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Understanding how environmental conditions and plant functional variation are 
mutually related is critical to improving our comprehension of plant adaptations. In 
this context, our knowledge of the interlinks between plant functional, spectral and 
genetic traits and environmental filters is still very limited, especially for wetland spe-
cies. To gain new insights on this topic, a multidimensional dataset, centred on the 
widespread macrophyte species Nuphar lutea, was assembled by collecting data on 
functional traits (including spectral traits), genetic metrics and environmental deter-
minants from 28 plots spanning north-central Italy. A strong environmental filter acts 
on all traits (morphological, biochemical, spectral and the genetic diversity metrics) 
resulting in significant local control over trait patterns, exemplified by the discrimina-
tion value of water electrical conductivity. This is further reinforced by the key contri-
bution of sediment variables in explaining traits variation. Site-specific environmental 
conditions were reflected in different patterns of genetic diversity, suggesting a long-
term effect of environmental filters on genotypes as well. High water conductivity – in 
our study sites indicative of long-term hydrogeological settings – is linked to more 
acquisitive behaviour in N. lutea and a progressive reduction in its genetic diversity, 
while high nutrients availability in sediments promotes higher leaf traits performance. 
This study better explores how high variability in leaf traits reinforces current genetic 
and mechanistic knowledge about competitive strategies in the key aquatic plant N. 
lutea, by testing the effectiveness of a novel integrative approach to assess multiple 
sources of plant functional variation.
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Introduction

Functional traits are widely used in plant studies and 
have shown great potential to describe plant adaptations 
(Díaz et al. 2016, Dalla Vecchia et al. 2020). As traits reflect 
plant functions and responses to environmental conditions, 
they are useful to answer a number of ecological questions 
and for understanding the drivers of plant performance 
(Violle et al. 2007). Among other things, leaf traits can 
describe tradeoffs in resource-use strategies and reveal varia-
tions in strategies adopted even within species (Wright et al. 
2004). Intraspecific trait variability is key to ensure suc-
cessful plant adaptation to environmental gradients and 
it becomes increasingly relevant at finer scales of observa-
tion and in species-poor communities (Violle et al. 2012, 
Siefert et al. 2015).

In addition to typically measured leaf traits, reflectance 
spectroscopy has been increasingly employed over the last 
few years as a high-throughput tool to quantify foliar spec-
tral properties, which can be related to structural, bio-
chemical (e.g. pigments) and physiological characteristics of 
plants (Klančnik et al. 2018, Jacquemoud and Ustin 2019, 
Villa et al. 2021), providing integrative descriptions of plant 
phenotypes (Kothari and Schweiger 2022).

Because phenotypic expression of traits is determined by 
the interplay between plasticity and genetics (Violle et al. 
2012), the degree of genetic differentiation within and 
among populations may also explain some of the variation 
in observed traits and may provide insights into future adap-
tive potential as well as past selection (Agrawal et al. 2008, 
Parsons et al. 2011). In this regard, the degree of genetic dif-
ferentiation in a population could also be, in part, a response 
to environmental pressures that select certain characteristics, 
offering a view on past driving forces (Pavoine et al. 2011).

Numerous studies have linked genetic metrics to variation 
in functional traits to describe trait plasticity or to under-
stand what the evolutionary trajectories of plant adapta-
tion are (García-Girón et al. 2020, Roubeau Dumont et al. 
2020, Castellani et al. 2022, 2023a). Also, there are many 
examples that combine functional traits and spectral features 
of plants to assess the effect of environmental conditions 
and overcome limitations dealing with direct trait measure-
ments across scales (Lausch et al. 2016, Kamoske et al. 2021, 
Wang et al. 2022). However, to our knowledge, there are no 
studies that simultaneously ground functional, spectral and 
genetic variability to understand the effect of environmental 
gradients on plant performance at species level. In fact, as 
spectral traits may integrate wide aspects of plant phenotypic 
variability (Kothari and Schweiger 2022), they can be valu-
able in advancing functional plant ecology and biodiversity 
studies across spatial scales (Abelleira Martínez et al. 2016, 
Cavender-Bares et al. 2022, Castellani et al. 2023a, b) – 
especially when joined with commonly measured functional 
traits. Besides, determining whether and to what extent 
environmental gradients influence genetic differentiation in 
populations is a key aspect of understanding patterns of trait 
variability (Lehmair et al. 2022).

Freshwater plants (referred to as macrophytes) are ideal 
candidates for investigating these aspects, as the aquatic 
environment naturally offers strong gradients of conditions 
(e.g. temperature, light, nutrient availability) at relatively 
narrow spatial scales (Chou et al. 2022). Among macro-
phytes, Nuphar lutea is a rooted floating-leaved macrophyte 
(hereafter referred as nymphaeids) that is widespread in low-
land lentic water bodies in temperate to subtropical regions. 
Within its habitat, N. lutea can be considered a dominant 
species: it usually forms large monospecific stands, represents 
a top competitor plant, and naturally inhabits a wide range 
of conditions showing high plasticity (Pierce et al. 2012). 
This provides a good premise to offer innovative insights 
on within-species plant trait variability and its linkage to 
environmental conditions. With this study we investigated 
this topic by integrating different approaches, merging mul-
tidimensional measures of functional (including spectral 
features) and genetic variability of N. lutea to evaluate intra-
specific diversity drivers along an environmental gradient.

Water level, light and nutrients availability (and conse-
quently derived eutrophication processes) have been associ-
ated with plants performance, and nymphaeids in particular 
(Khanday et al. 2017, Henriot et al. 2019, Klok and van der 
Velde 2022). Water depth has an influence on plant econom-
ics (Richards et al. 2011, Dalla Vecchia and Bolpagni 2022), 
as well as determining a change in reproduction strategies 
in Nymphoides peltata (Khanday et al. 2017). Water depth, 
along with turbidity, also influences light availability, which 
in turn is a major determinant of submerged leaf develop-
ment and seedling survival in nymphaeids (Smits et al. 1990). 
Moreover, increased light availability increases the photosyn-
thetic activity and the carbon stock, together with changes 
in the root/shoot ratio, have been observed in the rooted 
floating-leaved species Nymphaea advena (Cronin and Lodge 
2003). Increased nutrients have been shown to promote 
growth and reproduction traits in N. lutea (Klok and van der 
Velde 2017, Henriot et al. 2019), although no effect of eutro-
phication on photosynthesis traits was observed (Brykov et al. 
2022). However, it also caused toxicity-induced responses in 
N. lutea and N. advena (Cronin and Lodge 2003). So far, 
there is only limited evidence showing that water quality (in 
this case expressed in terms of pH and salinity) affects the 
genetic diversity in macrophytes, particularly Ranunculus sp. 
(Wu et al. 2019).

The effect of all these drivers on plant traits, however, may 
vary depending on the spatial or temporal scale observed 
(Alahuhta et al. 2018). Previously, N. lutea leaf traits have 
been shown to vary with water depth and conductivity on a 
local scale (Dalla Vecchia and Bolpagni 2022). Here we aim 
at testing the effect of environmental filtering on leaf traits 
and genetic diversity of 28 plots of N. lutea in four lake sys-
tems in Italy. Among the trait variability drivers mentioned 
above, we hypothesize that nutrient availability represents the 
main driver of trait and genetic variability in N. lutea at the 
regional scale. We expect the effect of the depth gradient cov-
ered by the study sites at this scale to be less than the effect 
of trophic differences between sites, given the eutrophication 
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pressure exerted on some of the lakes studied. Moreover, 
we expect the pattern of trait diversity to be reflected in the 
genetic diversity of the populations analysed.

Material and methods

Study sites

This study was carried out in four lake systems located in cen-
tral and northern Italy, grouped by proximity that reflected 
similar watershed conditions: lakes Pusiano and Annone, 
Lake Iseo and Torbiere del Sebino, Mantua lakes system and 
Lake Chiusi, sorted by location from north to south (Fig. 1). 
Main morphological and trophic features of studied lakes are 
presented in Table 1. Both Pusiano and Annone are sub-alpine 
lakes located south of Lake Como, between its two branches, 
and Lake Annone is further divided into an eastern and a 
western basin connected by an isthmus. Lake Iseo is a deep 
sub-alpine lake, regulated by a dam built in the first reach 
of its outflow, the Oglio River. Immediately south of Lake 
Iseo shores lies the Torbiere del Sebino wetland, a protected 
area hosting well developed macrophytes stands. Mantua 
lakes system is composed of three smaller lakes (Superior, 
Middle and Inferior) and two connected wetlands: the Valli 
del Mincio and Vallazza, respectively located upstream and 
downstream of the lakes. The lakes system is located along 
the city of Mantua and fed by the Mincio river, emissary of 
Lake Garda, and has been regulated since 1190 (Pinardi et al. 
2015). The system hosts different submerged, floating, and 
emergent macrophyte communities (Pinardi et al. 2021). 
Lake Chiusi is the southernmost sampling site, located in 
Tuscany, central Italy, and it is part of a Natura 2000 pro-
tected area.

Sampling design

In the four investigated lake systems (hereafter: sites) we 
sampled 28 plots each of 4 m2 area where Nuphar lutea was 
present: 12 in Chiusi, 7 in Mantua, 5 in Iseo–Torbiere and 
4 in Pusiano–Annone (Fig. 1). Plots were chosen among N. 
lutea stands in the sites, starting from floating macrophyte 
maps derived from very-high-resolution satellite images (2 m 
pixel) and drawing plots randomly within 3 m of the water-
front of stands that were larger than 100 m2 and logistically 
reachable with a light boat. Samples were further stratified by 
three levels of canopy density (modelled via spectral proxies), 
to ensure representativeness of within-site variability. In each 
plot, species presence and percentage cover were obtained, 
and water, sediment and plant samples were collected for 
environmental characterization, traits and genetic analyses 
(Table 2). Samplings were carried out in July 2020 in lake 
Chiusi and in July 2021 for all other sites, during the peak 
season of N. lutea development.

Environmental characterization

In each plot one measure of water depth (hereafter depth, m), 
water specific electrical conductivity (SPC, µS cm−1), water 
nitrate concentration (NO3, mg l−1), sediment organic matter 
content (sed.OM, %) and sediment total phosphorus con-
tent (sed.TP, µg g−1 dry weight) was collected. SPC was deter-
mined in situ using a multiparameter probe (YSI 556 MPS), 
while site water was filtered with glass fibre filters (Whatman) 
of 0.7 µm pore size and kept refrigerated. Within two days 
from collection, samples were filtered a second time with 0.2 
µm pore size nylon filters, and NO3 concentration was deter-
mined by means of ion chromatography (883 Basic IC plus 
Metrohm). Ammonium ion and soluble reactive phosphorus 

Figure 1. Map of the study sites located in north-central Italy, and a focus on the Mantua lakes sampling area, showing an example of the 
spatial arrangement of sampling plots.
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were also measured with ion chromatography and follow-
ing Valderrama (1977), respectively, but they were not con-
sidered in this study because the concentrations were often 
below detection limits (0.072 mg l−1 for ammonium ion and 
0.004 mg l−1 for soluble reactive phosphorus). A sample of 50 
ml of sediment was collected from the upper 5 cm sediment 
layer in each plot, stored in falcon tubes and frozen as soon as 
possible after collection. In the laboratory, sediment samples 
were defrosted, homogenized and a subsample was dried at 
60°C for 24 h. After grounding the dried sediment to fine 
powder, an aliquot of ca 0.3 g was weighed and incinerated 
at 450°C for 4 h. Sed.OM was determined gravimetrically 
from the weight loss of the ashes compared to the dry sample 
(Buchanan 1984). Sed.TP includes both organic and inor-
ganic phosphorus pool in the sediments, and was analysed 
spectrophotometrically from the ashes, after extraction in 
HCl (Aspila et al. 1976).

Leaf traits

At each plot, eight branches were haphazardly selected from 
different plants, located at similar depth. One leaf from each 

branch was used for analysis, and to standardize for life stage, 
only young, fully-developed floating leaves without mechani-
cal damages or herbivory signs were selected and gently 
washed from dirt and epiphytic algae. Reflectance spectra of 
fresh leaves were collected within seconds of leaves detach-
ment with a portable spectroradiometer (SR-3500, Spectral 
Evolution; range covered: 350–2500 nm). Radiance reflected 
from the adaxial side of each leaf laid on dark background 
(black neoprene with absolute reflectance factor < 5%) was 
measured and converted to reflectance via readings taken over 
white standard panel (Spectralon, with absolute reflectance 
factor > 95%).

After spectra readings, leaves (including whole petioles) 
were stored in sealed plastic bags and kept cool until process-
ing, which occurred within few hours. A small blade por-
tion was removed from each of the eight leaves, weighed, 
dehydrated in sealed plastic bags with silica gel and stored 
for genetic analyses. Then, five leaves per plot were used to 
determine the following structural traits: leaf area (LA, mm2), 
specific leaf area (SLA, mm2 mg−1), leaf dry matter content 
(LDMC, mg g−1) and proportion of leaf dry weight allocated 
to petioles (pet.propDW, %). Fully hydrated leaves, including 

Table 1. Main morphological and trophic characteristics of the investigated lakes.

Lake Coordinates
Surface area 

(km2)
Max depth 

(m)
Mean depth 

(m) Trophic state Reference

Pusiano 45°48’12”N, 09°16’17”E 5.26 24 14 phosphorus-limited Legnani et al. 2005
Annone 45°49’05”N, 09°19’57”E 5.71 11 5 eutrophic Rusconi et al. 2022
Iseo 45°40’13”N, 10°01’32”E 60.8 256 123 meso-eutrophic Pilotti et al. 2018, 

Scibona et al. 2022
Torbiere del Sebino 45°38’51”N, 10°01’45”E 3.6 <3 2 eutrophic Cappelli 2014
Mantova 45°09’42”N, 10°46’08”E 6.22 17.5 3.5 eEutrophic Pinardi et al. 2021
Chiusi 43°03’25”N, 11°57’55”E 6.44 5.7 2.7 hyper-eutrophic Lastrucci et al. 2014, 

Cavalieri et al. 2018

Table 2. List of functional traits (including spectral traits and genetic metrics) and environmental variables analyzed in this study, with related 
abbreviations, units of measurements and functional or genetic meaning (for traits and genetic metrics).

Trait Abbreviation Unit of measurement Meaning

Leaf area LA mm2 leaf size
Specific leaf area SLA mm2 mg−1 acquisitive resource-use strategy
Leaf dry matter content LDMC mg g−1 conservative resource-use strategy
Petiole dry weight proportion pet.propDW % leaf investment in petioles
Leaf chlorophylls content chlab μg g−1 photosynthetic capacity
Genetic diversity AGD % average genetic diversity within plot
Percentage of outlier loci OUTLIER % percentage of loci falling out of a certain 

threshold within plot
Average leaf reflectance between 

430–450 nm
r440 ratio leaf surface roughness and composition

Average leaf reflectance between 
510–520 nm

r515 ratio leaf carotenoids and anthocyanins content

Average leaf reflectance between 
610–640 nm

r625 ratio leaf chlorophylls content

Average leaf reflectance between 
780–820 nm

r800 ratio mesophyll structure complexity

Environmental variable Abbreviation Unit of measurement
Water depth Depth m
Water electrical conductivity SPC μS cm−1

Water nitrate content NO3 mg l−1

Sediment organic matter content sed.OM %
Sediment total phosphorus content sed.TP μg g−1

 16000706, 2024, 2, D
ow

nloaded from
 https://nsojournals.onlinelibrary.w

iley.com
/doi/10.1111/oik.10047 by U

niversita D
i Firenze Sistem

a, W
iley O

nline L
ibrary on [18/06/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Page 5 of 13

petioles, were weighed and scanned with a portable scanner 
at 300 dpi (before collecting the sample for genetic analyses), 
and successively dried at 60°C for 48 h. LA was calculated 
using the software imageJ (Rasband 1997–2018), SLA is the 
ratio between LA and leaf dry weight, LDMC is the ratio 
between leaf dry and fresh weight (Pérez-Harguindeguy et al. 
2013). All these traits were calculated on full leaves, includ-
ing blades and petioles. We then calculated pet.propDW, 
as the ratio between petiole and whole leaf dry weight, 
expressed in percentage. Leaf chlorophylls content (chlab, µg 
cm−2), expressed as sum of chlorophyll-a and chlorophyll-b 
on an area basis, were analysed spectrophotometrically on the 
remaining three fresh leaves after extraction in 80% acetone 
for 24 h of grinded fresh blade tissue (Wellburn 1994). Only 
blades were used for this analysis, omitting petioles. These 
traits were chosen as broadly representative of the tradeoffs 
underlying the leaf economic spectrum (Wright et al. 2004).

We derived four specific reflectance features connected 
to pigment content and leaf structure to be analysed. These 
foliar traits were: 1) r440, i.e. the mean reflectance within 
430 and 450 nm, linked to leaf surface roughness and com-
position, e.g. presence of trichomes (Sims and Gamon 2002); 
2) r515, i.e. the mean reflectance within 510 and 520 nm, 
linked to absorbance band for carotenoids and anthocyanins 
(Féret et al. 2017, Peters and Noble 2020); 3) r625, i.e. the 
mean reflectance within 610 and 640 nm, linked to chloro-
phyll-a and -b content and their balance (Villa et al. 2021); 
and iv) r800, i.e. the mean reflectance within 780 and 820 
nm, linked to mesophyll structure complexity (Féret et al. 
2017).

Genetic analyses

The DNA extraction and AFLP protocol were carried out on 
206 dried leaf samples (from five to eight individuals per plot; 
Supporting Information 1). When it was not possible to use 
the very same leaf selected for functional traits, leaves from 
the same rosettes were collected as matches. DNA extrac-
tion was performed using the 2x cetyltrimethylammonium 
bromide (CTAB) protocol (Doyle and Doyle 1990), and the 
quality and quantity control of the extraction product was 
assessed by a spectrometric survey using a Bio-Photometer 
(Eppendorf ). AFLP analysis followed the standard proce-
dure (Vos et al. 1995), modified at the final amplification 
step (Coppi et al. 2014). Two combinations of primers were 
selected for the final PCR amplification: hex_EcoRI-ACG/
MseI-TTA and fam_EcoRI-CTA/MseI-CTC. AFLP profiles 
obtained by capillary electrophoresis were analyzed using 
GeneMarker ver. 1.5 (SoftGenetics LLC, State College). The 
analyses of genetic variation at plot and site level were per-
formed as average genetic diversity over loci (hereafter AGD) 
using Arlequin ver. 2.000 software (Schneider et al. 2000). 
AGD was computed as the probability that two randomly 
chosen homologous sites are different (Nei 1987). Moreover, 
the partition of genetic variation was evaluated by an analysis 
of variance framework using analysis of molecular variance 
(AMOVA). The AMOVA was performed using Arlequin 

software ver. 3.5.2.2 (Excoffier et al. 2009) at three differ-
ent hierarchical levels, 1) within plots, 2) among plots and 
3) among all hypothetical groups of sites (i.e. all possible 
combinations of sites grouped together). Statistical support 
for the different hypothetical groups of sites, based on geo-
graphical distribution, was tested in terms of the variance 
components and the percentage of explained variation. The 
population structure was then explored using STRUCTURE 
ver. 2.3.3 (Pritchard et al. 2000). To determine the optimal 
K value (most likely number of genetic groups), assumed 
to be in the range between 1 and 5, the Evanno method 
(ΔK; Evanno et al. 2005) was used as implemented in 
STRUCTURE Harvester ver. 0.6.94 (Earl and vonHoldt 
2012). The analysis was carried out adopting the admixture 
model and 100 000 burn-ins followed by 200 000 MCMC 
(Markov chain Monte Carlo) runs (structure manual). The 
percentage of outlier loci (OUTLIER) was detected follow-
ing Yang et al. (2016) using BayeScan ver. 2.01. Following 
Foll (2012), outliers were determined as loci that fall over a 
threshold value set on the logarithm of posterior odds values 
(LogPO). The number of pilot runs was kept at 20, with a 
length of 10 000 iterations each one (Coppi et al. 2018).

Statistical analyses

To investigate the interlinks between ecological drivers and 
variation in functional traits (including reflectance features) 
and genetic metrics, GAM models were used, because traits 
responses to environmental variables were often not linear. 
GAM models were built in R environment (www.r-project.
org). All traits were tested in separate models (11 models in 
total) including all five environmental variables (depth, SPC, 
NO3, sed.OM and sedTP), using the function {gam} of the 
package ‘mgcv’ (Wood 2011). For traits with multiple mea-
sures per plot (i.e. all except genetic diversity metrics) the plot 
number was added to the model as a random factor. The func-
tion {gam.check} was used to check the model assumptions, 
and response variables where log-transformed when neces-
sary. Model selection was performed with aid of the func-
tion {dredge} of the package ‘MuMIn’ (Barton 2020), and the 
model with the lowest AIC criterion was selected. In case the 
trend of the model was linear (few cases), the additive model 
was used nonetheless to keep consistency with all other traits’ 
models. GAM models were graphically visualized with the 
implementation of the packages ‘ggplot2’ (Wickham 2016), 
‘gratia’ (Simpson 2022) and ‘gridExtra’ (Auguie 2017), aiming 
at emphasising the contribution of each smoothing term to 
the shape of the relationship between traits and environmen-
tal variables (Zuur et al. 2009). To investigate if the variability 
of environmental conditions is correlated to a site effect, and 
thus if sites themselves are related to trait variation, the differ-
ences in traits and environmental variables were tested among 
sites. Towards this, a preliminary PCA (principal component 
analysis) was performed with environmental data, to visu-
alize if sites were distinguished in the environmental space. 
The package ‘ggbiplot’ (Vu 2011) was used to visualize the 
first two axes of the PCA and the distribution of sites. Then, 
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one-way ANOVA tests were performed using site as a cat-
egorical explanatory variable and traits and environmental 
variables as continuous response variable, after visually check-
ing if model assumptions were acceptable. The ANOVA was 
then followed by Tukey post hoc comparisons to identify dif-
ferences among pairs of sites.

Results

Environmental gradients

The plots investigated showed a wide variability in terms of 
environmental conditions: depth ranged between 0.1 m in 
Mantua and Iseo–Torbiere and 1.9 m in Chiusi and Iseo–
Torbiere; SPC ranged between 216 µS cm−1 in Pusiano–
Annone and 608 µS cm−1 in Chiusi; NO3 had values < 
0.01 mg l−1 in 13 plots from Chiusi, Iseo–Torbiere and 
Pusiano–Annone, and peaked in Mantua with 9.49 mg l−1; 
sed.OM ranged between 1.2% in Iseo–Torbiere to 38.1% in 
Chiusi, and sed.TP ranged between 277.5 µg g−1 in Chiusi 
and 1788.5 µg g−1 in Mantua. The first two axes of the PCA 
on environmental variables together explain 62.1% of the 
variation and showed that Chiusi is environmentally distinct 
from the other sites, mainly due to higher SPC and lower 
NO3 (Supporting information). The other three sites clus-
ter together; however, Mantua system occupies a bigger por-
tion of the environmental space, having plots with higher 
water and sediment nutrients content (Supporting informa-
tion). The ANOVA tests showed no difference among sites 
for depth and sed.OM, whereas significant differences were 
detected for SPC, NO3 and sed.TP (Supporting informa-
tion for complete sites comparisons). SPC was significantly 
higher in Chiusi, intermediate in Mantua and lower in Iseo-
Torbiere and Pusiano-Annone. NO3 was significantly higher 
in Mantua, where it also showed the highest variance, than 
in Chiusi and Pusiano–Annone, while Iseo–Torbiere was 
not statistically different from any other site, although this 
is mainly due to one single plot (IS24) with particularly high 
values of NO3 (5.63 mg l−1). Sed.TP was again statistically 
higher in Mantua.

Genetic diversity

The AFLP analysis was successfully performed on 203 sam-
ples and produced a total of 190 polymorphic loci. Three 
samples out of the initial 206 samples were discarded due to 
incomparable genetic profile (Supporting information). For 
the hex_EcoRI-ACG/MseI-TTA primer combination, 94 
loci were detected, whereas the amount of 96 was shown for 
the fam_EcoRI-CTA/MseI-CTC pair of primers combina-
tion. The range of bp varied from 50 to 442 and 50 to 347 
for the hex_EcoRI-ACG/MseI-TTA and fam_EcoRI-CTA/
MseI-CTC, respectively. No clones were detected.

The mean value of AGD and the mean OUTLIER were 
0.207 and 34, respectively. The site with lower levels of AGD 
and the frequency of OUTLIER was Chiusi (0.169 and 27 

respectively), whereas the other sites showed comparable 
higher levels of AGD (Supporting information). A higher 
percentage of outliers was registered for Lake Iseo (45), indi-
cating a possible higher impact of selective pressure on the 
gene pool of the five plots analysed. The AMOVA analysis 
(Table 3a) showed that genetic variation among plots is high 
(FST = 0.465). The higher portion of the total genetic differ-
entiation (53.5%) was due to intra-plot differences rather than 
among-plots differences (46.5%). The relatively high level of 
differentiation among plots indicates a possible genetic separa-
tion among geographically separated sites. Among all hypo-
thetical groupings of sites examined, the one formed by the 
Chiusi plots, separated from the Mantua, Iseo and Pusiano–
Annone plots, accounted for the highest percentage of among 
groups percentage of variation (51.2%; p < 0.0001; Table 
3b). In addition, as evidenced by ΔK scores (Supporting infor-
mation), the structure analysis supports the detection of two 
genetic groups (K = 2) showing that Chiusi populations result 
to be distinct from all the others (Supporting information).

The variance of genetic metrics explained by GAM models 
is relatively low (< 48%), also due to low cardinality (n = 28). 
Yet, AGD and OUTLIER showed significantly negative cor-
relations with SPC (p < 0.002) (Fig. 2a–b). A site effect 
was also detected for AGD, which was significantly lower 
in Chiusi than in Iseo–Torbiere and Mantua (p = 0.019 and 
p = 0.009 respectively); however, no difference among sites 
was highlighted for OUTLIER.

Traits drivers

The GAM models indicated that most traits (except r515) 
were significantly correlated with one or more of the environ-
mental variables included in this study (Table 4, Supporting 
information). The most important environmental variables 
were SPC, significantly related to six out of nine traits, and 
nutrient-related sediment features, like sed.TP and sed.OM. 
The role of SPC is not the same for every trait and implies 

Table 3. (a) Partition of genetic variance among plots. AMOVA was 
performed at two hierarchical levels testing the differentiation 
among and within plots. The table shows: degrees of freedom (df), 
Sum of squared deviations, Variance component estimates, percent-
ages of total variance contributed by each component; (b) Partition 
of genetic variance among groups of plots performed on a hypo-
thetical subdivision in two groups of sites. Data show the degrees of 
freedom (df), the Sum of squared deviations, the Variance compo-
nent estimates, the Percentage of total variance contributed by the 
among-site level.

Source of 
variation df

Sum of 
squares

Variance 
components

Percentage of 
variation

(a)
Among plots 27 3845.676 16.97461 Va 46.55
Within plots 175 3411.496 19.49427 Vb 53.45
Total 202 7257.172 36.46888
(b)
Within plots 1 2554.961 24.80706 Va 51.18
Among plots 26 1290.715 4.16863 Vb 8.6
Among sites 175 3411.496 19.49427 Vc 40.22
Total 202 7257.172 48.46996
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non-linear responses: it often determined a negative trend 
in traits values, especially at high SPC levels, but it is not 
always the case, with SLA as a notable exception to this pat-
tern. SPC seems to reflect general site conditions, as signifi-
cant differences were found among lakes. It had an opposite 
effect on SLA (linear positive, p < 0.001) and LDMC (lin-
ear negative, p < 0.005) (Fig. 3d–e), while it determined a 
unimodal response of spectral traits r440, linked to leaf sur-
face roughness and composition (p = 0.003, Fig. 2c), r625, 
linked to leaf chlorophyll content (p < 0.0001, Fig. 2d), 
and r800, linked to mesophyll structure complexity (p < 
0.0001, Fig. 2f ). A significant relation with pet.propDW was 

also observed (p = 0.035, Fig. 3g), however the model only 
explained < 40% of the variance, and the slope of the trend 
was not pronounced.

Conversely, sed.TP determined greater traits performance 
in LA (p = 0.037) and chlab (p = 0.027) at high concentra-
tions, however it also determined negative traits response for 
SLA (p < 0.005, Fig. 3c) and r625 (p = 0.001, Fig. 3e).

Water depth and nutrients content (NO3) appeared to 
have a marginal role in shaping N. lutea leaf traits variability 
at the regional scale (they were significantly related only to 
chlab, p < 0.001, and r625, p < 0.005, respectively), due 
to their high spatial and temporal dynamicity in wetland 

Figure 2. Results of the GAMs showing the relationships between environmental variables and measured traits. The y-axes are centred and 
standardized, and indicate the contribution of each smoothing term to the variation of each trait as reported in the title; different point 
colours refer to residuals of different study sites. s(x) indicates the smoothing term. Gray shade shows 95% confidence interval, and only 
significant relationships are shown. LA = leaf area, SLA = specific leaf area, LDMC = leaf dry matter content, pet.propDW = proportion of 
leaf dry weight allocated to petioles, chlab = leaf chlorophylls content, Depth = water depth, SPC = specific conductivity, sed.OM = sedi-
ment organic matter content, sed.TP = sediment phosphorus content.
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Page 8 of 13

environments. Depth had a negative effect on chlab, showing 
a linear trend (Fig. 3g), while the influence of NO3 was uni-
modal and similar to that observed in all models for spectral 
traits (Fig. 2f ). Detailed comparisons of traits among lakes 
can be found in Table 3 and in the Supporting information.

Discussion

Environmental drivers of multiple functional variation

In the present study, non-linear trends in the relationships 
between N. lutea traits and the environment appear to be due 

to site-specific effects and are therefore informative of the pro-
cesses taking place within the systems. A strong site-specific 
component was evident for SPC, which generally exerted a 
negative influence on LDMC, leaf reflectance traits (r440, 
r625 and r800) and genetic diversity metrics, especially at 
Mantua and Chiusi, where the SPC range cover was wider 
(from 357 to 454 µS cm−1 at Mantua and from 533 to 608 
µS cm−1 at Chiusi). The specificity of environmental condi-
tions at Chiusi is also reflected on a genetic basis (Table 3b, 
Supporting information). In fact, both the AMOVA and the 
STRUCTURE Harvester analysis highlighted this site as sep-
arate from other sites in terms of genetic diversity. This cor-
roborates our results of lower genetic diversity in plots with 

Figure 3. Results of the GAMs showing the relationships between environmental variables and genetic metrics or spectral traits. The y-axes 
are centred and standardized, and indicate the contribution of each smoothing term to the variation of each trait as reported in the title; 
different point colours refer to residuals of different study sites. s(x) indicates the smoothing term. Gray shade shows 95% confidence inter-
val, and only significant relationships are shown. Plots titles (c–g) refer to the mean leaf reflectance at the given wavelength, AGD = average 
genetic diversity, OUTLIER = percentage of outlier loci, depth = water depth, SPC = specific conductivity, NO3 = water nitrate concentra-
tion, sed.OM = sediment organic matter content.
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higher SPC, suggesting that peculiar environmental condi-
tions have selected distinct N. lutea genotypes over time. 
Indeed, the decrease in OUTLIER as water conductivity 
increases suggests that the higher incidence of neutral loci at 
high SPC is favoured by balanced selection rather than local 
genetic adaptation (Excoffier et al. 2009). Other studies have 
already confirmed the effect of environmental conditions on 
genetic variation of aquatic species Ranunculus subrigidus 
(Wu et al. 2019), Phragmites australis (Coppi et al. 2018, 
Castellani et al. 2023a, b), Ranunculus baudotii (Coppi et al. 
2015) and Ceratophyllum demersum (Li et al. 2022), although 
the literature on this topic remains sparse.

SPC reflects the ions content in the water and could there-
fore be related to the trophic level of the system (Shimoda 
1997, Yuwono et al. 2015). At the lake scale, Dalla Vecchia 
and Bolpagni (2022) found that SPC was highly corre-
lated with water depth, reflecting the influence of sediment 
metabolism on dissolved ions in the overlying water column. 
By expanding the spatial scope of investigation, the links 
between SPC, depth and, more in general, water trophic con-
ditions were weaker. These findings lead to two main con-
siderations. First, sediments emerge as major environmental 
drivers of trait variability in the meso-eutrophic conditions 
investigated in this study. Indeed, in our systems, nutrient 
availability is much higher in the sediments than in the water 
column. This is possibly due to the high metabolism rates 
in these systems leading to very fast recycling of nutrients 
(Twinch and Ashton 1983, Nedwell et al. 1999), so they are 
not detected in the water during the peak of the growing sea-
son. Second, SPC seems to provide information on the basin 
scale, medium to long term hydrogeological setting (and bio-
geochemical) of each lake, so the relations between traits and 
SPC would show site-specific patterns. This is not surprising, 
considering that SPC is often more associated with dissolved 
carbon and other ions than with nutrients, depending on the 
hydrogeological context (Zhao et al. 2020). After all, SPC 
is one of the most used descriptors for water chemistry and 
is known to show a much wider variation among sites than 

within sites (Borowiak et al. 2020). Therefore, the effect of 
SPC on traits and genetic variability should be understood as 
an indirect effect, reflecting general and long-term hydrogeo-
logical conditions at sites.

Trait–environment relationships

Sediments are characterized by nutrient concentrations at 
least one order of magnitude higher than in the water col-
umn (Hopkins et al. 2018), as a result of human impacts 
(e.g. pollution) or natural eutrophication processes. Besides 
sed.TP, sed.OM is also a proxy for trophic level, as it reflects 
water column productivity and the decomposition capability 
of benthic organisms and is often associated with phospho-
rus availability (House and Denison 2002). Higher nutrient 
availability is often related to higher trait performance, nota-
bly so for LES traits like LA, SLA and pigments (Fan et al. 
2013, Dalle Fratte et al. 2019, Zervas et al. 2019). Our results 
are generally in line with this trend for LA and chlab, which 
showed a positive response to sed.TP increase at high phos-
phorus concentrations, although chlab appears to be less sen-
sitive for sed.TP < 1500 µg g−1. The same trend was observed 
also in r625, the spectral trait inversely related to leaf chlo-
rophyll content, which decreased at high levels of sed.TP 
and NO3. Interestingly, plots showing a weak sed.TP–traits 
relation also showed almost undetectable (< 0.15 mg l−1, at 
Chiusi) or relatively low (< 1 mg l−1 in most of the plots at 
the Iseo and Pusiano–Annone sites) water nitrate concentra-
tions. The relative scarcity of NO3 in the water of most sites 
confirms the importance of sediments as nutrients source for 
rooted species (Bornette and Puijalon 2011), though the LA 
and chlab behaviour with respect to the relative availability 
of potential limiting nutrients will require further investiga-
tion. Chlab also showed a negative a correlation with depth, 
which could be interpreted as the effect of less favourable 
conditions for N. lutea individuals growing in deeper waters 
(Richards et al. 2011), negatively affecting the investment in 
photosynthetic efficiency.

Table 4. Summary of the results of GAM models and traits difference among sites. Significant variables in GAM models are marked with ‘x’. 
In the comparisons among sites, ‘=’ indicates no difference, ‘+’ indicates first site has higher values than second site, the opposite for ‘-’. 
Depth = water depth (m), SPC = specific conductivity (µS cm−1), NO3 = water nitrate concentration (mg l−1), sed.OM = sediment organic mat-
ter content (%), sed.TP = sediment phosphorus content (µg g−1), Dev.Ex = percentage of deviance explained, R-sq (adj.) = adjusted R square, 
CH = Chiusi, IS = Iseo-Torbiere, MN = Mantua, PA = Pusiano-Annone. LA = leaf area, SLA = specific leaf area, LDMC = leaf dry matter con-
tent, pet.propDW = proportion of leaf dry weight allocated to petioles, chlab = leaf chlorophylls content, AGD = average genetic diversity, 
OUTLIER = percentage of outlier loci, r440 to r800 refer to the mean leaf reflectance at the given wavelength.

Trait Depth SPC NO3 sed.OM sed.TP
Dev.Ex 

(%)
R-sq. 
(adj.) IS-CH MN-CH PA-CH MN-IS PA-IS PA-MN

LA x x 83.0 0.792 = + + + + =
SLA x x 71.5 0.661 = − − − − =
LDMC x 74.2 0.687 = + + + = =
pet.propDW x 37.3 0.285 + = = = = =
chlab x x 59.8 0.495 + = = = = =
AGD x 45.8 0.414 + + = = = =
OUTLIER x 31.8 0.292 = = = = = =
r440 x 65.6 0.614 + + − = − −
r515 // // + + = = − −
r625 x x x 75.7 0.727 + + − = − −
r800 x 72.6 0.692 + + = − − −
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SLA and LDMC represent opposite sides of the tradeoff 
between ‘fast and acquisitive’ leaves (high SLA) and ‘slow 
and conservative’ leaves (high LDMC) (Wright et al. 2004), 
our findings suggest that, at the regional scale, SPC tends to 
promote a more acquisitive behaviour in N. lutea, given its 
positive influence on SLA and negative influence on LDMC. 
Again, this is in line with the pattern observed for r800, the 
spectral trait related to leaf structural complexity, which 
decreases at high SPC levels. This result is in contrast with 
the trend found at lake scale (Lake Chiusi) by Dalla Vecchia 
and Bolpagni (2022) of a negative relation between N. lutea 
SLA and SPC, which suggested a stressful effect of SPC. The 
reduced investment in leaf structure found at higher SPC, 
namely in Chiusi, may suggest that in this site this species is 
able to exploit the more extreme environmental conditions to 
implement a more acquisitive resource-use strategy, becom-
ing the dominant hydrophyte species within this lake. These 
results are in line with Klok and van der Velde (2017), who 
observed, on the other hand, a more conservative strategy of 
N. lutea under limited nutrients availability.

Even if it constitutes a physical constraint for aquatic plant 
species, water depth does not emerge as a key driver of N. 
lutea traits variability in this study, according to our expecta-
tion. Previous studies reported contrasting effects of depth on 
structural traits, namely SLA (Richards et al. 2011, Fu et al. 
2014), supporting the idea of the authors that depth alone 
should be considered a partial driver of functional variability, 
and the relation between depth and leaf structural investment 
can be mediated by other important parameters that vary 
along the depth gradient, like nutrients and light availability.

Integrative relevance of the outputs

With this work, we adopted an integrative approach merging 
different dimensions of plants variation (functional, spectral 
and genetic) to better understand variability in leaf resource-
use strategies under different ecological conditions. Although 
these aspects are seldom considered together, their joint use 
allowed us to draw comprehensive conclusions about the 
effect of environment on a key component of primary pro-
duction in aquatic ecosystems (i.e. nymphaeids). On the one 
hand, leaf reflectance features can provide abundant and rela-
tively easy to collect foliar traits, alongside commonly mea-
sured functional traits (e.g. eight spectral traits replicates in 
each plot, vs three replicates for pigments concentration in 
this case). On the other hand, testing whether environmental 
conditions also have an effect on genetic diversity allowed us 
to better understand and confirm the observed patterns of 
variation in leaf traits.

Furthermore, information on spectral traits variability 
– especially in large, horizontally leaved species such as N. 
lutea – can be exploited to derive intra-site patterns of leaf 
traits surrogated by reflectance features through the genera-
tion of synoptic, continuous, and fine scale maps from very-
high-resolution multispectral remote sensing images (see the 
Supporting information for example maps at 2 m spatial 
resolution over Lake Chiusi). Such spatial-wise information 

allows to increase the coverage and level of information detail 
over the target plant stands under investigation (Villa et al. 
2021) and can be greatly useful in detecting patterns and 
trends in functional traits that might be difficult to capture 
following a point-sampling strategy.

Conclusions

Our findings provide evidence for strong covariation of leaf 
traits with changing environmental conditions, using N. 
lutea as ecologically crucial plant. The main environmental 
drivers of trait variability are water electrical conductivity and 
sediment phosphorus and organic matter content. Overall, 
the effect of conductivity was related to site-specific con-
ditions, and the addition of genetic insights allowed us to 
detect a genetic specificity of the populations at the different 
study sites, which was ordered by local environmental condi-
tions and could thus support the observed patterns in trait 
variability. In this regard, we strongly encourage the collec-
tion of plant functional traits together with detailed ecologi-
cal descriptors, accounting for variability in both time and 
space. Orienting research in this direction could foster a real 
understanding of the role of traits in plant strategies, not only 
for aquatic plants, and promote upscaling from describing 
single species to defining community variability. Finally, we 
emphasize the advantages of multidimensional, integrated 
approaches linking different aspects of plant diversity – e.g. 
functional, spectral and genetic – as they allow a quantitative 
and exhaustive investigation of population responses to envi-
ronmental drivers at multiple scales. On one hand, upscaling 
the information associated with spectral traits at the site scale, 
through high-resolution maps based on remotely sensed data, 
could enable the study of plant functional ecology over spa-
tial scales and levels of detail unattainable using only punc-
tual sampling data. Genetic diversity metrics, on the other 
hand, could help to explain hidden patterns in trait variation 
due to responses mediated across generations.
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