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Abstract

Network data analysis has received increasing attention recently. Bipartite networks

represent a specific type of network data describing the relationships between disjoint sets

of nodes, called sending and receiving nodes. We extend the Mixture of Latent Trait An-

alyzers (MLTA) specifically tailored for the analysis of bipartite networks to achieve a

twofold goal. First, the aim is to perform a joint clustering of sending and receiving nodes,

thus partitioning the data matrix into homogeneous blocks, as in the biclustering approach.

In addition, a latent trait is used to model the dependence between receiving nodes, as in

the latent trait framework. The proposal also admits the inclusion of nodal attributes on the

latent layer of the model to understand how they affect cluster formation. An EM algorithm

with Gauss Hermite approximation is proposed to estimate the model parameters.

Keywords: Model-based clustering, Network data, Two-mode networks, Nodal attributes, EM

algorithm

1. Introduction

Over the years, many social, technological, and biological processes have been represented
as networks. These are collections of interconnected units (nodes) that can capture interactions
within a system. In this context, bipartite networks are a special type of networks that repre-
sent the relationships between two disjoint sets of nodes, formally called sending and receiving
nodes. A primary characteristic of this type of network is that connections exist only between
nodes belonging to different sets, as illustrated in Figure 1.
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Figure 1: Example of bipartite networks

A relevant aspect of network analysis concerns the simultaneous clustering of sending and re-
ceiving nodes aiming at partitioning the data matrix into homogeneous blocks, called biclusters.
An example of a block structure is shown in Figure 2, where rows (sending nodes) and columns
(receiving nodes) of the data matrix are reordered according to the corresponding class mem-
bership, thus returning blocks of sending nodes that connect similarly with subsets of receiving
nodes.
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Figure 2: Example of block structure

A common example of application concerns the field of genetics, where the biclustering ap-
proach can be used to identify groups of genes which are co-expressed under subsets of experi-
mental conditions.
Different biclustering approaches are available in the literature, such as the model-based ones
(13; 18; 3; 15). In this specific context, several methods based on finite mixtures have been
proposed (9; 10; 20; 12; 14; 19; 16).
We start from the MLTA model, introduced by (7; 8). Here, the aim is of clustering sending
nodes via a finite mixture specification, while accounting for the dependence between receiv-
ing nodes via a continuous latent variable, as in the latent trait framework. Our proposal is to
modify the MLTA in two ways. First, allowing for a joint clustering of sending and receiv-



ing nodes, where sending nodes are partitioned into clusters called components and, in each of
them, receiving nodes are partitioned into clusters called segments. Furthermore, we also allow
for the inclusion of nodal attributes on the latent layer in order to understand how they influence
component formation.
The paper is organized as follows: in Section 2. we extend the MLTA model, also describing
model assumptions, parameter estimation, and model selection. Section 3. shows the results of
a simulation study conducted in order to verify the efficacy of the proposed approach. Section
4. contains concluding remarks and details further extensions of the approach.

2. Mixture of latent trait analyzers

Let N = {n1, n2, . . . , nN} denote the set of sending nodes and R = {r1, r2, . . . , rR} the
set of receiving nodes. In this framework, bipartite networks can be formally described by a
random incidence matrix Y = {Yik}, with elements

Yik =

{
1 if sending node ni is connected with receiving node rk,

0 otherwise.
(1)

To obtain a clearer picture of the data at hand, (8) propose to extend the Mixture of Latent Trait
Analyzers (MLTA) (7) in the context of bipartite networks. The model combines latent class and
latent trait analysis by assuming that the set of N sending nodes can be divided into G distinct
classes (or groups) and that the propensity of each sending node to be connected with the R

receiving nodes depends also on a multidimensional continuous latent trait. Our contribution
is to further extend the MLTA model by performing a joint clustering of sending and receiving
nodes, also taking into account nodal attributes in the latent model structure.

2..1 The MLTA model

The MLTA model assumes that every sending node belongs to one of G unobserved groups
identified by the latent random variable zi = (zi1, . . . , ziG)

′ ∼ Multinomial(1, (η1, . . . , ηG)),
whose generic element is

zig =

{
1 if sending node ni belongs to group g,

0 otherwise.
(2)

The parameter ηg denotes the probability that a randomly selected sending node belongs to
group g, with g = 1, . . . , G, under the constraints that

∑G
g=1 ηg = 1 and ηg ≥ 0, g = 1, . . . , G.

Furthermore, the model assumes the existence of a D-dimensional continuous latent trait ui dis-
tributed according to a Gaussian density with null mean vector and identity covariance matrix,
i.e. ui ∼ N (0, I), which captures the heterogeneity of the connections between sending and



receiving nodes. Thus, response variables contained in the yi vector are assumed to be inde-
pendent Bernoulli random variables with parameters πgk(ui), k = 1, . . . , R, modelled through
the following logistic function:

πgk(ui) = p(yik = 1 | ui, zig = 1) =
1

1 + exp[−(bgk +w′
gkui)]

. (3)

Here, the parameter bgk represents the attractiveness of the k-th receiving node for sending
nodes belonging to group g, while wgk represents the influence of the latent trait ui on the
probability of a connection between sending nodes belonging to the g-th group and receiving
node rk.

2..2 Extending the MLTA model

To perform a joint clustering of sending and receiving nodes, we follow an approach similar to
that proposed by (16) and modify the logistic function in (3) as:

πgk(ui) = p(yik = 1 | ui, zig = 1) =
1

1 + exp[−(bg + a′
gk(µ+ ui)]

. (4)

Here, bg is a component-specific latent effect, µ is a D-dimensional vector of fixed effects, and
ui ∼ N(0, I) is a D-dimensional continuous latent trait capturing the residual heterogeneity
of connections between sending nodes belonging to the g-th component and receiving nodes
belonging to the d-th segment. Moreover, agk is a D-dimensional row stochastic vector (D ≤
R) with

agkd =

{
1 if receiving node rk belongs to segment d,
0 otherwise.

(5)

This allows us to select the membership of the k-th receiving node to one of the D segments for
those sending nodes belonging to component g.
Following the strategy adopted in (6), we account for the effect that nodal attributes may have
on group membership by letting the parameter ηg vary across sending nodes. This is done by
considering a latent class regression model based on the vector of nodal attributes xi, as follows:

ηig =
exp{x′

iβg}
1 +

∑G
g′=2 exp{x′

iβg′}
, g = 2, . . . , G, (6)

where βg denotes the model coefficient vector for the g-th group.

2..3 Parameter estimation

Let θ = (β2, . . . ,βG, b1, . . . , bG,a11, . . . ,aGR, µ1, . . . , µD) represent the vector of all free
model parameters. Given the assumptions described in the previous section, the log-likelihood



function of the model can be written as:

ℓ(θ) =
N∑
i=1

log
( G∑

g=1

ηig

∫ R∏
k=1

p(yik | ui, zig = 1)p(ui)dui

)
, (7)

where p(yik | ui, zig = 1) = (πgk(ui))
yik(1 − πgk(ui))

1−yik . The integral to be solved in
equation (7) cannot be computed analytically, therefore an EM algorithm with a Gauss-Hermite
approximation of the log-likelihood function is proposed.
In the Gauss-Hermite framework, integrals of the form

∫
h(ui)e

−||ui||2dui are approximated by

∑
q1...qD

h(uq1...qD)
D∏
l=1

ωql,

where uq1...qD are the roots of the Gauss-Hermite polynomial and ωql are the corresponding
weights.
Since p(ui) = (2π)−D/2 exp{−1

2
uiu

′
i}, the integral in (7) should be rewritten as a function of

standardized variables ũi =
ui√
2
. By applying a change of variable, the integral in (7) is modified

to √
2D

∫
p(yi |

√
2ũi, zig = 1)e−||ũi||2dũi

Thus, the log-likelihood function is approximated as:

ℓ̃(θ) =
N∑
i=1

log
( G∑

g=1

ηig
√
2D

∑
q1...qD

R∏
k=1

p(yik | u∗
q1...qD

, zig = 1) f(u∗
q1...qD

) e||uq1...qD
||2

D∏
l=1

ωql

)

where u∗
q1...qD

=
√
2uq1...qD

.
Model parameters can be estimated via an EM algorithm (2), which represents a standard solu-
tion when dealing with latent variables. The complete data log-likelihood function is

ℓc(.) =
N∑
i=1

G∑
g=1

zig[log p(yi | zig = 1,ui)] +
N∑
i=1

G∑
g=1

zig log ηig +
N∑
i=1

log f(ui).

The E-step of the algorithm consists in computing the expectation of the complete data log-
likelihood function conditional on the observed data and the current parameter estimates. This
is equivalent to compute the posterior probabilities of zig and ui as follows

1) p(zig = 1 | yi) ≈
ηig

(∑
q1...qD

p(yi | u∗
q1...qD , zig = 1)ϕ(u∗

q1...qD )
√
2D e||uq1...qD

||2 ∏D
l=1 ωql

)
f(yi)

(8)

2) p(zig = 1,ui | yi) ≈
p(yi | u∗

q1...qD , zig = 1) ηig ϕ(u∗
q1...qD )

√
2D e||uq1...qD

||2 ∏D
l=1 ωql

f(yi)
(9)



3) p(ui | yi) ≈
∑G

g=1 ηig p(yi | zig = 1,u∗
q1...qD )ϕ(u

∗
q1...qD )

√
2D e||uq1...qD

||2 ∏D
l=1 ωql

f(yi)
, (10)

where f(yi) ≈
∑G

g=1 ηig

(∑
q1...qD

p(yi | u∗
q1...qD

, zig = 1)ϕ(u∗
q1...qD

)
√
2D e||uq1...qD

||2 ∏D
l=1 ωql

)
.

The M-step of the algorithm consists in updating the model parameters by maximizing the ex-
pected complete data log-likelihood function with respect to θ according to the following steps:

• update bg and µ via a standard Newton-Raphson algorithm with augmented data, with
weights provided by eq. (9);

• update agk via a classification step, following a similar strategy to that proposed by (16):

– compute the log-likelihood values ℓgkd for each receiving node rk and the couple
(g, d);

– compute the maximum ℓmax of this set {ℓgkd} over d = 1, . . . , D;
– for each component, allocate the k-th receiving node into the d-th segment iff ℓgkd

= ℓmax;

• update βg via a Newton-Raphson step and update ηig accordingly.

The procedure is repeated until convergence, which occurs when

|| ℓ(t+1)
c (.)− ℓ(t)c (.) ||< ϵ,

where t is the current iteration and ϵ > 0 denotes a given tolerance level. In the following, we
set ϵ = 10−4.
At convergence, each sending node can be assigned to the g-th component via a Maximum a
Posteriori (MAP) rule and each receiving node can be assigned to the d-th segment according
to the vector agk.

2..4 Standard errors and model selection

To evaluate the standard errors of the estimates obtained with the EM algorithm, several meth-
ods are available, such as the jackknife method (5; 7). Given an incidence matrix Y with N

sending nodes and R receiving nodes, this method consists in extracting N samples of size
(N − 1) × R, obtained by removing one sending node at a time from the original data matrix.
However, we found that a more efficient strategy for deriving standard errors relies on the use
of a non-parametric bootstrap (4), which consists in extracting with repetition N rows of the
incidence matrix, so that each sending node can appear multiple times.
Since the number of components G and the number of segments D are considered as fixed
quantities, it is possible to estimate the model for different values of G and D, then selecting
the optimal model as the one corresponding to the smallest value of the chosen information
criterion, such as the Bayesian Information Criterion (BIC) (17) or the Akaike’s Information
Criterion (AIC) (1).



3. Simulation study

The performance of the model in terms of parameters’ recovery and clustering is evaluated
through a simulation study with a different number of nodes, as described below.

3..1 Simulation setup

We simulated 100 samples in six different scenarios based on a varying number of sending
nodes (N = 50, N = 100, N = 500) and receiving nodes (R = 20, R = 30). Further-
more, we consider a fixed number of segments D = 2 and components G = 3. As regards
the latent class variable, block membership is defined via a single nodal attribute xi which is
drawn from a Gaussian distribution with mean and variance equal to 1. The latent structure
is defined by setting β = [1,−0.4, 1.5,−0.9], while the block structure is defined by setting
b = [−1.7, 0, 1.7] and µ = [−2, 0.5]. In each scenario, a multi-start strategy based on 100

random starts is adopted.

3..2 Simulation study: clustering recovery

The ability of the proposal in correctly classifying sending and receiving nodes is evaluated
through the Adjusted Rand Index (ARI) (11), which measures the agreement between the true
partition and the estimated partition. Results are shown in Table 1. Looking at this table, we
note that, as the number of sending and receiving nodes increases, the classification improves
for both rows (sending nodes) and columns (receiving nodes). Moreover, for higher values of
N and R, the ARI values tend to 1.

Table 1: Adjusted Rand Index mean (median) across samples for varying N and R
R=20 R=30

Row Col. Row Col.

N=50 0.65 (0.66) 0.63 (0.69) 0.76 (0.76) 0.72 (0.75)
N=100 0.71 (0.72) 0.83 (0.93) 0.82 (0.83) 0.91 (0.96)
N=500 0.75 (0.75) 0.96 (1.00) 0.83 (0.83) 1.00 (1.00)

3..3 Simulation study: model parameters

Table 2 shows the Mean Squared Error (MSE) values across samples for bg, µ and βg by
varying the number of sending and receiving nodes. Looking at this table, it is evident that,
as the size of the network increases, we are more and more able to identify the true values of
model parameters. Moreover, for N = 500 and R = 30, MSE values are very low for all model
parameters.



Table 2: MSE values across samples for bg, µd and βg

R=20 R=30

b µ βg b µ βg

N=50 [0.43, 0, 0.34] [0.10, 0] [10.5, 2.04, 4.20, 1.11] [0.29, 0, 0.18] [0.09, 0] [14.6, 8.76, 5.76, 3.26]
N=100 [0.25, 0, 0.09] [0.03, 0] [1.85, 2.23, 0.70, 2.13] [0.11, 0, 0.06] [0.03, 0] [0.51, 0.40, 0.14, 0.13]
N=500 [0.05, 0, 0.01] [0.02, 0] [0.22, 0.19, 0.03, 0.03] [0.02, 0, 0.01] [0.01, 0] [0.06, 0.06, 0.02, 0.03]

4. Conclusions

The mixture of latent trait analyzers is modified to achieve a twofold objective for the anal-
ysis of bipartite networks: i) performing a joint clustering of sending and receiving nodes; ii)
including nodal attributes to study how nodes’ characteristics influence the component mem-
bership probability. Furthermore, the model allows the dependence between receiving nodes to
be modelled via a multi-dimensional continuous latent trait.
The simulation study shows that the model can be effectively employed for biclustering bipar-
tite networks. In detail, when the number of sending and receiving nodes increases, the proposal
is able to correctly identify the model parameters and the classification of nodes is good. How-
ever, the simulation study needs to be further extended by letting the number of partitions vary.
A further development may involve the application of the proposal for the analysis of a large
real-world data set, such as a gene-experimental condition network.
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