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Hypothesis: Particle surface chemistry and internal softness are two fundamental parameters in governing the 
mechanical properties of dense colloidal suspensions, dictating structure and flow, therefore of interest from 
materials fabrication to processing.

Experiments: Here, we modulate softness by tuning the crosslinker content of poly(N-isopropylacrylamide) 
microgels, and we adjust their surface properties by co-polymerization with polyethylene glycol chains, 
controlling adhesion, friction and fuzziness. We investigate the distinct effects of these parameters on the entire 
mechanical response from restructuring to complete fluidization of jammed samples at varying packing fractions 
under large-amplitude oscillatory shear experiments, and we complement rheological data with colloidal-probe 
atomic force microscopy to unravel variations in the particles’ surface properties.

Findings: Our results indicate that surface properties play a fundamental role at smaller packings; decreasing 
adhesion and friction at contact causes the samples to yield and fluidify in a lower deformation range. Instead, 
increasing softness or fuzziness has a similar effect at ultra-high densities, making suspensions able to better 
adapt to the applied shear and reach complete fluidization over a larger deformation range. These findings shed 
new light on the single-particle parameters governing the mechanical response of dense suspensions subjected to 
deformation, offering synthetic approaches to design materials with tailored mechanical properties.
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1. Introduction

Dense suspensions of colloidal particles are at the core of a variety 
of materials and processes, being fundamental components in formu-

lations for surface coatings, fluids for oil extraction, additive manufac-

turing, cosmetics, food-grade materials, etc. [1,2]. In addition to the 
particle surface properties, which dictate the strength of the main in-

terparticle interactions at play (e.g., electrostatic, steric, van der Waals) 
the internal degree of softness of the colloids dramatically affects their 
behavior in crowded states, and it is used as a precisely controllable pa-

rameter to tune their structural and rheological properties [3,4]. This is 
of great interest for the fundamental understanding of the rich phase be-

havior of a broad range of soft systems, including biological ones [5,6], 
and for the design of functional materials with tuneable mechanical 
responses, as required in applications ranging from optics to viscosity 
modifiers and biocompatible carriers [7–13].

Among soft colloids, microgel particles made of swellable polymer 
networks offer multiple opportunities to achieve the desired functional-

ities in dense systems. When dispersed in a good solvent they are highly 
deformable, compressible, and can interpenetrate with neighboring par-

ticles [14,15], allowing one to easily reach states with effective volume 
fractions that exceed the hard-sphere limit, and can be higher than 1 
[3,16,17]. The extent of deformation can be tuned at the synthesis level 
by varying the crosslinker content, or by using polymers responsive to 
external inputs (e.g., temperature, pH, ionic strength) [4]. This has a 
profound effect on the phase diagrams, flow and rheological properties 
of microgels in densely packed states, both in suspensions [15,18–23]

and in two-dimensions (i.e., when microgels are compressed on a fluid 
interface) [24–26]. Tuning their internal elasticity allows, for example, 
to shift the transition between liquid and crystalline state to higher ef-

fective concentrations [22,24], to crystallize suspensions even in the 
presence of very high polydispersity [27,28], or to modulate the ma-

terial viscoelastic properties such as storage modulus and yield strain 
[29,30].

The rheological response of microgel suspensions can be further 
modified acting on the interparticle contacts, consequently tuning the 
resulting interactions. For example, temperature variations in the case 
of poly(N-isopropylacrylamide) (pNIPAM) microgels allow inducing 
transitions from a more hydrophilic to a more hydrophobic surface, 
modifying the polymer conformation on the particle periphery and trig-

gering the emergence of attractive interactions [31,32]. Alternatively, 
different polymers on the surface can be exploited to modulate the ex-

tent of adhesion, friction and interdigitation between particles [33–38]. 
Polyethylene glycols (PEG) are intriguing candidates in this regard, 
especially when considering potential applications requiring biocom-

patibility and enhanced particle stability for healthcare applications. 
PEG polymer chains are extensively used to modulate the self-assembly 
of block copolymers, such as pNIPAM-co-PEG chains that form mi-

celles and aggregates by non-covalent interactions and find numerous 
applications as thermoreversible gelators [10,11,39,40], or to design 
microgel particles via covalent modification of the polymer network 
for an improved control over their structure and stimulus responsiv-

ity [36,41,42]. However, surface effects, albeit of utmost importance to 
fully comprehend the behavior of soft-particle systems, are rarely linked 
[32,34,43,44] to the complex rheological properties of dense microgel 
suspensions, and the separate contribution of particle’s surface and bulk 
properties to the yielding process have not been fully considered.

In this work we focus on the linear and non-linear rheological behav-

ior of dense pNIPAM microgel suspensions in the jammed state under 
oscillatory shear [45], with specific emphasis on the role of the internal 
degree of softness and the influence of particle surface properties. Al-

though their viscoelastic response, particularly the yielding transition, 
have been already investigated previously [16,18,20,30,46,47], the full 
dynamics of yielding and the path towards complete fluidization under 
large amplitude oscillatory shear (LAOS) are still largely unexplored. In-
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first harmonic approximation typically determine a single yield strain 
or stress value, while the transition to flow is a progressive process that 
spans a broad range of applied deformations or stresses, from the values 
associated to initial restructuring to those corresponding to complete 
fluidization. Furthermore, studies that considered anharmonic contri-

butions through Fourier Transform rheology did not take into account 
the whole spectrum of higher harmonics. Finally, only the analysis of 
the variation of the viscoelastic moduli along each deformation cycle 
can precisely reveal the onset of significant restructuring and yielding, 
as well as the complete reorganization of the local structure inducing 
flow [48,49].

Here, we analyze the effect of crosslinking density and that of adding 
linear PEG chains on the particle surface to tune their mechanical, ad-

hesion and frictional responses by affecting preferentially the internal 
particle elasticity or the interactions at contact. We take advantage of 
the sequence of physical processes (SPP) [48,49] approach to analyze

LAOS measurements in order to consider the whole spectrum of anhar-

monic contributions. This allows us to gain insights on the viscoelastic 
non-linear response during progressive fluidization of the samples at 
increasing applied deformations. By looking at LAOS data we, in partic-

ular, disclose the influence that particle softness and surface properties 
have in governing their rheological behavior in very high density states. 
In particular, we reveal that these parameters affect in a complex way 
the entire transition from the onset of yielding to the complete fluidiza-

tion of the system, an information that could only be collected with the 
used approach. Additionally, to corroborate the rheological data, we 
employ colloidal probe atomic force microscopy (CP-AFM) to charac-

terize the variation in the particles’ adhesive and frictional properties 
mediated by the incorporation of PEG comonomers on the microgel sur-

face.

2. Materials and methods

2.1. Reagents

N,N’-methylenebis(acrylamide) (BIS, Fluka 99.0%), potassium per-

sulfate (KPS, Sigma–Aldrich 99.0%) and polyethylene glycol methyl 
ether methacrylate (PEGMA) m.w.: 13000 (abcr GmbH) were used with-

out further purification. N-isopropylacrylamide (NIPAM, TCI 98.0%) 
was purified by recrystallization in 40/60 v/v toluene/hexane.

2.2. Microgels synthesis

pNIPAM microgels. pNIPAM microgels were synthesized by surfac-

tant-free semi-batch radical precipitation polymerization, following al-

ready published protocols [50]. NIPAM (2g) and BIS were dissolved in 
100 mL of MilliQ water. The amount of BIS was chosen in order to syn-

thesize microgels with 5 or 1 mol % crosslinker. The monomers mixture 
was purged with nitrogen for 1 h and then 60 mL of the monomer so-

lution was taken out with a syringe. 20 mL of MilliQ water were added 
to the reaction flask and the solution was immersed into an oil bath at 
80 °C and purged with nitrogen for another 30 min. The reaction was 
started by adding 25 mg of KPS previously dissolved in 2 mL of MilliQ 
water and purged with nitrogen. Feeding of the monomer solution to 
the reaction flask was set at 0.5 mL/min and was initiated after 1.5 
min. The reaction was quenched at the end of the feeding step by open-

ing the flask to let the air in, and placing it in an ice bath. The colloidal 
suspension was dialysed for a week, and purified by 6 centrifugation 
cycles and resuspension of the sedimented particles in pure water, and 
freeze-dried.

pNIPAM-PEG microgels. pNIPAM-PEG microgels were synthesized by 
surfactant-free semi-batch radical precipitation polymerization, modi-

fying already published protocols [36,42]. NIPAM (1g) and BIS were 
dissolved in 100 mL of MilliQ water. The amount of BIS was chosen in 
order to synthesize microgels with 5 or 1 mol % crosslinker, calculated 

with respect to all the monomers in the reaction mixture. Separately, 
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Table 1

Microgels used in this study, particle size at 19 °C, swelling ratio and 𝑘.

Microgel mol % BIS mol % PEGMA dℎ (19 °C) [nm] dℎ (19 °C) / dℎ (45 °C) 𝑘

pN5 5 - 826 ± 10 1.77 ± 0.04 7.55 ± 0.2

pN1 1 - 850 ± 8 2.16 ± 0.04 14.2 ± 0.2

pN-PEG5 5 1 847 ± 20 1.78 ± 0.05 8.0 ± 0.1

pN-PEG1 1 1 1013 ± 11 2.24 ± 0.05 21.6 ± 0.7
PEGMA (1.2g) dissolved in 20 mL of MilliQ water and KPS (16 mg) dis-

solved in 2 mL of MilliQ water were purged with nitrogen for 1 h. The 
reaction was carried out at 70 °C and it was started by adding KPS to the 
reaction flask containing NIPAM. After 20 min, the PEGMA monomer 
was injected in the flask at 0.33 mL/min. The reaction was stopped af-

ter 5 h 20 min by opening the flask and placing it in an ice bath. The 
colloidal suspension was dialysed for a week, purified by 6 centrifuga-

tion cycles and resuspension of the sedimented particles in pure water, 
and freeze-dried.

2.3. Experimental methods

DLS. Dynamic light scattering (DLS) experiments were performed us-

ing a Zetasizer (Malvern, UK). The microgels were redispersed in Milli-Q 
water at a concentration of 0.01 wt% in order to analyze samples in the 
dilute regime. The temperature was varied from 19 to 51 °C with 2 °C 
steps and 15 min equilibration time. For each temperature we recorded 
four consecutive measurements of 15 runs each.

Viscometry. Viscosity measurements were performed using a Micro-

Ubbelohde viscometer (type no. 538 13, Xylem Analytics, Germany, 
capillary diameter 0.53 mm, constant K = 0.03) immersed in a water 
bath with a thermostat set at 25 °C. We measured the relative viscosity 
of diluted microgel suspensions at different concentrations with respect 
to that of pure water. For each concentration, the Micro-Ubbelohde 
viscometer filled with the microgel suspension was immersed at 25 °C 
for 10 minutes to ensure temperature equilibration prior to start the 
measurement. Successively, flow times were measured 5 times. The 
viscosity data were then fitted with the Einstein–Batchelor relation 
𝜂𝑟𝑒𝑙 = 1 + 2.5𝜙 + 5.9𝜙2 with 𝜙 = 𝑘 ⋅ 𝑤𝑡%, to determine the constant 𝑘
and estimate the particle effective volume fraction 𝜙. We note that the 
effective volume fraction in dense samples is only estimated with this 
equation as a quantitative knowledge of the variation of the microgel 
size with concentration is currently unknown for our systems.

Colloidal probe AFM (CP-AFM). Microgel monolayers were deposited 
onto silicon wafers via transferring from a hexane-water interface fol-

lowing procedures already described elsewhere [25,26]. Briefly, mi-

crogels were first adsorbed at the hexane-water interface, where they 
formed ordered monolayers. A piece of a silicon wafer, previously 
cleaned with a UV-ozone cleaner (UV/Ozone Procleaner Plus, Bioforce 
Nanosciences) for 15 minutes to ensure a highly hydrophilic surface, 
was then lifted from the water subphase (where it was immersed prior 
to forming the microgel monolayer) through the interface at a constant 
speed of 25 μm⋅s−1. This ensured transferring of the monolayer from 
the fluid interface to the solid substrate. The silicon wafer was then 
lifted out of the hexane phase, left to dry and successively re-immersed 
in Milli-Q water for performing the AFM measurements. We confirmed 
the sufficient stability of the microgel monolayer adsorbed on the solid 
substrate by imaging the substrate immersed in Milli-Q water twice on 
the same position using a sharp tip. As reported in Fig. S14, no dis-

cernible removal of particles was observed during the scanning process 
within the same applied load range we used for the friction experiments. 
Importantly, it should also be noted that the use of a colloidal probe for 
friction and force experiments decreases the contact pressure exerted by 
the probe to the microgels with respect to a sharp tip. Moreover, dur-

ing the friction test approximately 7 friction loops were recorded across 
the sample surface on the same position. The consistency of these loops 
from the initial to the final one indicates the absence of significant par-
816

ticle removal during measurement.
Colloidal probe lateral force and adhesion force measurements were 
carried out using a MFP3D atomic force microscope (Asylum Research, 
Oxford Instruments, Santa Barbara, USA). The colloidal probe was pre-

pared by gluing a silica colloid (16 μm in diameter, EKA Chemicals AB, 
Kromasil R, Sweden) to a tipless cantilever (CSC38, MikroMasch, Bul-

garia) using a custom made micromanipulator. The prepared colloidal 
probe was treated under UV-ozone cleaner (Ossila, UK) for 20 minutes 
before the measurements. Friction loops were recorded by scanning the 
cantilever laterally over the microgel monolayer deposited on silicon 
surface, immersed in Milli-Q water at 25 °C, with a scan rate of 0.5 Hz 
and an applied load of ∼10 nN. The temperature was kept constant by 
using a bio heater cell (MFP 3D, Asylum research, Oxford instrument). 
The normal and torsional spring constant calibration of the cantilever 
was performed by using thermal noise [51] and Sader’s method [52], 
respectively. The lateral-force calibration was carried out by employing 
the ‘test-probe method’ [53].

Adhesion measurements were performed using the same cantilever 
and on the same samples right after the friction tests. Force versus dis-

tance curves were measured at a scanning speed of 1 μm∕𝑠.
Rheology. Rheological measurements were performed using a Dis-

covery HR-3 rheometer (TA Instruments), with a plate-plate geometry 
(stainless steel, diameter: 40 mm). The choice of this geometry is due to 
the relatively high viscosity of the samples, which would require appli-

cation of a significantly high normal stress to the sample during loading 
in a cone-plate geometry, possibly altering its structural arrangement 
before application of shear. The non-uniform stress distribution in the 
sample associated with the plate-plate geometry results in quantitative 
differences in the LAOS parameters describing anharmonic contribu-

tions compared to cone-plate measurements [54–56]. However, trends 
of the same parameters discussed in this work are not significantly 
affected [56]. We also note that, when using this configuration, no in-

dications of responses associated with wall-slip are observed.

A Peltier in contact with the lower plate ensured a constant tem-

perature of 25 °C, and a solvent trap consisting of an enclosure with a 
solvent seal at the top and a wet tissue adhered to its interior was used 
to avoid evaporation. The gap in all experiments was set to 250 μm. 
A rejuvenation protocol was implemented before each measurement to 
minimize variabilities due to sample loading and aging. We first ap-

plied an oscillatory shear for 120 s with a large strain amplitude (𝛾 = 
600%) at frequency 𝜔 = 1 rad/s, during which all samples showed a 
liquid-like behavior. We then applied a second oscillatory shear with 
a low strain amplitude (𝛾 = 0.5%) at frequency 𝜔 = 10 rad/s, un-

til a steady state response in the viscoelastic moduli was reached. For 
all samples, such a steady state response was obtained within 120 s. 
Frequency sweep experiments were performed at 𝛾 = 0.1%, varying 
𝜔 from 100 to 0.1 rad/s. Oscillatory shear experiments as amplitude 
sweeps were performed at constant frequency, with strain 𝛾 varying 
from 0.5% to 1000%. For each point, we recorded 5 cycles; for each 
sample, we tested two frequencies, 𝜔 = 10 and 1 rad/s.

All time-resolved raw data were processed by using a freely available 
MATLAB-based software developed by Rogers [49]. The data analysis 
is based on the sequence of physical processes (SPP) technique, which 
is used to define the instantaneous moduli (𝐺′

𝑡
and 𝐺′′

𝑡
) throughout the 

time-varying response of the material to deformation, for each applied 
oscillatory shear. A complete derivation of the SPP parameters can be 
found elsewhere [48,49]. The SPP analysis was performed on data re-
constructed via Fourier-domain filtering, using 5 harmonics. In short, 
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Table 2

Definitions of the metrics used 
to investigate the rheological 
response under LAOS.

metric definition

𝛾ℎ 𝑚𝑎𝑥(𝐺′
𝑡
) > 1.05 ⋅𝐺′

𝛾𝑦𝑖𝑒𝑙𝑑 𝑚𝑎𝑥(𝛿𝑡) = 𝜋∕4
𝛾𝑓𝑙𝑢𝑖𝑑 𝑚𝑎𝑥(𝛿𝑡) = 𝜋∕2

for each oscillatory shear at fixed strain the analysis capture the instan-

taneous moduli 𝐺′
𝑡

and 𝐺′′
𝑡

, which describe the instantaneous response 
of the material within the cycle. The non-linear response of the material 
to deformation can be expressed in terms of the instantaneous magni-

tude of the viscoelastic response:

|𝐺∗
𝑡
| =√

𝐺′ 2
𝑡

+𝐺′′ 2
𝑡

(1)

and the phase angle of the complex modulus:

𝛿𝑡 = tan−1
(
𝐺′′
𝑡

𝐺′
𝑡

)
(2)

As in the linear viscoelastic regime, yielding of a material can be iden-

tified on a macroscopic scale as the point within the cycle when the 
instantaneous response changes from primarily elastic, 𝛿𝑡 < 𝜋∕4, to 
primarily viscous, 𝛿𝑡 > 𝜋∕4. This corresponds to a crossover between 
the time-resolved instantaneous moduli 𝐺′

𝑡
and 𝐺′′

𝑡
, analogous to the 

crossover between 𝐺′ and 𝐺′′ in the first harmonic approximation. As 
described in the works of Rogers [49], the range in which 𝜋∕4 < 𝛿𝑡 <

𝜋∕2 can be considered as incomplete yielding of the material, when a 
significant degree of internal structure is maintained. Instead, complete 
yielding (i.e., completely unstructured state) can be defined as when 
the phase angle goes to the viscous limit of 𝛿𝑡 = 𝜋∕2. In this work we 
introduce another metric (𝛾ℎ) defined as 𝑚𝑎𝑥(𝐺′

𝑡
) > 1.05 ⋅ 𝐺′, to esti-

mate when the rheological response within the deformation cycle starts 
to differ from the response in the first harmonic approximation. A sum-

mary of the definitions of these three metrics is reported in Table 2. 
The error on the characteristic yield strain values was estimated from 
the limitation in the resolution of the strain determination imposed by 
the finite sampling used for each LAOS experiment.

3. Results and discussion

In Fig. 1a we report a schematic of the microgels synthesized and 
analyzed in this work. We investigated pNIPAM microgels with 5 and 
1 mol % crosslinker (identified as pN5 and pN1, respectively), as well 
as pNIPAM-PEG microgels with 5 and 1 mol % crosslinker (pN-PEG5 
and pN-PEG1, respectively) and 1 mol % of polyethylene glycol methyl 
ether methacrylate (PEGMA, m.w.: 13000). Details on the synthesis pro-

tocols are in the Materials and Methods section. Importantly, the use of 
a semi-batch protocol, together with the lower reaction constant of long 
PEGMA chains with respect to NIPAM, is believed to effectively accu-

mulate the linear PEG comonomers on the microgels’ surface [42,57].

Dynamic light scattering is used to quantify the hydrodynamic diam-

eter (dℎ) of the different microgels as a function of temperature (Fig. 1b 
and S1). Both the sharpness of the transition and the swelling ratio (see 
also Table 1) are not affected by the addition of PEG, and the swelling 
ratio only depends on the crosslinker content. This is in accordance with 
a particle architecture composed of PEG chains located mainly on the 
particle periphery that do not influence the thermal response of the pNI-

PAM network [57,58]. The fact that the deswelling is nearly the same 
for particles with the same crosslinker content (Fig. 1b) supports the 
assumption that PEG chains do not modify the effective crosslinking 
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density and therefore the single-particle internal elasticity.
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3.1. Non-linear rheology of pNIPAM microgels

We begin by analyzing the rheological response of pN5 micro-

gels at varying effective volume fractions (𝜙) beyond close packing, 
i.e. starting at 0.9. The linear viscoelastic moduli obtained from fre-

quency sweeps (Fig. S2a) indicate a solid-like response for all samples, 
with the storage modulus 𝐺′ always higher than the loss modulus 𝐺′′. 
The plateau viscoelastic moduli increase linearly with 𝜙 (Fig. S2b), 
as expected for pure pNIPAM microgels at comparable concentra-

tions [16,36,59], and as ascribed to the finite softness of their cores 
[20,33,60]. This result is indicative of affine elasticity, as reported by 
theory and simulations at comparable oscillation frequencies [61]. We 
note that all samples are well within the jamming limit as estimated 
by Pellet and Cloitre [20]. The microgels are therefore expected to be 
highly deformed, compressed and possibly interpenetrated [15].

We then investigate the non-linear response in LAOS experiments. In 
Fig. 2a we report 𝐺′ and 𝐺′′ measured in first harmonic approximation, 
for an oscillation frequency 𝜔 = 10 rad/s. For all samples, the moduli 
are approximately constant up to strain amplitudes (𝛾) of a few per-

cent, while at larger applied strains the material response changes from 
predominantly solid-like (𝐺′ > 𝐺′′) to liquid-like (𝐺′ < 𝐺′′), exhibiting 
a weak 𝐺′′ overshoot behavior that has been recently associated to a 
continuous transition from recoverable to unrecoverable deformation 
[62]. This response is in line with results typically reported for mi-

crogels [16,18,20,30], hard-core soft-shell particles [46,63], and other 
colloidal systems with varying softness [3].

We used the time-resolved SPP analysis [48,49] (see Materials and 
Methods) to get detailed insights into the non-linear behavior of the 
samples as a function of the applied strain and to obtain information 
on the dynamics of the mechanical response during the yielding transi-

tion. Fig. 2b shows Cole-Cole plots of the variation of the instantaneous 
moduli 𝐺′

𝑡
and 𝐺′′

𝑡
during the cycles for increasing 𝛾 (color-coded from 

blue to yellow) for pN5 microgels at 𝜙 = 1.59. At low applied strains 
𝐺′
𝑡
>> 𝐺′′

𝑡
for the entire cycle, as expected for a solid-like response. 

Upon increasing 𝛾 , 𝐺′
𝑡

decreases, 𝐺′′
𝑡

increases, and both moduli change 
significantly during the oscillation cycle. For this sample, we observe 
that 𝐺′′

𝑡
becomes higher than 𝐺′

𝑡
, corresponding to a partial yielding 

of the material within the cycle [49], starting from 𝛾 = 22.7% (arrow in 
Fig. 2b). The instantaneous moduli are then used to calculate the instan-

taneous phase angle 𝛿𝑡 (eq. (2)) as defined by Donley et al. [49], which 
is used to identify the point within the cycle when the material response 
changes from primarily elastic, 𝛿𝑡 < 𝜋∕4, to primarily viscous, 𝛿𝑡 > 𝜋∕4, 
up to a completely unstructured state 𝛿𝑡 > 𝜋∕2 (see Materials and Meth-

ods). Fig. 2c reports the variation of 𝛿𝑡 within the cycle at 𝛾 = 22.7%, 
clearly showing the phase angle crossing the 𝜋∕4 line, corresponding to 
partial yielding at this 𝛾 . A further increase in 𝛾 in successive cycles re-

sults in 𝛿𝑡 plots where both the time during the cycle in which 𝛿𝑡 > 𝜋∕4, 
and its maximum value, increase.

To explore in details the yielding transition under oscillatory shear, 
we extracted three metrics from the time-resolved SPP analysis in order 
to identify when the material’s response departs from a primarily solid-

like behavior, then yields and finally fluidifies at very large applied de-

formations. We first define 𝛾ℎ as the strain for which 𝑚𝑎𝑥(𝐺′
𝑡
) > 1.05 𝐺′

(see Fig. 2e, where 𝛾ℎ is visualized for 𝜙 = 1.59, and Fig. S3 for sim-

ilar plots for the other 𝜙). This metric allows us to unambiguously 
identify from which strain value the time-resolved analysis differs from 
the response of the harmonic approximation, indicating an apprecia-

ble sample reorganization within each deformation cycle. The value of 
𝑚𝑎𝑥(𝛿𝑡) (Fig. 2d), i.e. the maximum of the 𝛿𝑡 vs strain curves obtained 
for each applied strain (see an exemplary curve in Fig. 2c), is then used 
to summarize the time-resolved analysis and describe the yielding pro-

cess. The first strain value at which 𝑚𝑎𝑥(𝛿𝑡) = 𝜋∕4 pinpoints when the 
material starts yielding (𝛾𝑦𝑖𝑒𝑙𝑑 ); while we identify the strain at which 
the material fully fluidifies (𝛾𝑓𝑙𝑢𝑖𝑑 ) with the first strain value at which 

𝑚𝑎𝑥(𝛿𝑡) = 𝜋∕2.
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Fig. 1. pNIPAM and pNIPAM-PEG microgels. a) Sketch of the microgels synthesized and investigated in this work. b) Microgels’ swelling ratio as a function of 
temperature measured as 𝑑ℎ∕𝑑ℎ(19 ◦𝐶), where 𝑑ℎ is the hydrodynamic diameter.

Fig. 2. LAOS of pN5 microgels. a) Storage (𝐺′ , solid symbols) and loss (𝐺′′ , open symbols) moduli from strain amplitude sweeps at 25 °C and 𝜔 = 10 rad/s at 
increasing effective volume fraction (𝜙). b) Instantaneous values of the time-resolved viscoelastic SPP moduli 𝐺′

𝑡
and 𝐺′′

𝑡
for pN5 microgels at 𝜙 = 1.59. Color-

coding from blue to yellow indicates increasing 𝛾% in the amplitude sweep experiment. The dashed line marks the yielding threshold 𝛿𝑡 = 𝜋∕4. c) Plot of the 
instantaneous phase angle 𝛿𝑡 corresponding to the data at 𝛾 = 22.7% in (b) indicated by the arrow. Color-coding from red to yellow shows the time within one 
oscillation cycle. d) 𝑚𝑎𝑥(𝛿𝑡) as a function of strain amplitude in amplitude sweep experiments at increasing 𝜙. The dashed and the dash-dotted lines indicate 𝛾𝑦𝑖𝑒𝑙𝑑
and 𝛾𝑓𝑙𝑢𝑖𝑑 , respectively. e) Detail of the amplitude sweep for 𝜙 = 1.59. The black solid and open symbols represent 𝑚𝑎𝑥(𝐺′

𝑡
) and 𝑚𝑎𝑥(𝐺′′

𝑡
), respectively. The dotted

line indicates 𝛾ℎ, the dashed line 𝛾𝑦𝑖𝑒𝑙𝑑 and the dash-dotted line 𝛾𝑓𝑙𝑢𝑖𝑑 (see main text). (For interpretation of the colors in the figure(s), the reader is referred to the 
web version of this article.)
We first discuss results obtained investigating pN5 microgels at in-

creasing concentration: Fig. S4a reports 𝛾ℎ values, while 𝛾𝑦𝑖𝑒𝑙𝑑 and 𝛾𝑓𝑙𝑢𝑖𝑑
metrics are shown in Fig. 3 (black symbols). The strain values related 
to these metrics increase as a function of 𝜙. This can be expected, 
as more concentrated samples become stiffer and can accommodate 
larger deformations before the internal structure breaks, and the sam-

ple yields and flows. A similar result is observed also when looking at 
the crossover point 𝐺′ =𝐺′′ in the harmonic approximation (Fig. S4b), 
typically considered as an indication of the yielding transition in the 
sample [16,18,64–66]. The values of 𝛾𝑦𝑖𝑒𝑙𝑑 (i.e., when 𝐺′

𝑡
= 𝐺′′

𝑡
) are 

always lower than the corresponding 𝐺′ = 𝐺′′ (𝛾CR, Fig. S4c): partial 
yielding within a deformation cycle happens before the actual crossover 
of the harmonic moduli, as already observed for similar samples [49]. 
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Interestingly, the distance between these two metrics, 𝛾𝑦𝑖𝑒𝑙𝑑 and 𝛾CR, 
decreases as a function of 𝜙. We attribute the latter result to a more 
abrupt onset of the yielding transition upon increase in particle density.

We note that the apparent decrease of 𝛾𝑓𝑙𝑢𝑖𝑑 at 𝜙 = 1.59 is attributed 
to noise in the acquired data. When the same analysis was applied for 
strain amplitude sweeps at 𝜔 = 1 rad/s (Fig. S5), the obtained value of 
𝛾𝑓𝑙𝑢𝑖𝑑 at 𝜙 = 1.59 is comparable to that at 𝜙 = 1.52 (Fig. S5e). Fig. S5 
also shows that these results are independent of the oscillation fre-

quency.

We then quantified the deformation span required for each transi-

tion to occur; in other words, the abruptness of yielding as a function 
of 𝜙. This is measured by the strain ratios 𝛾𝑦𝑖𝑒𝑙𝑑

𝛾ℎ
(Fig. 3d) and 𝛾𝑓𝑙𝑢𝑖𝑑

𝛾𝑦𝑖𝑒𝑙𝑑

(Fig. 3e), indicating, respectively, how much deformation of the sample 
is required to cause an appreciable modification of the internal structure 
until partial yielding occurs, and how much deformation can the mate-
rial sustain before it completely yields. Both ratios are approximately 
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Fig. 3. Effect of crosslinking density. a) Storage (filled symbols) and viscous (open symbols) moduli in the linear regime (𝛾 = 0.5 − 1%) as a function of 𝜙
(temperature = 25 °C, 𝜔 = 10 rad/s). Solid lines represent linear fitting of the data. b) First strain value at which 𝛿𝑡 = 𝜋∕4 as a function of volume fraction. c) First 
strain value at which 𝛿𝑡 = 𝜋∕2 as a function of volume fraction. d) Strain ratio 𝛾𝑦𝑖𝑒𝑙𝑑

𝛾ℎ
as a function of volume fraction. e) Strain ratio 𝛾𝑓𝑙𝑢𝑖𝑑

𝛾𝑦𝑖𝑒𝑙𝑑
as a function of volume 

fraction. In b-e) pN5 filled circles, pN1 open squares, dashed lines to guide the eye.
constant up to 𝜙 = 1.2. In this volume fraction range, the transitions, 
even though all starting at higher absolute strain values, require a simi-

lar, relative, deformation range. This is visually captured also in Fig. S3, 
where the 𝛾 relative to each metric is superimposed on the 𝐺′, 𝐺′′ mod-

uli from LAOS.

A different behavior is instead observed at higher 𝜙, for which both 
ratios decrease. We attribute this effect to the extent of compression, 
deformation and interpenetration of the microgels in the structure as a 
function of 𝜙. In the extreme cases, 𝜙 > 1.2 for this particular microgel, 
the particles are already significantly deformed at rest and can adapt 
less to the imposed sample deformation. As a consequence, the yielding 
transition, even though starting at higher (absolute) deformation values 
due to the increased sample stiffness, is sharper, i.e. takes place within 
a smaller deformation range. We point out that this behavior resem-

bles that of hard spheres, for which the yielding transition occurs more 
abruptly than for softer particles [46].

3.2. Effect of crosslinking density

We then performed the same analysis on pN1 microgels (Figs. S6-S7) 
to quantify the influence of the single-particle internal elasticity on the 
rheological behavior in suspension. As for the stiffer pN5 microgels, the 
storage modulus increases linearly with 𝜙 at low deformations (Fig. 3a). 
For comparable 𝜙, we observe, as expected, a decrease in 𝐺′, 𝐺′′ values 
for microgels with lower crosslinker content, indicating softer samples 
at rest [29].

The non-linear response as a function of 𝜙 is however more com-

plex. In the lower 𝜙 range, we do not detect any appreciable difference 
in the onset of the yielding transition (Fig. S8 and Fig. 3b) and fluidiza-

tion (Fig. 3c) as a function of crosslinking density, despite the lower 
values of the corresponding linear moduli. Instead, for the more con-

centrated samples (𝜙 > 1.5) the increased softness of pN1 microgels 
shifts the onset of yielding to lower deformation values, but then com-

plete fluidization requires larger strains (Fig. 3c). This result is clearly 
captured by the strain ratios 𝛾𝑦𝑖𝑒𝑙𝑑

𝛾ℎ
(Fig. 3d) and 𝛾𝑓𝑙𝑢𝑖𝑑

𝛾𝑦𝑖𝑒𝑙𝑑
(Fig. 3e). Higher 

values of 𝛾𝑦𝑖𝑒𝑙𝑑
𝛾ℎ

for pN1 microgels indicate that, at all the investigated 
𝜙, softer particles can accommodate more (relative) deformation before 
yielding. This effect is even more pronounced when looking at high de-

formation values corresponding to complete fluidization, which show a 
significant broadening of the yielding transition.

We can conclude that samples made of softer microgels start to de-

form and rearrange at lower strain values as a consequence of the lower 
sample elasticity (lower 𝐺′, 𝐺′′ values, associated with lower bulk mod-

uli of the individual particles), however they can accommodate more 
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(absolute) deformation before complete fluidization, presumably due 
to an increased ability of the particles to deform and interpenetrate to 
resist the applied deformation. Finally, for pN1 microgels, we also ob-

serve a decrease in the strain ratios (Fig. 3d, 3e) at higher 𝜙. However, 
this decrease is shifted to higher volume fractions with respect to pN5. 
Softer microgels can reach higher effective volume fractions before the 
extent of single-particle deformation is so high that the microgels’ abil-

ity to change their shape in response to the applied strain decreases and 
the deformation range between the onset of the yielding transition and 
complete fluidization progressively decreases.

3.3. Influence of the polymeric shell

We then investigated the influence of surface forces on the rheologi-

cal behavior of microgels in dense states by adding linear PEG chains on 
their surface, while keeping the crosslinker content unchanged. We first 
note that the viscoelastic moduli of pN-PEG5 particles do not increase 
linearly with 𝜙 throughout the investigated regime (Fig. 4a). A similar 
result was obtained on copolymer pNIPAM-PEG microgels [36], and at-

tributed to a saturation of interpenetration and shell compression at the 
highest 𝜙, resulting in a more pronounced increase of 𝐺′, although the 
relatively low number of points here precludes a more detailed analy-

sis of the rheological behavior at small deformations. When comparing 
with pure pNIPAM microgels, the moduli are always lower in the pres-

ence of PEG for all 𝜙 investigated, albeit this difference decreases at the 
highest 𝜙.

Based on the DLS results and the comparable de-swelling curves of 
the two microgels, we hypothesize that changes in the rheological be-

havior are mostly dependent on interparticle interactions in crowded 
environments and not on single-particle softness, which remains similar 
for the same crosslinker content. In particular, PEG chains on the mi-

crogels’ surface, being more hydrophilic than pNIPAM, might decrease 
adhesion and friction between particles, similarly to what observed 
in the case of pNIPMAM (poly(N-isopropyl-methacrylamide)) and pNI-

PAM colloids [34]. This effect is particularly relevant at lower 𝜙, when 
the microgels are less compressed and thus surface properties and in-

terparticle contacts are expected to be more important in governing the 
rheological behavior, and it might explain the observed decrease of 𝐺′

and 𝐺′′ for pN-PEG5 with respect to the homopolymer particles.

The influence of PEG-mediated surface interactions is also affecting 
the non-linear response of the samples under LAOS (Fig. 4b-e, Figs. S9-

S10). Differences between pN5 and pN-PEG5 microgels stand out es-

pecially when looking at the ratios 𝛾𝑦𝑖𝑒𝑙𝑑
𝛾ℎ

(Fig. 4d) and 𝛾𝑓𝑙𝑢𝑖𝑑
𝛾𝑦𝑖𝑒𝑙𝑑

(Fig. 4e). 
Up to 𝜙 < 1.2, when the interactions between surfaces in contact domi-

nate, the lower adhesion and friction between particles as mediated by 
the PEG chains results in samples that overall yield (Fig. 4d) and fi-
nally flow (Fig. 4e) in a lower deformation range. Instead, for 𝜙 > 1.2, 
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Fig. 4. Influence of the polymeric shell. a) Storage (filled symbols) and viscous (open symbols) moduli in the linear regime (𝛾 = 0.5 − 1%) as a function of 𝜙
(temperature = 25 °C, 𝜔 = 10 rad/s). Solid lines represent linear fitting of the data. b) First strain value at which 𝛿𝑡 = 𝜋∕4 as a function of volume fraction. c) First 
strain value at which 𝛿𝑡 = 𝜋∕2 as a function of volume fraction. d) Strain ratio 𝛾𝑦𝑖𝑒𝑙𝑑

𝛾ℎ
as a function of volume fraction. e) Strain ratio 𝛾𝑓𝑙𝑢𝑖𝑑

𝛾𝑦𝑖𝑒𝑙𝑑
as a function of volume 

fraction. In b-e) pN5 filled circles, pN-PEG5 open triangles, dashed lines to guide the eye. f) Lateral force versus scanning distance (friction loops) for pN5 (black) 
and pN-PEG5 (violet) microgel monolayers deposited on a silicon wafer and immersed in water, obtained using colloidal probe atomic force microscopy (CP-AFM) 
at 25 °C under a normal load of 10 nN. See Materials and Methods for details. g) AFM force-vs-distance curves (approach curves solid lines, retraction curves dashed 
lines) obtained on the same microgel monolayers.
when the single-particle compression becomes more significant, the re-

sults resemble those obtained with pN1 microgels. However, while for 
pN1 microgels (Fig. 3) the different yielding behavior was attributed 
to the lower crosslinker content, in this case, we ascribe the more 
extended yielding process to the fuzziness, and thus resulting higher 
compliance, of the particle shell. Higher shell compliance enhances the 
microgels’ ability to accommodate imposed deformations by rearrang-

ing with their neighbors, and, as a consequence, the yielding process is 
shifted to higher deformations.

In order to rationalize these observations, we turned to colloidal 
probe atomic force microscopy (CP-AFM) to characterize the friction 
and adhesion properties of microgel monolayers with and without PEG. 
To this end, we used lateral force microscopy and force measurements 
on monolayers of pN5 and pN-PEG5 microgels deposited on a silicon 
support and immersed in water at 25 °C. These measurements allow 
gaining information on the interfacial friction between the microgels’ 
surface and the colloidal probe (silica colloid, diameter: 16 μm), as 
well as on the adhesion between the probe and the microgels [67]. 
In Fig. 4f we report friction loops (lateral force vs sliding distance) 
recorded by scanning the probe laterally over the microgel monolayers 
at a constant normal load of 10 nN. A comparable crosslinker content 
between the two samples rules out effects due to variations in the stiff-

ness of the polymer layer, which in turn would affect the measured 
friction [67]. These data show that a very low friction is obtained in the 
case of monolayers of pN-PEG5, while pN5 microgels display a much 
higher friction, as visualized by the larger width of the friction loops. 
These observations are in agreement with previous studies indicating 
that PEG-coated surfaces tend to exhibit superior lubrication when com-

pared to PNIPAM-coated surfaces in water at room temperature for the 
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same grafting density, as measured by AFM [68–70].
In a complementary set of experiments, we used the same samples 
and tip to perform adhesion tests by indenting the microgel monolayers 
and recording the resulting force versus distance curves. As reported in 
Fig. 4g, we observe an appreciable adhesion between the tip and the 
surface of pN5 microgels, while pN-PEG5 microgels display very low 
adhesion. In the case of pNIPAM surfaces, the interaction upon con-

tact with the silica colloid and subsequent compression is attributed to 
dehydration and polymer chains stretching during the probe retraction 
causing adhesion [71]. In contrast, lubricious PEG surface chains act 
as a barrier and prevent stretching of the chains reducing the adhesion 
with the probe. We note that the observed adhesion might have also 
contributed to the higher friction observed for the pN5 sample. Overall, 
these results indicate that both adhesion and friction are significantly 
decreased for pN-PEG microgels, strongly supporting the assumption 
that PEG chains are mainly located on the particle surface, and corrob-

orating the interpretation of the rheological behavior.

Similar results have been obtained for microgels with 1 mol % 
crosslinker with and without PEG (Fig. S11). Also in this case, the 
friction for microgels containing PEG chains is lower and the adhe-

sion is significantly decreased, indicating that PEG chains are covering 
the particle surface in contact with the colloidal probe, modifying the 
microgels’ surface properties. We note that the increased friction be-

tween 5 mol % and 1 mol % samples can be attributed to the decreased 
stiffness of the microgel layer, and consequent higher deformation and 
resulting tip-sample contact area during compression with the colloidal 
probe [67]. Regarding the rheological properties of pN1 and pN-PEG1 
microgels (Fig. S12), the results are overall coherent with what ob-

served in the presence of a higher crosslinker content. The addition of 
PEG surface chains decreases even further the 𝐺′ and 𝐺′′ values in the 

linear regime, indicating that such particles behave as “ultra-soft” col-
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loids in these experiments. Such an effect is particularly relevant in the 
lower concentration range investigated (𝜙 < 1.2), when the influence of 
surface contacts is emphasized. Although the response in the non-linear 
regime is too noisy for an accurate analysis due to the very low 𝐺′ val-

ues obtained for pN-PEG1, also the trend at large deformations follows 
what observed when comparing stiffer particles with or without PEG 
surface chains (Fig. 4).

4. Conclusions

In this work, we investigated the rheological behavior of pNIPAM 
microgels under oscillatory shear, exploiting the sequence of physical 
processes [48,49] approach to the analysis of LAOS data to gain insight 
on the dynamics of the yielding transition spanning a broad range of ap-

plied strain amplitudes. Overall, these results provide additional insight 
on the complex viscoelastic properties of dense microgel suspensions, 
linking both particle elasticity (mediated by the crosslinker content) 
and interparticle contacts (dictated by the polymer chains on the parti-

cle surface) to the onset of yielding and to the overall transition from 
solid-like to fluid-like behavior.

While the linear viscoelastic moduli of dense microgel suspen-

sions decrease upon lowering the bulk modulus of individual particles 
[29,33], we observe that particle softness plays an opposite role in the 
non-linear response. The deformation range required from the onset of 
the yielding transition up to complete sample fluidization increases for 
softer microgels. This is attributed to the fact that softer particles can ac-

commodate more deformation before the sample yields and ultimately 
fluidifies. The incorporation of PEG chains on the particle surface can 
be used as an orthogonal way to lower the linear storage and loss mod-

uli of the dense suspensions. This is attributed to a decrease in the 
adhesion and friction between particles when the surface-to-surface in-

teractions are mediated by polymer chains that are more hydrophilic 
with respect to pNIPAM, as measured by using colloidal probe lateral 
force microscopy and force measurements on microgel monolayers de-

posited on a solid support. We note that a similar effect was reported 
when comparing pNIPAM and pNIPMAM microgels [34]. When sub-

jected to shear deformation, the lubrication provided by the PEG chains 
induces a faster yielding transition. Finally, for all the investigated parti-

cles we observed that the samples at the highest packing fractions resist 
yielding up to higher deformations, but then fluidization is completed 
in a shorter deformation range. This indicates that, above a certain 
compression and deformation induced by crowding, the microgels de-

crease their ability to deform further when sheared, therefore resisting 
less to the imposed strain. Such behavior is shifted to higher packing 
fractions both for loosely crosslinked particles and for pNIPAM-PEG 
microgels due to their increased softness and fuzziness, respectively. 
Future works will be devoted to discern contributions to the overall 
interparticle interactions due to the pNIPAM core or the PEG shell at 
the microstructural level, where super-resolution microscopy or neutron 
scattering experiments can provide additional insight to the rheological 
investigation.

Overall, we believe these results can be of great potential value 
in discerning contributions due to particle elasticity and interparticle 
contacts that govern the viscoelastic properties of dense suspensions 
of soft particles subjected to shear. Providing novel tools to tune the 
mechanical and rheological behavior of such complex suspensions is 
of relevance for a large range of materials, processes and formulations 
containing soft colloids, either as main components or as additives, in 
order to modulate their functional properties [2,4]. Importantly, these 
results might have implications not only in understanding the behavior 
of polymeric microgels, but also in tuning other soft systems that are 
governed by a delicate interplay of surface contacts and particle com-

pression, such as biodegradable soft colloids [72], self-assembled block 
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copolymers [39] or star-polymers [73,74].
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