dt
)

for s > 0.

Using a new family of measures, we establish new closed representations of the functional intrinsic

volumes on the whole space Convsc(R
n) that do not require singular densities. For u ∈ Convsc(R

n),
let MA∗(u; ·) be the push-forward through ∇u of n-dimensional Lebesgue measure restricted to the

domain of u. Equivalently, MA∗(u; ·) is the Monge–Ampère measure of the convex conjugate of u
(see Section 5 for details) and we call it the conjugate Monge–Ampère measure of u. For functions

u1, . . . , un ∈ Convsc(R
n), we write MA∗(u1, . . . , un; ·) for the polarization of MA∗(u; ·) with respect

to infimal convolution (see Section 5) and call MA∗(u1, . . . , un; ·) the conjugate mixed Monge–Ampère

measure of u1, . . . , un. For 0 ≤ j ≤ n and u ∈ Convsc(R
n), we set

(1.8) MA∗
j(u; ·) := MA∗(u[j], IBn[n− j]; ·),

where the function u is repeated j times and the convex indicator function IBn is repeated (n− j) times.

We establish the following result.

Theorem 1.6. If 0 ≤ j ≤ n and ζ ∈ Dn
j , then

Vj,ζ(u) =

∫

Rn

α(|y|) dMA∗
j (u; y)

for every u ∈ Convsc(R
n), where α ∈ Cc([0,∞)) is given by

α(s) :=

(
n

j

)(

sn−jζ(s) + (n− j)

∫ ∞

s

tn−j−1ζ(t) dt
)

for s > 0. Moreover, for 1 ≤ j ≤ n,

(1.9) Vj,ζ(u) =
1
(
n

j

)

∫

Rn

α(|∇u(x)|) τn−j(u, x) dx

for u ∈ Convsc(R
n) ∩ C2

+(R
n).

Here, for u ∈ Convsc(R
n) ∩ C2

+(R
n) and 0 ≤ i ≤ n − 1, we write τi(u, x) for the ith elementary

symmetric function of the principal curvatures of the sublevel set {y ∈ Rn : u(y) ≤ t} at x ∈ Rn

with t = u(x) (and we use the convention τ0(u, x) := 1). Note that τi(u, x) is well-defined for such

u if u(x) > miny∈Rn u(y). Since such u attains its minimum at only one point, the integral in (1.9) is

also well-defined. We remark that a direct proof of (1.9) was given in [17, Lemma 3.9]. Here it is a

consequence of properties of the measures MA∗
j (u; ·) (see Theorem 5.5).
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Conjugate mixed Monge–Ampère measures generalize Hessian measures on Convsc(R
n) (see Subsec-

tion 5.2) and the precise connection of integrals involving the measure MA∗
j (u; ·) and Hessian measures

for u ∈ Convsc(R
n) is established in Section 6. It is the basis of a new proof of Theorem 1.2 presented

in Section 7, where we also prove Theorem 1.6.

Combining Theorem 1.3 and Theorem 1.6, we obtain the following new version of the Hadwiger

theorem for convex functions.

Theorem 1.7. A functional Z: Convsc(R
n) → R is a continuous, epi-translation and rotation invariant

valuation if and only if there exist functions α0, . . . , αn ∈ Cc([0,∞)) such that

Z(u) =

n∑

j=0

∫

Rn

αj(|y|) dMA∗
j (u; y)

for every u ∈ Convsc(R
n).

By properties of the integral transform from Theorem 1.6 which maps ζ to α, this version is equivalent

to Theorem 1.3.

Using the Legendre–Fenchel transform or convex conjugate, we can translate the new results on

Convsc(R
n) to results on Conv(Rn;R) := {v : Rn → R : v is convex}, the space of finite-valued con-

vex functions on Rn. In fact, most results will be proved on Conv(Rn;R) and then transferred to

Convsc(R
n) using convex conjugation. Results on Conv(Rn;R) are presented in Section 2. The next

section is devoted to notation and preliminaries. In Section 4, results on Monge–Ampère measures and

mixed Monge–Ampère measures on Conv(Rn;R) are collected and the new measures MAj(v; ·) for

v ∈ Conv(Rn;R) and 0 ≤ j ≤ n are discussed. In Section 5, the corresponding results are presented on

Convsc(R
n). Results connecting the measure MAj(v; ·) to the jth Hessian measure of v ∈ Conv(Rn;R)

are established in Section 6. In the following section, the proofs of the main results are presented. In the

final section, an alternate proof of the functional Steiner formula, results on the explicit representation of

functional intrinsic volumes and on the retrieval of classical intrinsic volumes are presented. Moreover,

general functional Steiner formulas are discussed.

2. RESULTS FOR VALUATIONS ON FINITE-VALUED CONVEX FUNCTIONS

A functional Z: Conv(Rn;R) → R is dually epi-translation invariant if and only if Z(v+ℓ+γ) = Z(v)
for every v ∈ Conv(Rn;R), every linear functional ℓ : Rn → R and every γ ∈ R, or equivalently,

if the map u 7→ Z(u∗), defined on Convsc(R
n), is epi-translation invariant. It was shown in [15] that

Z: Conv(Rn;R) → R is a continuous valuation if and only if u 7→ Z(u∗) is a continuous valuation on

Convsc(R
n) (see Proposition 3.1).

The following result is equivalent to Theorem 1.2 by duality.

Theorem 2.1 ([16], Theorem 1.4). For 0 ≤ j ≤ n and ζ ∈ Dn
j , there exists a unique, continuous, dually

epi-translation and rotation invariant valuation V∗
j,ζ : Conv(Rn;R) → R such that

(2.1) V∗
j,ζ(v) =

∫

Rn

ζ(|x|)
[
D2v(x)

]

j
dx

for every v ∈ Conv(Rn;R) ∩ C2
+(R

n).

Here, for 0 ≤ j ≤ n and ζ ∈ Dn
j , the valuation V∗

j,ζ is dual to Vj,ζ in the sense that V∗
j,ζ(v) = Vj,ζ(v

∗)
for every v ∈ Conv(Rn;R). We remark that the new proof of Theorem 2.1 that we present in Section 7

actually shows that the representation (2.1) holds on Conv(Rn;R) ∩ C2(Rn).
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The Hadwiger Theorem on Conv(Rn;R) is the following result, which is equivalent to Theorem 1.3

by duality.

Theorem 2.2 ([16], Theorem 1.5). A functional Z: Conv(Rn;R) → R is a continuous, dually epi-

translation and rotation invariant valuation if and only if there exist functions ζ0 ∈ Dn
0 , . . . , ζn ∈ Dn

n

such that

Z(v) =

n∑

j=0

V∗
j,ζj

(v)

for every v ∈ Conv(Rn;R).

We obtain the following dual version of the functional Steiner formulas from Theorem 1.4. We use the

support function of the unit ball, hBn(x) = |x| for x ∈ Rn, and the fact that (u� (r IBn))∗ = u∗+ r hBn

for u ∈ Convsc(R
n) and r > 0.

Theorem 2.3. If ζ ∈ Dn
n, then

V∗
n,ζ(v + r hBn) =

n∑

j=0

rn−jκn−j V
∗
j,ζj

(v)

for every v ∈ Conv(Rn;R) and r > 0, where ζj ∈ Dn
j is given by

(2.2) ζj(s) :=
1

κn−j

(
ζ(s)

sn−j
− (n− j)

∫ ∞

s

ζ(t)

tn−j+1
dt

)

for s > 0 and 0 ≤ j ≤ n.

An immediate consequence is the following result.

Corollary 2.4. Let 0 ≤ j < n. If ζ ∈ Dn
j , then

V∗
j,ζ(v) =

j!

n!

dn−j

drn−j

∣
∣
∣
r=0

V∗
n,α(v + r hBn)

for every v ∈ Conv(Rn;R), where α ∈ Cc([0,∞)) is given by

α(s) :=

(
n

j

)(

sn−jζ(s) + (n− j)

∫ ∞

s

tn−j−1ζ(t) dt
)

for s > 0.

Let MA(v; ·) be the Monge–Ampère measure of v ∈ Conv(Rn;R) and write MA(v1, . . . , vn; ·) for

its polarization, the mixed Monge–Ampère measure of v1, . . . , vn ∈ Conv(Rn;R). For 0 ≤ j ≤ n and

v ∈ Conv(Rn;R), we set

MAj(v; ·) := MA(v[j], hBn [n− j]; ·)

(see Section 4 for results on Monge–Ampère measures, mixed Monge–Ampère measures and this new

family of measures).
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The following result corresponds to Theorem 1.6.

Theorem 2.5. If 0 ≤ j ≤ n and ζ ∈ Dn
j , then

V∗
j,ζ(v) =

∫

Rn

α(|x|) dMAj(v; x)

for every v ∈ Conv(Rn;R), where α ∈ Cc([0,∞)) is given by

α(s) :=

(
n

j

)(

sn−jζ(s) + (n− j)

∫ ∞

s

tn−j−1ζ(t) dt
)

for s > 0. Moreover, for 1 ≤ j ≤ n,

(2.3) V∗
j,ζ(v) =

∫

Rn

α(|x|) det(D2v(x)[j],D2hBn(x)[n− j]) dx

for v ∈ Conv(Rn;R) ∩ C2(Rn).

Here, det(A1, . . . , An) denotes the mixed discriminant of the symmetric n×nmatricesA1, . . . , An. Note

that D2hBn(x) exists for every x 6= 0 and that (2.3) is well-defined as a Lebesgue integral. Combining

Theorem 2.2 and Theorem 2.5, we obtain the following new version of the Hadwiger theorem for finite-

valued convex functions.

Theorem 2.6. A functional Z: Conv(Rn;R) → R is a continuous, dually epi-translation and rotation

invariant valuation if and only if there exist functions α0, . . . , αn ∈ Cc([0,∞)) such that

Z(v) =

n∑

j=0

∫

Rn

αj(|x|) dMAj(v; x)

for every v ∈ Conv(Rn;R).

By properties of the integral transform from Theorem 2.5 which maps ζ to α, this version is equivalent

to Theorem 2.2.

3. PRELIMINARIES

We work in n-dimensional Euclidean space Rn, with n ≥ 1, endowed with the Euclidean norm

| · | and the usual scalar product 〈·, ·〉. We also use coordinates, x = (x1, . . . , xn), for x ∈ R
n. Let

Bn := {x ∈ Rn : |x| ≤ 1} be the Euclidean unit ball and Sn−1 the unit sphere in Rn. A basic reference

on convex bodies is the book by Schneider [43].

3.1. Mixed Discriminants. We will need some basic definitions and properties which can be found in

Section 5.5 of the book by Schneider [43]. Given symmetric n× n matrices Ak = (akij) for 1 ≤ k ≤ n,

their mixed discriminant is defined as

det(A1, . . . , An) :=
1

n!

∑

σ

det






a
σ(1)
11 · · · a

σ(n)
1n

...
...

a
σ(1)
n1 · · · a

σ(n)
nn






where we sum over all permutations σ of {1, . . . , n}. As a consequence of this definition, the mixed

discriminant det is multilinear and symmetric in its entries. Alternatively, the mixed discriminant is

uniquely determined as the symmetric functional that satisfies

(3.1) det(λ1A1 + · · ·+ λmAm) =
m∑

i1,...,in=1

λi1 · · ·λin det(Ai1, . . . , Ain)
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for all λ1, . . . , λm ∈ R, symmetric n× n matrices A1, . . . , Am and m ≥ 1. By the polarization formula,

the mixed determinant can also be written as

(3.2) det(A1, . . . , An) =
1

n!

n∑

k=1

∑

1≤j1<···<jk≤n

(−1)n−k det(Aj1 + · · ·+ Ajk)

for symmetric n × n matrices A1, . . . , An (see, for example, [6, Theorem 4]). In addition, there exist

maps Dij : (R
n×n)n−1 → R for 1 ≤ i, j ≤ n such that

(3.3) det(A1, . . . , An) =

n∑

i,j=1

Dij(A1, . . . , An−1) a
n
ij

for all symmetric n× n matrices A1, . . . , An. We remark that it follows from (3.1) that

(3.4) [A]j =

(
n

j

)

det(A[j], In[n− j])

for every symmetric n × n matrix A, where In is the n × n identity matrix. If the symmetric matrix A
is, in addition, invertible, then

(3.5) [A]j = det(A) [A−1]n−j

for 0 ≤ j ≤ n.

3.2. Convex Functions. We collect some basic results and properties of convex functions. Standard

references are the books by Rockafellar [41] and Rockafellar & Wets [42].

Let Conv(Rn) be the set of proper, lower semicontinuous, convex functions u : Rn → (−∞,∞],
where u is proper if u 6≡ +∞. For t ∈ R, we write

{u ≤ t} := {x ∈ R
n : u(x) ≤ t}

for the sublevel sets of u. If u ∈ Convsc(R
n), then u attains its minimum and we set

argmin u := {x ∈ R
n : u(x) = minz∈Rn u(z)}.

This is a convex body which, if in addition u ∈ C2
+(R

n), consists of a single point.

The standard topology on Conv(Rn) and its subsets is induced by epi-convergence. A sequence of

functions uk ∈ Conv(Rn) is epi-convergent to u ∈ Conv(Rn) if for every x ∈ Rn:

(i) u(x) ≤ lim infk→∞ uk(xk) for every sequence xk ∈ Rn that converges to x;

(ii) u(x) = limk→∞ uk(xk) for at least one sequence xk ∈ Rn that converges to x.

Note that the limit of an epi-convergent sequence of functions from Conv(Rn) is always lower semi-

continuous.

For u ∈ Conv(Rn), we denote by u∗ ∈ Conv(Rn) its Legendre–Fenchel transform or convex conju-

gate, which is defined by

u∗(y) := supx∈Rn

(
〈x, y〉 − u(x)

)

for y ∈ Rn. Since u is lower semicontinuous, we have u∗∗ = u. For a convex body K ∈ Kn, we denote

by IK ∈ Convsc(R
n) its convex indicator function, which is defined as

IK(x) :=

{

0 for x ∈ K,

+∞ for x 6∈ K.
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We have

I
∗
K = hK ,

where hK : Rn → R is the support function of K, defined as

hK(x) := maxy∈K〈x, y〉.

For u1, u2 ∈ Convsc(R
n), we denote by u1 � u2 ∈ Convsc(R

n) their infimal convolution or epi-sum

which is defined as

(u1 � u2)(x) := infx1+x2=x u1(x1) + u2(x2)

for x ∈ Rn. The epi-multiplication of u ∈ Convsc(R
n) by λ > 0 is defined in the following way. We set

λ u(x) := λ u
(x

λ

)

for x ∈ Rn and note that λ u ∈ Convsc(R
n). This corresponds to rescaling the epi-graph of u by the

factor λ, that is, epiλ u = λ epiu.

Proposition 3.1. The following properties hold.

(a) The function u ∈ Convsc(R
n) if and only if u∗ ∈ Conv(Rn;R).

(b) The function u ∈ Convsc(R
n) ∩ C2

+(R
n) if and only if u∗ ∈ Convsc(R

n) ∩ C2
+(R

n).
(c) If u1, u2 ∈ Convsc(R

n) are such that u1∨u2 and u1∧u2 are in Convsc(R
n), then u∗1∨u

∗
2 and u∗1∧u

∗
2

are in Conv(Rn;R) and

(u1 ∨ u2)
∗ = u∗1 ∧ u

∗
2, (u1 ∧ u2)

∗ = u∗1 ∨ u
∗
2.

(d) For u1, u2 ∈ Convsc(R
n) and λ1, λ2 > 0,

(λ1 u1 � λ2 u2)
∗ = λ1u

∗
1 + λ2u

∗
2.

(e) The sequence uk in Convsc(R
n) epi-converges to u ∈ Convsc(R

n), if and only if the sequence u∗k in

Conv(Rn;R) epi-converges to u∗ ∈ Conv(Rn;R).

We say that a functional Z: Convsc(R
n) → R is epi-homogeneous of degree j if

Z(λ u) = λj Z(u)

for every λ > 0 and u ∈ Convsc(R
n). A functional Z: Conv(Rn;R) → R is homogeneous of degree j if

Z(λv) = λj Z(v)

for every λ > 0 and v ∈ Conv(Rn;R). It is a consequence of Proposition 3.1 that a map

Z : Convsc(R
n) → R is a continuous valuation that is epi-homogeneous of degree j if and only if

v 7→ Z(v∗) is a continuous valuation on Conv(Rn;R) that is homogeneous of degree j. We say that

Z: Convsc(R
n) → R is epi-additive if

Z(u1 � u2) = Z(u1) + Z(u2)

for every u1, u2 ∈ Convsc(R
n). The dual notion is additivity on Conv(Rn;R), where a functional

Z: Conv(Rn;R) → R is additive if

Z(v1 + v2) = Z(v1) + Z(v2)

for every v1, v2 ∈ Conv(Rn;R).



10 ANDREA COLESANTI, MONIKA LUDWIG, AND FABIAN MUSSNIG

3.3. The Integral Transform R. In [17], the integral transform R and its inverse R−1 were introduced.

For ζ ∈ Cb((0,∞)) and s > 0, let

R ζ(s) := s ζ(s) +

∫ ∞

s

ζ(t) dt.

It is easy to see that also R ζ ∈ Cb((0,∞)).
For l ≥ 1, we write

Rl ζ := (R◦ · · · ◦ R)
︸ ︷︷ ︸

l

ζ

and set R0 ζ := ζ . We set R−l = (R−1)l for l ≥ 1. We require the following result.

Lemma 3.2 ( [17], Lemma 3.5 and Lemma 3.7). For 0 ≤ k ≤ n and 0 ≤ l ≤ n − k, the map

Rl : Dn
k → Dn−l

k is a bijection. Furthermore,

Rl ζ(s) = slζ(s) + l

∫ ∞

s

tl−1ζ(t) dt

for every ζ ∈ Dn
k and s > 0, while

R−l ρ(s) =
ρ(s)

sl
− l

∫ ∞

s

ρ(t)

tl+1
dt

for every ρ ∈ Dn−l
k and s > 0.

For t ≥ 0, let ut ∈ Convsc(R
n) be given by

ut(x) := t|x|+ IBn(x)

for x ∈ Rn. The next result shows that the transform R naturally occurs when studying functional

intrinsic volumes.

Lemma 3.3 ([16], Lemma 2.15 and Lemma 3.24). If 1 ≤ j ≤ n and ζ ∈ Dn
j , then

Vj,ζ(ut) = κn

(
n

j

)

Rn−j ζ(t)

for t ≥ 0.

We also require the dual form of the previous result. For t ≥ 0, we set vt := u∗t . Note that

(3.6) vt(x) =

{

0 for |x| ≤ t,

|x| − t for |x| > t,

for x ∈ Rn and t ≥ 0 and that vt ∈ Conv(Rn;R) for t ≥ 0.

Lemma 3.4 ([16]). If 1 ≤ j ≤ n and ζ ∈ Dn
j , then

V∗
j,ζ(vt) = κn

(
n

j

)

Rn−j ζ(t)

for t ≥ 0.
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4. MONGE–AMPÈRE AND MIXED MONGE–AMPÈRE MEASURES

For w ∈ Conv(Rn), the subdifferential of w at x ∈ Rn is defined by

∂w(x) := {y ∈ R
n : w(z) ≥ w(x) + 〈y, z − x〉 for all z ∈ R

n}.

Each element of ∂w(x) is called a subgradient of w at x. If w is differentiable at x, then ∂w(x) =
{∇w(x)}. Given a subset A of Rn, we define the image of A through the subdifferential of w as

∂w(A) :=
⋃

x∈A

∂w(x).

We write | · | for n-dimensional Lebesgue measure in Rn and remark that |∂w(C)| can be infinite for

compact sets C ⊂ R
n and w ∈ Conv(Rn). An example is given by w ∈ Conv(Rn) defined as

w := I{0},

as we have

∂w({0}) = R
n.

However, on Conv(Rn;R) we obtain a Radon measure, where a Borel measure M is called a Radon

measure if M(C) < +∞ for every compact set C ⊂ Rn. This is the content of the following result,

which is due to Aleksandrov [1] (see [21, Theorem 2.3] or [22, Theorem 1.1.13]). Let B(Rn) be the class

of Borel sets in Rn.

Lemma 4.1. Let v ∈ Conv(Rn;R). If B ∈ B(Rn), then the set ∂v(B) is measurable. Moreover,

MA(v; ·) : B(Rn) → [0,∞], defined by

MA(v;B) := |∂v(B)|,

is a Radon measure on Rn.

We will refer to MA(v; ·) as the Monge–Ampère measure of v. The notion of Monge–Ampère measure

is fundamental in the definition of weak or generalized solutions of the Monge–Ampère equation (see,

for instance, [21, 22, 47]).

The following statement gathers properties of Monge–Ampère measures. Items (a) and (b) are due to

Aleksandrov [1] (or see [21, Proposition 2.6 and Theorem A.31]) while the valuation property (c) was

deduced by Alesker [4] from Błocki [9] (or see [15, Theorem 9.2]). Recall that for a sequence Mk of

Radon measures in Rn, we say that Mk converges weakly to a Radon measure M in Rn if

lim
k→+∞

∫

Rn

β(x) dMk(x) =

∫

Rn

β(x) dM(x)

for every β ∈ Cc(R
n) (see, for instance, [20]).

Theorem 4.2. The following properties hold.

(a) If v ∈ Conv(Rn;R) and v ∈ C2(V ) on an open set V ⊂ Rn, then MA(v; ·) is absolutely continuous

on V with respect to n-dimensional Lebesgue measure and

dMA(v; x) = det(D2v(x)) dx

for x ∈ V .

(b) If vj is a sequence in Conv(Rn;R) that is epi-convergent to v ∈ Conv(Rn;R), then the sequence of

measures MA(vj ; ·) converges weakly to MA(v; ·).
(c) For every v1, v2 ∈ Conv(Rn;R) such that v1 ∧ v2 ∈ Conv(Rn;R),

MA(v1; ·) + MA(v2; ·) = MA(v1 ∧ v2; ·) + MA(v1 ∨ v2; ·),

that is, MA is a (measure-valued) valuation on Conv(Rn;R).
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Let M(Rn) denote the space of Radon measures on Rn. According to Theorem 4.2 (b), the map

MA : Conv(Rn;R) → M(Rn) is continuous, when Conv(Rn;R) is equipped with the topology induced

by epi-convergence and M(Rn) with the topology induced by weak convergence.

4.1. Mixed Monge–Ampère Measures. We use polarization of the Monge–Ampère measure with re-

spect to the standard addition of functions to obtain mixed Monge–Ampère measures. They were called

mixed n-Hessian measures in [46] and were used, for example, in [39].

We say that a map Z: (Conv(Rn;R))n → M(Rn) is symmetric, if the measure Z(v1, . . . , vn; ·) is

invariant with respect to every permutation of n-tuples of functions in Conv(Rn;R). For 0 ≤ j ≤ n and

v, v1, . . . , vn−j ∈ Conv(Rn;R), we write Z(v[j], v1, . . . , vn−j; ·) when the entry v is repeated j times.

Theorem 4.3. There exists a symmetric map MA : (Conv(Rn;R))n → M(Rn) which assigns to every

n-tuple of functions v1, . . . , vn ∈ Conv(Rn;R) a Radon measure MA(v1, . . . , vn; ·) with the following

properties.

(a) For every m ∈ N, every m-tuple of functions v1, . . . , vm ∈ Conv(Rn;R), and λ1, . . . , λm ≥ 0,

MA(λ1v1 + · · ·+ λmvm; ·) =
m∑

i1,...,in=1

λi1 · · ·λinMA(vi1, . . . , vin ; ·).

(b) For every v ∈ Conv(Rn;R),
MA(v, . . . , v; ·) = MA(v; ·).

(c) If v1, . . . , vn ∈ Conv(Rn;R) and v1, . . . , vn ∈ C2(V ) on an open set V ⊂ Rn, then MA(v1, . . . , vn; ·)
is absolutely continuous on V with respect to n-dimensional Lebesgue measure and

dMA(v1, . . . , vn; x) = det(D2v1(x), . . . ,D
2vn(x)) dx

for x ∈ V .

(d) The map MA : (Conv(Rn;R))n → M(Rn) is continuous, when (Conv(Rn;R))n is equipped with

the product topology and every factor has the topology induced by epi-convergence, while M(Rn)
is equipped with the topology induced by weak convergence.

(e) The map MA : (Conv(Rn;R))n → M(Rn) is dually epi-translation invariant with respect to every

entry, that is,

MA(v + ℓ+ γ, v1, . . . , vn−1; ·) = MA(v, v1, . . . , vn−1; ·)

for every v, v1, . . . , vn−1 ∈ Conv(Rn;R), every linear function ℓ : Rn → R and γ ∈ R.

(f) The map MA : (Conv(Rn;R))n → M(Rn) is additive and positively homogeneous of degree 1 with

respect to every entry, that is,

MA(λv + µw, v1, . . . , vn−1; ·) = λMA(v, v1, . . . , vn−1; ·) + µMA(w, v1, . . . , vn−1; ·)

for every v, w, v1, . . . , vn−1 ∈ Conv(Rn;R) and λ, µ ≥ 0.

(g) For 0 ≤ j ≤ n and v1, . . . , vn−j ∈ Conv(Rn;R), the map

v 7→ MA(v[j], v1, . . . , vn−j; ·)

is a (measure-valued) valuation on Conv(Rn;R).

Proof. For v1, . . . , vn ∈ Conv(Rn;R) ∩ C2(Rn) and B ∈ B(Rn), we set

MA(v1, . . . , vn;B) :=

∫

B

det(D2v1(x), . . . ,D
2vn(x)) dx.

Note that these measures are non-negative and symmetric. On Conv(Rn;R) ∩ C2(Rn), they verify (a)

by Theorem 4.2 (a) and by the fact that the mixed discriminant polarizes the determinant. Properties (b)

and (f) on Conv(Rn;R) ∩C2(Rn) also follow from corresponding properties of the mixed discriminant.
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Property (e) on Conv(Rn;R) ∩ C2(Rn) follows directly from the fact that adding an affine function to v
does not change the Hessian matrix of v.

By (3.2), we have

(4.1) MA(v1, . . . , vn; ·) =
1

n!

n∑

k=1

∑

1≤i1<···<ik≤n

(−1)n−kMA(vi1 + · · ·+ vik ; ·)

for every v1, . . . , vn ∈ Conv(Rn;R) ∩ C2(Rn). This identity, combined with Theorem 4.2 (b) and the

denseness of C2(Rn) functions in Conv(Rn;R), shows that the definition of MA extends continuously

to (Conv(Rn;R))n. Hence, we get properties (c) and (d). The extension inherits properties (a), (b), (e)

and (f) by continuity. Property (g) follows from (4.1) and Theorem 4.2 (c). �

As a consequence, we obtain the following result, which for the special case j = n was previously

established in [14, Proposition 19].

Proposition 4.4. Let β ∈ Cc(R
n) and 0 ≤ j ≤ n. If v1, . . . , vn−j ∈ Conv(Rn;R), then the map

Z: Conv(Rn;R) → R defined by

(4.2) Z(v) :=

∫

Rn

β(x) dMA(v[j], v1, . . . , vn−j; x),

is a continuous, dually epi-translation invariant valuation that is homogeneous of degree j.

Proof. Note that the integral in (4.2) is well-defined and finite as β ∈ Cc(R
n) and mixed Monge–Ampère

measures are Radon measures. Continuity follows from the weak continuity of mixed Monge–Ampère

measures. The invariance, homogeneity and valuation properties are consequences of items (e), (f) and

(g) of Theorem 4.3, respectively. �

We remark that valuations defined in a way similar to (4.2) have been considered by Alesker [4] and by

Knoerr [29].

4.2. Hessian Measures as a Special Case. For a function v ∈ Conv(Rn;R) ∩ C2(Rn) and 0 ≤ j ≤ n,

the jth Hessian measure Φj(v;B) is defined for B ∈ B(Rn) as

Φj(v;B) =

∫

B

[D2v(x)]j dx.

Trudinger and Wang [44,45] showed that Φj(v; ·) can be extended to a Radon measure on Conv(Rn;R).
It coincides up to the factor

(
n

j

)
with

MA(v[j], 1
2
h2Bn [n− j]; ·).

Indeed, if v ∈ Conv(Rn;R) ∩ C2(Rn), then by Theorem 4.3 (c) and (3.4),

(
n

j

)

dMA(v[j], 1
2
h2Bn [n− j]; x) =

(
n

j

)

det(D2v(x)[j], In[n− j]) dx = [D2v(x)]j dx = dΦj(v, x).

We obtain the conclusion using the denseness of smooth functions.
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4.3. A Special Family of Mixed Monge–Ampère Measures. For v ∈ Conv(Rn;R), we introduce the

following family of mixed Monge–Ampère measures for 0 ≤ j ≤ n,

(4.3) MAj(v; ·) := MA(v[j], hBn [n− j]; ·).

By construction, these are Radon measures on Rn. It follows from Theorem 4.3 (a) that the mixed

Monge–Ampère measures (4.3) can also be obtained as coefficients of the following Steiner formula,

(4.4) MA(v + rhBn ;B) =
n∑

j=0

(
n

j

)

rn−jMAj(v;B)

for B ∈ B(Rn) and r ≥ 0.

We derive some of the properties of the measures MAj(v; ·) for 0 ≤ j ≤ n. The subdifferential of

hBn can be explicitly described as

(4.5) ∂hBn(x) =







{ x

|x|

}

for x 6= 0,

Bn for x = 0.

Combining this with the definition of Monge–Ampère measure, we see that

(4.6) MA(hBn ; ·) = κnδ0,

where δ0 is the Dirac measure at 0. Indeed, if B ∈ B(Rn) does not contain the origin, then we have

∂hBn(B) ⊂ Sn−1, so that

MA(hBn ;B) = |∂hBn(B)| = 0.

On the other hand, if 0 ∈ B, then ∂hBn(B) = Bn. Note that

(4.7) D2hBn(x) =
1

|x|

(

In −
x

|x|
⊗

x

|x|

)

for x 6= 0, where y ⊗ z denotes the tensor product of y, z ∈ Rn.

Theorem 4.5. Let v ∈ Conv(Rn;R). The following properties hold.

(a) For B ∈ B(Rn),

MA0(v;B) = κnδ0(B).

In particular, MA0(v; ·) is independent of v.

(b) For B ∈ B(Rn),

MAn(v;B) = |∂v(B)| = MA(v;B).

(c) For 0 ≤ j ≤ n,

MAj(v; {0}) =
κn−j
(
n

j

) Vj(∂v(0)).

(d) If v ∈ C2(V ) with V ⊂ Rn open and 1 ≤ j ≤ n, then MAj(v; ·) is absolutely continuous on V \{0}
with respect to n-dimensional Lebesgue measure and

dMAj(v; x) = det(D2v(x)[j],D2hBn(x)[n− j]) dx

for x ∈ V with x 6= 0.

(e) For 0 ≤ j ≤ n, the map MAj : Conv(Rn;R) → M(Rn) is a continuous valuation.
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Proof. Item (a) follows from (4.6). Item (b) follows from (4.3) with j = n and the definition of MA(v; ·).
Item (e) is a consequence of Theorem 4.3 (d) and (g) while item (d) follows from Theorem 4.3 (c)

combined with (4.7) and (3.1).

It remains to show (c). By (4.5) we obtain that for v ∈ Conv(Rn;R) and r ≥ 0,

∂(v + r hBn)(0) = ∂v(0) + rBn,

where we use that the subdifferential of the sum of two convex functions is the Minkowski sum of their

subdifferentials (see, for example, [41, Theorem 23.8]). Hence, according to the Steiner formula (1.1),

|∂(v + r hBn)(0)| =
n∑

j=0

rn−jκn−jVj(∂v(0)),

which combined with the definition of the Monge–Ampère measure and (4.4) concludes the proof. �

5. CONJUGATE MONGE–AMPÈRE AND CONJUGATE MIXED MONGE–AMPÈRE MEASURES

First, we define the conjugate Monge–Ampère measure for super-coercive convex functions, using the

construction of Monge–Ampère measures on Conv(Rn;R) and a duality argument. Let u ∈ Convsc(R
n).

For B ∈ B(Rn), we set

(5.1) MA∗(u;B) := MA(u∗;B).

Note that Lemma 4.1 implies that MA∗ : Convsc(R
n) → M(Rn) is well-defined and that MA∗(u; ·) is

a Radon measure for every u ∈ Convsc(R
n), as u∗ ∈ Conv(Rn;R) in this case. We refer to MA∗(u; ·)

as the conjugate Monge–Ampère measure of u. It is the push-forward through ∇u of n-dimensional

Lebesgue measure restricted to the domain of u and we have included a proof of this known fact as item

(a) of the following result. In the following, for u ∈ Convsc(R
n), we use the relation

(5.2) D2u∗(∇u(x)) =
(
D2u(x)

)−1

for x ∈ Rn such that u ∈ C2
+(U) in a neighborhood U of x (see [42, p. 605]).

Theorem 5.1. The following properties hold.

(a) If u ∈ Convsc(R
n), then

∫

Rn

β(y) dMA∗(u; y) =

∫

domu

β(∇u(x)) dx

for every β ∈ Cc(R
n).

(b) If uj is a sequence in Convsc(R
n) that is epi-convergent to u ∈ Convsc(R

n), then the sequence of

measures MA∗(uj; ·) converges weakly to MA∗(u; ·).
(c) For every u1, u2 ∈ Convsc(R

n) such that u1 ∨ u2 and u1 ∧ u2 are in Convsc(R
n),

MA∗(u1; ·) + MA∗(u2; ·) = MA∗(u1 ∧ u2; ·) + MA∗(u1 ∨ u2; ·),

that is, MA∗ is a (measure-valued) valuation on Convsc(R
n).

Proof. Properties (b) and (c) are consequences of properties (b) and (c) in Theorem 4.2, respectively,

and of Proposition 3.1.
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Concerning property (a), observe that if u ∈ Convsc(R
n)∩C2

+(R
n), then u∗ ∈ Conv(Rn;R)∩C2

+(R
n)

(by Proposition 3.1). By Theorem 4.2 (a), setting v := u∗, we obtain
∫

Rn

β(y) dMA∗(u; y) =

∫

Rn

β(y) dMA(v; y)

=

∫

Rn

β(y) det(D2v(y)) dy

=

∫

Rn

β(∇u(x)) dx

for β ∈ Cc(R
n). Here we used the change of variable y = ∇u(x) and (5.2). The statement now follows

from property (b) combined with the fact that the functional u 7→
∫

Rn β(∇u(x)) dx is continuous on

Convsc(R
n) (see (1.4)). �

5.1. Conjugate Mixed Monge–Ampère Measures. We use polarization of the conjugate Monge–

Ampère measure with respect to infimal convolution to define conjugate mixed Monge–Ampère mea-

sures. The following result is easily obtained from Theorem 4.3.

Theorem 5.2. There exists a symmetric map MA∗ : (Convsc(R
n))n → M(Rn) which assigns to every

n-tuple of functions u1, . . . , un ∈ Convsc(R
n) a Radon measure MA∗(u1, . . . , un; ·) with the following

properties.

(a) For every m ∈ N, every m-tuple of functions u1, . . . , um ∈ Convsc(R
n) and λ1, . . . , λm ≥ 0,

MA∗(λ1 u1 � · · ·� λm um; ·) =

m∑

i1,...,in=1

λi1 · · ·λin MA∗(ui1, . . . , uin; ·).

(b) For every u ∈ Convsc(R
n),

MA∗(u, . . . , u; ·) = MA∗(u; ·).

(c) If u1, . . . , un ∈ Convsc(R
n) and u∗1, . . . , u

∗
n ∈ C2(V ) on an open set V ⊂ Rn, then the measure

MA∗(u1, . . . , un; ·) is absolutely continuous on V with respect to n-dimensional Lebesgue measure

and

dMA∗(u1, . . . , un; x) = det(D2u∗1(x), . . . ,D
2u∗n(x)) dx

for x ∈ V .

(d) The map MA∗ : (Convsc(R
n))n → M(Rn) is continuous, when (Convsc(R

n))n is equipped with the

product topology and every factor has the topology induced by epi-convergence, while M(Rn) is

equipped with the topology induced by weak convergence.

(e) The map MA∗ : (Convsc(R
n))n → M(Rn) is epi-translation invariant with respect to every entry,

that is,

MA∗(u ◦ τ−1 + γ, u1, . . . , un−1; ·) = MA∗(u, u1, . . . , un−1; ·)

for every u, u1, . . . , un−1 ∈ Convsc(R
n), every translation τ : Rn → Rn and γ ∈ R.

(f) The map MA∗ : (Convsc(R
n))n → M(Rn) is epi-additive and epi-homogeneous of degree 1 with

respect to every entry, that is,

MA∗((λ u)� (µ w), u1, . . . , un−1; ·) = λMA∗(u, u1, . . . , un−1; ·) + µMA∗(w, u1, . . . , un−1; ·),

for every u, w, u1, . . . , un−1 ∈ Convsc(R
n) and for every λ, µ ≥ 0.

(g) For 0 ≤ j ≤ n and u1, . . . , un−j ∈ Convsc(R
n), the map

u 7→ MA∗(u[j], u1, . . . , un−j; ·)

is a (measure-valued) valuation on Convsc(R
n).
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Here, for (a) and (f), we extend the definition of epi-multiplication to 0 u = I{0} for u ∈ Convsc(R
n).

The dual version of Proposition 4.4 is the following result.

Proposition 5.3. Let β ∈ Cc(R
n) and 0 ≤ j ≤ n. If u1, . . . , un−j ∈ Convsc(R

n), then the map

Z: Convsc(R
n) → R, defined by

(5.3) Z(u) :=

∫

Rn

β(x) dMA∗(u[j], u1 . . . , un−j; x),

is a continuous, epi-translation invariant valuation, that is epi-homogeneous of degree j.

5.2. Connections to Hessian Measures. For u ∈ Convsc(R
n) ∩ C2

+(R
n) and 0 ≤ j ≤ n, define the

Hessian measure Ψj(u; ·) as the push-forward through ∇u of the Hessian measure Φn−j(u; ·) of u, that

is,
∫

Rn

β(y) dΨj(u; y) =

∫

Rn

β(∇u(x)) [D2u(x)]n−j dx

for every Borel function β : Rn → [0,∞). We remark that the measure Ψj(u; ·) can be defined for

every u ∈ Convsc(R
n) and is a marginal of a generalized Hessian measure (see [15]). Moreover, for

u ∈ Convsc(R
n) ∩ C2

+(R
n) we obtain from (5.1) and Theorem 4.3 (c) that

∫

Rn

β(y) dMA∗(u[j], 1
2
h2B[n− j]; y) =

∫

Rn

β(y) dMA(u∗[j], 1
2
h2B[n− j]; y)

=

∫

Rn

β(y) det(D2u∗[j], In[n− j]) dy

=
1
(
n

j

)

∫

Rn

β(y)[D2u∗(y)]j dy

=
1
(
n

j

)

∫

Rn

β(∇u(x))[D2u(x)]n−j dx,

where for the last step we used (5.2) and (3.5). Hence, the measure

MA∗(u[j], 1
2
h2Bn [n− j]; ·),

coincides up to the factor
(
n

j

)
with Ψj(u; ·) for u ∈ C2

+(R
n). The corresponding statement holds for

general u ∈ Convsc(R
n) by the denseness of smooth functions and the weak continuity of Hessian and

conjugate mixed Monge–Ampère measures.

5.3. A Special Family of Conjugate Mixed Monge–Ampère Measures. Let u ∈ Convsc(R
n). We

introduce the following family of conjugate mixed Monge–Ampère measures for 0 ≤ j ≤ n,

MA∗
j(u; ·) := MA∗(u[j], IBn[n− j]; ·).

By construction, these are Radon measures on Rn. A consequence of this definition is that

MA∗
j (u; ·) = MAj(u

∗; ·)

for u ∈ Convsc(R
n). It follows from that Theorem 5.2 (a) that this family of conjugate mixed Monge–

Ampère measures can also be obtained as coefficients of the following Steiner formula,

(5.4) MA∗(u� (r IBn);B) =
n∑

j=0

(
n

j

)

rn−jMA∗
j (u;B)

for B ∈ B(Rn) and r ≥ 0.
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The next result describes properties of this family of conjugate Monge–Ampère measures.

Theorem 5.4. Let u ∈ Convsc(R
n). The following statements hold.

(a) For every B ∈ B(Rn),
MA∗

0(u;B) = κnδ0(B).

In particular, MA∗
0(u; ·) is independent of u.

(b) For every B ∈ B(Rn),
MA∗

n(u;B) = |∂u∗(B)| = MA∗(u;B).

(c) For 0 ≤ j ≤ n,

MA∗
j(u; {0}) =

κn−j
(
n

j

) Vj(argmin u).

(d) If u∗ ∈ C2
+(V ) with V ⊂ R

n open and 1 ≤ j ≤ n, then MA∗
j (u; ·) is absolutely continuous on V

with respect to n-dimensional Lebesgue measure and

dMA∗
j (u; x) = det(D2u∗(x)[j],D2hBn(x)[n− j]) dx

for x ∈ V with x 6= 0.

(e) For 0 ≤ j ≤ n, the map MA∗
j : Convsc(R

n) → M(Rn) is a continuous valuation.

Proof. The statements follow from the corresponding statements in Theorem 4.5 by duality. For (c), we

use that ∂u∗(0) = argmin u (see [42, Theorem 11.8]). �

In the following, for u ∈ Convsc(R
n), we will use the fact that y ∈ ∂u(x) if and only if x ∈ ∂u∗(y)

(see, for example, [41, Theorem 23.5]). Combined with (5.2), it implies that u ∈ C2
+(U) for some open

set U ⊂ Rn if and only if u∗ ∈ C2
+(V ) with V := {∇u(x) : x ∈ U}. In particular, we obtain that the set

V is open and ∇u : U → V is a bijection.

For the following result, we recall that τi(u, x) is the ith elementary symmetric function of the princi-

pal curvatures of the sublevel set of u passing through x for x /∈ argmin u.

Theorem 5.5. Let u ∈ Convsc(R
n) and 1 ≤ j ≤ n − 1. If u ∈ C2

+(U) for an open set U ⊂ Rn and

V := {∇u(x) : x ∈ U}, then

(5.5) MA∗
j(u;B) =

1
(
n

j

)

∫

(∇u)−1(B)

τn−j(u, x) dx

for every Borel set B ⊂ V \{0}. Equivalently,

(5.6)

∫

Rn

β(y) dMA∗
j (u; y) =

1
(
n

j

)

∫

Rn

β(∇u(x)) τn−j(u, x) dx

for every β ∈ Cc(V ) .

For the proof we need the following result.

Lemma 5.6. Let u ∈ Convsc(R
n) be such that u ∈ C2

+(U) for an open set U ⊂ Rn and let r > 0. If

Tr : U\ argmin u→ Rn is defined by

Tr(x) := x+ r
∇u(x)

|∇u(x)|
,

then, for the Jacobi matrix DTr, we have

det(DTr(x)) =
n−1∑

j=0

rjτj(u, x)

for every x ∈ U\ argmin u.
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Proof. Let x ∈ U\ argmin u. Clearly,

DTr(x) = In + rDN(x)

where N(x) = (N1(x), . . . , Nn(x)) is defined as

N(x) :=
∇u(x)

|∇u(x)|
.

Let t := u(x). We choose a coordinate system such that

(5.7) ∇u(x) = λen = λνt(x),

where νt(x) denotes the outer unit normal to {u ≤ t} at x and λ = |∇u(x)| > 0. We may also assume

that, for 1 ≤ j ≤ n − 1, the vector ej is a direction of principal curvature for ∂{u ≤ t} at x with

corresponding principal curvature κj(u, x). As N is an extension of νt, we obtain

DN(x) =











κ1(u, x) 0 · · · 0 ∂N1

∂xn
(x)

0 κ2(u, x) · · · 0 ∂N2

∂xn
(x)

...
...

. . .
...

...

0 0 · · · κn−1(u, x)
∂Nn−1

∂xn
(x)

∂Nn

∂x1
(x) ∂Nn

∂x2
(x) · · · ∂Nn

∂xn−1
(x) ∂Nn

∂xn
(x)











.

On the other hand, using (5.7), we obtain

∂Nn

∂xj
(x) =

∂

∂xj

(
1

|∇u(x)|

∂u(x)

∂xn

)

=
1

|∇u(x)|

∂2u(x)

∂xj∂xn
−

1

|∇u(x)|2
∂u(x)

∂xn

∂

∂xj
|∇u(x)|

=
1

|∇u(x)|

∂2u(x)

∂xj∂xn
−

1

|∇u(x)|3
∂u(x)

∂xn

n∑

i=1

∂u(x)

∂xi

∂2u(x)

∂xi∂xj

= 0

for 1 ≤ j ≤ n. Here, for the last equality, we used that
∂u(x)
∂xi

= 0 for all 1 ≤ i ≤ n − 1 because of the

choice of our coordinate system. Therefore,

DTr(x) =










1 + rκ1(u, x) 0 · · · 0 ∂N1

∂xn
(x)

0 1 + rκ2(u, x) · · · 0 ∂N2

∂xn
(x)

...
...

. . .
...

...

0 0 · · · 1 + rκn−1(u, x)
∂Nn−1

∂xn
(x)

0 0 · · · 0 1










and

det(DTr(x)) =

n−1∏

i=1

(1 + r κi(u, x)),

which implies the representation formula. �



20 ANDREA COLESANTI, MONIKA LUDWIG, AND FABIAN MUSSNIG

Proof of Theorem 5.5. Formula (5.6) directly follows from (5.5). So, we have to prove (5.5).

Let B ⊂ V \{0} be a Borel set. For r > 0, let Tr : U\ argmin u be the map defined in Lemma 5.6.

Note that U\ argmin u = ∇u−1(V \{0}). We have

|∂(u∗ + r hBn)(B)| =
∣
∣
∣

{
∇u∗(y) + r

y

|y|
: y ∈ B

}
∣
∣
∣

=
∣
∣
∣

{
x+ r

∇u(x)

|∇u(x)|
: x ∈ (∇u)−1(B)

}
∣
∣
∣

=

∫

(∇u)−1(B)

det(DTr(x)) dx

=

n−1∑

j=0

rj
∫

(∇u)−1(B)

τj(u, x) dx,

where we have used Lemma 5.6. On the other hand, by the definition of the Monge–Ampère measure

and of the conjugate Monge–Ampère measure and (5.4), we have

|∂(u∗ + r hBn)(B)| = MA∗(u� (r IBn);B) =
n∑

j=1

(
n

j

)

rn−jMA∗
j(u;B).

The conclusion follows from comparing coefficients. �

6. CONNECTING MAj(v; ·) AND HESSIAN MEASURES

The purpose of this section is to prove Proposition 6.7, which shows how integrals of radially sym-

metric functions with respect to Hessian measures can be written in terms of integrals with respect to

the new family of mixed Monge–Ampère measures. This result is essential for our new proof of the

existence of functional intrinsic volumes, Theorem 1.2 and Theorem 2.1, as well as for the proof of the

new representations, Theorem 1.6 and Theorem 2.5.

6.1. Reilly-Type Lemmas. We will need the following result by Reilly [40, Proposition 2.1] (or see [46,

(2.10)]).

Lemma 6.1 (Reilly). If v1, . . . , vn−1 ∈ C3(Rn) and 1 ≤ j ≤ n, then

n∑

i=1

∂

∂xi
Dij(D

2v1(x), . . . ,D
2vn−1(x)) = 0

for every x ∈ Rn.

The following result shows that

(v0, . . . , vn) 7→

∫

Rn

v0(x) det(D
2v1(x), . . . ,D

2vn(x)) dx

with v0, . . . , vn ∈ C2(Rn) is symmetric in its entries if at least one the functions has compact support.

We remark that this corresponds to the symmetry of mixed volumes in the following representation,

V (K1, . . . , Kn) =

∫

Sn−1

hK1(y) det(D̃
2
hK2(y), . . . , D̃

2
hKn

(y)) dy,

for sufficiently smoothK1, . . . , Kn ∈ Kn, where D̃
2
hK(y) is the restriction of D2hK to the tangent space

of Sn−1 at y ∈ Sn−1 (see for example equations (2.68) and (5.19) in [43]).
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Lemma 6.2. If v0, . . . , vn ∈ C2(Rn) are such that at least one of the functions has compact support,

then

(6.1)

∫

Rn

v0(x) det(D
2v1(x), . . . ,D

2vn(x)) dx =

∫

Rn

vn(x) det(D
2v1(x), . . . ,D

2vn−1(x),D
2v0(x)) dx.

Proof. Assume first that v0, . . . , vn ∈ C3(Rn). In this case, Dij(D
2v2(x), . . . ,D

2vn(x)) is differentiable

and therefore

∂

∂xi

( n∑

j=1

Dij(D
2v1(x), . . . ,D

2vn−1(x))
∂vn(x)

∂xj

)

=
n∑

j=1

∂

∂xi
Dij(D

2v1(x), . . . ,D
2vn−1(x))

∂vn(x)

∂xj

+

n∑

j=1

Dij(D
2v1(x), . . . ,D

2vn−1(x))
∂2vn(x)

∂xi∂xj

for 1 ≤ i ≤ n and x ∈ Rn. Summation over i combined with Lemma 6.1 now gives

n∑

i,j=1

∂

∂xi

(

Dij(D
2v1(x), . . . ,D

2vn−1(x))
∂vn(x)

∂xj

)

=

n∑

i,j=1

Dij(D
2v1(x), . . . ,D

2vn−1(x))
∂2vn(x)

∂xi∂xj

for x ∈ Rn. By the definition of Dij and using that at least one of the functions v0, . . . , vn has compact

support, we now obtain from the divergence theorem that
∫

Rn

v0(x) det(D
2v1(x), . . . ,D

2vn(x)) dx

=

∫

Rn

v0(x)

n∑

i,j=1

Dij(D
2v1(x), . . . ,D

2vn−1(x))
∂2vn(x)

∂xi∂xj
dx

=

∫

Rn

v0(x)
n∑

i,j=1

∂

∂xi

(

Dij(D
2v1(x), . . . ,D

2vn−1(x))
∂vn(x)

∂xj

)

dx

= −

∫

Rn

n∑

i,j=1

Dij(D
2v1(x), . . . ,D

2vn−1(x))
∂vn(x)

∂xj

∂v0(x)

∂xi
dx.

Since the last expression is symmetric in v0 and vn, we may exchange the two functions. This completes

the proof under the additional assumption that all functions are in C3(Rn).
It remains to show that the result holds true onC2(Rn). By the multilinearity of the mixed discriminant

combined with the assumption that one of the functions v0, . . . , vn has compact support, there exists

r > 0 such that the integrands in (6.1) vanish outside of rBn. The result now easily follows by a

standard approximation argument combined with the dominated convergence theorem. �

A further consequence of Lemma 6.1 is the following result.

Lemma 6.3. Let v1, . . . , vn−1 ∈ C2(Rn) and let F : Rn → R
n be a continuously differentiable vector

field. If F has compact support, then

∫

Rn

n∑

i,j=1

Dij(D
2v1(x), . . . ,D

2vn−1(x))
∂Fi(x)

∂xj
dx = 0.
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Proof. Assume first that v1, . . . , vn−1 ∈ C3(Rn). Using the definition of Dij and that F has compact

support, we obtain from the divergence theorem that

∫

Rn

n∑

i,j=1

Dij(D
2v1(x), . . . ,D

2vn−1(x))
∂Fi(x)

∂xj
dx

= −

∫

Rn

n∑

i,j=1

Fi(x)
∂

∂xj
Dij(D

2v1(x), . . . ,D
2vn−1(x)) dx

and the statement follows from Lemma 6.1.

As in the proof of Lemma 6.2, the general case follows from the fact that F has compact support

combined with a standard approximation argument and the dominated convergence theorem. �

6.2. Applications to Mixed Monge–Ampère Integrals. In the following we consider special integrals

of mixed discriminants where the support function of the unit ball Bn appears repeatedly.

First, we show that such integrals are well-defined. Recall that D2hBn(x) exists for every x 6= 0. We

remark that throughout this subsection, Lebesgue integrals are considered.

Lemma 6.4. Let 1 ≤ k ≤ n. If ζ ∈ Cb((0,∞)) is such that limr→0+ r
k−1ζ(r) exists and is finite, then

the integral
∫

Rn

∣
∣ζ(|x|) det(D2v1(x), . . . ,D

2vk(x),D
2hBn(x)[n− k])

∣
∣ dx

is well-defined and finite for every v1, . . . , vk ∈ C2(Rn).

Proof. Fix v1, . . . , vk ∈ C2(Rn) and let w ∈ C(Rn\{0}) be defined by

w(x) = |x|n−k det(D2v1(x), . . . ,D
2vk(x),D

2hBn(x)[n− k])

for x ∈ Rn\{0}. By the multilinearity of the mixed discriminant and (4.7) the function w is bounded on

Bn\{0}. Using polar coordinates, we obtain

∫

Rn

∣
∣ζ(|x|) det(D2v1(x), . . . ,D

2vk(x),D
2hBn(x)[n− k])

∣
∣ dx =

∫

Sn−1

∞∫

0

∣
∣rk−1ζ(r)w(ry)

∣
∣dr dHn−1(y),

where Hn−1 denotes the (n − 1)-dimensional Hausdorff measure. The result now follows from our

assumptions on ζ together with the fact that w is bounded on Bn\{0}. �

The following result shows how replacing hBn by 1
2
h2Bn once in the mixed discriminant corresponds

to taking an integral transform of the density function.

Lemma 6.5. Let 1 ≤ k ≤ n − 1 and let ε > 0. If v1, . . . , vk ∈ C2(Rn) and D2v1(x) = 0 for every

x ∈ εBn, then
∫

Rn

ψ(|x|) det(D2v1(x), . . . ,D
2vk(x),D

2hBn(x)[n− k]) dx

=

∫

Rn

ρ(|x|) det(D2v1(x), . . . ,D
2vk(x),D

2hBn(x)[n− k − 1], In) dx

for every ψ ∈ C2
b ((0,∞)), where ρ ∈ Cb((0,∞)) is given for s > 0 by

ρ(s) :=
ψ(s)

s
−

∫ ∞

s

ψ(t)

t2
dt.
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Proof. Observe that our assumptions on v1 imply that the mixed discriminants in both integrals vanish

on εBn. Since the support of ψ is bounded, this implies that both integrals are well-defined and finite.

Let ξ(t) =
∫∞

t

ψ(s)
s2

ds for t > 0. Since ψ ∈ C2
b ((0,∞)) we have ξ ∈ C3

b ((0,∞)) and furthermore

ψ(t) = −ξ′(t)t2 as well as
ψ(t)
t

= −ξ′(t)t for t > 0. Thus, we need to show that
∫

Rn

ξ′(|x|)|x|2 det(D2v1(x), . . . ,D
2vk(x),D

2hBn(x)[n− k]) dx

=

∫

Rn

(ξ′(|x|)|x|+ ξ(|x|)) det(D2v1(x), . . . ,D
2vk(x),D

2hBn(x)[n− k − 1], In) dx
(6.2)

for every v1, . . . , vk ∈ C2(Rn). Since the mixed discriminants in both integrals vanish on εBn, we can

replace hBn as well as x 7→ ξ′(|x|)|x|2 and x 7→ ξ′(|x|)|x| + ξ(|x|) by suitable functions in C2(Rn)
without changing the values of the integrals. Thus after applying Lemma 6.2 and changing back to the

original functions, we obtain that (6.2) is equivalent to
∫

Rn

|x| det(D2v1(x), . . . ,D
2vk(x),D

2hBn(x)[n− k − 1],D2(ξ′(|x|)|x|2)) dx

=

∫

Rn

|x|2

2
det(D2v1(x), . . . ,D

2vk(x),D
2hBn(x)[n− k − 1],D2(ξ′(|x|)|x|+ ξ(|x|))) dx.

Using the multilinearity of mixed discriminants, it suffices to show that
∫

Rn

det
(
D2v1(x), . . . ,D

2vk(x),D
2hBn(x)[n−k−1], |x|D2(ξ′(|x|)|x|2)−

|x|2

2
D2(ξ′(|x|)|x|+ξ(|x|))

)
dx

vanishes. Since we have

D2(ξ′(|x|)|x|2) = ξ′′′(|x|) x⊗ x+ ξ′′(|x|)|x| In + 3
ξ′′(|x|)

|x|
x⊗ x+ 2ξ′(|x|) In

and

D2(ξ′(|x|)|x|+ ξ(|x|)) =
ξ′′′(|x|)

|x|
x⊗ x+ ξ′′(|x|) In + 2

ξ′′(|x|)

|x|2
x⊗ x+ 2

ξ′(|x|)

|x|
In − 2

ξ′(|x|)

|x|3
x⊗ x,

we obtain

|x|D2(ξ′(|x|)|x|2)−
|x|2

2
D2(ξ′(|x|)|x|+ ξ(|x|)) = −

1

2

(

ψ′(|x|)In +
ψ′′(|x|)

|x|
x⊗ x

)

= −
1

2
D(ψ′(|x|)x)

for every x ∈ Rn\{0}, where D(ψ′(|x|)x) denotes the Jacobian of the vector field x 7→ ψ′(|x|)x. The

result now follows from Lemma 6.3 and the definition of Dij , where we have used again that we may

replace the integrands in a neighborhood of the origin. �

In the next two statements we remove the regularity assumptions of the last result and treat the case

where the support function of the unit ball Bn is replaced multiple times.

Proposition 6.6. If 1 ≤ k ≤ n− 1 and ψ ∈ Dn
n−k+1, then

∫

Rn

ψ(|x|) det(D2v1(x), . . . ,D
2vk(x),D

2hBn(x)[n− k]) dx

=

∫

Rn

R−1ψ(|x|) det(D2v1(x), . . . ,D
2vk(x),D

2hBn(x)[n− k − 1], In) dx

for every v1, . . . , vk ∈ C2(Rn), where R−1 was defined in Subsection 3.3.
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Proof. Since ψ ∈ Dn
n−k+1, there exists γ > 0 such that ψ(t) = 0 for every t ≥ γ. Note that by

Lemma 3.2 this implies that R−1ψ(t) = 0 for every t ≥ γ. We will assume first that there exists ε > 0
such that D2v1(x) = 0 for every x ∈ εBn.

Let ψε ∈ Cb((0,∞)) be such that ψε ≡ ψ on [ε,∞) and ψε ≡ 0 on (0, ε/2]. Observe that this

implies that R−1ψε ≡ R−1ψ on [ε,∞). For δ > 0 we can find ψε,δ ∈ C2
b ((0,∞)) such that ψε,δ ≡ 0

on (0, ε/2] ∪ [γ + δ,∞) and such that ψε,δ → ψε uniformly on (ε/2, γ + δ) (and thus on (0,∞)) as

δ → 0+. By the properties of ψε this also implies uniform convergence of R−1ψε,δ to R−1ψε on (0,∞)
as δ → 0+. Using that D2v1 ≡ 0 on εBn, Lemma 6.5, as well as the fact that the integrands in each of

the following integrals are continuous and have compact support, we now have

∫

Rn

ψ(|x|) det(D2v1(x), . . . ,D
2vk(x),D

2hBn(x)[n− k]) dx

=

∫

Rn

ψε(|x|) det(D
2v1(x), . . . ,D

2vk(x),D
2hBn(x)[n− k]) dx

= lim
δ→0+

∫

Rn

ψε,δ(|x|) det(D
2v1(x), . . . ,D

2vk(x),D
2hBn(x)[n− k]) dx

= lim
δ→0+

∫

Rn

R−1ψε,δ(|x|) det(D
2v1(x), . . . ,D

2vk(x),D
2hBn(x)[n− k − 1], In) dx

=

∫

Rn

R−1ψε(|x|) det(D
2v1(x), . . . ,D

2vk(x),D
2hBn(x)[n− k − 1], In) dx

=

∫

Rn

R−1ψ(|x|) det(D2v1(x), . . . ,D
2vk(x),D

2hBn(x)[n− k − 1], In) dx,

which completes the proof under the additional assumptions on v1.

For general v1 ∈ C2(Rn), observe that without loss of generality we may assume that v1(0) = 0 and

∇v1(0) = 0. Thus, there exist β, ε0 > 0 such that |v1(x)| ≤ β|x|2 and |∇v1(x)| ≤ β|x| for every

x ∈ 2ε0B
n. Let ϕ ∈ C2([0,∞)) be such that ϕ(t) = 0 for t ∈ [0, 1] and ϕ(t) = 1 for t ∈ [2,∞). For

ε ∈ (0, ε0), set v1,ε(x) := v1(x)ϕ(|x|/ε) for x ∈ Rn. We now have D2v1,ε(x) = 0 for every x ∈ εBn and

our assumptions on v1 together with the fact that ϕ is constant on [2,∞) imply that D2v1,ε is uniformly

bounded on γBn for every ε ∈ (0, ε0). Moreover, D2v1,ε → D2v1 pointwise on Rn as ε → 0+. Since

ψ ∈ Dn
n−k+1 the limit limt→0+ t

k−1ψ(t) exists and is finite. By Lemma 3.2 and since Dn
n−k+1 = Dn−1

n−k,

we have R−1ψ ∈ Dn
n−k and thus also limt→0+ t

kR−1ψ(t) exists and is finite. Hence, by the first part of

the proof and Lemma 6.4 combined with the dominated convergence theorem we now obtain

∫

Rn

ψ(|x|) det(D2v1(x), . . . ,D
2vk(x),D

2hBn(x)[n− k]) dx

= lim
ε→0+

∫

Rn

ψ(|x|) det(D2v1,ε(x),D
2v2(x), . . . ,D

2vk(x),D
2hBn(x)[n− k]) dx

= lim
ε→0+

∫

Rn

R−1ψ(|x|) det(D2v1,ε(x),D
2v2(x), . . . ,D

2vk(x),D
2hBn(x)[n− k − 1], In) dx

=

∫

Rn

R−1ψ(|x|) det(D2v1(x),D
2v2(x), . . . ,D

2vk(x),D
2hBn(x)[n− k − 1], In) dx,

which concludes the proof. �



THE HADWIGER THEOREM ON CONVEX FUNCTIONS. III 25

Proposition 6.7. If 1 ≤ j ≤ n− 1 and ζ ∈ Dn
j , then

∫

Rn

ζ(|x|) [D2v(x)]j dx =

(
n

j

)∫

Rn

Rn−jζ(|x|) det(D2v(x)[j],D2hBn(x)[n− j]) dx

for every v ∈ C2(Rn).

Proof. Let 1 ≤ j ≤ n− 1 and ζ ∈ Dn
j be given. We claim that

∫

Rn

Rn−kζ(|x|) det(D2v(x)[j],D2hBn(x)[n− k], In[k − j]) dx

=

∫

Rn

Rn−(k+1) ζ(|x|) det(D2v(x)[j],D2hBn(x)[n− (k + 1)], In[(k + 1)− j]) dx

(6.3)

for every k ∈ N such that j ≤ k ≤ n − 1 and every v ∈ C2(Rn). Indeed, as ζ ∈ Dn
j it follows from

Lemma 3.2 that Rn−k ζ ∈ Dk
j . Since Dk

j = Dn
n−k+j and Dn

n−k+j ⊆ Dn
n−k+1, the claim now follows from

Proposition 6.6.

Applying (6.3) recursively (n− j) times (for each possible value of k), we obtain that

∫

Rn

Rn−j ζ(|x|) det(D2v(x)[j],D2hBn(x)[n− j]) dx =

∫

Rn

ζ(|x|) det(D2v(x)[j], In[n− j]) dx

for every v ∈ C2(Rn). The statement now follows from (3.4). �

7. PROOFS OF THE MAIN RESULTS

In this section, we present a new proof of the existence of functional intrinsic volumes, Theorem 1.2

and Theorem 2.1. Moreover, we prove our main results: the new representations of functional intrinsic

volumes, Theorem 1.6 and Theorem 2.5, as well as the Steiner formulas, Theorem 1.4 and Theorem 2.3.

By the duality relations between valuations on Convsc(R
n) and Conv(Rn;R), it is enough to prove

the results for valuations on Conv(Rn;R), that is, to prove Theorem 2.1, Theorem 2.3 and Theorem 2.5.

Theorem 1.2 and Theorem 1.4 are immediate consequences of their counterparts on Conv(Rn;R) while

Theorem 1.6 follows from Theorem 2.5 combined with Theorem 5.5.

7.1. New Proof of Theorem 2.1. The statement is trivial for j = 0 and follows from Proposition 4.4

for j = n. So, let 1 ≤ j ≤ n− 1 and ζ ∈ Dn
j . We set α :=

(
n

j

)
Rn−j ζ and note that, by Lemma 3.2, we

have α ∈ Dn
n. We define Z: Conv(Rn;R) → R by

Z(v) :=

∫

Rn

α(|x|) dMAj(v; x).

By Proposition 4.4, the definition of MAj(v; ·), and (4.3), the functional Z is a continuous and dually

epi-translation invariant valuation on Conv(Rn;R). It is easy to see that Z is rotation invariant. By

Theorem 4.5 (d) and Proposition 6.7, it satisfies (2.1).

We conclude that Z has the required properties and remark that it is uniquely determined by (2.1),

since Conv(Rn;R) ∩ C2
+(R

n) is dense in Conv(Rn;R).
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7.2. Proof of Theorem 2.5. For j = n the statement trivially follows from Proposition 4.4 and Theo-

rem 4.5 (d). Next, consider the case j = 0 and let ζ ∈ Dn
0 and α ∈ Cc([0,∞)) be as in the statement of

the theorem. Using polar coordinates and (4.6) we now have

V∗
0,ζ(v) =

∫

Rn

ζ(|x|) dx = nκn lim
s→0+

∫ ∞

s

tn−1ζ(t) dt

= κn α(0) =

∫

Rn

α(|x|) dMA(hBn ; x) =

∫

Rn

α(|x|) dMA0(v; x)

for every v ∈ Conv(Rn;R), which proves the statement for j = 0. Finally, let 1 ≤ j ≤ n − 1 and

ζ ∈ Dn
j . For v ∈ Conv(Rn;R) ∩ C2

+(R
n), it follows from Theorem 2.1 and Proposition 6.7 that

V∗
j,ζ(v) =

∫

Rn

ζ(|x|)
[
D2v(x)

]

j
dx

=

(
n

j

)∫

Rn

Rn−j ζ(|x|) det(D2v(x)[j],D2hBn(x)[n− j]) dx.

Since Conv(Rn;R) ∩ C2
+(R

n) is dense in Conv(Rn;R), the statement now follows from Theorem 2.1,

Theorem 4.5 (d) and Proposition 4.4.

7.3. Proof of Theorem 2.3. Let ζ ∈ Dn
n be given and for 0 ≤ j ≤ n, let ζj ∈ Dn

j be defined as in (2.2).

By Theorem 2.5 and (4.4) we have

V∗
n,ζ(v + rhBn) =

∫

Rn

ζ(|x|) dMA(v + rhBn ; x)

=
n∑

j=0

(
n

j

)

rn−j
∫

Rn

ζ(|x|) dMAj(v; x)

for every v ∈ Conv(Rn;R) and r > 0. Using Theorem 2.5 again and Lemma 3.2, we obtain that
(
n

j

)∫

Rn

ζ(|x|) dMAj(v; x) = κn−j V
∗
j, 1

κn−j
R−(n−j) ζ

(v) = κn−j V
∗
j,ζj

(v)

for every 0 ≤ j ≤ n and v ∈ Conv(Rn;R), which concludes the proof.

8. ADDITIONAL RESULTS AND APPLICATIONS

In this section we prove additional results and derive further applications. Subsection 8.1 contains

a second proof of the functional Steiner formula, Theorem 1.4, which uses the Hadwiger Theorem on

convex functions, Theorem 1.3. In the subsequent subsection we use the properties of mixed Monge–

Ampère measures to obtain a new representation of functional intrinsic volumes. In Subsection 8.3, we

show how the classical Steiner formula (1.1) can be retrieved from our new functional version. The final

subsection partly answers the question, which functions playing the role of the unit ball give rise to all

functional intrinsic volumes in a Steiner-type formula.

8.1. Alternate Proof of Theorem 1.4. Our approach for this proof follows the proof of the classical

Steiner formula from [27, Theorem 9.2.3] and uses Theorem 1.3. We remark that multinomiality with

respect to infimal convolution of continuous, epi-translation invariant valuations on Convsc(R
n) was

established by the authors in [14]. For polynomial expansions for a different functional analog of the

volume on convex functions, see Milman and Rotem [36].



THE HADWIGER THEOREM ON CONVEX FUNCTIONS. III 27

Let ζ ∈ Dn
n be given. It is easy to see that u 7→ Vn,ζ(u � IBn) defines a continuous, epi-translation

and rotation invariant valuation on Convsc(R
n). Thus, by Theorem 1.3 there exist functions ζ̃j ∈ Dn

j for

0 ≤ j ≤ n such that

Vn,ζ(u� IBn) =
n∑

j=0

Vj,ζ̃j
(u)

for every u ∈ Convsc(R
n). Using the epi-homogeneity of functional intrinsic volumes, we now have

Vn,ζ(u� (r IBn)) = rnVn,ζ((
1
r
u)� IBn) = rn

n∑

j=0

Vj,ζ̃j
(1
r
u) =

n∑

j=0

rn−j Vj,ζ̃j
(u)

for every u ∈ Convsc(R
n) and r > 0.

In order to determine the functions ζ̃j for 0 ≤ j ≤ n, we evaluate the last expression for u = ut with

t > 0, where ut(x) := t|x|+ IBn(x) for x ∈ Rn. Since

(
ut � (r IBn)

)
(x) =







0 for 0 ≤ |x| ≤ r,

t(|x| − r) for r < |x| ≤ 1 + r,

+∞ for 1 + r < |x|,

a simple calculation shows that

Vn,ζ(ut � (r IBn)) =

∫

(1+r)Bn

ζ(|∇(ut � (r IBn))(x)|) dx

= κnr
nζ(0) + nκnζ(t)

∫ 1+r

r

sn−1 ds

= κnr
nζ(0) +

n∑

j=1

(
n

j

)

rn−jκnζ(t)

for every r > 0 and t > 0. A comparison of coefficients combined with Lemma 3.3 shows that

Rn−j ζ̃j(t) = ζ(t) for every t > 0 and 1 ≤ j ≤ n. Thus, by Lemma 3.2, we get ζ̃j = R−(n−j) ζ
for every 1 ≤ j ≤ n.

For j = 0, observe that

V0,ξ(u) = V∗
0,ξ(u

∗) =

∫

Rn

ξ(|x|) dx = nκn lim
s→0+

∫ ∞

s

tn−1ξ(t) dt

for every u ∈ Convsc(R
n) and ξ ∈ Dn

0 . Thus, our calculations combined with Lemma 3.2 and the

definition of Dn
0 show that

κnζ(0) = V0,ζ̃0
(ut) = nκn

∫ ∞

0

ζ̃0(s)s
n−1 ds = κnR

n ζ̃0(0)

for every t > 0. Since V0,ζ̃0
(u) is independent of u ∈ Convsc(R

n) and only depends on Rn ζ̃0(0), it

easily follows from Lemma 3.2 that we may choose ζ̃0 = R−n ζ .

The result now follows by setting ζj =
1

κn−j
ζ̃j =

1
κn−j

R−(n−j) ζ and observing that

Vj,ζ̃j
(u) = κn−j Vj,ζj(u)

for every u ∈ Convsc(R
n) and 0 ≤ j ≤ n.
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8.2. Representation Formulas for Functional Intrinsic Volumes. Let 1 ≤ j ≤ n. By Theorem 2.5,

V∗
j,ζ(v) =

∫

Rn

α(|x|) dMAj(v; x)

for v ∈ Conv(Rn;R) and ζ ∈ Dn
j , where α :=

(
n

j

)
Rn−jζ . If, in addition, v ∈ C2(Rn\{0}), then

Theorem 4.5 (c) and (d) imply that

(8.1) V∗
j,ζ(v) = α(0) Vj(∂v(0)) +

∫

Rn

α(|x|) det(D2v(x)[j],D2hBn(x)[n− j]) dx.

Correspondingly, by Theorem 1.6, we obtain that

Vj,ζ(u) =

∫

Rn

α(|y|) dMA∗
j (u; y)

for u ∈ Convsc(R
n) and ζ ∈ Dn

j , where α is defined as before. If, in addition, u ∈ C2
+(R

n\ argminu),
then Theorem 5.4 (c) and (d) combined with Theorem 5.5 imply that

(8.2) Vj,ζ(u) = α(0) Vj(argminu) +
1
(
n

j

)

∫

Rn

α(|∇u(x)|) τn−j(u, x) dx.

Note that α can be extended to a function in Cc([0,∞)) which implies that the densities in the integrals

in (8.1) and (8.2) are not singular. Hence, in the special cases considered here, we obtain a representation

of functional intrinsic volumes as Hessian valuations with continuous densities and an additional term

involving classical intrinsic volumes.

8.3. Retrieving the Classical Steiner Formula. As a further application of Theorem 1.4, we retrieve

the classical Steiner formula (1.1) from (1.5). We need the following result, which shows how the

classical intrinsic volumes can be retrieved from the functional intrinsic volumes.

Proposition 8.1 ([16], Proposition 5.2). If 0 ≤ j ≤ n− 1 and ζ ∈ Dn
j , then

Vj,ζ(IK) = κn−j R
n−jζ(0) Vj(K)

for every K ∈ Kn. If ζ ∈ Dn
n, then

Vn,ζ(IK) = ζ(0) Vn(K)

for every K ∈ Kn.

Let r > 0 and choose u to be the convex indicator function of a convex body K ∈ Kn. We have

u� (r IBn) = IK � (r IBn) = IK+rBn

and therefore Theorem 1.4 combined with Lemma 3.2 and Proposition 8.1 implies that

ζ(0)Vn(K + rBn) = Vn,ζ(IK � (r IBn)) =

n∑

j=0

rn−j Vj,R−(n−j) ζ(IK) = ζ(0)

n∑

j=0

rn−jκn−jVj(K)

for every K ∈ Kn and ζ ∈ Dn
n, which gives the classical Steiner formula if ζ(0) 6= 0.
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8.4. General Functional Steiner Formulas. We remark that the proof of Theorem 1.4 shows that

Steiner formulas for convex functions are also obtained if we replace the convex indicator function

IBn by any radially symmetric, super-coercive, convex function. Similarly, the support function hBn in

Theorem 2.3 can be replaced by any radially symmetric, finite-valued, convex function. However, in

general such formulas do not give rise to all functional intrinsic volumes V∗
j,ζ , that is, not all ζ ∈ Dn

j will

appear in the polynomial expansion. For example, if v ∈ Conv(Rn;R) ∩ C2
+(R

n), then it easily follows

from (2.1) and the definition of mixed discriminant that

(8.3) V∗
n,ζ(v +

1
2
r h2Bn) =

n∑

j=0

rn−j V∗
j,ζ(v)

for every ζ ∈ Dn
n and r > 0. By continuity, (8.3) also holds for all v ∈ Conv(Rn;R). Here we use

that Dn
n ⊆ Dn

j for every 0 ≤ j ≤ n to show that the functional intrinsic volumes appearing in (8.3)

are well-defined. However, the classes Dn
n and Dn

j do not coincide if j < n, which shows that not all

functional intrinsic volumes V∗
n,ζj

with ζj ∈ Dn
j are obtained in this way.

This raises the question for which convex functions φ : [0,∞) → R we obtain all functional intrinsic

volumes when we replace hBn by φ ◦ hBn . Let VConvj(R
n;R) be the set of continuous, dually epi-

translation and rotation invariant valuations on Conv(Rn;R) that are homogeneous of degree j. By

Theorem 1.3, we know that

VConvj(R
n;R) = {V∗

j,ζ : ζ ∈ Dn
j }

for 0 ≤ j ≤ n. We obtain the following complete description if we use a regularity assumption for φ.

Theorem 8.2. Let φ ∈ C2([0,∞)) be convex and such that φ′(0) ≥ 0. For 1 ≤ j ≤ n− 1,

VConvj(R
n;R) =

{∫

Rn

β(|x|) dMA(v[j], φ ◦ hBn [n− j]; x) : β ∈ Cc([0,∞))
}

,

if and only if φ′(0) > 0.

We require the following results for the proof of Theorem 8.2. The function vt is defined in (3.6).

Lemma 8.3. Let Z1,Z2 : Conv(Rn;R) → R be continuous, dually epi-translation and rotation invariant

valuations that are homogeneous of degree j with 0 ≤ j ≤ n. If Z1(vt) = Z2(vt) for every t ≥ 0, then

Z1 ≡ Z2.

Proof. By Theorem 2.2, there exist ζ1, ζ2 ∈ Dn
j such that

Z1(v) = V∗
j,ζ1

(v) and Z2(v) = V∗
j,ζ2

(v)

for every v ∈ Conv(Rn;R). If j = 0, then both Z1 and Z2 are constants, independent of v, and thus the

statement is trivial. For 1 ≤ j ≤ n, it follows from Lemma 3.4 and our assumptions on Z1 and Z2 that

κn

(
n

j

)

Rn−j ζ1(t) = V∗
j,ζ1

(vt) = Z1(vt) = Z2(vt) = V∗
j,ζ2

(vt) = κn

(
n

j

)

Rn−j ζ2(t)

for every t ≥ 0. By Lemma 3.2 this implies ζ1 ≡ ζ2 and thus Z1 ≡ Z2. �

We remark that it would be of great interest to find a proof of the previous lemma that does not require

Theorem 2.2. In particular, this would provide a new strategy to prove the Hadwiger theorem for convex

functions.
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Lemma 8.4. Let 1 ≤ j ≤ n − 1, let φ ∈ C2([0,∞)) be convex with φ′(0) ≥ 0 and β ∈ Cc([0,∞)). If

the functional Z̄ : Conv(Rn;R) → R is given by

(8.4) Z̄(v) :=

∫

Rn

β(|x|) dMA(v[j], φ ◦ hBn [n− j]; x),

then

(8.5) κn

(

β(t)φ′(t)n−j + (n− j)

∫ ∞

t

β(r)φ′(r)n−j−1φ′′(r) dr
)

= Z̄(vt)

for t ≥ 0.

Proof. First, let φ, ψ ∈ C2([0,∞)) be convex and such that ψ′(0) = 0. We want to compute the mixed

discriminant

det
(
D2(φ ◦ hBn)[n− j],D2(ψ ◦ hBn)[j]

)
.

For x ∈ Rn, set r := |x|. For r > 0, by the radial symmetry of φ ◦ hBn and ψ ◦ hBn and by choosing a

coordinate system such that en is parallel to x, we obtain

D2(φ◦hBn)(x) = diag
(φ′(r)

r
, . . . ,

φ′(r)

r
, φ′′(r)

)

, D2(ψ◦hBn)(x) = diag
(ψ′(r)

r
, . . . ,

ψ′(r)

r
, ψ′′(r)

)

,

where diag(λ1, . . . , λn) is the n× n diagonal matrix with entries λ1, . . . , λn in the diagonal. Therefore,

for ε > 0,

det
(
D2(φ ◦ hBn)(x) + εD2(ψ ◦ hBn)(x)

)
=

(φ′(r)

r
+ ε

ψ′(r)

r

)n−1

(φ′′(r) + εψ′′(r)).

Using the previous expression and (3.1), we obtain, after some computations, that

det
(
D2(φ ◦ hBn)(x)[n− j],D2(ψ ◦ hBn)(x)[j]

)
=

1

nrn−1

(
φ′(r)n−jψ′(r)j

)′
.

Next, assume that β ∈ C1
c ([0,∞)). By the previous step and Theorem 4.3 (c),

(8.6)

∫

Rn

β(|x|) dMA(φ ◦ hBn [n− j], ψ ◦ hBn [j]; x) = κn

∫ ∞

0

β(r)
(
φ′(r)n−jψ′(r)j

)′
dr

= −κn

∫ ∞

0

β ′(r)φ′(r)n−jψ′(r)j dr

where we used polar coordinates, integration by parts and the condition ψ′(0) = 0. For t > 0, set

ψt(r) := max{0, r − t}

for r > 0. Note that for vt, we have

vt = ψt ◦ hBn .

For t > 0, there exists a sequence of convex functions ψt,j converging to ψt uniformly in [0,∞) and such

that ψt,j ∈ C2([0,∞)) and ψ′
t,j(0) = 0 for every j. Moreover, the sequence ψt,j can be chosen so that

ψ′
t,j is uniformly bounded and converges pointwise to ψ′

t in [0,∞) except for r = t. By (8.6), the weak

continuity of Monge–Ampère measures, the fact that the support of β is bounded, and the dominated

convergence theorem, we obtain that
∫

Rn

β(|x|) dMA(vt[j], φ ◦ hBn [n− j]; x) = −κn

∫ ∞

t

β ′(r)φ′(r)n−j dr.

Integration by parts gives
∫

Rn

β(|x|) dMA(vt[j], φ ◦ hBn [n− j]; x) = κn
(
β(t)φ′(t)n−j + (n− j)

∫ ∞

t

β(r)φ′(r)n−j−1φ′′(r) dr
)
.
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This equation, which has been proved in the case β ∈ C1
c ([0,∞)), can now be extended to the case that

β ∈ Cc([0,∞)) by approximating β uniformly on its support by a sequence of functions in C1
c ([0,∞)).

�

Theorem 8.2 follows from the next two propositions.

Proposition 8.5. Let φ ∈ C2([0,∞)) be convex and let φ′(0) > 0. If Z: Conv(Rn;R) → R is a

continuous, dually epi-translation and rotation invariant valuation that is homogeneous of degree j with

1 ≤ j ≤ n− 1, then there exists β ∈ Cc([0,∞)) such that

Z(v) =

∫

Rn

β(|x|) dMA(v[j], φ ◦ hBn [n− j]; x)

for every v ∈ Conv(Rn;R).

Proof. Given α ∈ Cc([0,∞)), define the function β : [0,∞) → R as

(8.7) β(t) := −
1

κn

(
α(t)

φ′(t)n−j
+ (n− j)

∫ ∞

t

α(r)

φ′(r)n−j+1
φ′′(r) dr

)

,

where we use that φ′(t) > 0 for every t ∈ [0,∞). Also note that β ∈ Cc([0,∞)). We claim that β is a

solution of the equation

(8.8) κn

(

β(t)φ′(t)n−j + (n− j)

∫ ∞

t

β(r)φ′(r)n−j−1φ′′(r) dr
)

= α(t).

If we assume that α ∈ C1
c ([0,∞)), then also β ∈ C1

c ([0,∞)) and (8.8) can be written in the form

−κn

∫ ∞

t

β ′(r)φ′(r)n−j dr = α(t).

Hence the claim is easily verified under the additional assumption on α. The general case is obtained by

approximation.

For t ≥ 0, define

α(t) := Z(vt).

By Theorem 2.2, Lemma 3.4 and Lemma 3.2, we know that α ∈ Cc([0,∞)). For this function α, define

β : [0,∞) → R by (8.7). Define Z̄ : Conv(Rn;R) → R as

Z̄(v) :=

∫

Rn

β(|x|) dMA(v[j], φ ◦ hBn [n− j]; x).

By Proposition 4.4, the functional Z̄ is a continuous, dually epi-translation and rotation invariant valua-

tion on Conv(Rn;R) that is homogeneous of degree j. By Lemma 8.4 and (8.8),

Z(vt) = Z̄(vt)

for every t ≥ 0. By Lemma 8.3, this implies that Z ≡ Z̄. �

Proposition 8.6. Let 1 ≤ j ≤ n − 1. If φ ∈ C2([0,∞)) is convex and φ′(0) = 0, then there ex-

ists a continuous, dually epi-translation and rotation invariant valuation Z: Conv(Rn;R) → R that is

homogeneous of degree j such that

Z(v) =

∫

Rn

β(|x|) dMA(v[j], φ ◦ hBn [n− j]; x) for all v ∈ Conv(Rn;R)

is not verified by any β ∈ Cc([0,∞)).
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Proof. Let α ∈ C2
c ([0,∞)) be such that α′(0) > 0. By Lemma 3.4 and Lemma 3.2, there exists a con-

tinuous, dually epi-translation and rotation invariant valuation Z on Conv(Rn;R) that is homogeneous

of degree j such that

Z(vt) = α(t)

for t ≥ 0. Assume that there exists β ∈ Cc([0,∞)) such that (8.4) is satisfied for this functional Z. By

Lemma 8.4, the function β has to verify (8.5). As α ∈ C2
c ([0,∞), we have β ∈ C1

c ([0,∞)), and the

equation takes the form

−κn

∫ ∞

t

β ′(r)φ′(r)n−j dr = α(t)

for t > 0. Consequently,

β(t) = −
1

κn

∫ ∞

t

α′(r)

φ′(r)n−j
dr

for t > 0. By the conditions on φ and α, we conclude that

lim
t→0+

β(t) = +∞,

which is a contradiction. �
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