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NONRATIONAL POLYTOPES AND FANS IN TORIC GEOMETRY

FIAMMETTA BATTAGLIA AND ELISA PRATO

Abstract. First, we examine the notion of nonrational convex polytope
and nonrational fan in the context of toric geometry. We then discuss
and interrelate some recent developments in the subject.

Keywords. toric variety, nonrational convex polytope, nonrational fan.

Mathematics Subject Classification: 14M25, 52B20, 53D20.

INTRODUCTION

Toric varieties are a beautiful class of geometric objects, at the intersec-
tion of convex geometry and combinatorics on one side, and of algebraic
and symplectic geometry on the other.

The study and interest for toric varieties began in algebraic geometry
with Demazure’s foundational paper [24]. Some of the classical references
on the subject are the article by Danilov [21] and the books by Fulton [25]
and Cox et al. [20]. From the symplectic perspective, the subject started
with Delzant’s classification of symplectic toric manifolds [23], which is
founded on the convexity theorem by Atiyah [1] and Guillemin–Sternberg
[28]. Standard references for this viewpoint are the books by Audin [2],
Guillemin [27] and Cannas de Silva [19].

The basic convex geometric objects that provide the starting point in clas-
sical toric geometry are rational convex polytopes and fans.

Our aim is to frame the notion of nonrational convex polytope and fan in
the context of toric geometry. We give an historical account and then we
describe, in the simplest possible way, how this notion has been recently
interpreted by a number of authors who have dealt with the subject. The
intent is to provide a unitary picture, a sort of dictionary, that makes it
easier to move from one context to the other.

In Section 1, we recall the definitions of rational convex polytope and fan
and view them in the toric geometric setting. We describe the fundamental
starting convex data that are needed to extend toric geometry to the nonra-
tional case. In Section 2, we describe a variant of the starting convex data.
In Section 3, we illustrate the notions that were discussed in the previous
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2 FIAMMETTA BATTAGLIA AND ELISA PRATO

sections with a number of examples. Finally, we dedicate Section 4 to the
aforementioned dictionary.

1. WHAT IS A NONRATIONAL CONVEX POLYTOPE/FAN: THE
FUNDAMENTAL TRIPLE

A convex polytope ∆ ⊂ (Rn)∗ is the convex hull of a finite number of
points. Equivalently, it is the bounded intersection of finitely many closed
half–spaces

∆ =
d⋂
j=1

{ µ ∈ (Rn)∗ | 〈µ,Xj〉 ≥ λj },

where X1, . . . Xd ∈ Rn, λ1, . . . , λd ∈ R and d can be chosen to be exactly
the number of codimension 1 faces (facets) of ∆ (see, for example, [54, The-
orem 1.1]). We assume, for simplicity, that ∆ has maximal dimension n.
Remark that each vector Xj is orthogonal to a facet of ∆ and points to-
wards its interior. We will be calling the vectors X1, . . . Xd normals for ∆.
They are not unique, as each Xj , together with the corresponding λj , can
be replaced by any positive scalar multiple.

Convex polytopes are studied in combinatorics, but are also of funda-
mental importance in symplectic and algebraic geometry. Think of the con-
vexity theorem [1, 28] and of geometric quantization in symplectic geome-
try. Or think of toric geometry in both algebraic and symplectic geometry.
It is a crucial fact that the convex polytopes that appear in these classical
geometric settings are all rational. This means that they are always thought
of together with a lattice. The precise definition of rational convex polytope
goes as follows: a convex polytope ∆ ⊂ (Rn)∗ is rational if there exists a
lattice L ⊂ Rn such that the normals can be taken in L. Another crucial fact
in toric geometry is that, for any rational convex polytope, there is a canon-
ical choice of normals: each Xj is taken to be the shortest possible vector in
L, also known as primitive vector. Often, the primitive normals generate the
lattice. We remark in passing that in symplectic toric geometry it is possible
and interesting to consider also nonprimitive normals (see [38]).

In the last few decades, there has been a growing interest in understand-
ing how to make sense of toric varieties when the polytope is no longer
rational.

In 1999 [47, 48] the second author approached this question first by re-
placing the basic framework polytope–lattice–primitive normals, which was
clearly no longer suitable, with something more general. Let us explain.

The initial idea consisted in replacing the primitive vectors with any
choice of normals, and the lattice with the Z–span of these normals. The
latter is a notion that was already well–known and of fundamental impor-
tance in the theory of quasicrystals and in the related theory of aperiodic
tilings; it is called a quasilattice [42]. By definition, a quasilattice in Rn is the
Z–span of a set of R–spanning vectors; notice that a quasilattice is a lattice
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if, and only if, these vectors form a basis of Rn. Take, for example, the reg-
ular pentagon (see Figure 1). It can be easily verified that it is not a rational
polytope. Consider the fifth roots of unity

FIGURE 1. The regular pentagon

Y0 = (1, 0)
Y1 = (cos 2π

5 , sin
2π
5 )

Y2 = (cos 4π
5 , sin

4π
5 )

Y3 = (cos 6π
5 , sin

6π
5 )

Y4 = (cos 8π
5 , sin

8π
5 ).

Their opposites are normals for the pentagon (see Figure 2). The Z–span
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FIGURE 2. The regular pentagon and the fifth roots of unity

of these vectors is a quasilattice, Q5, that is dense in R2. We remark that
this particular quasilattice underlies the study of two aperiodic tilings of
the plane discovered by Penrose: the rhombus tiling and the kite and dart
tiling (see Section 3).

Now, two important remarks. First of all, the quasilattice generated by
the chosen set of normals can be replaced by any other quasilattice that
contains those normals. Take, for example, the polytope [0, 1] ⊂ R∗. It is
rational with respect to the lattice Z ⊂ R, but also with respect to any lattice
aZ, a ∈ R (naturally isomorphic to Z). However, we may also consider
any quasilattice Q = Z + aZ, with a irrational. Notice that this allows to
consider rational convex polytopes in a nonrational setting. This turns out
to be a natural choice in certain applications, some of which are described in
Subsection 3.2. It also allows to perform symplectic cutting in an arbitrary
direction [10].
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Secondly, one can consider any other set of normals, provided they are
contained in the quasilattice, allowing even more freedom.

This taken into account, it became convenient to define the following
notion: given a quasilattice Q, a convex polytope is said to be quasirational
with respect to Q if the normals can be chosen in Q. Clearly, a convex
polytope is quasirational with respect to a lattice if, and only if, it is rational.

Remark 1.1. Notice that, unlike rationality, quasirationality is not at all a restric-
tive requirement. In fact, a convex polytope is always quasirational with respect to
the quasilattice that is generated by any set of normals. Think of the regular penta-
gon: it is not rational, however, it is quasirational with respect to the quasilattice
Q5.

We are now ready to recall the notion of fundamental triple; it is the triple
given by

(∆, Q, {X1, . . . , Xd}),
where ∆ ⊂ (Rn)∗ is any convex polytope, Q ⊂ Rn is any quasilattice with
respect to which ∆ is quasirational, and {X1, . . . , Xd} is a choice of normals
for ∆ in Q. We remark that it is not required that {X1, . . . , Xd} span the
quasilattice. The fundamental triple effectively replaces the polytope–lattice–
primitive normals triple of the rational case. Once the triple is fixed, one can
extend the classical geometric procedures for constructing toric varieties
from polytopes. For convex polytopes that are simple, that is, when each
vertex is the intersection of exactly n facets, one gets a significant class of
quasifolds.

Quasifolds are highly singular spaces that are locally the quotient of a
manifold modulo the action of a countable group. If the countable groups
are all finite we get orbifolds, if they are all trivial we get manifolds. As it
happens for manifolds, even for quasifolds the local models are required
to be mutually compatible and thus form an atlas. Quasifolds are naturally
endowed with the usual geometric objects such as vector fields, differental
forms and in particular symplectic structures. For the formal definition of
quasifold and related notions, in the real and complex setting, we refer the
reader to [47, 48, 7, 5].

Going back to nonrational toric geometry, the real and complex tori Rn/L
and Cn/L of the rational case are naturally replaced by the quotients Rn/Q
and Cn/Q, which are abelian groups and quasifolds that are referred to as
quasitori [47, 48, 5]. We are now ready to recall the following basic results.
Let ∆ be a simple convex polytope. From [48, Theorem 3.3] we have

Theorem 1.2. For each fundamental triple (∆, Q, {X1, . . . , Xd}), there exists
a compact, connected 2n–dimensional quasifold M , endowed with a symplectic
structure and an effective Hamiltonian action of the quasitorus Rn/Q such that, if
Φ : M → (Rn)∗ is the corresponding moment mapping, then Φ(M) = ∆.

Moreover, from [5, Theorem 2.2]
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Theorem 1.3. For each fundamental triple (∆, Q, {X1, . . . , Xd}), there exists a
compact, connected, n–dimensional complex quasifold X , endowed with a holo-
morphic action of the complex quasitorus Cn/Q having a dense open orbit.

Finally, from [5, Theorem 3.2]

Theorem 1.4. For each fundamental triple (∆, Q, {X1, . . . , Xd}), the symplectic
quasifoldM of Theorem 1.2 is equivariantly diffeomorphic to the complex quasifold
X of Theorem 1.3. The symplectic and complex structures are compatible and
hence define a Kähler structure on M ' X .

The spaceM ' X is known as the toric quasifold associated with the triple
(∆, Q, {X1, . . . , Xd}). As in the rational case, it is explicitly constructed by
means of symplectic and complex quotients. In the proofs of Theorems 1.3
and 1.4 one sees that it is endowed with two beautiful finite atlases that
generalize the standard complex affine and symplectic toric atlases of the
rational case; their charts are modeled on Cn ' R2n modulo the action of
countable subgroups of the standard torus Rn/Zn.

The case of general convex polytopes was addressed by the first author,
who showed that the resulting space M , which is naturally even more sin-
gular, is stratified by toric quasifolds [3, 4].

We remark that, unlike what happens in the rational setting, usually we
do not have canonical choices for quasilattices and normals. Sometimes,
however, the general geometric setup suggests natural choices. Some in-
stances are described in Section 3. This is also the case when performing
symplectic reduction and symplectic cutting in the nonrational toric setting
[10, 11].

The notion of rational convex polytope can be naturally expressed in
terms of the rationality of its normal fan. The same applies also to quasira-
tionality. Let us first recall the definition of fan, which is the central convex
object in the theory of toric varieties in algebraic geometry. A fan Σ in Rn is
a collection of cones such that each nonempty face of a cone in Σ is itself a
cone in Σ and such that the intersection of any two cones in Σ is a face of
each [54]. The one–dimensional cones are said to be the generating rays of
the fan. The normal fan Σ∆ of the convex polytope ∆ is the fan whose gen-
erating rays are inward pointing and orthogonal to the polytope facets and
such that there is an inclusion–reversing bijection between cones in Σ∆ and
faces of ∆. It is a complete fan, namely the union of its cones is Rn. Moreover,
a fan is said to be simplicial if each of its cones is simplicial, namely spanned
by linearly independent vectors. Notice that a convex polytope is simple if,
and only if, its normal fan is simplicial. The rationality/quasirationality of
the polytope corresponds to the rationality/quasirationality of its normal
fan. We recall, in fact, that a fan in Rn is said to be rational if there exists
a lattice L ⊂ Rn which has non–empty intersection with each generating
ray. Similarly, we say that a fan in Rn is quasirational with respect to a
quasilattice Q ⊂ Rn if Q has non–empty intersection with each generating
ray.
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FIGURE 3. The normal fan of the regular pentagon

For any fan Σ, we can still introduce the triple

(Σ, Q, {X1, . . . , Xd}),
where Q ⊂ Rn is any quasilattice with respect to which Σ is quasirational
and where the vectors {X1, . . . , Xd} are generators of the fan rays in the
quasilattice Q. When the fan is complete and simplicial the complex con-
struction of Theorem 1.3 applies verbatim. When, in addition, the fan is
polytopal, namely when Σ is the normal fan Σ∆ of a convex polytope ∆, the
choice of such a ∆ endowsM with the symplectic, and hence Kähler, struc-
tures of Theorems 1.2 and 1.4. We can draw the following commutative
diagram

(∆, Q, {X1, . . . , Xd})

((��
(Σ∆, Q, {X1, . . . , Xd}) // M.

2. THE FUNDAMENTAL TRIPLE ENCODED IN A TRIANGULATED VECTOR
CONFIGURATION: THE AUGMENTED TRIPLE

As we have seen, toric quasifolds are constructed explicitly and share
key features with their rational counterparts. However, they are highly sin-
gular topological spaces. It is therefore natural to ask if there exists a frame-
work that allows to work with smooth objects. With this motivation in
mind, the first author, jointly with Zaffran [13], introduced in 2011 the idea
of viewing toric quasifolds as leaf spaces of compact, complex, holomor-
phically foliated manifolds. This development was built on, and inspired
by, two previous articles: the above–mentioned article by the second author
on nonrational toric geometry [48], and the article [44] by Meerssemann–
Verjovsky. In the latter, simplicial projective toric varieties were already
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viewed, in the classical rational setting, as leaf spaces of LVM manifolds, a
large class of compact, complex, non–Kähler manifolds [41, 43], admitting
a holomorphic foliation [40, 43]. The viewpoint developed in [13] naturally
brought a new perspective on the convex geometric data as well: the fun-
damental triple was encoded in a triangulated vector configuration, a well
known and studied convex object [22]. Let us recall from [13, Section 2]
what a triangulated vector configuration is, how a triple is encoded there
and, finally, why this convex datum is instrumental in the construction of
LVMB manifolds – a generalization of LVM manifolds [16].

An odd, balanced, triangulated vector configuration is given by a pair (V, T ),
where V = (X1, . . . , Xp) is an ordered list of vectors in Rn, allowing repeti-
tions, that is balanced, namely

∑p
i=1Xi = 0, and odd, namely p−n = 2m+1.

A subset τ of {1, . . . , p} is a simplex when the vectors indexed by τ are lin-
early independent. The cone generated by these vectors is called cone(τ).
A triangulation T of a configuration V is a collection of simplices satisfying
the following conditions:

(1) If τ ∈ T and τ ′ ⊂ τ then τ ′ ∈ T
(2) For all τ, τ ′ ∈ T , cone(τ) ∩ cone(τ ′) = cone(τ ∩ τ ′)
(3) ∪τ∈T cone(τ) ⊃ cone(V ).

Remark that (V, T ) encodes
• a simplicial fan, not necessarily polytopal: the union of the cones

indexed by T
• ray generators (the vectors indexed by T )
• a quasilattice Q = SpanZ(X1, . . . , Xp)
• a number of ghost vectors (those which are not indexed by T ).

Viceversa, let Σ be a simplicial fan. We can construct a triangulated vector
configuration (V, T ) that encodes a given triple (Σ, Q, {X1, . . . , Xd}) as fol-
lows: if SpanZ{X1, . . . , Xd} = Q and the vector configuration (X1, . . . , Xd)
is odd and balanced, we keep it as it is, otherwise we can add ghost vec-
tors, so as to have a set of generators of the quasilattice Q and a balanced,
odd configuration. Notice that there are infinitely many choices of ghost
vectors that comply with these conditions. We remark that, in the rational
case, this procedure of adding vectors so as to have a set of generators of
the lattice and a balanced, odd configuration, is already used in [44], where
additional vectors correspond to indispensable points. The fan is complete if,
and only if, the vectors in V span Rn. In conclusion, the vector configura-
tion V takes care of the quasilattice and the vectors in the triple, while T is
determined by the fan combinatorics.

In short, we consider the augmented triple

(V, T ) = triple + ghost vectors,

where we have chosen a set of generators for the quasilattice Q that in-
cludes a set of ray generators. The technical conditions, for the vector con-
figuration to be balanced and odd are not at all restrictive. They allow to
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obtain, from a pair (V, T ), the exact convex datum that produces an LVMB
manifold. More precisely, Gale duality applied to V gives a configuration
Λ = (Λ1, . . . ,Λp) of points in affine space Cm (viceversa, Gale duality ap-
plied to Λ determines V up to automorphisms [14, Section 1.2]). On the
other hand, the combinatorial datum T yields a combinatorial datum T ∗,
which is a virtual chamber of Λ. In turn, each pair (Λ, T ∗) determines a
compact, complex, holomorphically foliated manifold (N,F), of complex
dimension n+m, wherem is the dimension of the leaves [13, Section 2.2.4].
We can draw the following diagram:

(1) (V, T ) //

��

(Λ, T ∗) // (N,F)

����
(Σ, Q, {X1, . . . , Xd})

OO

// M

Two arrows are dashed as they are not maps, in the sense that the target
object is not uniquely determined. This implies that, to a given fundamen-
tal triple there corresponds a whole family of LVMB manifolds of different
dimensions. When the fan is polytopal, N is an LVM manifold and the leaf
space of each member of this family is exactly the corresponding complex
toric quasifold M (see [13, Section 2.3.1] and [14, Theorem 2.1]). Polytopal-
ity of the fan Σ can be expressed in terms of the above–mentioned con-
vex objects (for more details see [13] and references therein). In terms of
the corresponding LVM manifold, polytopality implies that the foliation is
transversely Kähler [40, 43]. The converse is also true; the proof, by Ishida
[32], is based on a convexity theorem in this context. In the polytopal case,
diagram (1) can be constructed in the symplectic setting: N turns out to be
a presymplectic manifold, while the symplectic quasifold M is given by N
modulo the action of a connected abelian group [14]. Taking the augmented
triple ensures that the presymplectic manifold N is even dimensional and
that the group is connected.

Subsequently, other important convexity theorems were proved, for trans-
versely symplectic foliations [51, 39] and for étale symplectic stacks [30].

3. EXAMPLES

As far as examples go, two situations arise naturally. In the first, we have
examples of convex polytopes/fans that are nonrational. In the second, we
have rational convex polytopes/fans inside of a geometric context where it
is interesting, and sometimes downright necessary, to replace the lattice by
a suitable quasilattice.

3.1. Purely nonrational. The first example that comes to mind of a purely
nonrational convex polytope is the regular pentagon that we discussed in
Section 1. An even simpler example is given by the Penrose kite, which,
together with the dart, has been used by Penrose to construct aperiodic
tilings of the plane [45]. The kite is the quadrilateral pictured in Figure 4.
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Three of its angles equal 2π
5 , while the other equals 4π

5 . Moreover, its long
edge is φ times its short edge, where φ = 1+

√
5

2 is the golden ratio. The reg-

FIGURE 4. The Penrose kite

ular pentagon and the Penrose kite are actually closely related; in fact, the
kite can be obtained from the regular pentagon via a standard construction
(see, for example, [7]). Moreover, the kite is quasirational with respect to
the same quasilattice Q5 that we introduced for the pentagon. In fact, a

1

23

4

4

0

1

2

3

FIGURE 5. Quasirationality of the Penrose kite

natural choice of normals for the kite is given by −Y1, Y2, −Y3, Y4 (see Fig-
ure 5). These vectors generate the four rays of the corresponding normal
fan. A vector configuration here is given by V = (−Y1, Y2,−Y3, Y4, Y0); it is
odd and balanced, with triangulation, in term of maximal simplices, given
by T = {{1, 4}, {4, 3}, {3, 2}, {2, 1}}.

More details on the Penrose kite from the symplectic toric viewpoint can
be found in [7].

Other interesting and elementary examples of nonrational convex poly-
topes are given by the regular dodecahedron and the regular icosahedron,
only the first of which is simple. We refer the reader to [49, 9] for a suitable
choice of quasilattice and normals and for a description of the correspond-
ing toric spaces.

All of the above are closely related to the physics of quasicrystals, see for
example [8, 52].

We conclude by remarking that any simple nonrational convex polytope
can be perturbed into a combinatorially equivalent rational one. This is not
necessarily the case for nonsimple convex polytopes. See [26, 55] for the
first counterexample, due to Perles.
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3.2. Rational convex polytope in a nonrational setting. We have already
seen in Section 1 how the unit interval [0, 1], obviously rational, can be
viewed as quasirational. The corresponding toric quasifold is a quasisphere
[47, 48, 50].

We illustrate two other examples where this is natural.
Let us consider first the Penrose rhombus tiling [45]. It is another funda-

mental aperiodic tiling, whose tiles are given by two types of rhombuses,
known as thick and thin. The thick rhombus has angles equal to 2π

5 and 3π
5 ,

and the long diagonal is given by φ times the edge; the thin rhombus has
angles equal to π

5 and 4π
5 , and the edge is given by φ times the short diag-

onal (see Figure 6). Each of them viewed individually is actually a rational

FIGURE 6. The thick and thin Penrose rhombuses

convex polytope, but it is natural to want to consider a geometric setup
that takes into account the entire tiling. In order to do so, they need to be
viewed as quasirational with respect to the same quasilattice Q5 that we
have considered for the pentagon and the kite. In Figure 7 we see normals
±Y0, ±Y4 for the thick rhombus and ±Y1, ±Y4 for the thin one. To obtain

1

1

4

0

4

0

4

4

0

1

2

3

FIGURE 7. Quasirationality of the Penrose rhombuses

vector configurations here we need to consider more vectors than we did
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in the case of the kite. For example, for the thick rhombus, we can take
V = (Y0, Y4,−Y0,−Y4, Y1, Y2, Y3 + Y4 + Y0); it is odd and balanced, with
same triangulation as the kite. We refer the reader to [6] for further details
on rhombus tilings from the symplectic viewpoint.

Other interesting examples arise when generalizing Hirzebruch surfaces
to the nonrational setting. Namely, consider, for any positive real number
a, the trapezoid Ta of vertices (0, 0), (1, 0), (0, 1) and (a + 1, 1) (see Fig-
ure 8). When a equals a positive integer n, we get the trapezoid Tn that

(0,1)

(0,0) (1,0)

(a+1,1)  

FIGURE 8. The trapezoid Ta

corresponds, in standard toric geometry, to the Hirzebruch surface Hn. We
recall that this toric variety is constructed relatively to the standard lattice
Z2 and to the primitive normals (1, 0), ±(0, 1), (−1, n). For a irrational, the
trapezoid Ta, though rational with respect to the lattice that is generated
by (1, 0) and (0, a), is not rational with respect to the standard lattice Z2. If
we want to consider a setup that yields, as a special case, the standard one
for Hirzebruch surfaces, it is necessary to consider normals (1, 0), ±(0, 1),
(−1, a) (see Figure 9), which span the quasilattice Qa = Z× (Z + aZ) ⊇ Z2.

1 3

2

2 1

3

2

FIGURE 9. Quasirationality of the trapezoid Ta

Notice that, for a rational, Qa is a lattice and that, for a = n, this lattice
equals Z2, as required. The normal fan here is the complete fan in R2 whose
generating rays are spanned by the four normals (1, 0), ±(0, 1) and (−1, a)
(see Figure 10). A corresponding triangulated vector configuration is given
by (Va, T ), with

Va = ((1, 0), (0, 1), (0,−1), (−1, a), (0,−a)),
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FIGURE 10. The normal fan of the trapezoid Ta

T = {{1, 2}, {2, 4}, {3, 4}, {1, 3}, {1}, {2}, {3}, {4},∅}.
We refer the reader to [12] for more details, including a description of the
one–parameter family of generalized Hirzebruch surfaces corresponding
to the fundamental triple

(Ta, Qa, {(1, 0),±(0, 1), (−1, a)}).

4. A DICTIONARY

In recent years, there have been a number of articles on nonrational toric
geometry from different viewpoints and new results have been obtained. A
common factor of all of these works is of course the presentation of starting
convex geometric data. A shared feature of these different approaches is the
datum of the fundamental triple. Sometimes, further data are added that
are instrumental for the constructions; we have already seen an instance
of this in Section 2, where the additional data are the ghost vectors. Some
viewpoints also consider a variant of the notion of quasitorus.

Toric quasifolds can be thought of as stacks, and some authors study
nonrational toric geometry within this framework. The first are Hoffman–
Sjaamar in the symplectic category [30, Examples 7.4.3, 9.2.5 and Remark 7.4.4].
In their work, a quasilattice is a crossed Lie module ∂ : Q → V , where Q
is a finitely generated abelian group and V is a real vector space spanned
by ∂(Q). Therefore, the quasilattice Q is no longer a subgroup of V , but
is surjectively mapped onto one, namely ∂(Q). In this way, there are in-
finitely many ∂ : Q → V that project onto the same pair (∂(Q), V ). Notice
that the quasilattice Q contains more information than ∂(Q); this is, in this
setting, the extra datum that we were referring to earlier. Remark also that
the pair (∂(Q), V ) gives rise to the quasitorus V/∂(Q). Here the group that
generalizes the torus is called stacky torus. The definition is quite involved;
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for our purposes it is sufficient to recall that the datum of a stacky torus
G is equivalent to their notion of quasilattice. In [29, Section 5] Hoffman
introduces the starting triple (∆, G,Λf∈Fmax), where ∆ is a simple convex
polytope, G is a stacky torus, Fmax is the set of facets of ∆ and Λf is a free
subgroup of rank 1, given by the intersection of ∂(Q) with the straight line
normal to the facet f . Notice that there is a unique inward pointing vector
that generates Λf . This corresponds to the vector, in the fundamental triple,
that is associated with the facet f . We can draw the following diagram

(∆, Q, {X1, . . . , Xd}) // (∆, G,Λf∈Fmax),oo

where Λf is generated by the normal Xi in the corresponding ray and G

is any ∂ : Q̃ → V with ∂(Q̃) = Q. The arrows have the same meaning
as in diagram (1): given a fundamental triple, there are infinitely many
triples of the kind (∆, G,Λf∈Fmax) that project onto it. Viceversa, any triple
(∆, G,Λf∈Fmax) uniquely determines a fundamental triple. Now, let us re-
call the following observation in [29]: assigning the triple (∆, G,Λf∈Fmax) is
equivalent to assigning the triple (∆, G,Λf∈F ), where F is the set of all faces
of ∆ and the groups Λf are subgroups of ∂(Q̃) satisfying certain conditions.
The triple (∆, G,Λf∈F ) is said to be a decorated stacky moment polytope, for
which a natural notion of isomorphism is given. The author defines per
se symplectic toric stacks and then proves that the moment mapping de-
fines a bijective correspondence between the set of isomorphism classes
of decorated stacky moment polytopes and the set of equivalence classes
of symplectic toric stacks [29, Theorem 6.1]. In our understanding, each
equivalence class of symplectic toric stacks corresponds to the symplectic
toric quasifold constructed from the associated fundamental triple.

Another article that addresses the problem of generalized toric mani-
folds is that by Ishida–Krutowsky–Panov [34]. Their focus is on cohomol-
ogy. In [34, Definition 5.5] they introduce the quadruple (Ṽ , Γ̃, Σ̃, λ̃), which
they call marked fan, where Ṽ is a finite–dimensional real vector space, Γ̃ is
a quasilattice in Ṽ , Σ̃ is a fan that is quasirational with respect to Γ̃ and is
additionally assumed to be complete and simplicial. Finally, λ̃ is a function
on the set of one–dimensional cones of Σ̃, with values in the quasilattice
Γ̃, such that λ̃(ρ) is a generator of ρ. Therefore, λ̃ corresponds exactly to a
set of ray generators in the fundamental triple. The authors then consider
compact, connected, complex manifolds with maximal torus actions. These
were defined by Ishida in [33] and later endowed with a canonical foliation
in [32]. In this class of manifolds, the authors define an equivalence rela-
tion called principal equivalence. Then they prove, building on [33], that
the set of equivalence classes is in bijective correspondence with isomor-
phism classes of marked fans [34, Theorem 5.7]. Using this and moment
angle manifolds, they are able to drop the hypothesis of shellability in the
result by Battaglia–Zaffran [13] on the basic cohomology ring of complete
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simplicial shellable fans. Further results on the cohomology of complete
simplicial fans can be found in the recent paper by Krutowsky–Panov [37].
For the connection between moment angle manifolds and complex mani-
folds with maximal torus action see also [53]. As recalled in Section 2, by
the construction in [13], we are able to associate with a given fundamental
triple a family of LVMB manifolds. Each of these is endowed with a max-
imal torus action and, therefore, belongs to the equivalence class, defined
in [34], corresponding to the given fundamental triple. We know that the
leaf space of each of these LVMB manifolds is isomorphic to the complex
toric quasifold corresponding to the fundamental triple. We expect that
the leaf space of each complex manifold with maximal torus action in the
equivalence class is isomorphic to that complex toric quasifold.

The problem of generalized toric manifolds is again addressed in the
framework of stacks in a recent article by Lupercio–Meersseman–Verjovsky–
Katzarkov [36]. As starting convex data, they consider quantum fans and
calibrated quantum fans [36, Section 4], which correspond to fundamental
triples and augmented triples, respectively. More specifically, a quantum
fan in a quasilattice Γ ⊂ Rn (which they have renamed quantum lattice)
is a pair (∆, v), where ∆ is a fan quasirational with respect to Γ and v is a
set of rays generators contained in Γ, one for each 1–dimensional cone of
∆. On the other hand, a calibrated quantum fan is a quantum fan plus the
additional datum of a calibration. Denote by {e1, . . . , ep} the standard basis
of Zp. Then a calibration is an epimorphism h : Zp −→ Γ together with a
subset J of {1, . . . , p}, with the following property: the vectors h(ei), with
i /∈ J , generate Rn and give the set v of d rays generators, while the vectors
h(ei), with i ∈ J , are the ghost vectors described in Section 2. The complex
quasitorus Cn/Γ is viewed as a quotient stack and called quantum torus.
In correspondence to a complete (calibrated) simplicial quantum fan and
to the relative quasilattice Γ, the authors construct a (calibrated) quantum
toric variety. The (calibrated) quantum toric variety is built by suitably glu-
ing the (calibrated) quantum affine toric stacks associated with the maximal
cones. From the viewpoint of complex toric quasifolds, this is the affine at-
las introduced in [5, Theorem 2.2]. They define a notion of morphism for
(calibrated) quantum fans and (calibrated) quantum toric varieties. The
map between these two categories given by the construction turns out to
be functorial, it is naturally surjective, and is proved to be an equivalence
of categories [36, Theorems 5.18, 6.24].

Finally, Boivin extends the above equivalence of categories to calibrated
nonsimplicial fans and the corresponding calibrated quantum toric vari-
eties [15, Theorem 4.2.2.2]. He makes use of the same starting convex data,
that he calls (calibrated) quantum fans and quantum lattices as well. But
he needs to introduce an auxiliary datum, a further calibration, in order to
deal with nonsimpliciality.
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The following diagram gives a synthetic and unified picture of the vari-
ous constructions:

triple + additional data
≈
Ψ //

��

geometric space

��

fundamental triple
Ψ //

Ψ̃

66

toric quasifold

The box on the left represent a whole family of data projecting down to the
same fundamental triple, the box on the right represent the corresponding
family of geometric spaces. The lower level is the mapping that associates
the fundamental triple with the toric quasifold. Notice that we can always
construct, from a given fundamental triple, an object that lies in the family
above. The articles [13, 29] and, in the calibrated case, [36, 15] can be viewed

as instances of the mapping
≈
Ψ, [34] can be viewed as an instance of the

mapping Ψ̃, and finally [47, 48, 5], and [36, 15] can be viewed as instances
of the mapping Ψ. In our understanding, in each of the above–mentioned

constructions relative to the mappings
≈
Ψ and Ψ̃, there is a mapping that

projects any space of the family to the toric quasifold. An instance is given
in [14, Theorem 2.1].

We conclude by briefly mentioning a number of other related works.
Ratiu–Zung [51] and Lin–Sjamaar [39] study nonrational convex polytopes
in the context of presymplectic manifolds. The first authors specialize to the
toric case, but a triple is not explicitly provided. Pir–Sottile [46] introduce
the notion of irrational toric variety for arbitrary fans and show that, when
the fan is the normal fan of a polytope, the irrational toric variety is homeo-
morphic to that polytope. Quasifolds have been studied in the framework
of diffeology in [31]. We expect that this approach will have implications in
nonrational toric geometry. Finally, we remark that Bressler–Lunts [17, 18]
and Karu [35] devised a powerful approach to the combinatorics of nonra-
tional polytopes that extends cohomological properties of toric varieties to
general fans, without constructing a corresponding toric space.
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