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A B S T R A C T

This is the second in a series of three papers in which we study a lattice gas subject to Kawasaki
conservative dynamics at inverse temperature 𝛽 > 0 in a large finite box 𝛬𝛽 ⊂ Z2 whose volume
depends on 𝛽. Each pair of neighboring particles has a negative binding energy −𝑈 < 0, while
each particle has a positive activation energy 𝛥 > 0. The initial configuration is drawn from
the grand-canonical ensemble restricted to the set of configurations where all the droplets are
subcritical. Our goal is to describe, in the metastable regime 𝛥 ∈ (𝑈, 2𝑈 ) and in the limit as
𝛽 → ∞, how and when the system nucleates, i.e., grows a supercritical droplet somewhere in
𝛬𝛽 .

In the first paper we showed that subcritical droplets behave as quasi-random walks. In the
present paper we use the results in the first paper to analyze how subcritical droplets form and
dissolve on multiple space–time scales when the volume is moderately large, namely, |𝛬𝛽 | = e𝛩𝛽

with 𝛥 < 𝛩 < 2𝛥−𝑈 . In the third paper we consider the setting where the volume is very large,
namely, |𝛬𝛽 | = e𝛩𝛽 with 𝛥 < 𝛩 < 𝛤 − (2𝛥 − 𝑈 ), where 𝛤 is the energy of the critical droplet
in the local model, i.e., when 𝛬𝛽 has a fixed volume not depending on 𝛽 and particles can be
created and annihilated at the boundary, and use the results in the first two papers to identify
the nucleation time. We will see that in a very large volume critical droplets appear more or
less independently in boxes of moderate volume, a phenomenon referred to as homogeneous
nucleation.

Since Kawasaki dynamics is conservative, i.e., particles move around and interact but are
preserved, we need to control non-local effects in the way droplets are formed and dissolved.
This is done via a deductive approach: the tube of typical trajectories leading to nucleation is
described via a series of events, whose complements have negligible probability, on which the
evolution of the gas can be captured by a coarse-grained Markov chain on a space of droplets,
which we refer to as droplet dynamics.
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1. Model and results

In Section 1.1 we provide background on metastability. In Section 1.2 we introduce the Kawasaki dynamics that is the subject
f the present paper. In Section 1.3 we state our main theorems. In Section 1.4 we discuss the theorems and provide an outline of
he remainder of the paper.

.1. Background

Metastability for interacting particle systems is a thriving area in mathematical physics that is full of challenges. The goal is to
escribe the crossover from a metastable state (in which the system starts from a quasi-equilibrium) to a stable state (in which the
ystem reaches equilibrium) under the influence of a stochastic dynamics. Examples are the magnetization of Ising spins subject to
lauber dynamics and the condensation of a lattice gas subject to Kawasaki dynamics. The former is an example of a non-conservative
ynamics (the number of up-spins is not preserved), while the latter is an example of a conservative dynamics (the number of particles
s preserved). Conservative systems are harder to deal with than non-conservative systems because the dynamics is non-local. The
onographs [1,2] contain plenty of examples of metastable systems, and include extensive references to the literature. The focus in

hese monographs is on the average crossover time from the metastable state to the stable state in parameter regimes that characterize
etastability, on the set of configurations that form the saddle points for the crossover – referred to as the ‘critical droplet’ – and on

he sequence of configurations the system sees prior to and after the crossover — referred to as the ‘tube of typical trajectories’.
In the present paper we adopt the point of view that the identification of the ‘tube of typical trajectories’ is the key towards

etting full control on the metastable crossover. Already in the early mathematical papers on metastability [3–6], and later in papers
n Kawasaki dynamics in finite volume [7,8], the main strategy was to identify sets of configurations of increasing regularity that are
esistant to the dynamics on corresponding increasing time scales. These sets of configurations form the backbone in the construction
f the ‘tube of typical trajectories’. In particular, the idea was to define temporal configurational environments within which the
rajectories of the process remain confined with high probability on appropriate time scales. This approach involves an analysis of
ll the possible evolutions of the process, and requires the exclusion of rare events via large deviation a priori estimates. Over the
ears, the study of Kawasaki dynamics has been generalized in several directions with the help of this approach (see e.g. [9–12] for
nisotropic interactions, [13,14] for two-particle systems, and [15] for the hexagonal lattice).

The present paper is the second in a series of three papers dealing with nucleation in a supersaturated lattice gas in a large volume.
n particular, we consider a two-dimensional lattice gas at low density and low temperature that evolves under Kawasaki dynamics,
.e., particles hop around randomly subject to hard-core repulsion and nearest-neighbor attraction. We are interested in how the gas
ucleates in large volumes, i.e., how the particles form and dissolve subcritical droplets until they manage to build a critical droplet
hat is large enough to trigger the condensation.

In the first paper [16] we showed that subcritical droplets behave as quasi-random walks. In the present paper we use the
esults in the first paper to analyze how subcritical droplets form and dissolve on multiple space–time scales when the volume
s moderately large. In large volumes the possible evolutions of the Kawasaki lattice gas are much more involved than in small
olumes, and multiple events must be considered and controlled compared to the case of finite volume treated earlier. In particular,
t is important to control the history of the particles. For this reason we introduce several new tools, such as assigning colors to
he particles that summarize information about how they interacted with the surrounding gas in the past. The focus remains on the
tube of typical trajectories’, even though the control of all the possible evolutions of the Kawasaki lattice gas requires the use of

ultiple graphs describing multiple temporal configurational environments. These graphs will be identified in Section 5, which is
he core of the present paper and contains the proofs of all the principal lemmas. In the third paper [17] we consider the setting
here the volume is very large and use the results in the first two papers to identify the nucleation time. The outcome of the three
apers together shows the following:

(1) Most of the time the configuration consists of quasi-squares and free particles. That is why we use the terminology droplet
dynamics. The crossover time between configurations of this type is identified on a time scale that is exponential in 𝛽 (see
Theorem 1.5).

(2) Starting from configurations consisting of quasi-squares and free particles, the dynamics typically resist, i.e., the dimensions
of the quasi-squares do not change, for an exponential time scale in 𝛽 depending only on the dimensions of the smallest
quasi-square (see Theorem 1.6).

(3) Starting from configurations consisting of quasi-squares and free particles, the dynamics typically either creates a larger quasi-
square or a smaller quasi-square, depending on the dimensions of the starting quasi-square (see Theorem 1.8). There is a
non-negligible probability that a subcritical quasi-square follows an atypical transition, in that it grows a larger quasi-square,
and this lets the dynamics escape from metastability (see Theorem 1.9).

(4) The crossover from the gas to the liquid occurs because a supercritical quasi-square is nucleated somewhere in a moderately
large box and subsequently grows into a large droplet. In particular, the escape from metastability does not occur by coalescence
of large subcritical droplets. This issue will be addressed in [17].

(5) The configurations in moderately large boxes behave as if they are essentially independent and as if the surrounding gas is ideal.
No information travels between these boxes on the relevant time scale that grows exponentially fast with 𝛽. The supercritical
quasi-square appears more or less independently in different boxes, a phenomenon referred to as homogeneous nucleation. This
issue will be addressed in [17].
2
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(6) The tube of typical trajectories leading to nucleation is described via a series of events on which the evolution of the gas consists
of droplets wandering around on multiple space–time scales. This control is achieved via what we call the deductive approach in
Section 5.

(7) The asymptotics of the nucleation time is identified on a time scale that is exponential in 𝛽 and depends on the entropic factor
related to the size of the box. This issue will be addressed in [17].

Remark 1.1. Kawasaki dynamics in large volumes at low temperatures was studied earlier in [18]. There, the average nucleation
time was computed for a specific starting distribution called the last-exit-biased distribution for the transition from subcritical to
supercritical. The techniques employed in that paper rely on potential theory, which is tailored to deal with hitting probabilities
and hitting times. It does not provide information on how the nucleation takes place. Since the last-exit-biased distribution is not a
good description of the metastable equilibrium, the resulting average nucleation time is not necessarily physically realistic. However,
by controlling the droplet dynamics with the tools of the present paper, we can show that the last-exit-biased distribution falls into
the basin of attraction of the metastable equilibrium, and that therefore the average nucleation time computed in [18] provides an
accurate description, including prefactors. ♠

Remark 1.2. Kawasaki dynamics in large volumes at low temperature was also studied in [19] (with the help of techniques
developed in [20]). There, the transitions between the different ground states are analyzed in a regime where there is no pure-
gas metastable state1 and the process is started from a large square droplet with no surrounding gas. In that setting the interaction
between the gas and the droplet, which is at the core of the present work, is largely avoided. Both [19,20] are closely related to
the aforementioned wandering droplet issue, about which we will say more later on. ♠

Remark 1.3. It remains a challenge to describe what happens after the exit from metastability, i.e., when the system has grown a
large supercritical droplet that subsequently grows, moves around, absorbs smaller droplets, thereby depleting the surrounding gas,
etc. For Glauber spin-flip dynamics, which is non-conservative, this phase of the dynamics, which is beyond metastability, has been
completely elucidated at low temperatures in [21] and partially elucidated at all subcritical temperatures in [22,23]. However, the
fact that Kawasaki lattice-gas dynamics is conservative represents a major hurdle that makes the analysis much harder. ♠

For more background on metastability, we refer the reader to the monographs [1,2]. Our reference list is restricted to those
papers that are directly relevant to the work in the present paper.

1.2. Kawasaki dynamics

∙ Hamiltonian, generator and equilibrium. Let 𝛽 > 0 denote the inverse temperature. Let 𝛬𝛽 ⊂ Z2 be the square box with volume

|𝛬𝛽 | = e𝛩𝛽 , 𝛩 > 0, (1.1)

centered at the origin with periodic boundary conditions. With each 𝑥 ∈ 𝛬𝛽 associate an occupation variable 𝜂(𝑥), assuming the
values 0 or 1. A lattice gas configuration is denoted by 𝜂 ∈ X𝛽 = {0, 1}𝛬𝛽 . With each configuration 𝜂 associate an energy given by
the Hamiltonian

𝐻(𝜂) = −𝑈
∑

{𝑥,𝑦}∈𝛬∗
𝛽

𝜂(𝑥)𝜂(𝑦), (1.2)

where 𝛬∗
𝛽 denotes the set of bonds between nearest-neighbor sites in 𝛬𝛽 , i.e., there is a binding energy −𝑈 < 0 between neighboring

particles. Let

|𝜂| =
∑

𝑥∈𝛬𝛽

𝜂(𝑥) (1.3)

be the number of particles in 𝛬𝛽 in the configuration 𝜂, and let

X𝑁 = {𝜂 ∈ X𝛽 ∶ |𝜂| = 𝑁} (1.4)

be the set of configurations with 𝑁 particles. We define Kawasaki dynamics as the continuous-time Markov chain 𝑋 = (𝑋(𝑡))𝑡≥0
with state space X𝑁 given by the generator

(L𝑓 )(𝜂) =
∑

{𝑥,𝑦}∈𝛬∗
𝛽

𝑐(𝑥, 𝑦, 𝜂)[𝑓 (𝜂𝑥,𝑦) − 𝑓 (𝜂)], 𝜂 ∈ X𝛽 , (1.5)

1 The condition 𝑛4𝐿2𝑒−𝛽 ≪ 1 in [19], in the notation introduced in Section 1.2, reads 2(𝛩 − 𝛥) + 𝛩 − 𝑈 < 0, which, together with 𝛩 > 𝛥, implies that 𝛥 < 𝑈 :
3

articles immediately aggregate up to gas depletion.
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Fig. 1. A critical droplet in a finite volume 𝛬: a protocritical droplet, consisting of an (𝓁𝑐 − 1) × 𝓁𝑐 quasi-square with a single protuberance attached to one of
he longest sides, and a free particle nearby. When the free particle attaches itself to the protuberance, the droplet becomes supercritical.

here

𝜂𝑥,𝑦(𝑧) =

⎧

⎪

⎨

⎪

⎩

𝜂(𝑧) 𝑖𝑓 𝑧 ≠ 𝑥, 𝑦,

𝜂(𝑥) 𝑖𝑓 𝑧 = 𝑦,

𝜂(𝑦) 𝑖𝑓 𝑧 = 𝑥,

(1.6)

nd

𝑐(𝑥, 𝑦, 𝜂) = e−𝛽[𝐻(𝜂𝑥,𝑦)−𝐻(𝜂)]+ . (1.7)

qs. (1.5)–(1.7) represent the standard Metropolis dynamics associated with 𝐻 , and is conservative because it preserves the number
f particles, i.e., |𝑋(𝑡)| = |𝑋(0)| for all 𝑡 > 0. The canonical Gibbs measure 𝜈𝑁 defined as

𝜈𝑁 (𝜂) =
e−𝛽𝐻(𝜂)1X𝑁

(𝜂)
𝑍𝑁

, 𝑍𝑁 =
∑

𝜂∈X𝑁

e−𝛽𝐻(𝜂), 𝜂 ∈ X𝛽 , (1.8)

is the reversible equilibrium of this stochastic dynamics for any 𝑁 :

𝜈𝑁 (𝜂)𝑐(𝑥, 𝑦, 𝜂) = 𝜈𝑁 (𝜂𝑥,𝑦)𝑐(𝑥, 𝑦, 𝜂𝑥,𝑦). (1.9)

We augment the energy 𝐻(𝜂) of configuration 𝜂 by adding a term 𝛥|𝜂|, with 𝛥 > 0 an activation energy per particle. This models the
presence of an external reservoir that keeps the density of particles in 𝛬𝛽 fixed at e−𝛽𝛥.

Subcritical, critical and supercritical droplets. Throughout the paper we will refer to cluster, as well as to droplet, as a
onnected component of nearest-neighbor particles (see (2.2) for more details). The initial configuration is chosen according to
he grand-canonical Gibbs measure restricted to the set of subcritical droplets. More precisely, denote by

𝓁𝑐 =
⌈ 𝑈
2𝑈 − 𝛥

⌉

(1.10)

he critical length introduced in [8] for the local model where 𝛬𝛽 = 𝛬 does not depend on 𝛽 (see Fig. 1) and particles are created
and annihilated at the boundary with rate e−𝛽𝛥 and 1, respectively.

We will be interested in the regime

𝛥 ∈ (𝑈, 2𝑈 ), 𝛽 → ∞, (1.11)

hich corresponds to metastable behavior.2 We will see that in this regime droplets with side length smaller than 𝓁𝑐 have a tendency
o shrink, while droplets with a side length larger that 𝓁𝑐 have a tendency to grow. We will refer to the former as subcritical droplets
nd to the latter as supercritical droplets.

Define the set of configurations having subcritical clusters only as

R =
{

𝜂 ∈ X𝛽 ∶ all clusters of 𝜂 have volume at most 𝓁𝑐 (𝓁𝑐 − 1) + 2
}

, (1.12)

nd put

𝜇R(𝜂) = e−𝛽[𝐻(𝜂)+𝛥|𝜂|]

𝑍R
1R(𝜂), 𝜂 ∈ X𝛽 , (1.13)

2 In order to avoid trivialities, we assume that 𝓁 > 2, i.e., 𝛥 > 3𝑈 .
4
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Fig. 2. Each particle is represented by a unit square. A particle is free when it is not touching any other particles and can be moved to infinity without doing
o. A particle is clusterised when it is part of a cluster. Particles 1–5 and 16 are free, particles 6–9, 10, 11–15 are not free. All other particles are clusterised.

here

𝑍R =
∑

𝜂∈R
e−𝛽[𝐻(𝜂)+𝛥|𝜂|] (1.14)

s the normalizing partition sum. The initial configuration 𝑋(0) is drawn from 𝜇R and we are interested in analyzing how and when
he system exits from R. The main difficulty in analyzing the metastable behavior is a proper description of the interaction between
he droplets and the surrounding gas. As part of the nucleation process, droplets grow and shrink by exchanging particles with the
as around them, as is typical for conservative dynamics. To describe the evolution of our system in terms of a droplet dynamics,
e will show that on an appropriate time scale the dynamics typically returns to the set of configurations consisting of quasi-square
roplets, provided the volume is not too large. The main results of the present paper provide a description of the dynamics in
erms of growing and shrinking wandering droplets. In particular, Theorems 1.5–1.6 and 1.8–1.9 below identify the dominant rates
f growing and shrinking of droplets up to a time horizon that goes well beyond the exit time of R, namely, up to the time of
ormation of a droplet with volume of order 𝜆(𝛽), an unbounded but slowly increasing function of 𝛽. In the follow-up paper [17],
hese theorems will be used to identify the nucleation time, i.e., the time of exit of R.

.3. Main results

.3.1. Definitions and notation
Time horizons. In order to state our main results, we first need to clarify the time horizons we are interested in. More precisely,
e will look at the first time the dynamics creates a microscopically large droplet. To make this precise, we define the set

R′ ∶=

{

𝜂 ∈ X𝛽 ∶
all clusters of 𝜂 have volume at most 𝓁𝑐 (𝓁𝑐 − 1) + 2

except for at most one cluster with volume less than 1
8𝜆(𝛽)

}

, (1.15)

here 𝜆(𝛽) is an unbounded but slowly increasing function of 𝛽 satisfying

𝜆(𝛽) log 𝜆(𝛽) = 𝑜(log 𝛽), 𝛽 → ∞, (1.16)

.g. 𝜆(𝛽) =
√

log 𝛽. For 𝐶⋆ > 0 large enough, our theorems will hold up to time 𝑇 ⋆ defined as

𝑇 ⋆ = e𝐶⋆𝛽 ∧ min{𝑡 ≥ 0∶ 𝑋(𝑡) ∉ R′}. (1.17)

e will see in [17] that our dynamics starting from 𝜇R typically exits R′ within a time that is exponentially large in 𝛽, and with
probability tending to 1 does so through the formation of a single large cluster C of volume 1

8𝜆(𝛽), rather than through two
upercritical droplets. Hence, 𝑇 ⋆ indeed coincides with the appearance time of C, provided 𝐶⋆ is large enough.
5
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∙ Active and sleeping particles. As in [16], the notion of active and sleeping particle will be crucial throughout the paper. Since the
precise definition requires additional notations, we give an intuitive description only. For precise definitions we refer to Section 4.3.1.

The division of particles into active and sleeping is related to the notion of free particles. Intuitively, a particle is free if it does not
belong to a cluster and can be moved to infinity without clusterisation, i.e., they can travel anywhere without attaching themselves
and by moving non-clusterised particles only (possibly in a cooperative way). See Fig. 2. Let

𝐷 = 𝑈 + 𝑑,

with 𝑑 > 0 sufficiently small. For 𝑡 > e𝐷𝛽 , a particle is said to be sleeping at time 𝑡 if it was not free during the time interval [𝑡−e𝐷𝛽 , 𝑡].
Non-sleeping particles are called active. (Note that being active or sleeping depends on the history of the particle.) By convention,
we say that prior to time e𝐷𝛽 sleeping particles are those that belong to a large enough quasi-square, where quasi-squares are clusters
with sizes 𝓁1 × 𝓁2 in the set

QS = {(𝓁1,𝓁2) ∈ N2 ∶ 𝓁1 ≤ 𝓁2 ≤ 𝓁1 + 1}. (1.18)

In order to declare all the particles in the quasi-square as sleeping before time e𝐷𝛽 we require that 𝓁1 ≥ 2.

∙ Local boxes. To define a finite box 𝛬 as the union of a finite number 𝑘 of disjoint local boxes �̄�𝑖, 1 ≤ 𝑖 ≤ 𝑘, in analogy with the
local model introduced in [8], we associate with each configuration a local configuration

�̄� ∈ {0, 1}�̄� =
∏

1≤𝑖≤𝑘
{0, 1}�̄�𝑖 ,

which we identify with {0, 1}𝛬. These local boxes allow us to control the global properties of the gas in terms of its local properties,
namely, via the duality between gas and droplets, which is represented by the duality between active and sleeping particles,
respectively. First, the local boxes have to contain all the sleeping particles. Second, the local boxes are dynamic, namely, �̄�𝑖 = �̄�𝑖(𝑡).
Indeed, droplets can move and we want to avoid seeing sleeping particles outside of the local boxes. In particular, the boxes follow
the droplets, i.e., must be redefined only when a particular event occurs, e.g. two droplets are too close to each other, or a cluster
is too close to the boundary of a box, or a particle outside the boxes falls asleep, or particles in a box all turn active. We denote by
dist(⋅, ⋅) the distance associated with the 𝓁∞-norm on R2:

‖ ⋅ ‖∞ ∶ (𝑥, 𝑦) ∈ R2 ↦ |𝑥| ∨ |𝑦|. (1.19)

Following [24], we introduce a map 𝑔5 as an iterative map that merges into single rectangles those rectangles that have distance
< 5 between them, while we leave the other rectangles unchanged. (We refer to (2.6) for the precise definition of the map 𝑔𝜎 for
a general 𝜎 ≥ 0.) At any time 𝑡 ≥ 0, we require that the collection of the 𝑘(𝑡) local boxes �̄�(𝑡) = (�̄�𝑖(𝑡))1≤𝑖≤𝑘(𝑡) satisfy the following
onditions associated with 𝜂𝑡 = 𝑋(𝑡):

1. 𝛬(𝑡) = ∪1≤𝑖≤𝑘(𝑡)�̄�𝑖(𝑡) contains all the sleeping particles.

2. For all 1 ≤ 𝑖 ≤ 𝑘(𝑡), �̄�𝑖(𝑡) contains at least one sleeping particle.

3. For all 1 ≤ 𝑖 ≤ 𝑘(𝑡), all particles in the restriction �̄�𝑖(𝑡) of 𝜂𝑡 to �̄�𝑖(𝑡) are either free or at distance > 1 from the internal border
of �̄�𝑖(𝑡).

4. For all 1 ≤ 𝑖, 𝑗 ≤ 𝑘(𝑡) with 𝑖 ≠ 𝑗, dist(�̄�𝑖(𝑡), �̄�𝑗 (𝑡)) ≥ 5.

ote that each local box can contain more than one cluster. Conditions B1 and B2 allow us to take care of all the sleeping particles,
hile condition B3 ensures that there is no clusterised particle outside of the local boxes. Finally, condition B4 means that a free
article can travel inbetween local boxes without interacting with the particles inside. All together, these conditions are needed in
rder to ensure that the dynamics inside these boxes is well approximated by the local model.

efinition 1.4. The collection of boxes �̄�(𝑡) = (�̄�𝑖(𝑡))1≤𝑖≤𝑘(𝑡) is constructed as follows. At time 𝑡 = 0, consider the collection �̄�(0) of
5 × 5 boxes centered at the clusterised particles, and define �̄�(0) = 𝑔5(�̄�(0)) ⧵ �̄�∗(0), where �̄�∗(0) denotes the collection of boxes
elonging to 𝑔5(�̄�(0)) that contain active particles only. Let B be the set of special times associated to boxes, refer to as boxes special
imes, defined by

B =
{

𝑡 ≥ 0∶ at time 𝑡 at least one of the conditions B1 − B4 above is violated by �̄�(𝑡−)
}

. (1.20)

or 𝑡 > 0, define �̄�(𝑡) as follows:

• If 𝑡 ∈ B, then define the collection �̄�(𝑡) of 5 × 5 boxes centered at the clusterised particles, and define �̄�(𝑡) = 𝑔5(�̄�(𝑡)) ⧵ �̄�∗(𝑡),
where �̄�∗(𝑡) denotes the collection of boxes belonging to 𝑔5(�̄�(𝑡)) that contain active particles only.

• If 𝑡 ∉ B, then define �̄�(𝑡) = �̄�(𝑡−).
6

e will suppress the dependence on 𝑡 from the notation whenever it is not relevant. See Fig. 3 for an example of local boxes. ♠
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Fig. 3. An example of local boxes �̄�(𝑡∗) = (�̄�𝑖(𝑡∗))1≤𝑖≤3 for 𝑡∗ > 0, where the gray and the white particles are sleeping, respectively, active.

Since at each time 𝑡 all the sleeping particles belong to �̄�(𝑡), the boxes induce a partition of the sleeping particles. We say that a
oalescence occurs at time 𝑡 if there exist two sleeping particles that are in different local boxes at time 𝑡−, but are in the same local
ox at time 𝑡, i.e., if there exist 1 ≤ 𝑖1, 𝑖2 ≤ 𝑘(𝑡−), 𝑖1 ≠ 𝑖2, 1 ≤ 𝑖∗ ≤ 𝑘(𝑡) and two sleeping particles 𝑠1, 𝑠2 such that 𝑠𝑗 ∈ �̄�𝑖𝑗 (𝑡

−) and
𝑗 ∈ �̄�𝑖∗ (𝑡), 𝑗 = 1, 2. This phenomenon is related to the possibility that two droplets join to form a single larger droplet. Coalescence is
ifficult to control quantitatively, which is why in the present paper we limit ourselves to what happens in the absence of coalescence.
n the follow-up paper [17] we show that metastable nucleation is unlikely to occur via coalescence.

.3.2. Key theorems: Theorems 1.5–1.6 and 1.8–1.9
Sets and hitting times. Let X𝛥+ be the set of configurations without droplets or with droplets that are quasi-squares with 𝓁1 ≥ 2
and with additional regularity conditions on the gas surrounding droplets to be specified in Definition 2.9). Let X𝐸 be the set of
onfigurations in X𝛥+ without droplets (see (3.1) and Definition 2.9). Define (𝜏𝑘)𝑘∈N0

as the sequence of return times in X𝛥+ after
n active particle is seen in 𝛬. Define the hitting time of the set 𝐴 ⊂ X𝛽 for the process 𝑋 as

𝜏𝐴(𝑋) = inf{𝑡 ≥ 0∶ 𝑋(𝑡) ∈ 𝐴}. (1.21)

ut 𝜏0 = 𝜏X𝛥+
and, for 𝑖 ∈ N0, define

�̄�𝑖+1 =

{

inf
{

𝑡 > 𝜏𝑖 ∶ there is an active particle in 𝛬(𝑡) at time 𝑡
}

, if 𝑋(𝜏𝑖) ∈ X𝛥+ ⧵X𝐸 ,
e𝛥𝛽 , if 𝑋(𝜏𝑖) ∈ X𝐸 ,

(1.22)

nd

𝜏𝑖+1 = inf
{

𝑡 > �̄�𝑖+1 ∶ 𝑋(𝑡) ∈ X𝛥+
}

. (1.23)

ecall that |𝛬𝛽 | = e𝛩𝛽 . We assume that 𝛥 < 𝛩 ≤ 𝜃, with 𝜃 defined as follows. Let 𝜖 = 2𝑈 −𝛥, and let 𝑟(𝓁1,𝓁2) be the resistance of the
1 × 𝓁2 quasi-square with 1 ≤ 𝓁1 ≤ 𝓁2 given by

𝑟(𝓁1,𝓁2) = min{(𝓁1 − 2)𝜖 + 2𝑈, 2𝛥 − 𝑈}

= min{(2𝑈 − 𝛥)𝓁1 − 𝑈 + 2𝛥 − 𝑈, 2𝛥 − 𝑈}. (1.24)

ee Fig. 4. Let 𝜃 = 2𝛥−𝑈 − 𝛾 be the resistance of the largest subcritical quasi-square. Since this quasi-square has sizes (𝓁𝑐 − 1) × 𝓁𝑐 ,
e have 2𝛥 − 𝑈 − 𝛾 = 2𝑈 + ((𝓁𝑐 − 1) − 2)𝜖, so that
7

𝛾 = 𝛥 − 𝑈 − (𝓁𝑐 − 2)𝜖. (1.25)
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Fig. 4. Cost of adding or removing a row of length 𝓁 in a finite volume.

We will see that 𝛾 > 0 is an important parameter. The previously mentioned regularity conditions on the gas uses an extra parameter
> 0 (see below Definition 2.9), which can be chosen as small as desired. Since we defined 𝐷 = 𝑈 + 𝑑, 𝛥+ is defined by 𝛥+ = 𝛥+ 𝛼.

Call a function 𝑓 (𝛽) superexponentially small, written 𝑆𝐸𝑆(𝛽), if

lim
𝛽→∞

1
𝛽
log 𝑓 (𝛽) = −∞. (1.26)

∙ Key theorems. Theorems 1.5–1.6 and 1.8–1.9 below control the transitions between configurations consisting of quasi-squares
nd free particles, the times scales on which these transitions occur, and the most likely trajectories they follow.

I) Our first theorem describes the typical return times to the set X𝛥+ .

heorem 1.5 (Typical Return Times). If 𝛥 < 𝛩 ≤ 𝜃, then for any 𝛿 > 0, and any 𝑑 and 𝛼 small enough,

𝑃𝜇R

(

𝜏0 ≥ e(𝛥+𝛼+𝛿)𝛽 , 𝜏0 ≤ 𝑇 ⋆
)

= 𝑆𝐸𝑆(𝛽) (1.27)

nd

𝑃𝜇R

(

e(𝛥−𝛼−𝛿)𝛽 ≤ 𝜏𝑖+1 − 𝜏𝑖 ≤ e(𝛥+𝛼+𝛿)𝛽 ∀ 𝑖 ∈ N0 ∶ 𝜏𝑖+1 ≤ 𝑇 ⋆
)

= 1 − 𝑆𝐸𝑆(𝛽). (1.28)

II) Our second theorem describes the typical update times for a configuration in X𝛥+ . We denote by 𝜋 a projection from X𝛥+ to a
inite space

X̄𝛥+ =
⋃

𝑘≥0
QS1 ×⋯ × QS𝑘, (1.29)

here QS𝑖 are the sizes of the quasi-square clusters contained in the local boxes �̄�𝑖 and are defined in (1.18). See Fig. 5. We can
efine a dynamics on the space X̄𝛥+ of sizes of quasi-squares, arranged for example in increasing lexicographic order. For 𝑖 ∈ N0, we
enote by (𝓁1,𝑖,𝓁2,𝑖) in 𝑄𝑆, with 𝓁1,𝑖 ≥ 2, the sizes of the smallest quasi-square at time 𝜏𝑖, if any, and otherwise we set 𝓁1,𝑖 = 𝓁2,𝑖 = 0.
efine

𝜏𝑐,𝑖 = min{𝜏𝑘 ≥ 𝜏𝑖 ∶ 𝜋(𝑋(𝜏𝑘)) ≠ 𝜋(𝑋(𝜏𝑖))}, (1.30)

ecall (1.24), and define the resistance of a configuration in X𝐸 by

𝑟(0, 0) = 4𝛥 − 2𝑈 − 𝜃. (1.31)

heorem 1.6 (Typical Update Times). If 𝛥 < 𝛩 ≤ 𝜃, then for any 𝛿 > 0, any 𝑑 and 𝛼 small enough, and any 𝑖 ∈ N0,

𝑃𝜇R

(

if 𝜏𝑐,𝑖 ≤ 𝑇 ⋆, then 𝜏𝑐,𝑖 − 𝜏𝑖 ≤ e(𝑟(𝓁1,𝑖 ,𝓁2,𝑖)+𝛿)𝛽
)

= 1 − 𝑆𝐸𝑆(𝛽) (1.32)
8

or a coalescence occurs between 𝜏𝑖 and 𝜏𝑐,𝑖
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Fig. 5. An example of a configuration 𝜂 ∈X𝛥+ , where the gray and the white particles are sleeping, respectively, are active, such that 𝜋(𝜂) = {(2, 3), (3, 3), (5, 6)}.

and

lim
𝛽→∞

𝑃𝜇R

(

if 𝜏𝑐,𝑖 ≤ 𝑇 ⋆, then 𝜏𝑐,𝑖 − 𝜏𝑖 ≥ e(𝑟(𝓁1,𝑖 ,𝓁2,𝑖)−𝛿)𝛽

or a coalescence occurs between 𝜏𝑖 and 𝜏𝑐,𝑖

)

= 1. (1.33)

Remark 1.7. Theorem 1.6 states that, starting from 𝜇R and unless a coalescence occurs, for any 𝑖 ∈ N0 the projected dynamics
typically remains in 𝜋(𝑋(𝜏𝑖)) through successive visits in X𝛥+ for a time of order e𝑟(𝓁1,𝑖 ,𝓁2,𝑖)𝛽 . The 𝑆𝐸𝑆 error in (1.32) is related to an
anomalously large realization of a geometric random variable, while an anomalously small realization leads to an error that is only
exponentially small in (1.33). Note that for 𝓁1,𝑖 ≥ 𝓁𝑐 all the quasi-squares have the same resistance 2𝛥 − 𝑈 . For the case in which
𝑋(𝜏𝑖) has no quasi-square, its resistance 𝑟(0, 0) involves the resistance of the empty configuration in the local model and a spatial
entropy that comes from the position in 𝛬𝛽 where the new droplet can appear. ♠

(III) Our third theorem describes the typical transition of the system between two successive visits to X𝛥+ conditional on the
dynamics not returning to the same configuration at time 𝜏𝑖+1. Given a configuration 𝑋(𝜏𝑖) ∈ X𝛥+ , define the typical transition
𝜋′
𝑖 as follows. For 𝓁1,𝑖 ≥ 𝓁𝑐 , set

𝜋′
𝑖 =

{

𝜋(𝜂′)∶ 𝜂′ is a configuration obtained from 𝑋(𝜏𝑖) by adding a row to an arbitrary quasi-square
}

,

where throughout the paper we use the word ‘row’ to mean column as well. See Fig. 6. For 𝓁1,𝑖 < 𝓁𝑐 , we need to distinguish between
the cases 𝓁2,𝑖 ≥ 3, 𝓁2,𝑖 = 2 and 𝓁2,𝑖 = 0. If 𝓁1,𝑖 < 𝓁𝑐 and 𝓁2,𝑖 ≥ 3 (respectively, 𝓁2,𝑖 = 2), then we define 𝜋′

𝑖 as the singleton made up
of the collection of sizes of quasi-squares obtained from 𝜋(𝑋(𝜏𝑖)) by modifying one of the smallest quasi-squares, which becomes
(𝓁2,𝑖 − 1) × 𝓁1,𝑖 (respectively, 0 × 0). If 𝓁1,𝑖 = 𝓁2,𝑖 = 0, then we define 𝜋′

𝑖 = {𝜋(𝜂′)}, where 𝜂′ is the configuration obtained from 𝑋(𝜏𝑖)
by creating a 2 × 2 square droplet, namely, 𝜋′

𝑖 = {(2, 2)}. See Fig. 7.

Theorem 1.8 (Typical Transitions). If 𝛥 < 𝛩 ≤ 𝜃, then for any 𝑑 and 𝛼 small enough, and any 𝑖 ∈ N0,

lim
𝛽→∞

𝑃𝜇R

(

if 𝜏𝑖+1 ≤ 𝑇 ⋆, then 𝜋(𝑋(𝜏𝑖+1)) ∈ 𝜋′
𝑖

or a coalescence occurs between 𝜏𝑖 and 𝜏𝑖+1

|

|

|

|

|

𝜋(𝑋(𝜏𝑖+1)) ≠ 𝜋(𝑋(𝜏𝑖))

)

= 1. (1.34)

(IV) Our fourth and last theorem characterizes the atypical transitions of the system, starting from a subcritical configuration
consisting of a single quasi-square, between two successive visits to X𝛥+ , with no creation of new boxes and conditional on the
dynamics not returning to the same configuration at time 𝜏𝑖. To this end, given 𝑋(𝜏𝑖) ∈ X𝛥+ with 2 ≤ 𝓁1,𝑖 < 𝓁𝑐 , we define
𝜋′′
𝑖 = (𝓁2,𝑖,𝓁1,𝑖 + 1). Moreover, we say that a box creation occurs at time 𝑡 if there exists an active particle at time 𝑡− that does

not belong to 𝛬(𝑡−) and falls asleep at time 𝑡.
9
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Fig. 6. For 𝓁𝑐 = 4, on the left an example of a configuration 𝜂 ∈ X𝛥+ such that 𝜋(𝜂) = {(4, 5), (5, 5), (6, 7)} and on the right one possible typical transition
𝜋′ = {(4, 5), (5, 5), (7, 7)}, where the gray and the white particles are sleeping, respectively, are active.

Fig. 7. On the left an example of a configuration 𝜂 ∈ X𝛥+ such that 𝜋(𝜂) = {(2, 2), (3, 3), (5, 6)} and on the right the typical transition 𝜋′ = {(3, 3), (5, 6)}, where
the gray and the white particles are sleeping, respectively, are active.

Theorem 1.9 (Atypical Transitions). If 𝛥 < 𝛩 ≤ 𝜃, then for any 𝑑 and 𝛼 small enough, and any 𝑖 ∈ N0 such that 𝑋(𝜏𝑖) ∈ X𝛥+ consists of
a single quasi-square with 2 ≤ 𝑙1,𝑖 < 𝓁𝑐 ,

𝑃𝜇R

(

if 𝜏𝑖+1 ≤ 𝑇 ⋆, then 𝜋(𝑋(𝜏𝑖+1)) = 𝜋′′
𝑖 and

no box creation occurs between 𝜏𝑖 and 𝜏𝑖+1

|

|

|

|

|

𝜋(𝑋(𝜏𝑖+1)) ≠ 𝜋(𝑋(𝜏𝑖))

)

≥ e−[(2𝛥−𝑈 )−𝑟(𝓁1 ,𝓁2)+𝛿]𝛽 .

(1.35)

Remark 1.10. Theorem 1.9 provides a lower bound for the atypical transition of ‘going against the drift’ in the case of a subcritical
quasi-square, which will be needed in the follow-up paper [17] to show that the escape from metastability occurs via nucleation
of a supercritical droplet somewhere in the box 𝛬𝛽 . Indeed, we will characterize the time the dynamics needs to exit R, as well
as the typical paths of configurations visited by the wandering cluster until the formation of a large droplet. The results of the
present paper, which are limited to the case 𝛩 < 2𝛥 − 𝑈 − 𝛾, will allow us to accomplish this task for larger values of 𝛩, namely,
𝛩 < 𝛤 − (2𝛥 − 𝑈 ), where 𝛤 is the energy of the critical droplet in the local model. ♠
10
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Remark 1.11. The techniques developed in the present paper make it possible to prove that, for any quasi-square configuration of
size 𝓁1 × 𝓁2 in X𝛥+ , the cluster exits any finite box centered around the cluster with a volume that does not depend on 𝛽 within a
ime of order e𝑟(𝓁1 ,𝓁2)𝛽 . This is the reason why we speak of a wandering cluster. We will not state this result as a formal theorem. It
s similar to the study performed in [20], with the notable difference that the transition time in that paper is of order e2𝑈𝛽 , which
s the time needed to detach a corner from a square droplet in the absence of a surrounding gas, while in our case it is of order e𝛥𝛽 ,
hich is the time needed for the arrival of a free particle in our local boxes. ♠

.4. Outline

Section 2 collects certain key tools that are needed throughout the paper. In particular, in Section 2.1 we introduce key notation,
n Section 2.2 we formulate certain regularity properties for the initial configuration that we can impose because their failure is
xtremely unlikely. In Section 2.3 we group the configurations into a sequence of subsets of configurations of increasing regularity
nd prove a recurrence property to these sets on an increasing sequence of time scales. In Section 3.1 we state three key propositions
Propositions 3.1–3.3) that are needed along the way. The proof of Theorems 1.5, 1.6, 1.8 and 1.9 are given in Sections 3.2, 3.3,
.4 and 3.5, respectively, subject to these propositions.

The three propositions are proved in Sections 4.1–4.3. The proof is based on a number of key lemmas (Lemmas 4.1, 4.3, 4.5)
hose proof is given in Section 5. This section, which uses two more key lemmas (Lemmas 5.1–5.2), is long and difficult because

t contains the main technical hurdles of the paper. These hurdles are organized into what we call the deductive approach: the tube
f typical trajectories leading to nucleation is described via a series of events, whose complements have negligible probability, on
hich the evolution of the gas consists of droplets wandering around on multiple space–time scales in a way that can be captured by a

oarse-grained Markov chain on a space of droplets.
Appendices A and B provide additional computations that are needed in the paper: environment estimates that exclude

on-regular configurations, respectively, large deviation estimates for certain events that come up in the deductive approach.

. Key tools

In this section we provide some tools that are needed to prove the theorems. These tools rely on the notion of QRWs (Quasi-
andom Walks). In [16] it was shown that the active particles of a two-dimensional lattice gas under Kawasaki dynamics at low
ensity evolve in a way that is close to an ideal gas. The results in [16] are formulated in the general context of QRWs for a large
lass of initial conditions having no anomalous concentration of particles for time horizons that are much larger than the typical
ollision time. More precisely, the process of QRWs used to describe the ideal gas approximation consists of 𝑁 labeled particles that
an be coupled to a process of 𝑁 Independent Random Walks (IRWs) in such a way that the two processes follow the same paths
utside rare time intervals, called pause intervals, in which the paths of the QRWs remain confined to small regions.

For the definition of QRWs and their construction, we refer to [16, Sections 2.2–2.4]. We note that for the notion of sleeping
nd active particles to be well defined, we need to label the particles and not work with a dynamics of configurations 𝜂 ∈ X𝛽 only, as
efined in (1.5). There is flexibility in associating a particle dynamics with a configuration dynamics. In particular, as in [16] we can
llow instantaneous permutation of particles inside a given cluster. Later we will use this flexibility by specifying a local permutation
ule (see Section 4.3.1). For now we only assume that such a rule has been chosen. We encourage the reader to inspect the main
roperties of QRWs, which will be a key tool in the remaining part of the paper. In particular, we refer to [16, Theorems 3.2.3,
.2.4, 3.2.5, 3.3.1] for the non-superdiffusivity property and for upper and lower bounds on the spread-out property, respectively.

.1. Definitions and notations

In this section we introduce some definitions and notations that will be needed throughout the sequel.

efinition 2.1.

1. As in [16], 𝛼 and 𝑑 are two positive parameters that can be chosen as small as desired, and 𝜆(𝛽) is an unbounded but slowly
increasing function of 𝛽 that satisfies (1.16). Moreover, 𝐶⋆ is a positive parameter that can be chosen as large as desired. Once
chosen, 𝛼, 𝑑, 𝜆 and 𝐶⋆ are fixed. We write 𝑂(𝛿), 𝑂(𝛼) and 𝑂(𝑑) for quantities with an absolute value that can be bounded by
a constant times |𝛿|, |𝛼| and |𝑑|, for small enough values of these parameters. We write 𝑂(𝛿, 𝛼, 𝑑) for the sum of three such
quantities.

2. We use short-hand notation for a few quantities that depend on the old parameters 𝛥 ∈ ( 32𝑈, 2𝑈 ) and 𝛩 ∈ (𝛥, 2𝛥 − 𝑈 ), and on
the new parameters 𝛼, 𝑑. Recall that

𝜖 = 2𝑈 − 𝛥, 𝓁𝑐 =
⌈𝑈
𝜖

⌉

, 𝛾 = 𝛥 − 𝑈 − (𝓁𝑐 − 2)𝜖, 𝜃 = 2𝛥 − 𝑈 − 𝛾,

and

𝐷 = 𝑈 + 𝑑, 𝛥+ = 𝛥 + 𝛼,

and abbreviate

𝑆 = 4𝛥 − 𝜃
3

− 𝛼. (2.1)

For 𝐶 > 0, write 𝑇 for the time scale 𝑇 = e𝐶𝛽 .
11
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3. For convenience we identify a configuration 𝜂 ∈ X𝛽 with its support supp(𝜂) = {𝑧 ∈ 𝛬𝛽 ∶ 𝜂(𝑧) = 1} and write 𝑧 ∈ 𝜂 to indicate
that 𝜂 has a particle at 𝑧. For 𝜂 ∈ X𝛽 , denote by 𝜂𝑐𝑙 the clusterised part of 𝜂:

𝜂𝑐𝑙 = {𝑧 ∈ 𝜂∶ ∥ 𝑧 − 𝑧′ ∥= 1 for some 𝑧′ ∈ 𝜂}, (2.2)

where ∥ ⋅ ∥ is defined in (1.19). Call clusters of 𝜂 the connected components of the graph drawn on 𝜂𝑐𝑙 obtained by connecting
nearest-neighbor sites that are not a singleton.

4. Denote by 𝐵(𝑧, 𝑟), 𝑧 ∈ R2, 𝑟 > 0, the open ball with center 𝑧 and radius 𝑟 in the norm defined in (1.19). The closure of 𝐴 ⊂ R2

is denoted by 𝐴.
5. For 𝐴 ⊂ Z2, denote by 𝜕−𝐴 the internal boundary of 𝐴, i.e.,

𝜕−𝐴 = {𝑧 ∈ 𝐴∶ ∥ 𝑧 − 𝑧′ ∥= 1 for some 𝑧′ ∈ Z2 ⧵ 𝐴}. (2.3)

For 𝑠 > 0, put

[𝐴, 𝑠] =
⋃

𝑧∈𝐴
𝐵(𝑧, e

𝑠
2 𝛽 ) ∩ Z2. (2.4)

Call 𝐴 a rectangle on Z2 if there are 𝑎, 𝑏, 𝑐, 𝑑 ∈ R such that

𝐴 = [𝑎, 𝑏] × [𝑐, 𝑑] ∩ Z2. (2.5)

Write RC(A), called the circumscribed rectangle of 𝐴, to denote the intersection of all the rectangles on Z2 containing 𝐴.
Moreover, denote by R the set of all finite sets of rectangles on Z2.

6. Given 𝜎 ≥ 0 and �̄� = {𝑅1,… , 𝑅
|𝑆|} ∈ R, two rectangles 𝑅 and 𝑅′ in �̄� are said to be in the same equivalence class if there

exists a finite sequence 𝑅1,… , 𝑅𝑘 of rectangles in �̄� such that

𝑅 = 𝑅1, 𝑅′ = 𝑅𝑘, dist(𝑅𝑗 , 𝑅𝑗+1) < 𝜎 ∀ 1 ≤ 𝑗 < 𝑘.

Let 𝐶 indicate the set of equivalent classes, define the map

�̄�𝜎 ∶ �̄� ∈ R ↦

{

RC
(

⋃

𝑗∈𝑐
𝑅𝑗

)}

𝑐∈𝐶

∈ R,

and let (�̄�(𝑘)𝜎 )𝑘∈N0
∈ RN be the sequence of iterates of �̄�𝜎 . Define

𝑔𝜎 (�̄�) = lim
𝑘→∞

�̄�(𝑘)𝜎 (�̄�). (2.6)

As discussed in [24], the sequence (�̄�(𝑘)𝜎 (�̄�))𝑘∈N0
ends up being a constant, so the limit is well defined.

♠

2.2. Environment estimates

In this section we introduce a subset of configurations X∗ ⊂ X𝛽 , to which we refer as the typical environment, with the property
that if our system is started from the restricted ensemble, then it can escape from X∗ within any time scale that is exponential in 𝛽
with a negligible probability only. In words, the properties of the configurations in X∗ are the following:

• Moderately large boxes contains a ‘‘finite’’ number of clusters only (see X∗
1 below).

• In moderately large boxes there exists a critical space scale distinguishing how many 4-tuples of particles are separated by
such a distance, being ‘‘finite’’ below that size and ‘‘exponentially large’’ above that size (see X∗

2 and X∗
3 below).

• There exists a critical box size such that smaller boxes contain a ‘‘finite’’ number of particles only, while larger boxes contain
an ‘‘exponentially large’’ number of particles (see X∗

4 and X∗
5 below).

Recall (2.1) for the definition of the parameter 𝑆.

Definition 2.2. For 𝛩 > 𝛥, define

X∗ =
5
⋂

𝑗=1
X∗

𝑗 , (2.7)

where, for 𝜆 satisfying (1.16), 𝑆 given by (2.1), and boxes referring to square boxes,

X∗
1 =

{

𝜂 ∈ X𝛽 ∶ in any box of volume e𝜃𝛽 the number of clusters is at most 𝜆(𝛽)
}

,

X∗
2 =

{

𝜂 ∈ X𝛽 ∶
in any box of volume e𝜃𝛽 the number of 4-tuples of particles in different

√

𝑆𝛽

}

,

12

connected components with diameter smaller than e is at most 𝜆(𝛽)
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X∗
3 =

{

𝜂 ∈ X𝛽 ∶
in any box of volume e𝜃𝛽 the number of 4-tuples of particles in different connected components

with diameter smaller than
√

e𝐴𝛽 is at most e(3𝐴−4𝛥+𝜃+4𝛼)𝛽 for any 𝑆 < 𝐴 < 𝛥+

}

,

X∗
4 =

{

𝜂 ∈ X𝛽 ∶ in any box of volume e(𝛥+𝛼)𝛽 the number of particles is at most e
3
2 𝛼𝛽and at least e

1
2 𝛼𝛽

}

,

X∗
5 =

{

𝜂 ∈ X𝛽 ∶ in any box of volume e(𝛥−
𝛼
4 )𝛽 the number of particles is at most 1

4𝜆(𝛽)
}

.

♠

Remark 2.3. The choice of 𝑆 comes from the fact that we require the probability to have 4 particles anywhere in a box of volume
𝑆𝛽 to tend to zero under the measure 𝜇R as 𝛽 → ∞. ♠

emark 2.4. The exit time of X∗
5 coincides with the first time T𝛼,𝜆 when an anomalous concentration event occurs [16]. Since the

RW-estimates of [16] hold up to this time, we can use them as long as the system stays in X∗ ⊂ X∗
5. ♠

emark 2.5. The reason why we define X∗ for any 𝛩 > 𝛥 (i.e., without the restriction 𝛩 ≤ 𝜃) is that in [17] we will need
roposition 2.6, which says that starting from 𝜇R the system exits X∗ within any given exponential time with 𝑆𝐸𝑆(𝛽) probability
nly. The main theorems of the present paper, which hold for the dynamics in a box of volume at most e𝜃𝛽 , with periodic boundary
onditions, immediately extend to the case where such a small box is embedded into a larger box of volume e𝛩𝛽 , with open boundary
onditions, as long as the system remains in the typical environment X∗. ♠

Recall the definition of the set R given in (1.12), of the set R′ ⊃ R given in (1.15) and of the time 𝑇 ⋆ given in (1.17).

roposition 2.6. 𝑃𝜇R (𝜏X𝛽⧵X∗ ≤ 𝑇 ⋆) = 𝑆𝐸𝑆(𝛽).

Proof. Denote by 𝐴𝑡 the event that the dynamics exits X∗ at time 𝑡, and by 𝐴R′
𝑡 the event 𝐴𝑡 when the dynamics is restricted to

′ (by ignoring jumps that would lead the dynamics out of R′). Given a Poisson process on R+ with rate e𝛩𝛽 , denote by 𝑀(𝑡) the
umber of times the clock rings up to time 𝑡 ≥ 0, and write 𝑃 to denote its law. Let (�̌�𝑘)𝑘∈N be the embedded discrete-time process
uch that the original process (𝑋(𝑡))𝑡≥0 can be written as 𝑋(𝑡) = �̌�𝑀(𝑡). Estimate, for 𝛿 > 0,

𝑃𝜇R (∃ 𝑡 < 𝑇 ⋆, 𝐴𝑡)

=
∑

𝜂∈R

𝜇(𝜂)
𝜇(R)

𝑃𝜂(∃ 𝑡 < 𝑇 ⋆, 𝐴𝑡)

≤ 𝜇(R′)
𝜇(R)

∑

𝜂∈R′

𝜇(𝜂)
𝜇(R′)

𝑃𝜂(∃ 𝑡 < 𝑇 ⋆, 𝐴𝑡)

≤ 𝜇(R′)
𝜇(R)

𝑃𝜇R′

(

∃ 𝑡 < e𝐶⋆𝛽 , 𝐴R′
𝑡

)

≤ 𝜇(R′)
𝜇(R)

[

𝑃𝜇R′

(

𝑀(e𝐶⋆𝛽 ) ≥ e(𝛩+𝐶⋆+𝛿)𝛽
)

+
∑

1≤𝑘<e(𝛩+𝐶⋆+𝛿)𝛽

𝑃𝜇R′ (�̌�𝑘 ∈ X𝛽 ⧵X∗)
]

≤ 𝜇(R′)
𝜇(R)

[

𝑆𝐸𝑆(𝛽) + e(𝛩+𝐶⋆+𝛿)𝛽
5
∑

𝑖=1
𝜇R′ ((X𝑖

∗)𝑐 )
]

,

where the term 𝑆𝐸𝑆(𝛽) comes from the Chernoff bound for a Poisson random variable, and 𝜇R′ stands for the grand-canonical
Gibbs measure conditioned to R′. Since |R′

| = |R|e𝐶𝛽 for some 𝐶 > 0, we deduce that 𝜇(R′)∕𝜇(R) ≤ e�̄�𝛽 for some �̄� > 0. Thus, to
et the claim, it suffices to prove that 𝜇R′ ((X∗

𝑖 )
𝑐 ) = 𝑆𝐸𝑆(𝛽) for any 𝑖. This is done in Appendix A. □

emark 2.7. Proposition 2.6 allows us to work with configurations in X∗. Replacing the original dynamics by the dynamics
estricted to X∗, we can couple the two dynamics in such a way that they have the same trajectories up to any time that is exponential
n 𝛽 with probability 1 − 𝑆𝐸𝑆(𝛽). ♠

.3. Recurrence properties

In this section we group the configurations in X𝛽 into a sequence of subsets of configurations of increasing regularity, and we
rove a recurrence property of the associated Markov processes restricted to these sets on an increasing sequence of time scales. To that
nd, denote by

�̄�𝑖(�̄�𝑖) = −𝑈
∑

{𝑥,𝑦}∈�̄�𝑖(𝑡)∗
𝜂(𝑥)𝜂(𝑦) + 𝛥

∑

𝑥∈�̄�𝑖(𝑡)

𝜂(𝑥)

he local energy of �̄�𝑖 = 𝜂
|�̄�𝑖

at time 𝑡 inside the box �̄�𝑖(𝑡), where �̄�𝑖(𝑡)∗ denotes the set of bonds in �̄�𝑖(𝑡). We emphasize that, alongside
13

he local model, we need to introduce two additional sets, X𝐷 and X𝑆 , to control the regularity of the gas surrounding the droplets.
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Remark 2.8. With each particle 𝑖 we can associate, at any time 𝑡 ≥ 0, the time

𝑠𝑖(𝑡) = inf
{

𝑠 ∈ [0, 𝑡)∶ particle 𝑖 is not free during the entire time interval [𝑠, 𝑡]
}

, (2.8)

o that 𝑠∗𝑖 (𝑡) = e𝐷𝛽 −(𝑡− 𝑠𝑖(𝑡)) is the time that particle 𝑖 needs to remain not free in order to fall asleep. By convention, for a sleeping
respectively, free) particle at time 𝑡 we put 𝑠∗𝑖 (𝑡) = 0 (respectively, 𝑠∗𝑖 (𝑡) = ∞). In this way we are able to characterize active and
leeping particles at any time 𝑡. In addition, the process 𝑌 = (𝑋(𝑡), (𝑠∗𝑖 (𝑡))

𝑁
𝑖=1, �̄�(𝑡))𝑡≥0 is Markovian. In the sequel we will simply refer

o this process as the original process 𝑋 = (𝑋(𝑡))𝑡≥0. In Section 4.3.1 we will consider a slight generalization of the process 𝑌 in
hich more information about particles is included, again referring to it as the original process 𝑋. ♠

efinition 2.9. For any time 𝑡 ≥ 0, given a configuration 𝜂𝑡 = 𝑋(𝑡) ∈ X𝛽 and the collection �̄�(𝑡) = (�̄�𝑖(𝑡))1≤𝑖≤𝑘(𝑡) of finite boxes in
𝛽 as in Definition 1.4, we say that 𝜂𝑡 is 0-reducible (respectively, 𝑈 -reducible) if for some 𝑖 the local energy of �̄�𝑖 can be reduced
long the dynamics with constant �̄�(𝑡) without exceeding the energy level �̄�𝑖(�̄�𝑖)+0 (respectively, �̄�𝑖(�̄�𝑖)+𝑈). If 𝜂𝑡 is not 0-reducible
r 𝑈 -reducible, then we say that 𝜂𝑡 is 0-irreducible or 𝑈 -irreducible, respectively. We define

X0 = {𝜂𝑡 ∈ X∗ ∶ 𝜂𝑡 is 0-irreducible},
X𝑈 = {𝜂𝑡 ∈ X0 ∶ 𝜂𝑡 is 𝑈 -irreducible},
X𝐷 = {𝜂𝑡 ∈ X𝑈 ∶ all the particles in 𝛬(𝑡) are sleeping},
X𝑆 = {𝜂𝑡 ∈ X𝐷 ∶ each box of volume e𝑆𝛽 contains three active particles at most},

X𝛥+ =

⎧

⎪

⎨

⎪

⎩

𝜂𝑡 ∈ X𝑆 ∶

�̄�𝑡 is a union of at most 𝜆(𝛽) quasi-squares with
no particle inside ⋃

𝑖[�̄�𝑖(𝑡), 𝛥 − 𝛼] except for those
in the quasi-squares, one for each local box �̄�𝑖(𝑡)

⎫

⎪

⎬

⎪

⎭

,

here [�̄�𝑖(𝑡), 𝛥 − 𝛼] are the boxes of volume e(𝛥−𝛼)𝛽 with the same center as �̄�𝑖(𝑡). ♠

emark 2.10. Note that if 𝜂 ∈ X𝛥+ and 𝓁2 = 2, then 𝓁1 = 2. Indeed, a 1 × 2 dimer does not belong to X𝑈 and therefore is not in
𝛥+ . ♠

Recall that 𝑇𝐴 = e𝐴𝛽 for 𝐴 ∈ {0, 𝑈 ,𝐷, 𝑆, 𝛥+}. Note that we have used the index 𝛥+ to define the set X𝛥+ , despite the fact that
t explicitly depends on the quantity 𝛥 − 𝛼. This is needed to provide an upper bound for the return times in X𝛥+ , namely, the
ecurrence property stated in the following proposition, which uses the usual shift operator 𝜗𝑠, 𝑠 ≥ 0, defined by 𝜗𝑠(𝑋) = 𝑋(𝑠 + ⋅),
o that 𝑠 + 𝜏X𝐴

◦𝜗𝑠 = min{𝑡 ≥ 𝑠∶ 𝑋(𝑡) ∈ X𝐴}.

roposition 2.11. For all 𝐴 ∈ {0, 𝑈 ,𝐷, 𝑆, 𝛥+}, all 𝛿 > 0 and any stopping time 𝜏,

𝑃𝜇R

(

𝜏X𝐴
◦𝜗𝜏 ≥ 𝑇𝐴e𝛿𝛽 , 𝜏 + 𝜏X𝐴

◦𝜗𝜏 ≤ 𝑇 ⋆) = 𝑆𝐸𝑆(𝛽).

To prove Proposition 2.11, we need the following lemma, which is needed here only and whose proof is postponed until after
he proof of Proposition 2.11.

emma 2.12. Let 𝑡 ≥ 0 be the time at which an active particle 𝑝 joins a cluster C with at most two particles, and let 𝑡∗ = 𝑡+(𝑡1∧𝑡2)◦𝜗𝑡, where
1 (respectively, 𝑡2) is the first time when the cluster C contains at least four particles (respectively, does not contain particle 𝑝 anymore).
he probability that particle 𝑝 falls asleep during the time interval [𝑡, 𝑡∗] is 𝑆𝐸𝑆(𝛽).

Proof of Proposition 2.11. Let 𝐴 ∈ {0, 𝑈 ,𝐷, 𝑆, 𝛥+}. Divide the time interval [0, 𝑇𝐴e𝛿𝛽 ] into e
3
4 𝛿𝛽 intervals 𝐼𝑗 of length 𝑇𝐴e

𝛿
4 𝛽 . We

have
sup
𝜂∈X∗

𝑃𝜂(𝜏X𝐴
∧ 𝜏X𝛽⧵X∗ > 𝑇𝐴e𝛿𝛽 ) ≤

∏

1≤𝑗<e
3
4 𝛿𝛽

sup
𝜂∈X∗

𝑃𝜂(𝜏X𝐴
, 𝜏X𝛽⧵X∗ ∉ 𝐼𝑗 )

=
(

1 − inf
𝜂∈X∗

𝑃𝜂(𝜏X𝐴
∧ 𝜏X𝛽⧵X∗ ≤ 𝑇𝐴e

𝛿
4 𝛽 )

)e
3
4 𝛿𝛽

,

(2.9)

here we use the strong Markov property for the stopping time 𝜏X𝐴
. By Proposition 2.6, it suffices to prove that

inf
𝜂∈X∗

𝑃𝜂(𝜏X𝐴
∧ 𝜏X𝛽⧵X∗ ≤ 𝑇𝐴e

𝛿
4 𝛽 ) ≥ e−

𝛿
4 𝛽 . (2.10)

n other words, for each 𝜂 in X∗ we have to build a dynamical event on time scale 𝑇𝐴e(𝛿∕4)𝛽 and with probability at least e−(𝛿∕4)𝛽
uch that the final configuration is in X𝐴, provided our system does not exit X∗. This is a standard estimate for metastable systems
t low temperature, which has been carried out in full detail for a simplified version of our model [8, Proposition 6.2]. Here we
ndicate the differences with respect to the earlier work.

To build X𝐴, we used 𝛬(𝑡) = ∪1≤𝑖≤𝑘(𝑡)�̄�𝑖(𝑡), the connected components of which form our box collection �̄�(𝑡). For 𝐴 ≤ 𝑆 we
se another box collection �̄�′(𝑡) such that 𝛬′(𝑡) = ∪1≤𝑖≤𝑘′(𝑡)�̄�′

𝑖(𝑡), for which �̄�′
𝑖(𝑡), 1 ≤ 𝑖 ≤ 𝑘′(𝑡), are the connected components of

′(𝑡), and such that 𝛬(𝑡) ⊂ 𝛬′(𝑡) for all 𝑡. As a consequence, the associated X′ is contained in X . We need to consider this new
14

𝐴 𝐴
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collection �̄�′(𝑡) in order to avoid the creation of new local boxes when some particle outside of �̄�(𝑡) falls asleep before time 𝑇𝐴𝑒𝛿𝛽 .
he construction of �̄�′(𝑡) is analogous to that in Definition 1.4, but now without removing the collection �̄�∗(𝑡), 𝑡 ≥ 0, i.e., the boxes
ithout sleeping particles, and by redefining the boxes at time 𝑡 when at least one of the conditions B1’, B3 and B4 is violated by
̄′(𝑡−), with B1’ being defined as B1 but referring to clusterised particles instead of sleeping particles. In this way the new collection
atisfies conditions B1’, B3 and B4 for any 𝑡 ≥ 0.

∙ Case 𝐴 = 0 ∶ Consider 𝛬′(0), which contains all the clusterised particles at time 0 and is such that all particles outside 𝛬′(0) are
initially free. Let 𝜏𝑐 be the first time when two of these free particles collide, or one of them enters 𝛬′(0). By [24, Proposition
.1.1 and Theorem 1], the probability that 𝜏𝑐 > e𝛿𝛽 when starting from a configuration in X∗ is larger than e−𝛿𝛽 for 𝛽 large
nough. Conditionally on this event, and as long as no clusterised particle in 𝛬′(0) is at distance one from the internal border
f 𝛬′(0), the dynamics inside 𝛬′(0) is independent from that outside. By construction, there are at least two particles in each �̄�𝑖(0).
y grouping them we can perform within time e𝛿𝛽 the 0-reduction in �̄�′(0) with a non-exponentially small probability, as in [8]:
he only difference is that we are not working with a box �̄�(0) of a bounded size but of a slowly growing size. However, we can
eal with this box as in [16, Appendix A].
∙ Case 𝐴 = 𝑈 ∶ We can proceed in the same way, except for the fact that to reach a 𝑈 -irreducible configuration we may have to

move some particle outside 𝛬′(0). This happens for example when starting with a protuberance on a quasi-square (see [8]). We set

�̃� = {𝜁 ∈ 𝛬𝛽 ∶ ∃ 𝑥 ∈ 𝛬′(0), ‖𝜁 − 𝑥‖ ≤ 2}

and to build the reduction event we ask that each free particle in 𝛬𝛽 ⧵ �̃� remains free, without entering �̃�, for a time 𝑇𝑈e𝛿𝛽 . We
also ask that each free particle in �̃� ⧵ 𝛬′(0) moves to 𝛬𝛽 ⧵ �̃� without visiting 𝛬′(0) or forming a new cluster. Conditionally on this
event, the local configuration in 𝛬′(0) can be 𝑈 -reduced, with respect to 𝛬′(0), within time 𝑇𝑈e𝛿𝛽 with a non-exponentially small
probability. Since no more than 𝜆(𝛽) particles can leave 𝛬′(0) on the described event, [24, Theorem 1] gives the desired bound.

∙ Case 𝐴 = 𝐷 ∶ We can simply use the same event as in the case 𝐴 = 𝑈 , but built on the slightly longer time scale 𝑇𝐷e𝛿𝛽 : all
clusterised particles in our 𝑈 -reduced configuration fall asleep.

∙ Case 𝐴 = 𝑆 ∶ We use again the same event, but built on the longer time scale 𝑇𝑆e𝛿𝛽 . By the coupling of QRWs and IRWs, the
robability that a given quadruple of free particles at time 𝑇𝐷e𝛿𝛽 has a diameter at most e𝑆𝛽∕2 at time 𝑇𝑆e𝛿𝛽 is smaller than e−𝛿𝛽∕2,

as a consequence of the spread-out property of the simple random walk given by the difference between the position of two of
the four particles. By the non-superdiffusivity property, assuming that our process is in X𝐷 ⊂ X∗ at time 𝑇𝐷e𝛿𝛽 , we only have to
consider 𝜆(𝛽) quadruples to check that by time 𝑇𝑆e𝛿𝛽 we have reached X𝑆 : the probability that a particle exits 𝛬′(0) within time
𝑇𝑆e𝛿𝛽 ≪ e2𝑈𝛽 , and before the entrance of a new particle in 𝛬′(0), is exponentially small in 𝛽. Consequently,

𝑃𝜂(𝑋(𝑇𝑆e𝛿𝛽 ) ∈ X𝑆 or 𝜏X∗ < 𝑇𝑆e𝛿𝛽 ) ≥ e−
𝛿
4 𝛽 − e−(2𝑈−𝑆−𝛿)𝛽 − 𝜆(𝛽)e−

𝛿
2 𝛽 ≥ e−

𝛿
3 𝛽

for 𝛽 large enough.
∙ Case 𝐴 = 𝛥 + 𝛼 ∶ We have shown that within time 𝑇𝑆e𝛿𝛽 the dynamics reaches X𝑆 or exits X∗ with probability 1 −𝑆𝐸𝑆(𝛽). To

uild the event, we let particles enter the local boxes in order to form quasi-squares, before emptying the annulus between [𝛬(𝑡), 𝛥−𝛼]
nd 𝛬(𝑡) for a large enough 𝑡, while going to X𝑆 , all without the occurrence of a box creation. To control this event, we provide
n upper bound for the probability that a box creation occurs after reaching X𝑆 . A box creation can occur with a non-𝑆𝐸𝑆(𝛽)
robability only when four particles are in a box of volume e(𝐷+𝛿)𝛽 at the same time 𝑡 < 𝑇𝛥+e(𝛿∕4)𝛽 . Indeed, starting from a cluster
onsisting of two or three particles only, the probability that a particle falls asleep is 𝑆𝐸𝑆(𝛽) by Lemma 2.12. We estimate from
bove the probability to have four particles in a box of volume e(𝐷+𝛿)𝛽 at the same time 𝑡 < 𝑇𝛥+e(𝛿∕4)𝛽 . For 𝑆 < 𝐴′ < 𝛥+ we can
stimate the probability that a given quadruple of particles with diameter e𝐴′𝛽∕2 arrives in a box of volume e(𝐷+𝛿)𝛽 within time
𝛥+e𝛿𝛽 , as follows. Divide the time interval [e𝐴′𝛽 , 𝑇𝛥+e𝛿𝛽 ] into intervals of length e𝐷𝛽 , and divide at each initial time 𝑖e𝐷𝛽 of such
time interval the volume 𝑖e(𝐷+𝛿)𝛽 centered at one of the particles into boxes of volume e(𝐷+𝛿)𝛽 . Then, by the non-superdiffusivity
roperty and the spread-out property of the QRWs, we get that the required probability is at most

e𝛿𝛽
∑

e𝐴′𝛽≤𝑖e𝐷𝛽≤e(𝛥+𝛼+𝛿)𝛽

(

𝑖e(𝐷+𝛿)𝛽

e(𝐷+𝛿)𝛽

)(

e(𝐷+𝛿)𝛽e𝛿𝛽
𝑖e(𝐷+𝛿)𝛽

)4

≤ e2(𝐷−𝐴′)𝛽+𝑂(𝛿)𝛽 .

hen 𝑋(𝑇𝑆e𝛿𝛽 ) ∈ X∗, this implies that the probability to have four particles in a box of volume e(𝐷+𝛿)𝛽 within time 𝑇𝛥+e𝛿𝛽 is at
ost e(𝐴′+2𝐷−4𝛥+𝜃+4𝛼)𝛽e𝑂(𝛿)𝛽 , which is an increasing function of 𝐴′. Since 𝐴′ < 𝛥+, we have that the required probability is less than
𝜃𝛽e(2𝐷−3𝛥)𝛽e(4𝛼+𝑂(𝛿))𝛽 , which implies that

𝑃
(

a box creation occurs within time 𝑇𝛥+e𝛿𝛽
)

≤ e−(3𝛥−2𝑈−𝜃−2𝑑)𝛽 . (2.11)

his is exponentially small, so that we can work with a constant number of boxes.
We can now proceed as in [8] to bring in particles from the gas in order to build quasi-squares. One additional difficulty and

ne additional simplification occurs. While in [8] the local box was fixed, which makes motion of large droplets inside impossible,
ere our local boxes move with the droplets, so that there are no lacunary configuration issues, i.e., there is no issue dealing
ith configurations containing clusters with holes that make them 𝑈 -irreducible. However, we cannot use the simple random walk

stimates to give lower bounds on the probability of bringing particles from the gas into the local boxes: these have to be replaced
y the strong lower bounds of [16, Theorem 3.3.1]. Once we have obtained quasi-squares only in 𝛬(𝜏) for some stopping time
≤ 𝑇𝛥+e𝛿𝛽∕2, we can build the same event that was used to deal with 𝐴 = 𝑆 to empty the annulus [𝛬(𝜏), 𝛥−𝛼]⧵𝛬(𝜏) without moving
15

he boxes anymore while going back to X𝑆 . □
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Proof of Lemma 2.12. Suppose that two active particles join together. Divide the time interval [0, e𝐷𝛽 ] into e
3
4 𝑑𝛽 intervals of length

e(𝑈+ 𝑑
4 )𝛽 . We have

𝑃
(

a particle is detached within time e(𝑈+ 𝑑
4 )𝛽

)

≥ e−
𝑑
4 𝛽

and so by the Markov property the probability to have a particle falling asleep is at most (1 − e−
𝑑
4 𝛽 )e

3
4 𝑑𝛽 = 𝑆𝐸𝑆(𝛽). The case in

hich three active particles join together can be treated similarly. □

. Proof of theorems

Section 3.1 lists three key propositions that provide bounds on the probability of transitions between configurations consisting of
single quasi-square and free particles. In particular, they control the rates of both typical and atypical transitions for quasi-square
roplets, allowing us to describe the evolution of the system in terms of droplet dynamics. The proofs of these propositions are
eferred to Section 4. Sections 3.2–3.5 use the propositions to prove Theorems 1.5–1.9, respectively.

The pure gas state is defined as

X𝐸 ∶= {𝜂 ∈ X𝛥+ ∶ 𝜂 has no quasi-square}. (3.1)

.1. Key propositions: Propositions 3.1–3.3

Recall the definition of 𝜋(𝜂0) ∈ X̄𝛥+ , 𝜂0 ∈ X𝛥+ , given in Section 1.3. Denote by (𝓁1,𝓁2) ∈ 𝑄𝑆 with 𝓁1 ≥ 2 the dimensions of
he smallest quasi-square, if any, otherwise set 𝓁1 = 𝓁2 = 0. Define the projections 𝜋′, 𝜋′′ ∈ X̄𝛥+ similarly to the projections 𝜋′

𝑖 , 𝜋
′′
𝑖

efined in Section 1.3.
We start by giving a lower bound for the probability that the dynamics, starting from 𝜂0 ∈ X𝛥+ , has a projection that is distinct

rom 𝜋(𝜂0) at time 𝜏1 without exiting the environment X∗.

roposition 3.1. Assume that 𝛥 < 𝛩 ≤ 𝜃. If 𝜂0 ∈ X𝛥+ , then for any 𝛿 > 0,

𝑃𝜂0

(

𝜋(𝑋(𝜏1)) ≠ 𝜋(𝜂0) or a coalescence
occurs before 𝜏1 or 𝜏1 > 𝜏X𝛽⧵X∗

)

≥ e−[𝑟(𝓁1 ,𝓁2)−𝛥+𝑂(𝛼,𝑑,𝛿)]𝛽 .

The proof of Proposition 3.1 is given in Section 4.1.
We next give a lower bound on the probability that the dynamics, starting from 𝜂0 ∈ X𝛥+ consisting of a single subcritical

uasi-square, at time 𝜏1 reaches a configuration 𝑋(𝜏1) such that 𝜋(𝑋(𝜏1)) = 𝜋′′ without exiting the environment X∗ and no box
reation occurs before 𝜏1.

roposition 3.2. Assume that 𝛥 < 𝛩 ≤ 𝜃. If 𝜂0 ∈ X𝛥+ consists of a single 𝓁1 × 𝓁2 quasi-square with 2 ≤ 𝓁1 < 𝓁𝑐 , then for any 𝛿 > 0,

𝑃𝜂0

(

𝜋(𝑋(𝜏1)) = 𝜋′′ and no box creation
occurs before 𝜏1, or 𝜏1 > 𝜏X𝛽⧵X∗

)

≥ e−[𝛥−𝑈+𝑂(𝛼,𝑑,𝛿)]𝛽 .

The proof of Proposition 3.2 is given in Section 4.2.
We finally provide upper bounds on the probability that typical and atypical transitions occur.

roposition 3.3. Assume that 𝛥 < 𝛩 ≤ 𝜃.
(1) If 𝜂0 ∈ X𝛥+ , then

lim sup
𝛽→∞

sup
𝜋(𝜂0)

1
𝛽
log𝑃𝜂0

⎛

⎜

⎜

⎜

⎝

𝜋(𝑋(𝜏1)) ≠ 𝜋(𝜂0) and a
coalescence does not occur
before 𝜏1, or 𝜏1 > 𝜏X𝛽⧵X∗

⎞

⎟

⎟

⎟

⎠

≤ −[𝑟(𝓁1,𝓁2) − 𝛥 − 𝑂(𝛼, 𝑑)]. (3.2)

(2) If 𝜂0 ∈ X𝛥+ ⧵X𝐸 , then

lim sup
𝛽→∞

sup
𝜋(𝜂0)

1
𝛽
log𝑃𝜂0

⎛

⎜

⎜

⎜

⎝

𝜋(𝑋(𝜏1)) ∉ {𝜋(𝜂0)} ∪ 𝜋′ and
a coalescence does not occur
before 𝜏1, or 𝜏1 > 𝜏X𝛽⧵X∗

⎞

⎟

⎟

⎟

⎠

< −[𝑟(𝓁1,𝓁2) − 𝛥 − 𝑂(𝛼, 𝑑)]. (3.3)

The proof of Proposition 3.3 is given in Section 4.3.
16
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3.2. Proof of Theorem 1.5

Fix 𝛿 > 0. From Proposition 2.11 we deduce that the event {𝜏0 ≥ e(𝛥+𝛼+𝛿)𝛽 , 𝜏0 ≤ 𝑇 ⋆} has probability 𝑆𝐸𝑆(𝛽). Consider any 𝑖 ∈ N0
uch that 𝜏𝑖+1 ≤ 𝑇 ⋆. The event {𝜏𝑖+1 − 𝜏𝑖 > e(𝛥+𝛼+𝛿)𝛽} has probability 𝑆𝐸𝑆(𝛽). Indeed, this event would imply that either �̄�𝑖+1 or
̄𝑖+1 exceed 𝑇𝛥+e𝛿𝛽 , and both have probability 𝑆𝐸𝑆(𝛽). Indeed, in the former case, we have to control the probability that none
f the particles inside the volume [�̄�, 𝛥 + 𝛼] enters �̄� within a time 𝑇𝛥+e𝛿𝛽 . These particles are at least e

1
2 𝛼𝛽 in number, since the

dynamics is in X∗ because of the condition 𝜏𝑖+1 ≤ 𝑇 ⋆. Hence this probability is 𝑆𝐸𝑆(𝛽) by the strong lower bounds associated with
he spread-out property of QRWs (see [16, Theorem 3.3.1]). In the latter case, we conclude by using Proposition 2.11. Also the
vent {𝜏𝑖+1 − 𝜏𝑖 < e(𝛥−𝛼−𝛿)𝛽} has probability 𝑆𝐸𝑆(𝛽). Indeed, this event would imply that �̄�𝑖+1 is at most e(𝛥−𝛼−𝛿)𝛽 . This event has

probability 𝑆𝐸𝑆(𝛽) by the non-superdiffusivity property if the configuration at time 𝜏𝑖 is in X𝛥+ ⧵ X𝐸 , otherwise it has probability
zero by the condition �̄�𝑖+1 = e𝛥𝛽 . □

3.3. Proof of Theorem 1.6

For 𝑖 ∈ 𝑁0, define

𝐾𝑖 = min
{

𝑘 ∈ N∶ 𝜋(𝑋(𝜏𝑖+𝑘)) ≠ 𝜋(𝑋(𝜏𝑖))
}

.

p to coalescence and exit from X∗, Proposition 3.1 and the first part of Proposition 3.3 show that 𝐾𝑖 dominates and is dominated
y a geometric random variable with success probability of order e−(𝑟(𝓁1 ,𝓁2)−𝛥)𝛽 . Together with Theorem 1.5, which gives uniform
ower and upper bounds on the return times 𝜏𝑗+1 − 𝜏𝑗 , 𝑗 ∈ N0, this proves Theorem 1.6: the 𝑆𝐸𝑆 error in (1.32) is related to an

anomalously large realization of a geometric random variable, while an anomalously small realization leads to an error that is only
exponentially small in (1.33). □

3.4. Proof of Theorem 1.8

Proposition 3.1 and the second part of Proposition 3.3 prove Theorem 1.8 for any 𝑖 ∈ N0 such that 𝑋(𝜏𝑖) ∈ X𝛥+ ⧵ X𝐸 : these
propositions provide the necessary lower and upper bounds on the denominator and numerator of the conditional probability.
Otherwise, if 𝑋(𝜏𝑖) ∈ X𝐸 , then instead of using Proposition 3.3 we conclude by using Remark 2.10 and arguing as in (2.11) to
show that the probability to have more than 4 particles in a box with volume of order e𝐷𝛽 is exponentially smaller than the bound
obtained in Proposition 3.1. □

3.5. Proof of Theorem 1.9

Proposition 3.2 and the first part of Proposition 3.3 prove Theorem 1.9: they give the necessary upper and lower bounds on the
denominator and numerator of the conditional probability. □

4. Proof of propositions

In Sections 4.1–4.3 we prove Propositions 3.1–3.3, respectively. The proof of Proposition 3.3 relies on three additional lemmas,
whose proof is deferred to Section 5.

4.1. Proof of Proposition 3.1

Fix 𝛿 > 0. Since

𝑃𝜂0 (𝜋(𝑋(𝜏1)) ≠ 𝜋(𝜂0)) ≥ 𝑃𝜂0 (𝜋(𝑋(𝜏1)) = 𝜋′),

we need to bound from below the probability that a typical transition of the dynamics on X𝛥+ occurs.

1. We start by considering the supercritical case 𝓁1 > 𝓁𝑐 . Since in this case 𝑟(𝓁1,𝓁2) = 2𝛥 − 𝑈 , it suffices to exhibit a mechanism to
grow within time 𝑇𝛥+e𝛿𝛽 with probability at least e−(𝛥−𝑈+𝑂(𝛼,𝑑,𝛿))𝛽 . Within time 𝑇𝛥+e𝛿𝛽∕2 bring two particles from the gas inside one
of the volumes [�̄�𝑖, 𝐷 − 𝛿]. Attach the two particles in time e(𝐷+𝛿)𝛽 . Complete the quasi-square with particles from the gas. Let 𝜏 be
the first time at which there are two active particles inside one of these volumes. On the time scale we are interested in, particles
can arrive inside the box 𝛬, but before time 𝜏 only one can be active. Thus, by using the recurrence property to X𝑈 , we know that
this active particle can attach itself to the quasi-square inside 𝛬, but it does not feel asleep with probability 1 − 𝑆𝐸𝑆. Moreover,
via the interaction with this active particle the cluster can move, but in such a way that 𝛬(𝑡) ⊂ [𝛬(0), 𝐷 − 𝛿] for any 𝑡. Indeed, any
redefinition of the local box, implied by the movement of the cluster, is related to a free particle that moves in 𝛬. We show that
the probability that the number of these box special times exceeds e𝑂(𝛼,𝛿)𝛽 is 𝑆𝐸𝑆.

Since the dynamics belongs to the environment X∗, by the non-superdiffusivity property of the QRWs we know that at most
e3𝛼𝛽∕2 particles can interact with 𝛬 within time 𝑇𝛥+e𝛿𝛽 . Each particle no longer visits 𝛬 after each box special time associated with
it with a probability at least 1∕(log exp(𝛥 + 𝑂(𝛼, 𝛿))𝛽). Thus,

𝑃 (there are more than e𝑂(𝛼,𝛿)𝛽 visits in 𝛬) ≤

(

1 − 1
)e𝑂(𝛼,𝛿)𝛽

= 𝑆𝐸𝑆(𝛽).
17
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Thus, up to an event of probability 𝑆𝐸𝑆, we deal with the fixed target volume [𝛬(0), 𝐷 − 𝛿]. In addition, we deal with a constant
number of local boxes, since we can control the probability that a box creation occurs within time 𝑇𝛥+e𝛿𝛽 via the estimate derived
n the proof of Proposition 2.11. To check that the resulting order of probability is correct, we proceed as follows. Divide the time
nterval [0, 𝑇𝛥+e𝛿𝛽 ] into intervals [𝑡𝑖, 𝑡𝑖+e(𝐷+𝛿)𝛽 ], with 1 ≤ 𝑖 < e(𝛥+𝛼−𝐷)𝛽 . By considering 𝑇𝑖 = 𝑖e(𝐷+𝛿)𝛽 , and using the non-superdiffusivity

property and the lower bound associated with the spread-out property of the QRWs (see [16, Theorem 3.2.5(ii)]), we get

𝑃 (𝜏 < e(𝛥+𝛼+𝛿)𝛽 ) ≥
∑

e(𝛥+𝛼−𝛿)𝛽≤𝑖e(𝐷+𝛿)𝛽≤e(𝛥+𝛼+𝛿)𝛽

(

e(𝐷−𝛿)𝛽

𝑖e(𝐷+𝛿)𝛽e𝛿𝛽

)2

≥ e−[𝛥−𝑈+𝑂(𝛼,𝑑,𝛿)]𝛽 . (4.1)

et these two active particles inside [𝛬(0), 𝐷 − 𝛿] at time 𝜏 attach themselves to the quasi-square. By using the non-superdiffusivity
roperty and the stronger, higher resolution, lower bounds associated with the spread-out property of the QRWs, we get that this
robability is at least e−𝑂(𝛿)𝛽 . Arguing in the same way, we obtain an analogous lower bound for the probability to complete the
uasi-square with particles from the gas in time 𝑇𝛥+e𝛿𝛽∕2. We conclude by using the strong Markov property at times 𝜏 and those
orresponding to each attachment of the particles to the cluster in 𝛬.

. Next consider the subcritical case 𝓁1 < 𝓁𝑐 . We start with 𝜂0 ∈ X𝐸 . Since in this case 𝑟(𝓁1,𝓁2) = 4𝛥 − 2𝑈 − 𝜃, it suffices to exhibit
mechanism to create a 2 × 2 droplet within time 𝑇𝛥+e𝛿𝛽 with probability at least e−(3𝛥−2𝑈−𝜃+𝑂(𝛼,𝑑,𝛿))𝛽 . Within time 𝑇𝛥+e𝛿𝛽∕2 bring

our particles from the gas inside a box of volume e(𝐷−𝛿)𝛽 . Attach two of these particles within time e(𝐷+𝛿)𝛽 . Move the other two
articles at a finite distance from the dimer within time e(𝑈−𝛿∕2)𝛽 . Given a fixed site 𝑥 ∈ 𝛬𝛽 , let 𝜏 be the first time at which there are
our active particles in a box of volume e(𝐷−𝛿)𝛽 centered at 𝑥. To check that the resulting order of probability is correct, we proceed
s follows. Divide the time interval [0, 𝑇𝛥+e𝛿𝛽 ] into intervals [𝑡𝑖, 𝑡𝑖 + e(𝐷+𝛿)𝛽 ] with 1 ≤ 𝑖 < e(𝛥+𝛼−𝐷)𝛽 . By considering 𝑇𝑖 = 𝑖e(𝐷+𝛿)𝛽 ,
nd using the non-superdiffusivity property and the lower bound associated with the spread-out property of the QRWs (see [16,
heorem 3.2.5(ii)]), we get

𝑃 (𝜏 < e(𝛥+𝛼+𝛿)𝛽 ) ≥
∑

e(𝛥+𝛼−𝛿)𝛽≤𝑖e(𝐷+𝛿)𝛽≤e(𝛥+𝛼+𝛿)𝛽

(

e(𝐷−𝛿)𝛽

𝑖e(𝐷+𝛿)𝛽e𝛿𝛽

)4

≥ e−3[𝛥−𝑈+𝑂(𝛼,𝑑,𝛿)]𝛽 . (4.2)

et 𝜎 be the first time at which two among these four active particles form a dimer for the first time at a finite distance from the site
. By using the non-superdiffusivity property and the stronger lower bounds associated with the spread-out property of the QRWs,
e get

𝑃 (𝜎 < e(𝐷+𝛿)𝛽 ) ≥ ∫

e(𝐷+𝛿)𝛽

e(𝐷−𝛿)𝛽

(

1
𝑡e𝛿𝛽

)2

𝑑𝑡 ≥ e−[𝑈+𝑂(𝛿,𝑑)]𝛽 . (4.3)

ow let the other two active particles attach themselves to the dimer formed at time 𝜎 within time e(𝑈−𝛿∕2)𝛽 , so that the dimer is still
resent with probability 1−𝑆𝐸𝑆. Arguing as before, we deduce that this probability is at least e−𝑂(𝛿)𝛽 . Finally we observe that these
reations of a first cluster of sleeping particles around a given site 𝑥 are disjoint events up to an event with negligible probability,
he probability of which is controlled as in (2.11). By summing over all the sites 𝑥 ∈ 𝛬𝛽 and applying the strong Markov property
t the times 𝜏, 𝜎 and those corresponding to the attachment of the third particle to the dimer, we get the claim.

. Finally, consider the case 𝓁1 ≥ 2. It suffices to exhibit a mechanism to shrink within time e(𝛥−𝛼+𝛿)𝛽 with a probability at least
−(𝑟(𝓁1 ,𝓁2)−𝛥+𝑂(𝛼,𝑑,𝛿))𝛽 . The mechanism to shrink is the following: detach a row of 𝓁1 particles and bring each particle outside the
olume [𝛬, 𝛥 − 𝛼] within time e(𝛥−𝛼∕2)𝛽 . Note that at time 𝑡 = 0 there are at most 𝜆(𝛽)∕4 particles inside the volume [𝛬, 𝛥 − 𝛼∕4]
ecause the dynamics starts in X∗. Thus, by the non-superdiffusivity property it follows that, up to an event of probability 𝑆𝐸𝑆,
hese are the only particles that can enter [𝛬, 𝛥−𝛼] within time e(𝛥−𝛼∕2)𝛽 . We can therefore argue as in the proof of Proposition 2.11 for
= 𝑈 with the following differences. For the first 𝓁1−1 particles we obtain that the probability for each one of them to be detached

s at least e(−(2𝑈−𝛥)−𝑂(𝛼,𝛿))𝛽 . Indeed, divide the time interval [0, e(𝛥−𝛼∕2)𝛽 ] into intervals 𝑆𝑖 of length e𝐷𝛽 , with 1 ≤ 𝑖 < e(𝛥−𝐷−𝛼∕2)𝛽 .
hen the probability to detach one of these particles is at least

e−𝛿𝛽
∑

1≤𝑖<e(𝛥−𝐷−𝛼∕2)𝛽

𝑃 (there is a move of cost 2𝑈 between 𝑖e𝐷𝛽 and (𝑖 + 1)e𝐷𝛽 ) ≥ e[−(2𝑈−𝛥)−𝑂(𝛼,𝛿)]𝛽 .

fter applying the strong Markov property at each of the detaching times and observing that the probability of detaching the last
article at cost 𝑈 within time e(𝛥−𝛼∕2)𝛽 is at least e−𝑂(𝛿)𝛽 , and also the probability that no particle is inside the annulus [𝛬, 𝛥− 𝛼] ⧵𝛬
ecause of the lower bounds associated with the spread-out property of the QRWs. □

.2. Proof of Proposition 3.2

Fix 𝛿 > 0. Since in this case 𝜋′′ = (𝓁2 × (𝓁1 + 1)), in order to get the claim it suffices to exhibit a mechanism to grow with a
robability at least e−[𝛥−𝑈+𝑂(𝛼,𝑑,𝛿)]𝛽 . The mechanism is the same as for the supercritical case used in the proof of Proposition 3.1.
ince now we are interested in not having a box creation before time 𝜏1, we obtain the desired lower bound after using the estimate
18

n (2.11). □
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4.3. Proof of Proposition 3.3

Since we need to control all the possible mechanisms to grow and shrink, the proof of Proposition 3.3 is much more involved
han the proofs of Propositions 3.1–3.2, and is organized into steps. We start by considering the case 𝜂0 ∈ X𝐸 . We assume that there
s a single finite box for the starting configuration 𝜂0, namely, 𝜂0 ∈ X𝛥+ consisting of a single quasi-square of size 𝓁1 × 𝓁2. Abusing
otation, we refer to the current box 𝛬 = �̄�0 as �̄� instead of �̄�0. This is needed in order to make the proof clearer. We will see later
ow to derive the statement for general boxes.

The key steps in the proof are the following:

tep 1: Introduce coloration and permutation rules (Section 4.3.1).

tep 2: Consider the case 𝜂0 ∈ X𝐸 (Section 4.3.2).

tep 3: Consider the case 𝜂0 ∈ X𝛥+ ⧵X𝐸 and 𝓁2 ≥ 3 (Section 4.3.3).

tep 4: Consider the case 𝜂0 ∈ X𝛥+ ⧵X𝐸 and 𝓁2 = 2 (Section 4.3.4).

tep 5: Derive the statement for a general collection of finite boxes �̄� = (�̄�𝑖)𝑖∈𝐼 (Section 4.3.5).

In step 1 we introduce the notion of colors for particles and their permutation rules, which are needed in steps 2–5. In each of steps
–4 we state a key lemma and explain how to derive the statement of interest from it. The proofs of the lemmas are deferred to
ection 5, which is the technical core of the present paper.

Recall that we are considering the case in which there is a single finite local box �̄�. We call I(𝑛) the set of configurations 𝜂
uch that �̄� is of size |�̄�| = 𝑛 and is the solution of the associated isoperimetric problem. We use the notation I(𝑛)𝑓𝑝 to indicate the
resence of a free particle in �̄�. Moreover, we call I(0) the set of configurations for which there is no local box �̄�. We introduce the
equence (𝜏𝑘)𝑘∈N0

of return times in X𝐷 after seeing an active particle in �̄� as follows. Put 𝜏0 = 0 and, for 𝑖 ∈ N0, define

𝜎𝑖+1 = inf
{

𝑡 > 𝜏𝑖 ∶ there is an active particle inside �̄�(𝑡) at time 𝑡
}

(4.4)

nd

𝜏𝑖+1 = inf
{

𝑡 > 𝜎𝑖+1 ∶ 𝑋(𝑡) ∈ X𝐷
}

. (4.5)

ote the difference between (4.4)–(1.22) and (4.5)–(1.23). Let 𝜑𝑘 be the finite-time Markov chain 𝜑𝑘 = (𝑋(𝜏𝑖))0≤𝑖≤𝑘, and put

𝑛 = max
{

𝑘 ≥ 0∶ 𝜏𝑘 < 𝑇𝛥+e𝛿𝛽
}

.

inally, set 𝜄 = 𝓁𝑐 − 𝑈∕𝜖 ∈ (0, 1).

.3.1. Step 1: Coloration and permutation rules
Divide the particles into active particles and sleeping particles: a notion that is related to free particle. Define

X̂𝑁 ∶= {(𝑧1,… , 𝑧𝑁 )∶ 𝑧𝑖 ≠ 𝑧𝑗 ∀ 𝑖, 𝑗 ∈ {1,… , 𝑁}, 𝑖 ≠ 𝑗},

set of 𝑁 labeled particles. We say that a particle 𝑖 ∈ {1,… , 𝑁} is free at time 𝑡0 ≥ 0 if there exists a trajectory �̂�∶ 𝑡 ∈ [𝑡0, 𝑡0 + 𝑇 ] ↦
̂(𝑡) ∈ X̂𝑁 that respects the rules of the dynamics and satisfies (see the construction carried out in [16, Section 2.2] and recall that
𝛼 = e(𝛥−𝛼)𝛽 with 𝛼 > 0)

(i) ‖�̂�𝑖(𝑡0 + 𝑇 ) − �̂�𝑖(𝑡0)‖2 > 𝑇 1∕2
𝛼 .

(ii) ∀ 𝑡 ∈ [𝑡0, 𝑡0 + 𝑇 ]∶ U(�̂�(𝑡))𝑐𝑙 = U(�̂�(𝑡0))𝑐𝑙.

or 𝑡 > e𝐷𝛽 , a particle is said to be sleeping at time 𝑡 if it was not free during the entire time interval [𝑡 − e𝐷𝛽 , 𝑡]. A non-sleeping
article is said to be active. By convention, prior to time e𝐷𝛽 all particles are active.

Coloration rules. These are for active particles only: sleeping particles have no color.

1. All particles in [�̄�, 𝛥 − 𝛿]𝑐 are green and remain green when entering [�̄�, 𝛥 − 𝛿]. Any particle that leaves [�̄�, 𝛥 − 𝛿] is colored
green.

2. When a particle wakes up in �̄� at some time 𝑡 it is colored red if the following rules are satisfied:

(i) 𝑡 = 𝜎𝑖 for some 𝑖 > 0.
(ii) The particle is the only one that is active in �̄� at time 𝑡.

(iii) There was a move of cost 2𝑈 or two ‘‘𝛿-close moves’’ of cost 𝑈 , i.e., both in the time interval [𝑡 − e𝛿𝛽 , 𝑡].

3. Color yellow any particle that wakes up without being colored red.
19
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It follows from these rules that at time 𝑡 = 0 all clusterized particles are without color, all active particles are green, a green particle
cannot change color but can only loose color, any particle can loose its color by falling asleep, an awaking particle cannot be colored
green at a wake-up time, and a colored particle can change color (from red or yellow to green) only when leaving [�̄�, 𝛥 − 𝛿].

∙ Permutation rules. We couple the color rules with labeling rules by building a hierarchy on clusterized particles in the same
cluster. The higher particles in this hierarchy are the sleeping ones, followed by yellow, then red, and finally green particles. To
compare two sleeping particles or two particles with the same color, we say that the lower one in the hierarchy is the last aggregated
particle in their shared cluster, and we break ties by some random rule. At each time 𝑡 when some particle has to be freed from a
luster, we set particle positions to ensure that this particle is the lowest one in the cluster hierarchy at time 𝑡−. This is compatible
ith the local permutation rule associated with quasi-random walks.

The reason why we prefer to release green and red particles rather than yellow particles is that we have much less control on
he latter. We also want to have to control the smallest possible number of active particles, which is why we place sleeping particles
t the highest rank in the hierarchy, and we introduce the time aggregation rule to give more chance to fall asleep to any particle
hat was about to do so.

.3.2. Step 2: Starting configuration has no square: Lemma 4.1
Consider the case in which the starting configuration 𝜂0 ∈ X𝛥+ has no quasi-square, i.e., 𝜂0 ∈ X𝐸 (recall Definition 2.9 and (3.1)).

hen we need to prove the first part of Proposition 3.3 only. The following lemma controls the exit of the dynamics from the pure
as state, which corresponds to the creation of the first droplet and therefore to the creation of a new local box.

emma 4.1. Assume that 𝛥 < 𝛩 ≤ 𝜃. For 𝜂0 in X𝐸 ,

lim sup
𝛽→∞

1
𝛽
log𝑃𝜂0

(

a box creation occurs within time 𝜏1
)

≤ −[3𝛥 − 2𝑈 − 𝜃 − 𝑂(𝛼, 𝑑)]. (4.6)

emark 4.2. Starting from 𝜂0 ∈ X𝐸 , reaching at time 𝜏1 a configuration such that 𝜋(𝑋(𝜏1)) ≠ 𝜋(𝜂0) implies that a box creation has
ccurred. Hence the first part of Proposition 3.3 follows from Lemma 4.1. ♠

.3.3. Step 3: Starting configuration has a single large quasi-square: Lemma 4.3
Recall that we are considering a starting configuration 𝜂0 ∈ X𝛥+ consisting of a single quasi-square of size 𝓁1 × 𝓁2 with 𝓁1 ≤ 𝓁2

and 𝓁2 ≥ 3. Recall (4.4)–(1.24) and (4.5) for the definition of resistance for a quasi-square of size 𝓁1 × 𝓁2.

Lemma 4.3. Assume that 𝛥 < 𝛩 ≤ 𝜃. Let 𝜂0 ∈ X𝛥+ be such that its restriction �̄�0 to �̄� is a quasi-square of size 𝓁1 × 𝓁2 with 𝓁1 ≤ 𝓁2 and
2 ≥ 3. If 𝜂0 is subcritical, i.e., 𝓁1 < 𝓁𝑐 , then we set 𝑚 = 𝓁1 − 2 and

𝑎 = 𝛾
( 1
2
1{𝓁1<𝓁𝑐−1} +

1
2
1{𝓁1=𝓁𝑐−1,𝜄< 1

2 }
+ (1 − 𝜄)1{𝓁1=𝓁𝑐−1,𝜄≥ 1

2 }

)

> 0.

et G1 be the graph represented in Fig. 8 and G2 the graph represented in Fig. 9. If 𝜂0 is supercritical, i.e., 𝓁1 ≥ 𝓁𝑐 , instead set 𝑚 = 𝓁𝑐 − 2
nd

𝑎 = (𝜖 − 𝛾)1{𝜄< 1
2 }

+ 𝛾1{𝜄≥ 1
2 }

> 0.

Define the same G1 (associated with a different 𝑚), and let G2 be the graph represented in Fig. 10. Then

lim sup
𝛽→∞

1
𝛽
log𝑃𝜂0

(

𝜑𝑛 escapes from G1
)

≤ −[𝑟(𝓁1,𝓁2) − 𝛥 − 𝑂(𝛼, 𝑑)] (4.7)

nd

lim sup
𝛽→∞

1
𝛽
log𝑃𝜂0

(

𝜑𝑛 escapes from G2
)

≤ −[𝑟(𝓁1,𝓁2) − 𝛥 + 𝑎 − 𝑂(𝛼, 𝑑)]. (4.8)

The proof of Lemma 4.3 is given in Section 5.

Remark 4.4. Proposition 3.3 follows from Lemma 4.3 when 𝜂0 consists of a single quasi-square with size 𝓁1 × 𝓁2 and 𝓁2 ≥ 3. First,
emma 4.3 gives us information at the return times to X𝛥+ after seeing an active particle in �̄�. Indeed, note that such a return time
an occur only in the time intervals of type [𝜏𝑘, 𝜎𝑘+1], because during the time intervals of type [𝜎𝑘, 𝜏𝑘] the configurations that are

visited are not in X𝐷 and therefore not even in X𝛥+ (recall Definition 2.9). It is clear that a return time in X𝛥+ does not necessarily
coincide with a time 𝜏𝑘, but during the time interval [𝜏𝑘, 𝜎𝑘+1] the number of particles of the isoperimetric configuration is conserved,
and so the system reaches X𝛥+ in the same configuration visited at time 𝜏𝑘. Second, (4.7) implies the first part of Proposition 3.3.
Starting from 𝜂0, if 𝜋(𝑋(𝜏1)) ≠ 𝜋(𝜂0), then 𝜑𝑛 has escaped from G1. Hence the chain of inequalities holds due to (4.7) and we get the
claim. Finally, the second part of Proposition 3.3 follows in the same way. Starting from 𝜂0, if 𝜋(𝑋(𝜏1)) ∉ {𝜋(𝜂0), 𝜋′}, then 𝜑𝑛 has
20

escaped from G2. Hence the chain of inequalities holds due to (4.8). ♠
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Fig. 8. The graph G1 in both the subcritical and the supercritical case.

Fig. 9. The graph G2 in the subcritical case.

Fig. 10. The graph G2 in the supercritical case.

.3.4. Step 4: Starting configuration has a single small quasi-square: Lemma 4.5

We recall that we are considering a starting configuration 𝜂0 ∈ X𝛥+ consisting of a single quasi-square of size 𝓁1 × 𝓁2 with

1 ≤ 𝓁2 = 2. Thus, we need to consider only the case in which 𝜂 contains a 2 × 2 square droplet (recall Remark 2.10).

emma 4.5. Assume that 𝛥 < 𝛩 ≤ 𝜃. Let 𝜂0 ∈ X𝛥+ be such that its restriction �̄�0 to �̄� is a 2 × 2 square. Let G1 be the graph consisting of
he vertex I(4) only, and define the graph G2 as

I(4)
∕

21

I(0).
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lim sup
𝛽→∞

1
𝛽
log𝑃𝜂0

(

𝜑𝑛 escapes from G1
)

≤ −[𝑟(2, 2) − 𝛥 − 𝑂(𝛼, 𝑑)] (4.9)

and

lim sup
𝛽→∞

1
𝛽
log𝑃𝜂0

(

𝜑𝑛 escapes from G2
)

≤ −[𝑟(2, 2) − 𝛥 + 1
2 𝛾 − 𝑂(𝛼, 𝑑)]. (4.10)

The proof of Lemma 4.5 is deferred to Section 5.3.

emark 4.6. In order to deduce Proposition 3.3 from Lemma 4.5 in case 𝜂0 consists of a single 2 × 2 square, we can argue as in
emark 4.4. ♠

.3.5. Step 5: Result for a general collection of finite boxes
We close by explaining how to derive Lemmas 4.3 and 4.5 when the starting configuration is not such that �̄�(0) = �̄�0(0). First,

e need to extend the definition of the set I(𝑛). Given a collection �̄�(𝑡) = (�̄�𝑖(𝑡))1≤𝑖<𝑘(𝑡) of finite boxes in 𝛬𝛽 , we call I(𝑛) the set of
onfigurations 𝜂 such that �̄� is of size ∑

1≤𝑖<𝑘(𝑡) |�̄�𝑖| = 𝑛 and is the solution of the isoperimetric problem for a configuration with 𝑛
articles and 𝑘(𝑡) connected components. We use the notation I(𝑛)𝑓𝑝 to indicate the presence of a free particle in one of the boxes.
oreover, in Lemma 4.5 we need to replace the set I(0) by the set Ī(𝑛 − 4), defined as the set of configurations for which the

ollection �̄�(𝑡) has one local box less than �̄�(𝑡−), and there are 𝑛 particles inside �̄�(𝑡−) and 𝑛 − 4 particles inside �̄�(𝑡). This set takes
nto account the dissolution of a 2 × 2 square droplet at time 𝑡 leading to the disappearance of one of the local boxes. Up to any
oalescence between local boxes, we can argue as in the proof of Lemmas 4.3 and 4.5.

. Proof of lemmas: from large deviations to deductive approach

Section 5.1 shows that the proof of Lemma 4.1 has already been achieved. Section 5.2, which is long and constitutes the main
echnical hurdle of the paper, contains the proof of Lemma 4.3 and is divided into several parts: Section 5.2.1 outlines the structure
f the proof, while Sections 5.2.2–5.2.4 work out the details of this proof for three cases. The latter rely on two further lemmas,
hose proof is deferred to Sections 5.4–5.5. Section 5.3 contains the proof of Lemma 4.5.

The structure of the argument used to achieve the proof of Lemmas 4.3 and 4.5 is common. Indeed, we follow a deductive
pproach, in the sense that we consider a family of large deviation events and use their intricate interrelation to estimate their
espective probabilities. We will see that on these events the evolution of the gas consists of droplets wandering around on multiple
pace–time scales in a way that can be captured by a coarse-grained Markov chain on a space of droplets. In particular, starting from
hese large deviation events we will prove, by induction in 𝑘, a claim P(𝑘) of the form ‘‘if none of these events occurs, then the
ynamics does not escape from the graph in the first 𝑘 steps’’. This way of going about is inspired by the point of view that the tube
f typical paths is the skeleton for the metastable crossover. Indeed, the role of the different graphs introduced below is that they
escribe the temporal configurational environment from which the dynamics cannot escape. We will control the evolution of the
ynamics in this environment via large deviation a priori estimates, and we will need a detailed case study to be able to proceed.

.1. Proof of Lemma 4.1

The claim is the same as the one derived in (2.11). □

.2. Proof of Lemma 4.3

.2.1. Structure of the proof
By using the coloration and permutation rules introduced in Section 4.3.1, we build a list of large deviation events, each having

cost

𝑐(⋅) = − lim sup
𝛽→∞

1
𝛽
log𝑃 (⋅),

to prove by contradiction that if 𝜑𝑛 escapes from the graph G1 represented in Fig. 8, then the union 𝑍1 of these large deviation events
has to occur. In words, the analysis of the exit from G1 corresponds to that of the typical transition of a quasi-square, so that the cost
of 𝑍1 turns out to be equal to the cost of shrinking (respectively, growing) of a subcritical (respectively, supercritical) quasi-square.
To investigate the exit from the graph G2 (both in the subcritical and the supercritical case; see Figs. 9 and 10, respectively), which
corresponds to the analysis of the atypical transitions, we define another event 𝑍2 by removing from 𝑍1 some of these large deviation
events, resulting in a larger cost, and adding new large deviation events, which also have a larger cost than 𝑍1. While dealing with
𝑍1 and G1, we can consider the subcritical and the supercritical case simultaneously, but we must separate them when dealing with
𝑍2 and G2. Finally, we prove that if 𝜑𝑛 escapes from G2, then 𝑍2 has to occur.

In the sequel we consider three cases for escaping G1 and G2:

(I) Escape from G1.
(II) Escape from G2 in the subcritical case.
22

(III) Escape from G2 in the supercritical case.
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5.2.2. Escape case (I)
∙ Large deviation events. Here is a list of bad events that can lead to 𝜑𝑛 escaping from G1 or G2, together with a lower bound on
their cost. We call entrance time and exit time all times 𝑡 at which a free particle enters or leaves �̄�(𝑡). A special time is an entrance
ime, an exit time, a wake up time, a return time 𝜏𝑖 or a boxes special time (recall (1.20)). Note that each 𝜎𝑖 defined in (4.4) is a
pecial time, since it is either an entrance time or a wake-up time. As above, we say that two times 𝑡1 < 𝑡2 are 𝛿-close if 𝑡2 − 𝑡1 < e𝛿𝛽 .

∶ A recurrence or non-superdiffusivity property is violated within time 𝑇𝛥+e𝛿𝛽 . This event has an infinite cost, i.e., its probability
is 𝑆𝐸𝑆.

∶ There are more than e(2𝛼+𝛿)𝛽 special times within time 𝑇𝛥+e𝛿𝛽 . This event has an infinite cost.

∶ Within time 𝑇𝛥+e𝛿𝛽 there is a time interval of length e𝛿𝛽 that contains a special time followed by a move of cost larger than or
equal to 𝑈 . This event costs at least 𝑈 − 𝑂(𝛿).

′ ∶ Within time 𝑇𝛥+e𝛿𝛽 there is a time interval 𝐼 of length at most e𝛿𝛽 that contains a move of cost larger than or equal to 𝑈 and
ends with the entrance in �̄� of a free particle that was outside �̄� during 𝐼 . This event costs at least 𝑈 − 𝑂(𝛿).

𝐷 ∶ Within time 𝑇𝛥+e𝛿𝛽 there is a time interval of length e𝐷𝛽 that contains a special time followed by a move of cost larger than
or equal to 2𝑈 or two 𝛿-close moves of cost larger than or equal to 𝑈 . This event costs at least 2𝑈 −𝐷 − 𝑂(𝛿).

𝐷′ ∶ Within time 𝑇𝛥+e𝛿𝛽 there is a time interval 𝐼 of length at most e𝐷𝛽 that contains a move of cost larger than or equal to 2𝑈 or
two 𝛿-close moves of cost larger than or equal to 𝑈 , and ends with the entrance in �̄� of a free particle that was outside �̄�
during 𝐼 . This event costs at least 2𝑈 −𝐷 − 𝑂(𝛿).

𝐸 ∶ Within time 𝑇𝛥+e𝛿𝛽 there is a time interval [𝑡1, 𝑡2] such that |�̄�| is constant on [𝑡1, 𝑡2], the local energy difference �̄�(𝜂(𝑡2)) −
�̄�(𝜂(𝑡1)) is larger than or equal to 3𝑈 , and 𝑡1 is 𝛿-close to some earlier special time. This event costs at least 3𝑈 −𝛥−𝛼−𝑂(𝛿).

𝑚+1 ∶ There are 𝑚 + 1 times 𝑡1 < ⋯ < 𝑡𝑚+1 < 𝑇𝛥+e𝛿𝛽 at which some particle is colored red. This event costs at least
(𝑚 + 1)(2𝑈 − 𝛥 − 𝛼) − 𝑂(𝛿).

𝐺 ∶ There are two red particles at a same time 𝑡 < 𝑇𝛥+e𝛿𝛽 in [�̄�, 𝐷 + 𝛿]. This event costs at least 𝑈 − 𝑑 + 𝜖 − 𝛼 − 𝑂(𝛿).

𝐺′ ∶ There are a red and a green particles at a same time 𝑡 < 𝑇𝛥+e𝛿𝛽 in [�̄�, 𝐷 + 𝛿]. This event costs at least 𝑈 − 𝑑 − 𝛼 − 𝑂(𝛿).

′
4 ∶ There are four active particles, red or green, at a same time 𝑡 < 𝑇𝛥+e𝛿𝛽 in a box of volume e(𝐷+𝛿)𝛽 , or a particle that belongs

to a cluster consisting of two or three active particles only falls asleep. This event costs at least 3𝛥− 2𝑈 − 𝜃 + 3𝛼 − 2𝑑 −𝑂(𝛿).

2 ∶ There are two green particles at a same time 𝑡 < 𝑇𝛥+e𝛿𝛽 in [�̄�, 𝐷 + 𝛿]. This event costs at least 𝛥 −𝐷 + 𝛼 − 𝑂(𝛿).

Set

𝑍1 = 𝐴 ∪ 𝐵 ∪ 𝐶 ∪ 𝐶 ′ ∪𝐷 ∪𝐷′ ∪ 𝐸 ∪ 𝐹𝑚+1 ∪ 𝐺 ∪ 𝐺′ ∪ 𝐺′
4 ∪𝐻2, (5.1)

so that 𝑍𝑐
1 implies 𝐴𝑐 , 𝐵𝑐 , . . . , 𝐺′𝑐

4 , 𝐻𝑐
2 . We will prove by induction that, for all 0 ≤ 𝑘 ≤ 𝑛,

Claim PPP(𝒌). If 𝑍1 does not occur, then

(i) 𝜑𝑘 does not escape from G1.
(ii) A particle is painted red each time 𝜑𝑘 climbs along an 2𝑈 -edge of G1.
(iii) No particle is painted yellow within 𝜏𝑘.
(iv) No box creation occurs within 𝜏𝑘.

Property (iv) avoids the creation of new boxes within time 𝑡 ≤ 𝜏𝑘. Since the cost of 𝑍1 is given by the smallest cost of its
components 𝐴, 𝐵, … , we obtain

𝑐(𝑍1) =

{

𝑐(𝐹𝑚+1) ≥ 𝑟(𝓁1,𝓁2) − 𝛥 − 𝑂(𝛼) − 𝑂(𝛿) if 𝓁1 < 𝓁𝑐 ,
𝑐(𝐻2) ≥ 𝑟(𝓁1,𝓁2) − 𝛥 − 𝑂(𝛼, 𝑑) − 𝑂(𝛿) if 𝓁1 ≥ 𝑙𝑐,

and this will prove (4.7).
23
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∙ Proof of PPP(𝒌), 𝟎 ≤ 𝒌 ≤ 𝒏. P(0) obviously holds because 𝜏0 = 0. We prove P(𝑘+1) by assuming P(𝑘). Let us assume that 𝑍𝑐
1 occurs.

We have to control the process 𝑋 on the time interval

[𝜏𝑘, 𝜏𝑘+1] = [𝜏𝑘, 𝜎𝑘+1] ∪ [𝜎𝑘+1, 𝜏𝑘+1].

We analyze these two intervals separately.

The time interval [𝜏𝑘, 𝜎𝑘+1]: Consider the process

𝛥�̄� ∶ 𝑡 ∈ [𝜏𝑘, 𝜎𝑘+1) ↦ �̄�(𝑋(𝑡)) − �̄�(𝑋(𝜏𝑘)).

It follows from the definition of 𝜎𝑘+1 that |�̄�(𝑡)| does not change during the time interval [𝜏𝑘, 𝜎𝑘+1). P(𝑘) implies, in particular,

𝑋(𝜏𝑘) ∈ I(𝓁1𝓁2 − 𝑖) (5.2)

for some 1 ≤ 𝑖 ≤ 𝑚, so that �̄�(𝜏𝑘) is a solution of the isoperimetric problem, and this implies that 𝛥�̄� cannot go down below 0. Then
𝐸𝑐 implies that 𝛥�̄� cannot go above 2𝑈 , and it follows that

𝛥�̄�(𝑡) ∈ {0, 𝑈 , 2𝑈}, 𝜏𝑘 ≤ 𝑡 < 𝜎𝑘+1.

The process 𝛥�̄� can therefore be seen as a succession of increases and decreases of the local energy to some of these three values.
We claim that 𝑍𝑐

1 implies:

(i) Each increase of 𝛥�̄� to 2𝑈 is followed by a 𝛿-close decrease to 𝑈 or 0.
(ii) Each increase of 𝛥�̄� to 𝑈 is followed by a 𝛿-close decrease to 0 or a 𝛿-close increase to 2𝑈 .

(iii) After each decrease to 𝑈 , 𝛥�̄� has to increase to 2𝑈 within a time e(𝑈+𝛿)𝛽 or to decrease to 0 within a time e𝛿𝛽 .

ndeed, (i) and (ii) follow from the recurrence property to X0 implied by 𝐴𝑐 , while (iii) follows from the recurrence properties to
𝑈 and X0 implied by the same event.

Now, 𝜎𝑘+1 can be reached either via the entrance of a free particle in �̄� or by freeing some particle in �̄�. We will refer to these
s the entrance and wake-up case, and we analyze them separately.

ntrance case: In this case properties (i)–(iii), 𝐶 ′𝑐 and 𝐷′𝑐 imply that 𝛥�̄�(𝜎−𝑘+1) = 0, hence 𝑋(𝜎−𝑘+1) ∈ I(𝓁1𝓁2 − 𝑖) with 1 ≤ 𝑖 ≤ 𝑚
defined by (5.2). �̄�(𝜎𝑘+1) is then made up of an isoperimetric configuration of size 𝓁1𝓁2 − 𝑖 and a free particle, for which we
use the short-hand notation 𝑋(𝜎𝑘+1) ∈ I(𝓁1𝓁2 − 𝑖)𝑓𝑝.

ake-up case: Recall (5.2) again, and use that 𝐸𝑐 and 𝑖 ≤ 𝑚 < 𝓁1 − 1 imply

�̄�(𝑋(𝜎𝑘+1)) ≤ �̄�(I(𝓁1𝓁2 − 𝑖)) + 2𝑈 = �̄�(I(𝓁1𝓁2 − 𝑖 − 1)) + 𝛥.

Since a free particle has perimeter 4, we also have the reverse inequality

�̄�(𝑋(𝜎𝑘+1)) ≥ �̄�(I(𝓁1𝓁2 − 𝑖 − 1)) + 𝛥,

and so we conclude that

�̄�(𝑋(𝜎𝑘+1)) = �̄�(I(𝓁1𝓁2 − 𝑖 − 1)) + 𝛥. (5.3)

Together with properties (i)–(iii) this implies that the waking-up particle is colored red: the requested move of cost 2𝑈 , or two
𝛿-close move of cost 𝑈 , do not have to be 𝛿-close to 𝜎𝑘+1, and it is not possible that a particle wakes up from a 𝑈 -reducible
configuration that is reached without waking up from a configuration in X𝐷. Indeed, it is impossible to obtain an isoperimetric
configuration with a free particle by detaching a particle from an isoperimetric configuration in X0 ⧵X𝑈 : if the free particle
is detached from the external boundary of the configuration, then the starting configuration is not isoperimetric, while if the
particle is detached from the internal boundary, then it is not in X0. Eq. (5.3) also implies that 𝑋(𝜎𝑘+1) ∈ I(𝓁1𝓁2 − 𝑖 − 1)𝑓𝑝.

The above analysis of the time interval [𝜏𝑘, 𝜎𝑘+1] requires a few concluding remarks. First, we proved that no yellow particle can
e produced during this time interval. Second, 𝐹 𝑐

𝑚+1 together with P(𝑘) and 𝑋(0) ∈ I(𝓁1𝓁2) imply that the wake-up case has to be
xcluded when 𝑖 = 𝑚. Third, we can conclude

𝑋(𝜎𝑘+1) ∈

{

I(𝓁1𝓁2 − 𝑗)𝑓𝑝 for some 𝑗 ∈ {𝑖, 𝑖 + 1} if 𝑖 < 𝑚,
I(𝓁1𝓁2 − 𝑗)𝑓𝑝 with 𝑗 = 𝑖 if 𝑖 = 𝑚.

(5.4)

▶ The time interval [𝜎𝑘+1, 𝜏𝑘+1]: 𝐴𝑐 implies that 𝜏𝑘+1 − 𝜎𝑘+1 < e(𝐷+𝛿∕2)𝛽 . From P(𝑘) and our previous analysis we also know that
e have a red or a green particle in �̄� and that no yellow particle was produced during the time interval [0, 𝜎𝑘+1]. Therefore the

non-superdiffusivity property, 𝐺𝑐 , 𝐺′𝑐 and 𝐻𝑐
2 imply that no other (colored) particle can enter �̄� before time 𝜏𝑘+1.

Let us next consider the process

𝛥�̄� ∶ 𝑡 ∈ [𝜎𝑘+1, 𝜏𝑘+1] ↦ �̄�(𝑋(𝑡)) − �̄�(𝑋(𝜎𝑘+1))

nd make two preliminary observations:
24
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(i) Since there is a free particle in �̄�, the recurrence property to X0, 𝐶𝑐 , 𝐶 ′𝑐 and the fact that no other active particle can enter
�̄� before 𝜏𝑘+1 imply that 𝛥�̄� first has to decrease within a time e𝛿𝛽 .

(ii) The recurrence property to X𝑈 , 𝐷𝑐 and 𝐷′𝑐 imply that before time 𝜏𝑘+1 there will be neither a move of cost larger than or
equal to 2𝑈 , nor a succession of 𝛿-close moves of cost larger than or equal to 𝑈 .

e now separate two complementary events, to which we will refer as the good attachment and the exit.

Good attachment: This occurs when 𝛥�̄� reaches the level −2𝑈 before the free particle leaves �̄�. With 1 ≤ 𝑗 ≤ 𝑚 defined in (5.4),
the local energy is equal to

�̄�(I(𝓁1𝓁2 − 𝑗)𝑓𝑝) − 2𝑈 = �̄�(I(𝓁1𝓁2 − (𝑗 − 1)))

because 𝑗 − 1 ≤ 𝑚 − 1 < 𝓁1 − 1 and 𝑗 > 0: good attachment is excluded when 𝑗 = 0 because

�̄�(I(𝓁1𝓁2)𝑓𝑝) − 2𝑈 < �̄�(I(𝓁1𝓁2 + 1)).

The recurrence property to X0, observation (ii) and the fact that no other free particle can enter �̄� before time 𝜏𝑘+1 imply that
𝛥�̄� can only oscillate between the levels −2𝑈 and −𝑈 . This excludes any possibility for the active particle to leave �̄� before
time 𝜏𝑘+1, and 𝑋 has to reach X𝐷 by reaching X𝑈 and making the active particle fall asleep. Since they are reached from
level −2𝑈 , configurations at level −𝑈 are 𝑈 -reducible. It follows that 𝑋 reaches X𝐷 at the level −2𝑈 , i.e., in I(𝓁1𝓁2−(𝑗−1)).

Exit: This occurs when 𝛥�̄� does not reach the level −2𝑈 before the free particle leaves �̄�. Observation (i) implies that 𝛥�̄� first
decreases to −𝛥 or −𝑈 . In the first case 𝑋 reaches X𝐷 in I(𝓁1𝓁2− 𝑗) with 𝑗 defined in (5.4). In the second case the recurrence
property to X0, observation (ii) and the fact that no other free particle can enter �̄� before 𝜏𝑘+1 imply that 𝛥�̄� can only
oscillate between the levels −𝑈 and 0 before possibly going down to −𝛥. Since configurations at levels −𝑈 and 0 are all
𝑈 -reducible (consider the reverse path to 𝑋(𝜎−𝑘+1)), 𝛥�̄� must eventually go down to −𝛥: 𝑋 reaches X𝐷 in I(𝓁1𝓁2 − 𝑗).

ur permutation rules now imply that no yellow particle can be produced during the time interval [𝜎𝑘+1, 𝜏𝑘+1], and we conclude
hat

𝑋(𝜏𝑘+1) ∈

{

I(𝓁1𝓁2 − 𝑖′) for some 𝑖′ ∈ {𝑗 − 1, 𝑗} if 𝑗 > 0,
I(𝓁1𝓁2 − 𝑖′) with 𝑖′ = 𝑗 if 𝑗 = 0.

ombined with (5.4) and the fact that a red particle was produced if 𝑗 = 𝑖 + 1, it remains to prove P(𝑘 + 1)-(iv). But this follows
rom the event 𝐺′𝑐

4 and P(𝑘 + 1)(iii), and ends our induction.

Cost estimates. To complete the proof of (4.7), we only need to check the lower bounds for the cost of each event that makes
p 𝑍1, for which we refer to Appendix B. This concludes Case (I). □

.2.3. Escape case (II): Lemmas 5.1–5.2
Special times and large deviation events in the subcritical case. In the subcritical case, the cost of 𝑍1 equals the cost of 𝐹𝑚+1.
e build 𝑍2 by removing 𝐹𝑚+1 from 𝑍1, before adding new large deviation events. With

𝓁′
1 = 𝓁2 − 1, 𝓁′

2 = 𝓁1,

he proof of (4.7) shows that (𝑍1 ⧵𝐹𝑚+1)𝑐 implies that either 𝜑𝑛 does not escape from G1, or there is a first return time 𝜏𝑘0 such that
(𝜏𝑘0 ) ∈ I(𝓁′

1𝓁
′
2 + 2), and an (𝑚 + 1)𝑡ℎ particle is colored red at time 𝜎𝑘0+1. The following formula is a definition of 𝑘0:

𝜎𝑘0+1 is the (𝑚 + 1)𝑡ℎ 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑟𝑒𝑑 𝑐𝑜𝑙𝑜𝑟. (5.5)

ote that before time 𝜏𝑘0 no particle can be colored yellow and there are at least 𝓁′
1𝓁

′
2 sleeping particles for any 𝑡 ∈ [0, 𝜏𝑘0 ]. In

roving (4.8) we will therefore have to deal with yellow particles. These cannot be controlled by their too low energetic cost, but
hey are closely related to the notion of 𝑈 -reducibility. A careful analysis of the possible trajectories between 𝑈 -reducible clusterized
onfigurations and configurations in X𝐷 will be the key tool to control the yellow particles. To that end we set 𝜏𝑘0 = 𝜏𝑘0 and, for
≥ 𝑘0,

�̃�𝑘+1 = inf
{

𝑡 > 𝜏𝑘 ∶ there is a free particle inside �̄� at time 𝑡
}

,

nd

𝜏𝑘+1 = inf
{

𝑡 > �̃�𝑘+1 ∶ 𝑋(𝑡) ∈ X𝐷 or 𝑋(𝑡) ∈ I(𝓁′
1𝓁

′
2 + 1) ⧵X𝑈

}

.

ote the difference between these definitions and those of the special times 𝜎𝑖+1 and 𝜏𝑖+1: they are related to free particles and
𝐷 ∪ (I(𝓁′

1𝓁
′
2 + 1) ⧵X𝑈 ), rather than to active particles and X𝐷. However, (𝑍1 ⧵ 𝐹𝑚+1)𝑐 implies that �̃�𝑘0+1 = 𝜎𝑘0+1. To prove (4.8) we

ust analyze the time intervals [𝜏𝑘, �̃�𝑘+1] and [�̃�𝑘+1, 𝜏𝑘+1], just like we analyzed the time intervals [𝜏𝑖, 𝜎𝑖+1] and [𝜎𝑖+1, 𝜏𝑖+1] to prove
4.7). We needed such an analysis for all 1 ≤ 𝑖 < 𝑛, but now it will turn out that it will be enough to consider 1 ≤ 𝑘 < �̃� with
25
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Fig. 11. The graph G̃.

nd

�̃�1 = max{𝑘 ≥ 𝑘0 ∶ 𝜏𝑘 ≤ 𝑇𝛥+e𝛿𝛽},
�̃�2 = min{𝑘 > 𝑘0 ∶ 𝑋(𝜏𝑘) ∈ I(𝓁′

1𝓁
′
2 + 2)}.

e will add �̃�𝑘 and 𝜏𝑘, 1 ≤ 𝑘 ≤ �̃� to our set of special times.
▶ The main obstacle: With a pair of particles {𝑖, 𝑗} we associate a family of special times 𝜃𝑖𝑗𝑘 , 𝑘 ∈ N0. Before giving the definition

f these stopping times, let us explain what they will be used for. In proving (4.7), we could exclude the simultaneous presence of
wo free particles in �̄�. This was done by excluding the simultaneous presence of two active particles in [�̄�, 𝐷 + 𝛿] by the means of
arge deviation events to control red and green particles and the inductive hypothesis to control yellow particles. In proving (4.8),
e still need to exclude the simultaneous presence of two free particles in �̄�, but we have to allow the simultaneous presence of two
ctive particles in �̄�. We will face this obstacle by using large deviation events and some inductive hypothesis to exclude, on the one
and, the simultaneous presence of three active particles in [�̄�, 𝐷 + 𝛿], and showing, on the other hand, that the first simultaneous
resence of two free particles 𝑖 and 𝑗 in �̄� at a time 𝑇 𝑖𝑗 would imply some large deviation event 𝐽 𝑖𝑗 that involves the two particles
and 𝑗 during a time interval [𝜃𝑖𝑗𝑘 , 𝑇

𝑖𝑗 ] in which 𝑖 and 𝑗 are the only active particles in [�̄�, 𝐷 + 𝛿].
Let us now give the precise definitions for 𝜃𝑖𝑗𝑘 and 𝐽 𝑖𝑗 . We call 𝜃𝑖𝑗0 < 𝜃𝑖𝑗1 < ⋯ the ordered sequence of times 𝑡 such that one of the

ollowing events occurs:

(i) 𝑖 is clusterized in �̄�, 𝑗 is freed inside �̄�, and there was at 𝑡− a single cluster in �̄� that contained 𝑖 and 𝑗.
(ii) 𝑖 enters [�̄�, 𝐷 + 𝛿] and 𝑗 is in [�̄�, 𝐷 + 𝛿], so that 𝑖 was outside [�̄�, 𝐷 + 𝛿] at time 𝑡−.

(iii) 𝑖 is clusterized in �̄�, 𝑗 is free in [�̄�, 𝐷 + 𝛿], a third particle 𝑘 leaves [�̄�, 𝐷 + 𝛿] and there is no other free particle in [�̄�, 𝐷 + 𝛿],
so that 𝑘 was inside [�̄�, 𝐷 + 𝛿] at time 𝑡−.

We call 𝑇 𝑖𝑗 the first time when particles 𝑖 and 𝑗 are both free in �̄�. We say that 𝐽 𝑖𝑗 occurs if 𝑇 𝑖𝑗 ≤ 𝑇𝛥+e𝛿𝛽 and there is some 𝜃𝑖𝑗𝑘 < 𝑇 𝑖𝑗

such that any active particle in [�̄�, 𝐷 + 𝛿] during the time interval [𝜃𝑖𝑗𝑘 , 𝑇
𝑖𝑗 ] is either 𝑖 or 𝑗. The following lemma expresses one of

the main properties of the large deviation event 𝐽 𝑖𝑗 .

Lemma 5.1. If 𝑇 𝑖𝑗 ≤ 𝑇∶𝛥+e𝛿𝛽 , then either 𝐽 𝑖𝑗 occurs or there is a time 𝑡 ≤ 𝑇 𝑖𝑗 at which there are at least three active particles inside
[�̄�, 𝐷 + 𝛿].

The proof of Lemma 5.1 is deferred to Section 5.4.

∙ Large deviations events. The event �̃� in the following list contains 𝐵 because we enlarge our set of special times by adding the
̃𝑘, 𝜏𝑘 and 𝜃𝑖𝑗𝑘 . In the same way, �̃� and �̃� contain 𝐶 and 𝐷. The event 𝐹𝑚+1 is instead contained in 𝐹𝑚+1 and has a larger cost.

�̃� ∶ There are more than e(2𝛼+𝛿)𝛽 special times within time 𝑇𝛥+e𝛿𝛽 . This event has an infinite cost.

�̃� ∶ Within time 𝑇𝛥+e𝛿𝛽 there is a time interval of length e𝛿𝛽 that contains a special time followed by a move of cost larger than or
equal to 𝑈 . This event costs at least 𝑈 − 𝑂(𝛿).

�̃� ∶ Within time 𝑇𝛥+e𝛿𝛽 there is a time interval of length e𝐷𝛽 that contains a special time followed by a move of cost larger than
or equal to 2𝑈 or two 𝛿-close moves of cost larger than or equal to 𝑈 . This event costs at least 2𝑈 −𝐷 − 𝑂(𝛿).

𝐺′
3 ∶ There are three active particles, red or green, together with a particle from a cluster at a same time 𝑡 < 𝑇𝛥+e𝛿𝛽 in a box of

volume e(𝐷+𝛿)𝛽 , or a particle that belongs to a cluster consisting of two or three active particles only falls asleep. This event
costs at least 3𝛥 − 2𝑈 − 𝜃 + 3𝛼 − 2𝑑 − 𝑂(𝛿).

𝐹𝑚+1 ∶ Within time 𝑇𝛥+e𝛿𝛽 there are 𝑚 + 1 attributions of red color and there are either an extra move of cost larger than or equal
to 2𝑈 or two 𝛿-close moves of cost larger than or equal to 𝑈 , or else the occurrence of one of the events 𝐽 𝑖𝑗 . Note that
𝐹 = 𝐹 ∩ (𝐹 ∪

⋃

𝐽 𝑖𝑗 ). This event costs at least (𝑚 + 3 )(2𝑈 − 𝛥 − 𝛼) − 𝑂(𝛿).
26
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Set

𝑍2 = 𝐴 ∪ �̃� ∪ �̃� ∪ 𝐶 ′ ∪ �̃� ∪𝐷′ ∪ 𝐸 ∪ 𝐹𝑚+1 ∪ 𝐺 ∪ 𝐺′ ∪ 𝐺′
3 ∪ 𝐺′

4 ∪𝐻2. (5.7)

Let G̃ be the graph in Fig. 11.
Recall (5.5) and (5.6), and set

�̃�𝑘 = (𝑋(𝜏𝑘0 ), 𝑋(�̃�𝑘0+1), 𝑋(𝜏𝑘0+1),… , 𝑋(�̃�𝑘), 𝑋(𝜏𝑘)), 𝑘0 ≤ 𝑘 ≤ �̃�.

We will prove by induction that, for all 𝑘0 ≤ 𝑘 ≤ �̃�,

Claim P̃PP(𝒌). If 𝑍2 does not occur, then

(i) �̃�𝑘 does not escape from G̃.
(ii) Some particle can be colored yellow during the time interval [𝜏𝑘0 , 𝜏𝑘], but only during the climbing of the 𝑦-edge of G̃.
(iii) There is at most one yellow particle at each time 𝑡 ≤ 𝜏𝑘.
(iv) Each time 0 ≤ 𝑡 ≤ 𝜏𝑘 a particle falls asleep there is no yellow particle at the first 𝜏𝑗 , 1 ≤ 𝑗 ≤ 𝑘, larger than or equal to 𝑡.
(v) For all 𝑘0 < 𝑗 ≤ 𝑘, if 𝑋 visits X𝑈 during the time interval [�̃�𝑗 , 𝜏𝑗 ), then there is no red or green particle in �̄� at time 𝜏𝑗 .
(vi) At each time 0 ≤ 𝑡 ≤ 𝜏𝑘 there are at least 𝓁′

1𝓁
′
2 sleeping particles.

(vii) No box creation occurs within time 𝜏𝑘.

Property (i) is the main one we are interested in. Property (iv) implies that if a particle falls asleep when there is a yellow
particle, then it is the yellow particle that falls asleep. Property (vi) is easy to check and simplifies a few steps of the proof. We will
use properties (ii)–(iv) to control inductively the yellow particles, in particular, property (iii) will be used to prove property (vii).
Property (v) will be used to prove property (iv) with the help of the following lemma, whose proof is deferred to Section 5.5.

Lemma 5.2. If 𝑍2 does not occur, then, for all 𝑘 ≤ �̃�, either 𝑋(𝜏𝑘) ∈ X𝑈 or 𝑋(𝑡) ∉ X𝑈 for all 𝑡 ∈ [𝜏𝑘, �̃�𝑘+1).

⊵ Before proving P̃(𝑘), 𝑘0 ≤ 𝑘 ≤ �̃�, let us show that P̃(�̃�) implies for both cases �̃� = �̃�1 and �̃� = �̃�2 that if 𝑍𝑐
2 occurs, then 𝜑𝑛

cannot escape from G2.
For �̃� = �̃�1, since 𝑍𝑐

2 implies that �̃��̃� does not escape from G̃, it suffices to prove, for all 𝑘0 ≤ 𝑙 ≤ 𝑛, that 𝜏𝑙 = 𝜏𝑘 for some 𝑘 ≤ �̃�.
We prove by induction on 𝑙 ≥ 𝑘0. The claim is obvious for 𝑙 = 𝑘0. If this is true for some 𝑙 < 𝑛, then �̃�𝑘+1 = 𝜎𝑙+1 and, since �̃� = �̃�1,
there is a last time 𝜏𝑚∗ > 𝜎𝑙+1 before 𝜏𝑙+1:

𝜏𝑚∗ = max{𝜏𝑚 ≤ 𝜏𝑙+1 ∶ 𝜏𝑚 > 𝜎𝑙+1}.

If 𝑋(𝜏𝑚∗ ) ∉ X𝑈 , then, by Lemma 5.2, 𝜏𝑙+1 ≥ �̃�𝑚∗+1 and 𝜏𝑚∗ cannot be the last time 𝜏𝑚 smaller than or equal to 𝜏𝑙+1. It follows that
𝑋(𝜏𝑚∗ ) ∈ X𝐷 and, since 𝜏𝑚∗ > 𝜎𝑙+1, 𝜏𝑚∗ ≥ 𝜏𝑙+1 ≥ 𝜏𝑚∗: the two times coincide.

For �̃� = �̃�2, like for �̃� = �̃�1, we prove that there is some 𝑘1 > 𝑘0 such that 𝜏𝑘1 = 𝜏�̃� and

{𝜏𝑘0 , 𝜏𝑘0+1,… , 𝜏𝑘1} ⊂ {𝜏𝑘0 , 𝜏𝑘0+1,… , 𝜏�̃�}.

It follows that 𝑍𝑐
2 implies that 𝜑𝑘1 does not escape from G2. Since �̃� = �̃�2, 𝑋 reaches X𝐷 at time 𝜏�̃� and, since P̃(�̃�)-(i) implies that

it does so by making some particle fall asleep, P̃(�̃�)(iv) implies that there is no yellow particle at time 𝜏𝑘1 = 𝜏�̃�. Using that 𝐹 𝑐
𝑚+1

excludes any (𝑚 + 2)𝑡ℎ attribution of the red color, we can show by induction, as in the proof of (4.7), that 𝜑𝑘, for 𝑘 ≥ 𝑘1, cannot
escape anymore from G1, the subgraph of G2.

Since the cost of 𝑍2 is given by the smallest cost of its components, we obtain

𝑐(𝑍2) =

⎧

⎪

⎨

⎪

⎩

𝑐(𝐹𝑚+1) ≥ 𝑟(𝓁1,𝓁2) − 𝛥 + 𝛾
2 − 𝑂(𝛼, 𝑑) − 𝑂(𝛿) if 𝓁1 < 𝓁𝑐 − 1,

𝑐(𝐹𝑚+1) ≥ 𝑟(𝓁1,𝓁2) − 𝛥 + 𝛾
2 − 𝑂(𝛼, 𝑑) − 𝑂(𝛿) if 𝓁1 = 𝓁𝑐 − 1 and 𝜄 < 1∕2,

𝑐(𝐻2) ≥ 𝑟(𝓁1,𝓁2) − 𝛥 + (1 − 𝜄)𝛾 − 𝑂(𝛼, 𝑑) − 𝑂(𝛿) if 𝓁1 = 𝓁𝑐 − 1 and 𝜄 ≥ 1∕2.

To prove (4.8) in the subcritical case, it only remains to prove P̃(�̃�) and check the given cost estimates .

∙ Proof of P̃PP(𝒌), 𝒌𝟎 ≤ 𝒌 ≤ �̃�.P̃(𝑘0)(iii) and P̃(𝑘0)(vi) follow from the argument explained below (5.5), while the other items are
obvious. For 𝑘 ≥ 𝑘0, we assume P̃(𝑘) to prove P̃(𝑘+ 1). We consider four cases, depending on the configuration at time 𝜏𝑘 in one of
the sets of G̃ ordered from right to left.

Case 1: 𝑋(𝜏𝑘) ∈ I(𝓁′
1𝓁

′
2 + 2). If 𝑘 ≠ 𝑘0, then �̃� = �̃�2 = 𝑘 and there is nothing to prove. We only need to consider the case 𝑘 = 𝑘0, for

which �̃�𝑘+1 = 𝜎𝑘0+1 and the definition of 𝜎𝑘0+1 gives 𝑋(𝜎𝑘0+1) ∈ I(𝓁′
1𝓁

′
2 + 1)𝑓𝑝. The analysis of the time intervals [𝜏𝑘, 𝜎𝑘+1] we gave

to prove (4.7) also shows that in this case no yellow particle can be produced during the time interval [𝜏𝑘0 , �̃�𝑘0+1], and that there
are 𝓁′

1𝓁
′
2 + 2 sleeping particles all along [𝜏𝑘0 , �̃�𝑘0+1], and 𝓁′

1𝓁
′
2 + 1 sleeping particles at time �̃�𝑘0+1.

Since the free particle is colored red at time �̃�𝑘0+1 and no yellow particle was produced during the time interval [0, �̃�𝑘0+1], the
analysis of the time intervals [𝜎𝑘+1, 𝜏𝑘+1] we gave to prove (4.7) can be reproduced to prove P̃(𝑘0 + 1). There are two differences.
One difference is that we have to distinguish between two cases at the end of the ‘‘exit case’’, when reaching an isoperimetric

′ ′
27

configuration of sleeping particles: if this configuration is 𝑈 -irreducible, then 𝑋 reaches X𝐷 in I(𝓁1𝓁2 + 1) ∩X𝑈 , while if not, then
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𝑋 reaches I(𝓁′
1𝓁

′
2 + 1) ⧵X𝑈 . Still, no yellow particle was produced during the time interval [�̃�𝑘0+1, 𝜏𝑘0+1], in which we always have

′
1𝓁

′
2 + 1 sleeping particles at least. The other difference is that we have to check P(𝑘0 + 1)(v). To do so it suffices to note that the

nly case for which 𝑋(𝜏𝑘0+1) ∉ X𝐷 is the ‘‘exit case’’ for which 𝑋 does not visit X𝑈 during the whole time interval [�̃�𝑘0+1, 𝜏𝑘0+1).
Property P̃(𝑘 + 1)(vii) follows from the events 𝐺′𝑐

4 , 𝐺′𝑐
3 and P̃(𝑘 + 1)-(iii).

ase 2: 𝑋(𝜏𝑘) ∈ I(𝓁′
1𝓁

′
2 + 1) ∩X𝑈 . In this case the main part of the analysis is that of the time interval [𝜏𝑘, �̃�𝑘+1]. In particular, we

ill prove that 𝑋(�̃�𝑘+1) belongs to I(𝓁′
1𝓁

′
2 + 1)𝑓𝑝, with a cluster made up of sleeping particles only, and there is no yellow particle

t time �̃�𝑘+1. After that we can conclude as in Case 1.
We first note that, by the definition of 𝜏𝑘, there are only sleeping particles in �̄� at time 𝜏𝑘. Therefore we study once again the

rocess

𝛥�̄� ∶ 𝑡 ∈ [𝜏𝑘, �̃�𝑘+1) ↦ �̄�(𝑋(𝑡)) − �̄�(𝑋(𝜏𝑘)).

imilarly to the analysis we gave to prove (4.7), the events 𝐹 𝑐
𝑚+1 and 𝐴𝑐 imply that the process can only oscillate between the energy

evels 0 and 𝑈 , and has to go back to 0 within a time e𝛿𝛽 after each increase to 𝑈 . Since 𝑋(𝜏𝑘) ∈ X𝑈 , there is no way to free any
article without going above the energy level 𝑈 . We therefore only have to consider the entrance case. The event 𝐶 ′𝑐 implies that

reaches I(𝓁′
1𝓁

′
2 + 1)𝑓𝑝, with a cluster made up of sleeping particles only.

Now, if there were some yellow particle at time �̃�𝑘+1, then by P̃(𝑘)(ii) this should have been produced at some earlier time
̃𝑘′ < 𝜏𝑘, leaving 𝓁′

1𝓁
′
2 sleeping particles. Since at time 𝜏𝑘 there are 𝓁′

1𝓁
′
2 + 1 sleeping particles, we would get a contradiction with

̃ (𝑘)(iv). It therefore remains to prove P̃(𝑘 + 1)(vii), for which we can argue as before.

ase 3: 𝑋(𝜏𝑘) ∈ I(𝓁′
1𝓁

′
2 + 1) ⧵X𝑈 . In this case, the same analysis for the time interval [𝜏𝑘, �̃�𝑘+1] can be reproduced with a different

onclusion. On the one hand, it is now possible to free some particle with a move of cost 𝑈 , leading to I(𝓁′
1𝓁

′
2)

𝑓𝑝 at time �̃�𝑘+1, with
cluster of 𝓁′

1𝓁
′
2 sleeping particles. One yellow particle, but no more than one, can subsequently be produced. On the other hand, it

s still possible to reach I(𝓁′
1𝓁

′
2 +1)𝑓𝑝 at time �̃�𝑘+1, without producing any new yellow particle, but in this case too there is a difference

ith respect to Case 2: it is not true anymore that all the clusterized particles in �̄� are necessarily sleeping at time �̃�𝑘+1. Indeed,
e cannot exclude anymore the presence of an active particle in �̄� at time 𝜏𝑘. Also we cannot exclude with the same argument the
ossibility of having, at time �̃�𝑘+1, 𝑙′1𝑙

′
2 +1 sleeping particles together with a yellow free particle. We will first prove that 𝑍𝑐

2 implies
hat an eventual red or green particle at time 𝜏𝑘 cannot fall asleep during the time interval [𝜏𝑘, �̃�𝑘+1]. Afterwards we will study the
ime interval [�̃�𝑘+1, 𝜏𝑘+1] in the two cases 𝑋(�̃�𝑘+1) ∈ I(𝓁′

1𝓁
′
2 +1)𝑓𝑝 and 𝑋(�̃�𝑘+1) ∈ I(𝓁′

1𝓁
′
2)

𝑓𝑝, with a cluster of 𝓁′
1𝓁

′
2 sleeping particles.

A red or a green particle cannot fall asleep in the first time interval. We only have to consider the case when there is some red or
reen particle 𝑖 in �̄� at time 𝜏𝑘. Let us call 𝜏𝑙∗ the last time 𝜏𝑙 before 𝜏𝑘 such that 𝑋(𝜏𝑙) ∈ X𝐷. Lemma 5.2 implies that 𝑋 could not
isit X𝑈 during any time interval [𝜏𝑗 , �̃�𝑗+1) for 1 ≤ 𝑙∗ < 𝑗 ≤ 𝑘. Let us call [�̃�𝑗∗ , 𝜏𝑗∗ ) the last time interval [�̃�𝑗 , 𝜏𝑗 ) after 𝜏𝑙∗ and before
̃𝑘 in which 𝑋 visited X𝑈 . We consider separately the cases in which such an index 𝑗∗ exists or not. If 𝑗∗ exists, then by P̃(𝑘)-(v)
here was no red or green particle at time 𝜏𝑗∗ , in particular, 𝑗∗ < 𝑘 and, by construction, 𝑋 did not visit X𝑈 during the time interval
𝜏𝑗∗ , �̃�𝑘+1). The recurrence property to X𝑈 , which is described by 𝐴𝑐 , then implies

�̃�𝑘+1 − 𝜏𝑗∗ ≤ 𝑇𝑈e𝛿𝛽 . (5.8)

ince at time 𝜏𝑗∗ there was no red or green particle in �̄�, if our red or green particle 𝑖 at time 𝜏𝑘 was already in �̄� at time 𝜏𝑗∗ , then
t was sleeping and there must have been some time 𝑡𝑓 in [𝜏𝑗∗ , 𝜏𝑘) at which 𝑖 was free. If 𝑖 was not in �̄� at time 𝜏𝑘, then it had to
nter �̄� during the time interval [𝜏𝑗∗ , 𝜏𝑘) and, in this case too, it had to be free at some time 𝑡𝑓 in [𝜏𝑗∗ , 𝜏𝑘). Inequality (5.8) implies
hat

�̃�𝑘+1 − 𝑡𝑓 ≤ 𝑇𝑈e𝛿𝛽 < e𝐷𝛽 ,

o that 𝑖 cannot fall asleep before time �̃�𝑘+1.
If 𝑗∗ does not exist, then by construction we deduce that 𝑙∗ < 𝑘 and

�̃�𝑘+1 − �̃�𝑙∗+1 ≤ 𝑇𝑈e𝛿𝛽 . (5.9)

ince all the clusterized particle in �̄� at time �̃�𝑙∗+1 were sleeping particles, if 𝑖 was among them, then there was some time 𝑡𝑓 between
̃ 𝑙∗+1 and 𝜏𝑘 when 𝑖 was free. The same conclusion obviously holds if 𝑖 was the free particle at time �̃�𝑙∗+1. Finally, if 𝑖 was not in
̄ at time �̃�𝑙∗+1, then it had to enter �̄� between times �̃�𝑙∗+1 and 𝜏𝑘. But in this case also it had to be free at some time 𝑡𝑓 between
̃ 𝑙∗+1 and 𝜏𝑘. It follows from (5.9) that

�̃�𝑘+1 − 𝑡𝑓 ≤ 𝑇𝑈e𝛿𝛽 < e𝐷𝛽 ,

nd 𝑖 cannot fall asleep before time �̃�𝑘+1.

The case 𝑋(�̃�𝑘+1) ∈ I(𝓁′
1𝓁

′
2 + 1)𝑓𝑝. If all the clusterized particles in �̄� are sleeping at time �̃�𝑘+1, then we can conclude as in Case

: the entrance at �̃�𝑘+1 of a yellow particle would imply either the presence of another yellow particle in �̄� at time 𝜏𝑘, which would
ontradict P̃(𝑘)(iii), or the fact that there were only sleeping particles at 𝜏𝑘, which as before would contradict either P̃(𝑘)(ii) or
̃ (𝑘)(iv). Let us therefore assume that the isoperimetric cluster at time �̃�𝑘+1 contains an active particle. Since there is also a free
article at time �̃�𝑘+1 in �̄�, we have two active particles in �̄�. The events 𝐺𝑐 , 𝐺′𝑐 and 𝐻𝑐

2 imply that at least one of them has to be
ellow. Since at time 𝜏𝑘 there was one yellow particle at most and we did not produce any new yellow particle during the time
nterval [𝜏 , �̃� ], there is at most one yellow particle. The events 𝐺𝑐 , 𝐺′𝑐 and 𝐻𝑐 imply that, among the two active particles in �̄�,
28

𝑘 𝑘+1 2
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one is yellow and the other is either red or green, there is no other yellow particle in �̄�𝑐 , and no other active particles in [�̄�, 𝐷+𝛿]⧵�̄�.
n particular, as a consequence of 𝐴𝑐 , no other particle can enter �̄� before time 𝜏𝑘+1.

Let us consider the process

𝛥�̄� ∶ 𝑡 ∈ [�̃�𝑘+1, 𝜏𝑘+1] ↦ �̄�(𝑋(𝑡)) − �̄�(𝑋(�̃�𝑘+1)).

s a consequence of 𝐴𝑐 , �̃�𝑐 and the fact that no other particle can enter �̄�, this process has to decrease within a time e𝛿𝛽 . We then
ave a flow of alternatives organized as follows. We consider three distinct cases 𝑎, 𝑏, 𝑐: the first two will be conclusive, while the
ast can either be conclusive in three different ways or bring us to a similar but simpler and binary alternative 𝑏′/𝑐′. Once again the
irst case will be conclusive, while the last case can either be conclusive in three different ways or bring us back to the same binary
lternative 𝑏′/𝑐′. It will be clear later that 𝑍𝑐

2 will prevent us from running into an infinite loop.

𝑎) The free particle at time �̃�𝑘+1 leaves �̄� without interacting with any other particle in �̄�. In this case 𝛥�̄� first decreases to −𝛥, which
occurs at time 𝜏𝑘+1: 𝑋 reaches I(𝓁′

1𝓁
′
2+1)⧵X𝑈 without having time to make the other active particle fall asleep. Indeed, with

the same argument as used before, it is possible to prove that the eventual red or green particle cannot fall asleep during
the time interval [𝜏𝑘, �̃�𝑘+1 + e𝛿𝛽 ]. If the yellow particle was free at time �̃�𝑘+1, then at time 𝜏𝑘+1 it is outside �̄�. If the yellow
particle was clusterized at time �̃�𝑘+1, then at time 𝜏𝑘+1 it is in �̄�. In this case the system does not visit X𝑈 during the time
interval [�̃�𝑘+1, 𝜏𝑘+1].

𝑏) 𝛥�̄� reaches the energy level −2𝑈 before a free particle leaves �̄�. In this case we can reproduce the analysis of the good attachment
case described to prove (4.7). 𝑋 reaches X𝐷 in I(𝓁′

1𝓁
′
2 +2) at time 𝜏𝑘+1 by making fall asleep the two active particles of time

�̃�𝑘+1.

𝑐) The free particle at time �̃�𝑘+1 interacts with the clusterized particles and 𝛥�̄� does not reach the energy level −2𝑈 before a free particle
leaves �̄�. In this case we can reproduce the analysis of the exit case described to prove (4.7), 𝛥�̄� will reach the energy level
−𝛥 with the exit of a free particle from �̄� and an isoperimetric configuration in �̄�. We note that our permutation rules ensure
that at each time 𝑡 whenever there is a free particle after the first interaction time and before reaching the energy level −𝛥,
it cannot be yellow. At the time 𝑡 of the red or green particle exit we distinguish between three cases.

(i) If 𝑋(𝑡) ∈ I(𝓁′
1𝓁

′
2 + 1) ⧵X𝑈 , then 𝜏𝑘+1 = 𝑡. If some particle fell asleep before time 𝑡, then it was the yellow one and there

is no yellow particle anymore at time 𝑡. If there is still some active particle in �̄� at time 𝑡, then it is the yellow one:
there is no green or red particle in �̄� at time 𝑡.

(ii) If 𝑋(𝑡) ∈ I(𝓁′
1𝓁

′
2+1)∩X𝑈 and all particles in �̄� are sleeping at time 𝑡, then 𝜏𝑘+1 = 𝑡. There is no yellow particle anymore

at time 𝑡. There is no green or red particle in �̄� at time 𝑡.
(iii) If 𝑋(𝑡) ∈ I(𝓁′

1𝓁
′
2 + 1) ∩X𝑈 and the yellow particle is still active at time 𝑡, then 𝜏𝑘+1 > 𝑡. As in the good attachment case

studied to prove (4.7), where 𝛥�̄� could eventually only oscillate between the two energy levels −2𝑈 and −𝑈 , 𝛥�̄� can
only oscillate between the energy levels −𝛥 and −𝛥 + 𝑈 until the first time 𝑡′ > 𝑡 when either the yellow particle falls
asleep or the red or green particle comes back in �̄�. In the former case, to which we will refer as the conclusive case,
𝜏𝑘+1 = 𝑡′, there is no yellow particle anymore at time 𝑡′, and there is no red or green particle in �̄� at time 𝑡′. In the
latter case, considering in the same way

𝛥�̄� ∶ 𝑠 ∈ [𝑡′, 𝜏𝑘+1] ↦ �̄�(𝑋(𝑠)) − �̄�(𝑋(𝑡′)),

we are led to repeat the same kind of analysis, with one more hypothesis with respect to time �̃�𝑘+1: we know that the
free particle at time 𝑡′ is either red or green and that the clusterized active particle is the yellow one. We can then
define a single alternative (𝑐′) to a similar case (𝑏′).
(𝑏′) 𝛥�̄� reaches the energy level −2𝑈 before a free particle leaves �̄�. There is no difference in this case with the previous

case (𝑏).
(𝑐′) 𝛥�̄� does not reach the energy level −2𝑈 before a free particle leaves �̄�. This case includes a possible absence of

interaction between the clusterized particles in �̄� and the green or red free particle before it exits. The same
conclusions hold as in the previous case 𝑐, with the possibility of going back to the same alternative (𝑏′)/(𝑐′) after
a similar time 𝑡′ when the green or red particle comes back in �̄�.

ince each time we go back to the alternative (𝑏′)/(𝑐′) the green or red particle enters again �̄�, �̃�𝑐 implies that it can happen a finite
umber of times only. Ultimately, no yellow particle can be produced during the time interval [�̃�𝑘+1, 𝜏𝑘+1]: if the red or the green
article falls asleep (cases (𝑏) and (𝑏′)), then so does the yellow one, and if the yellow particle falls asleep (cases (𝑏), (𝑏′), (𝑐)(ii),
𝑐′)(ii), conclusive (𝑐)(iii) and (𝑐′)(iii), or (𝑎), (𝑐)(i) and (𝑐′)(i)), then there is no yellow particle anymore at time 𝜏𝑘+1, while if 𝑋
isited X𝑈 , then 𝑎 is excluded, which is the only case with a possible green or red particle in �̄� at time 𝜏𝑘. We also had at least 𝓁′

1𝓁
′
2

leeping particles in the whole time interval. For the proof of P̃(𝑘 + 1)(vii) we can argue as before.

The case 𝑋(�̃�𝑘+1) ∈ I(𝓁′
1𝓁

′
2)

𝑓𝑝, with a cluster of 𝓁′
1𝓁

′
2 sleeping particles. Let us first show by contradiction that there cannot be two

ellow particles at time �̃�𝑘+1. Indeed, =in this case P̃(𝑘)(iii) would imply that we just reached I(𝓁′
1𝓁

′
2)

𝑓𝑝 by producing a yellow
′ ′
29

article 𝑖 during the time interval [𝜏𝑘, �̃�𝑘+1]. This is possible only if we had 𝓁1𝓁2 + 1 sleeping particles at time 𝜏𝑘. We note that
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Fig. 12. The graph G̃′
.

e could not produce more than one yellow particle in this time interval. Hence there should have been another yellow particle 𝑗
roduced at an earlier time 𝑡 < 𝜏𝑘, and we can assume that 𝑡 was the last emission time of a yellow particle before time 𝜏𝑘. Since
ur hypothesis P̃(𝑘)(ii) implies that there were at most 𝓁′

1𝓁
′
2 sleeping particles at time 𝑡, some particle fell asleep between times 𝑡

nd 𝜏𝑘 and this would contradict P̃(𝑘)(iv).
Note that 𝐺𝑐 , 𝐺′𝑐 and 𝐻𝑐

2 imply that there is either 0 or 1 particle in [�̄�, 𝐷 + 𝛿] ⧵ �̄�. We also note that the sleeping particles in
̄ at time �̃�𝑘+1 form a quasi-square: this is the only isoperimetrical configuration of size 𝓁′

1𝓁
′
2.

If there is no particle in [�̄�, 𝐷 + 𝛿] ⧵ �̄�, then, once again, 𝐴𝑐 and �̃�𝑐 imply that the local energy first has to decrease within a
ime e𝛿𝛽 . This can be realized in two ways only: waiting either for the attachment of the free particle to the cluster or for the free
article to leave �̄� at some time 𝑡. In both cases 𝜏𝑘+1 = 𝑡. In the former case 𝑋 goes back to I(𝓁′

1𝓁
′
2 +1) without making any particle

all asleep and without visiting X𝑈 . In the latter case 𝑋 reaches X𝐷 in I(𝓁′
1𝓁

′
2).

If there is another active particle in [�̄�, 𝐷+𝛿]⧵�̄�, then 𝐴𝑐 and �̃�𝑐 together with Lemma 5.1 and 𝐹 𝑐
𝑚+1 lead to the same conclusion.

he free particle at time �̃�𝑘+1 indeed has to either leave �̄� or join the cluster before the second active particle can enter �̄�. For the
roof of P̃(𝑘 + 1)(vii) we can argue as before.

ase 4: 𝑋(𝜏𝑘) ∈ I(𝓁′
1𝓁

′
2). In this case we have a quasi-square of sleeping particles at time 𝜏𝑘, and any move before the entrance of

free particle would cost 2𝑈 at least. Such a move is excluded by 𝐹 𝑐
𝑚+1. It follows that 𝑋 reaches I(𝓁′

1𝓁
′
2)

𝑓𝑝 with a cluster made up
f sleeping particles only at time �̃�𝑘+1, and we conclude like in the previous case. This ends our induction.

Cost estimates. To complete the proof of (4.7) in the subcritical case, we only need to check the given lower bounds for the cost
f each event that compounds 𝑍2, for which we refer to Appendix B. This concludes Case (II). □

.2.4. Escape case (III)
Large deviation events in the supercritical case. In the supercritical case, the cost of 𝑍1 is that of 𝐻2. We will build 𝑍2 by

emoving 𝐻2 from 𝑍1 before adding new large deviation events. The event �̃�2 in the following list is contained in 𝐻2 and has a
arger cost.

3 ∶ There are three green particles at a same time 𝑡 < 𝑇𝛥+e𝛿𝛽 in [�̄�, 𝐷 + 𝛿]. This event costs at least 2(𝛥 −𝐷 + 𝛼) − 𝑂(𝛿).

′
3 ∶ There are two times 𝑡1 < 𝑡2 < 𝑇𝛥+e𝛿𝛽 at which there is a pair of green particles in [�̄�, 𝐷 + 𝛿] at time 𝑡1 and a different pair of

green particles in [�̄�, 𝐷 + 𝛿] at time 𝑡2. This event costs at least 2(𝛥 −𝐷 + 𝛼) − 𝑂(𝛿).

∶ Within time 𝑇𝛥+e𝛿𝛽 there are two green particles at a same time in [�̄�, 𝐷 + 𝛿], and there is one attribution of the red color, or
else the occurrence of one of the events 𝐽 𝑖𝑗 . (Note that 𝐼 = 𝐻2∩(𝐹1∪

⋃

𝑖,𝑗 𝐽
𝑖𝑗 ).) This event costs at least 𝑈 − 1

2 𝜖+
1
2𝛼−𝑑−𝑂(𝛿).

�̃�2 ∶ 𝐻3 ∪𝐻 ′
3 ∪ 𝐼 . This event costs at least 𝑈 − 1

2 𝜖 +
1
2𝛼 − 𝑑 − 𝑂(𝛿).

∙ 𝒁𝟐 and the escape from G𝟐 in the supercritical case. Set

𝑍2 = 𝐴 ∪ �̃� ∪ �̃� ∪ 𝐶 ′ ∪ �̃� ∪𝐷′ ∪ 𝐸 ∪ 𝐹𝑚+1 ∪ 𝐺 ∪ 𝐺′ ∪ 𝐺′
4 ∪ 𝐺′

3 ∪ �̃�2. (5.10)

Define 𝑍′𝑐
2 = 𝑍𝑐

2 ∩ {no red particles are produced} and 𝑍′′𝑐
2 = 𝑍𝑐

2 ∩ {red particles can be produced}, so that 𝑍𝑐
2 = 𝑍′𝑐

2 ∪̇𝑍′′𝑐
2 . If 𝑍𝑐

2
occurs, then either 𝑍′𝑐

2 or 𝑍′′𝑐
2 occurs. If 𝑍′′𝑐

2 occurs, then, by using the event 𝐼𝑐 and arguing in a similar way as in the proof of
4.7), we obtain that 𝜑𝑘 does not escape from G1. If 𝑍′𝑐

2 occurs, then we define 𝜏0 = 𝜏0 and �̃�𝑘, 𝜏𝑘 with 𝑘 > 0, as before. If there
xists 1 ≤ 𝑘1 ≤ �̃� such that at time �̃�𝑘1 there are two green particles in �̄�, then we define 𝑘0 = 𝑘1 − 1, otherwise we put 𝑘0 = �̃�. We
ill analyze separately the behavior of the process 𝑋 up to and after time 𝜏𝑘0 , because before the appearance of two green particles

n �̄� no particle can be painted yellow, otherwise this is possible.
Let G̃′ be the graph in Fig. 12. Recall (5.5) and (5.6), and set

�̃�′𝑘 = (𝑋(𝜏0), 𝑋(�̃�1), 𝑋(𝜏1),… , 𝑋(�̃�𝑘), 𝑋(𝜏𝑘)), 𝑘 ≤ 𝑘0.

e will prove by induction that, for all 𝑘 ≤ 𝑘0,

laim P̃PP′(𝒌). If 𝑍 does not occur, then
30
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Fig. 13. The graph G̃.

(i) �̃�′𝑘 does not escape from G̃′.
(ii) There is no yellow particle at each time 𝑡 ≤ 𝜏𝑘.
(iii) For all 0 < 𝑗 ≤ 𝑘, if 𝑋 visited X𝑈 during the time interval [�̃�𝑗 , 𝜏𝑗 ), then there is no green particle in �̄� at time 𝜏𝑗 .
(iv) At each time 𝑡 ≤ 𝜏𝑘 there are 𝓁1𝓁2 sleeping particles.
(v) No box creation occurs within time 𝜏𝑘.

Proof of P̃PP′(𝒌), 𝟎 ≤ 𝒌 ≤ 𝒌𝟎. Note that P̃′(0) is trivial. For 𝑘 ∈ N0 we assume P̃′(𝑘) to prove P̃′(𝑘+1). If 𝑘 = 𝑘0, then there is nothing
o prove, so assume that 𝑘 ≠ 𝑘0. We separate two cases, depending on the configuration at time 𝜏𝑘 in one of the bottom sets of G̃′,
rdered from left to right.

ase 1: 𝑋(𝜏𝑘) ∈ I(𝓁1𝓁2). In this case we have a quasi-square of sleeping particles at time 𝜏𝑘, and any move before the entrance of
free particle would cost 2𝑈 at least. Such a move is excluded by the fact that no red particles can be produced. It follows that 𝑋

eaches I(𝓁1𝓁2)𝑓𝑝 with a cluster made up of sleeping particles only at time �̃�𝑘+1. By the fact that no red particles are created and
y the event 𝐻𝑐

3 , we know that there are at most two active particles in [�̄�, 𝐷 + 𝛿]. In particular, the active particles can be green
only.

If there is no particle in [�̄�, 𝐷+ 𝛿] ⧵ �̄�, then by the events 𝐴𝑐 and �̃�𝑐 we know that the local energy must decrease within a time
e𝛿𝛽 . This can be realized in two ways only: waiting either for the attachment of the free particle to the cluster or for the free particle
to leave �̄� at some time 𝑡. In both cases 𝜏𝑘+1 = 𝑡. In the former case 𝑋 goes back to I(𝓁1𝓁2 + 1) without making any particle fall
sleep and without visiting X𝑈 . In the latter case 𝑋 reaches X𝐷 in I(𝓁1𝓁2).

If there is one active particle in [�̄�, 𝐷 + 𝛿] ⧵ �̄�, then we argue as in the subcritical case by using the events 𝐴𝑐 , �̃�𝑐 , 𝐼𝑐 and
Lemma 5.1, and the fact that no red particles can be produced. Indeed, the free particle at time �̃�𝑘+1 has to either leave �̄� or join
the cluster before the second active particle enters �̄�. Property P̃′(𝑘 + 1)(v) follows from the event 𝐺′𝑐

4 and P̃′(𝑘 + 1)(ii).

Case 2: 𝑋(𝜏𝑘) ∈ I(𝓁1𝓁2 + 1) ⧵X𝑈 . We can repeat the analysis given in the subcritical case. In particular, with the same arguments
we prove that the possible green particle at time 𝜏𝑘 cannot feel asleep during the time interval [𝜏𝑘, �̃�𝑘+1]. Note that P̃′(𝑘) implies
that at time 𝜏𝑘 there is a green particle in �̄�. We have to analyze the time interval [�̃�𝑘+1, 𝜏𝑘+1] in the case 𝑋(�̃�𝑘+1) ∈ I(𝓁1𝓁2)𝑓𝑝, with

cluster of 𝓁1𝓁2 sleeping particles: it is not possible that 𝑋(�̃�𝑘+1) ∈ I(𝓁1𝓁2 + 1)𝑓𝑝 because 𝑘 ≤ 𝑘0, and therefore two green particles
annot be in �̄�. We can therefore argue as in the subcritical case. For the proof of P̃′(𝑘 + 1)(v) we can argue as before.

Let G̃ be the graph in Fig. 13.
Recall (5.5) and (5.6), and set

�̃�𝑘 = (𝑋(𝜏𝑘0 ), 𝑋(�̃�𝑘0+1), 𝑋(𝜏𝑘0+1),… , 𝑋(�̃�𝑘), 𝑋(𝜏𝑘)), 𝑘0 < 𝑘 ≤ �̃�.

e will prove by induction that, for all 𝑘0 < 𝑘 ≤ �̃�,

laim P̃PP(𝒌). If 𝑍2 does not occur, then

(i) �̃�𝑘 does not escape from G̃.
(ii) Some particle can be colored yellow during the time interval [𝜏𝑘0 , 𝜏𝑘], but only during the climbing of the 𝑦-edge of G̃.
(iii) There is at most one yellow particle at each time 𝑡 ≤ 𝜏𝑘.
(iv) At each time 1 ≤ 𝑡 ≤ 𝜏𝑘 when a particle falls asleep there is no yellow particle at the first 𝜏𝑗 , 1 ≤ 𝑗 ≤ 𝑘, larger than or equal to 𝑡.
(v) For all 0 < 𝑗 ≤ 𝑘, if 𝑋 visited X𝑈 during the time interval [�̃�𝑗 , 𝜏𝑗 ), then there is no red or green particle in �̄� at time 𝜏𝑗 .
(vi) At each time 𝑡 ≤ 𝜏𝑘 there are at least 𝓁1𝓁2 sleeping particles.
(vii) Each particle that is yellow at time 𝑡1 ≤ 𝜏𝑘 was green at time �̃�𝑘1 in �̄�.
viii) If a green particle falls asleep at time 𝑡 ≤ 𝜏𝑘, then it was green at time �̃�𝑘1 in �̄�.
(ix) No box creation occurs within 𝜏𝑘.

Properties (i)-(vi) are the same as considered in the subcritical case, while we will use property (vii) to control inductively the
ellow particles. In particular, we cannot exclude anymore the presence of two green particles, but we will exclude the simultaneous
31
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presence of two green particles and a yellow particle with the help of property (vii). Property (viii) will be used to prove property
(vii). Property (iii) helps us to prove property (ix).

⊵ Before proving P̃(𝑘), 𝑘0 ≤ 𝑘 ≤ �̃�, let us show that P̃(�̃�) implies that if 𝑍𝑐
2 occurs, then 𝜑𝑛 cannot escape from G2. We argue

s in the subcritical case, but for �̃� = �̃�2 there is one difference: the attribution of the red color is excluded by the event 𝑍′𝑐
2 , and

therefore 𝜑𝑘, 𝑘 ≥ 𝑘1, cannot escape from G2.
Since the cost of 𝑍2 is given by the smallest cost of its constituent components, we obtain

𝑐(𝑍2) =

{

𝑐(𝐹𝑚+1) ≥ 𝑟(𝓁1,𝓁2) − 𝛥 + 𝜖 − 𝛾 − 𝑂(𝛼, 𝑑) − 𝑂(𝛿) if 𝜄 < 1∕2,
𝑐(𝐺′

4) ≥ 𝑟(𝓁1,𝓁2) − 𝛥 + 𝛾 − 𝑂(𝛼, 𝑑) − 𝑂(𝛿) if 𝜄 ≥ 1∕2.

To prove (4.8) in the supercritical case, it remains to prove P̃(�̃�) and check the given cost estimates .

∙ Proof of P̃PP(𝒌), 𝒌𝟏 ≤ 𝒌 ≤ �̃�.
We have to prove P̃(𝑘1), and so we consider the time interval [𝜏𝑘0 , 𝜏𝑘1 ]. By P̃′(𝑘0), either 𝑋(𝜏𝑘0 ) ∈ I(𝓁1𝓁2) or 𝑋(𝜏𝑘0 ) ∈

I(𝓁1𝓁2 + 1) ⧵ X𝑈 . We show by contradiction that 𝑋(𝜏𝑘0 ) ∉ I(𝓁1𝓁2). Indeed, if 𝑋(𝜏𝑘0 ) ∈ I(𝓁1𝓁2), then repeating the analysis in
he proof of P̃′(𝑘) we obtain that 𝑋(�̃�𝑘1 ) ∈ I(𝓁1𝓁2)𝑓𝑝, with a cluster made up of sleeping particles only, and the free particle is
reen. This is in contradiction with the definition of the time �̃�𝑘1 . Hence 𝑋(𝜏𝑘0 ) ∈ I(𝓁1𝓁2 + 1) ⧵X𝑈 with 𝓁1𝓁2 sleeping particles and
ne active particle, which has to be green. We can repeat the analysis for in the subcritical case to prove that the green particle at
ime 𝜏𝑘0 cannot fall asleep during the time interval [𝜏𝑘0 , �̃�𝑘1 ]. By the definition of �̃�𝑘1 , we know that 𝑋(�̃�𝑘1 ) ∈ I(𝓁1𝓁2 + 1)𝑓𝑝, with
1𝓁2 sleeping particles and two green particles. During the time interval [𝜏𝑘0 , �̃�𝑘1 ] no yellow particle is produced, an so there is no
ther particle in [�̄�, 𝐷+ 𝛿] at time �̃�𝑘1 . This implies that no other particle can enter �̄� before time 𝜏𝑘1 . Property P̃′(𝑘+1)(ix) follows
rom the event 𝐺′𝑐

4 , P̃′(𝑘0)(ii) and the fact that no yellow particle is produced during the time interval [𝜏𝑘0 , 𝜏𝑘1 ]. From now on we
an argue as in the subcritical case with two differences only: we do not care about yellow particles and have to verify P̃(𝑘1)(viii),
hich is trivial. For 𝑘 ≥ 𝑘1 we assume P̃(𝑘) to prove P̃(𝑘 + 1). We distinguish between four cases, depending on the configuration
t time 𝜏𝑘 in one of the bottom sets of G̃, ordered from left to right.

ase 1: 𝑋(𝜏𝑘) ∈ I(𝓁1𝓁2). In this case, as in the proof of P̃′(𝑘), we have that 𝑋(�̃�𝑘+1) ∈ I(𝓁1𝓁2)𝑓𝑝, with a cluster made up of sleeping
articles only. Note that no yellow particle is produced during the time interval [𝜏𝑘, �̃�𝑘+1]. By the fact that no red particle is produced
nd by the event 𝐻𝑐

3 , we know that there are at most three active particles in [�̄�, 𝐷+ 𝛿]. In particular, the free particle in �̄� at time
̃𝑘+1 is green.

If there is at most one particle in [�̄�, 𝐷 + 𝛿] ⧵ �̄�, then we can argue as in the subcritical case by using the events 𝐴𝑐 , �̃�𝑐 , 𝐼𝑐 and
emma 5.1, and the fact that no red particles can be produced. If there are two particles in [�̄�, 𝐷+ 𝛿] ⧵ �̄�, then there are two green
articles and one yellow particle 𝑖. Since no yellow particle is produced in [𝜏𝑘, �̃�𝑘+1], we know that particle 𝑖 was yellow at a time
≤ 𝜏𝑘. Thus, by P̃(𝑘)(vii) we know that 𝑖 was green at time �̃�𝑘1 in �̄�. This is in contradiction with the event 𝐻 ′𝑐

3 , so this case is not
dmissible.
P̃(𝑘 + 1)(i)–(vi) follow by applying the same argument as in the subcritical case. We do not need to check P̃(𝑘 + 1)(vii)–(viii),

ecause during the time interval [𝜏𝑘, 𝜏𝑘+1] no yellow particle is produced and no green particle falls asleep. Property P̃′(𝑘 + 1)(ix)
ollows from the events 𝐺′𝑐

4 , 𝐺′𝑐
3 and P̃′(𝑘 + 1)(iii).

ase 2: 𝑋(𝜏𝑘) ∈ I(𝓁1𝓁2 + 1) ⧵X𝑈 . We can repeat the analysis given for the subcritical case. In particular, with the same argument
e are able to prove that the eventual green particle at time 𝜏𝑘 cannot fall asleep during the time interval [𝜏𝑘, �̃�𝑘+1], and we
ave to study the time interval [�̃�𝑘+1, 𝜏𝑘+1] in the two cases 𝑋(�̃�𝑘+1) ∈ I(𝓁1𝓁2)𝑓𝑝, with a cluster of 𝓁1𝓁2 sleeping particles, and
(�̃�𝑘+1) ∈ I(𝓁1𝓁2 + 1)𝑓𝑝.

he case 𝑋(�̃�𝑘+1) ∈ I(𝓁1𝓁2)𝑓𝑝, with a cluster of 𝓁1𝓁2 sleeping particles. As in the subcritical case, we can prove by contradiction that
here cannot be two yellow particles at time �̃�𝑘+1. By the fact that no red particle can be produced and by the event 𝐻𝑐

3 , we know
hat there are at most three active particles in [�̄�, 𝐷 + 𝛿], and so we can conclude as in the previous case. P̃(𝑘 + 1)(i)–(vi) follow
y applying the same argument carried out in the subcritical case. We do not need to check P̃(𝑘 + 1)(viii), because no particle falls
sleep during the time interval [𝜏𝑘, 𝜏𝑘+1]. To check P̃(𝑘 + 1)(vii), we may suppose that at time �̃�𝑘+1 a particle 𝑖 is colored yellow,
ecause otherwise there is nothing to prove. By the permutation rules, it follows that particle 𝑖 was sleeping before being colored
ellow. Since no particle falls asleep during the time interval [𝜏𝑘, �̃�𝑘+1], particle 𝑖 was sleeping at 𝜏−𝑘 . By P̃(𝑘) and the fact that
(�̃�𝑘+1) ∈ I(𝓁1𝓁2 + 1)𝑓𝑝 with two green particles, we know that particle 𝑖 fell asleep when it was green. Thus, P̃(𝑘 + 1)(vii) follows

y P̃(𝑘)(viii). For the proof of P̃′(𝑘 + 1)(ix) we can argue as before.

he case 𝑋(�̃�𝑘+1) ∈ I(𝓁1𝓁2+1)𝑓𝑝. We can argue as in the subcritical case with two differences only: we do not care about red particles
nd have to check P̃(𝑘 + 1)(viii): P̃(𝑘 + 1)(vii) is trivial because no particle is colored yellow during the time interval [�̃�𝑘+1, 𝜏𝑘+1].
e distinguish between the two following cases: If at time �̃�𝑘+1 the two active particles in �̄� are green, then P̃(𝑘 + 1)(viii) follows

y the event 𝐻 ′𝑐
3 . If at time �̃�𝑘+1 there is one green and one yellow particles in �̄�, then P̃(𝑘 + 1)(viii) follows by P̃(𝑘 + 1)(vii) and

he event 𝐻 ′𝑐
3 . For the proof of P̃′(𝑘 + 1)(ix) we can argue as before.

ase 3: 𝑋(𝜏𝑘) ∈ I(𝓁1𝓁2 + 1) ∩ X𝑈 . In this case we can be repeated the analysis in the subcritical case with two differences only:
o particle can be colored red and we do not need to check P̃(𝑘 + 1)(vii), because no yellow particle is produced during the time
nterval [𝜏𝑘, 𝜏𝑘+1]. P̃(𝑘 + 1)(viii) can be checked as in the previous case. For the proof of P̃′(𝑘 + 1)(ix) we can argue as before.
32

ase 4: 𝑋(𝜏𝑘) ∈ I(𝓁1𝓁2 + 2). In this case 𝑘 ≠ 𝑘0, so �̃� = �̃�2 = 𝑘, and there is nothing to prove. This ends our induction.
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∙ Cost estimates. To complete the proof of (4.8) in the supercritical case, we only need to check the given lower bounds for the
ost of each event that compounds 𝑍2, for which we refer to Appendix B. This concludes case (III). □

5.3. Proof of Lemma 4.5

Recall the definition of the union of events 𝑍1 and 𝑍2 in the subcritical case given in (5.1) and (5.7). We can check that for the
escape from G1 we can argue as in the general case 𝓁2 ≥ 3: the cost is given by 𝑐(𝐹1) ≥ 2𝑈 − 𝛥 − 𝛼 − 𝑂(𝛿). For the escape from G2,
gain the proof of (4.7) shows that (𝑍1 ⧵ 𝐹1)𝑐 implies that either 𝜑𝑛 does not escape from G1 or there is a first return time 𝜏𝑘0 such
hat 𝑋(𝜏𝑘0 ) ∈ I(4) and a particle is colored red at time 𝜎𝑘0+1. Set

�̄�2 = 𝑍2 ∪𝐾1 ∪𝐾2,

here 𝐾1 and 𝐾2 are the following new large deviation events:

1 ∶ There are three active particles, which can be green or red, together with one yellow particle in a box of volume e𝐷𝛽 inside
the box [�̄�, 𝛥 + 𝛿] at a same time 𝑡 ∈ [𝑡∗, 𝑇𝛥+e𝛿𝛽 ] such that 𝑋(𝑡∗) ∈ I(0) and at time 𝑡∗ the yellow particle is inside [�̄�, 𝐷 + 𝛿].
This event costs at least 𝛥 −𝐷 + 𝛼 − 𝑂(𝛿).

2 ∶ There are two active particles, which can be green or red, together with two yellow particles in a box of volume e𝐷𝛽 inside
[�̄�, 𝛥 + 𝛿] at a same time 𝑡 ∈ [𝑡∗, 𝑇𝛥+e𝛿𝛽 ] such that 𝑋(𝑡∗) ∈ I(0) and at time 𝑡∗ the two yellow particles are inside [�̄�, 𝐷 + 𝛿].
This event costs at least 𝛥 −𝐷 + 𝛼 − 𝑂(𝛿).

y defining

�̄� = min{𝑛, 𝑛∗} (5.11)

ith

𝑛∗ = min{𝑘 > 𝑘0 ∶ 𝑋(𝜏𝑘) ∈ I(4)} (5.12)

nd

�̄�𝑘 = (𝑋(𝜏𝑘0 ), 𝑋(𝜏𝑘0+1),… , 𝑋(𝜏𝑘)), 𝑘0 ≤ 𝑘 ≤ �̄�,

e will prove by induction that, for all 𝑘0 ≤ 𝑘 ≤ �̄�,

laim P̄PP(𝒌). If �̄�2 does not occur, then

(i) �̄�𝑘 does not escape from G2.
(ii) There are at most three yellow particles at each 𝑡 ≤ 𝜏𝑘.
(iii) If 𝑋(𝜏𝑘) ∈ I(4), then at time 𝜏𝑘 there is no yellow particle.
(iv) If 𝑋(𝜏𝑘) ∈ I(0), then at time 𝜏𝑘 there are three yellow and one red particles in [�̄�, 𝐷 + 𝛿], with two yellow particles at distance two

from each other.

Property (i) is the main property we are interested in. We will use properties (ii)–(iv) to control inductively the yellow particles,
n particular, property (iii) implies that 𝑋 reaches I(4) by putting to sleep all the yellow particles created during the time interval
𝜏𝑘0 , 𝜏𝑘], while property (iv) implies that I(0) is reached by breaking a dimer.

⊵ Before proving P̄(𝑘), 𝑘0 ≤ 𝑘 ≤ �̄�, let us show that P̄(�̄�) implies in the two cases �̄� = 𝑛 and �̄� = 𝑛∗ that if �̄�𝑐
2 occurs, then 𝜑𝑛

annot escape from G2. If �̄� = 𝑛, then the claim is trivial. If �̄� = 𝑛∗, then P̄(𝑛)(iii) implies that there is no yellow particle at time
𝑛∗ . Using 𝐹 𝑐

1 , which excludes any 2nd attribution of the red color, we can show by induction, as in the proof of (4.7), that 𝜑𝑘, for
≥ 𝑛∗, cannot escape anymore from G1, subgraph of G2.

Proof of P̄PP(𝒌), 𝒌𝟎 ≤ 𝒌 ≤ �̄�.
P̄(𝑘0)(i)-(iii) follow from the definition of 𝑘0. Since 𝑋(𝜏𝑘0 ) ∈ I(4), we do not need to check P̄(𝑘0)(iv). For 𝑘 ≥ 𝑘0 we assume P̄(𝑘)

o prove P̄(𝑘 + 1). We distinguish between the two following cases.

ase 1: 𝑋(𝜏𝑘) ∈ I(4). If 𝑘 ≠ 𝑘0, then �̄� = 𝑛∗ = 𝑘 and there is nothing to prove. We only have to consider the case 𝑘 = 𝑘0. The
efinition of 𝜎𝑘0+1 gives 𝑋(𝜎𝑘0+1) ∈ I(3)𝑓𝑝 with the free particle colored red. Suppose that 𝑋 does not return to I(4) within time
𝑘0+1. By arguing as in the general case, we deduce that the following moves occur: the red particle exits from �̄�, a particle is
etached at cost 𝑈 and therefore is colored yellow, leading to the configuration I(2)𝑓𝑝. Since we are considering the time interval
𝜎𝑘0+1, 𝜏𝑘0+1] and the times 𝜏𝑖 are return times to X𝐷, by the recurrence property to X𝐷 implied by 𝐴𝑐 we deduce that no particle
an exit from [�̄�, 𝐷 + 𝛿] before time 𝜏𝑘0+1, in particular, this holds for the red particle. Thus, by the event 𝐺′𝑐 , no green particle
an enter [�̄�, 𝐷 + 𝛿]. Afterwards, the free particle exits from �̄� and two yellow particles are created after breaking the dimer at
ime 𝑡: 𝑋 reaches I(0) at time 𝑡 = 𝜏𝑘0+1. By the previous observations it easy to check P̄(𝑘0 + 1)(i),(ii),(iv), while we do not need to

̄

33

heck P(𝑘0 + 1)(iii). If 𝑋 returns in I(4) at time 𝑡, then we have to prove that 𝑡 = 𝜏𝑘0+1 because we are analyzing the time interval
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[𝜏𝑘0 , 𝜏𝑘0+1]. By arguing as in the general case, we deduce that the only possibility, possibly after visiting I(2) and I(3) several times,
s to reach X𝐷 in I(4). Since no particle can enter and exit from [�̄�, 𝐷 + 𝛿] within time 𝜏𝑘0+1, P̄(𝑘0 + 1)(ii),(iii) follow.

Case 2: 𝑋(𝜏𝑘) ∈ I(0). This part of the proof is directly related to P̄(𝑘)(iv) and the new events 𝐾1 and 𝐾2. Indeed, P̄(𝑘)(iv) gives us
ontrol on the distance between the two nearest yellow particles in [�̄�, 𝐷 + 𝛿] and the green particles, which are outside the box
�̄�, 𝐷 + 𝛿] by the event 𝐺′𝑐 . By P̄(𝑘)(iv) and the events 𝐾𝑐

1 and 𝐾𝑐
2 , we deduce that, if a cluster is formed, then it has to be created

by attaching the three yellow particles together with one red or green particle, so 𝑋(𝜏𝑘+1) ∈ I(4) and properties (ii) and (iii) follow.
he claim follows after checking the given cost estimate for the events 𝐾1 and 𝐾2, for which we refer to Appendix B. □

.4. Proof of Lemma 5.1

Let us assume that 𝑇 𝑖𝑗 ≤ 𝑇𝛥+e𝛿𝛽 and there is no such time 𝑡 ≤ 𝑇 𝑖𝑗 with three active particles inside [�̄�, 𝐷+ 𝛿]. Since at time 𝑡 = 0
either both particles 𝑖 and 𝑗 belong to a same unique cluster in �̄� or at least one is outside [�̄�, 𝐷 + 𝛿], by setting

T0 = sup
{

𝑡 ≤ 𝑇 𝑖𝑗 ∶ 𝑖 or 𝑗 is outside [�̄�, 𝐷 + 𝛿]

or both are in a same unique cluster in �̄� at time 𝑡
}

,

we see that 0 ≤ T0 ≤ 𝑇 𝑖𝑗 . We distinguish between two cases.

(i) If there are no active particles, but 𝑖 or 𝑗 are inside [�̄�, 𝐷 + 𝛿] during the whole time interval [T0, 𝑇 𝑖𝑗 ], then T0 is the last 𝜃𝑖𝑗𝑘
before 𝑇 𝑖𝑗 .

(ii) If there is some other active particle inside [�̄�, 𝐷 + 𝛿] at some time 𝑡 in [T0, 𝑇 𝑖𝑗 ], then we set

T1 = sup
{

𝑡 ≤ 𝑇 𝑖𝑗 ∶ there is an active particle distinct from 𝑖 and 𝑗

inside [�̄�, 𝐷 + 𝛿] at time 𝑡
}

.

Since we assumed that there is no time 𝑡 ≤ 𝑇 𝑖𝑗 at which three active particles are inside [�̄�, 𝐷 + 𝛿], 𝑖 or 𝑗 must be sleeping at
time T1 and T1 ≤ 𝑇 𝑖𝑗 . T1 is then the last 𝜃𝑖𝑗𝑘 before 𝑇 𝑖𝑗 .

n both cases there is a last 𝜃𝑖𝑗𝑘 ≥ 0 before 𝑇 𝑖𝑗 such that any active particle in [�̄�, 𝐷 + 𝛿] during the time interval [𝜃𝑖𝑗𝑘 , 𝑇
𝑖𝑗 ] is either 𝑖

r 𝑗. □

.5. Proof of Lemma 5.2

We prove the claim by contradiction. Assume that 𝑋(𝜏𝑘) ∉ X𝑈 and that there is a 𝑡 ∈ [𝜏𝑘, �̃�𝑘+1) such that 𝑋(𝑡) ∈ X𝑈 . Then there
s a constant-cluster-size path from �̄�(𝑡) to the isoperimetric configuration �̄�(𝜏𝑘). By the recurrence property to X𝑈 implied by 𝐴𝑐 ,
e may also assume that 𝑡− 𝜏𝑘 ≤ 𝑇𝑈e𝛿𝛽 . Then �̃�𝑐 implies that the local energy along this path does not exceed �̄�(𝑋(𝜏𝑘)) +𝑈 . Since
̄ (𝜏𝑘) is isoperimetric, we also have �̄�(𝑋(𝑡)) ≥ �̄�(𝑋(𝜏𝑘)). Since �̄�(𝜏𝑘) is 𝑈 -reducible, we get a contradiction with the fact that �̄�(𝑡)
s 𝑈 -irreducible. □
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ppendix A. Environment estimates

In this appendix we prove that 𝜇R′ ((X∗
𝑖 )

𝑐 ) = 𝑆𝐸𝑆(𝛽) for 𝑖 = 1,… , 5, where, for 𝜂 ∈ X𝛽 ,

𝜇R′ (𝜂) = e−𝛽[𝐻(𝜂)+𝛥|𝜂|]

𝑍R′
1R′ (𝜂), 𝑍R′ =

∑

𝜂∈R′
e−𝛽[𝐻(𝜂)+𝛥|𝜂|].

First, we consider the case 𝛥 < 𝛩 ≤ 𝜃. Given a configuration 𝜂 ∈ X𝛽 , we denote by C = C(𝜂) its connected component with maximal
volume when it is unique. Otherwise, we pick the component containing the highest particle in the lexicographic order. For 𝐶 ⊂ 𝛬𝛽 ,
we set �̄� = 𝐶 ∪ 𝜕+𝐶, where 𝜕+𝐶 denotes the external boundary of 𝐶. We start by showing that there exists a 𝑐 > 0 such that

𝜇 ′ (X ⧵X∗) ≤ e𝑐𝛽𝜇 (X ⧵X∗).
34

R 𝛽 𝑖 R 𝛽 𝑖
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To this end, given a finite set 𝛬 ⊂ 𝛬𝛽 and two configurations 𝜂𝛬 ∈ {0, 1}𝛬 and 𝜂𝛬𝛽⧵𝛬 ∈ {0, 1}𝛬𝛽⧵𝛬, we denote by 𝜂 = 𝜂𝛬 ⋅ 𝜂𝛬𝛽⧵𝛬 ∈
{0, 1}𝛬𝛽 the configuration defined by

𝜂(𝑥) =

{

𝜂𝛬(𝑥) if 𝑥 ∈ 𝛬,
𝜂𝛬𝛽⧵𝛬(𝑥) if 𝑥 ∈ 𝛬𝛽 ⧵ 𝛬.

Given a configuration 𝜎 ∈ {0, 1}𝛬𝛽 , we introduce the measure 𝜇R,𝛬,𝜎 on {0, 1}𝛬 defined by

𝜇R,𝛬,𝜎 (𝜂𝛬) =
1

𝑍R,𝛬,𝜎
e−𝛽[𝐻(𝜂𝛬⋅𝜎𝛬𝛽 ⧵𝛬)+𝛥(|𝜂𝛬|+|𝜎𝛬𝛽 ⧵𝛬|)]1R(𝜂𝛬 ⋅ 𝜎𝛬𝛽⧵𝛬),

here 𝑍R,𝛬,𝜎 is the normalizing constant. For any finite 𝛬 ⊂ 𝛬𝛽 and any configuration 𝜂 ∈ {0, 1}𝛬𝛽 , the DLR equation for the
easure 𝜇R reads

𝜇R(𝜂) =
∑

𝜎∈𝛬𝛽

𝜇R(𝜎)𝜇R,𝛬,𝜎 (𝜂|𝛬).

ince a cluster with volume at most 𝜆(𝛽)∕8 has perimeter at most 𝜆(𝛽), and therefore is contained in a box of volume 𝜆2(𝛽), it can
e arranged inside 𝛬𝛽 in at most 2𝜆2(𝛽) different ways and in at most e𝛩𝛽 different location. Hence

𝜇R′ (X𝛽 ⧵X∗
𝑖 ) =

∑

𝜂∈R′⧵X∗
𝑖

e−𝛽[𝐻(𝜂)+𝛥|𝜂|]

∑

𝜂∈R′ e−𝛽[𝐻(𝜂)+𝛥|𝜂|]
≤

∑

𝐶⊂𝛬𝛽
|𝐶|≤𝜆2(𝛽)

∑

𝜂∈R′⧵X∗
𝑖

C=𝐶

e−𝛽[𝐻(𝜂)+𝛥|𝜂|]

∑

𝜂∈R′
C=𝐶

e−𝛽[𝐻(𝜂)+𝛥|𝜂|]

≤
∑

𝐶⊂𝛬𝛽
|𝐶|≤𝜆2(𝛽)

e−𝛽[𝐻(𝐶)+𝛥|𝐶|] ∑
𝜂∈R⧵X∗

𝑖
e−𝛽[𝐻(𝜂)+𝛥|𝜂|]

e−𝛽[𝐻(𝐶)+𝛥|𝐶|] ∑ 𝜂∈R
|𝜂
|�̄� |=0

e−𝛽[𝐻(𝜂)+𝛥|𝜂|]

≤ 2𝜆
2(𝛽)e𝛩𝛽 𝜇R(X𝛽 ⧵X∗

𝑖 )

min 𝐶⊂𝛬𝛽
|𝐶|≤𝜆2(𝛽)

1
𝑍R

∑

𝜂∈R
|𝜂
|�̄� |=0

e−𝛽[𝐻(𝜂)+𝛥|𝜂|]
≤ e𝑐𝛽𝜇R(X𝛽⧵X∗

𝑖 )
,

where in the last step we use the DLR equation and the fact that, for any configuration 𝜂 ∈ R, the probability of having |𝜂
|�̄� | = 0

s at least 1 − e−(𝛥−𝛿)𝛽 for any 𝛿 > 0 and 𝛽 large enough, uniformly in the boundary conditions.
∙ 𝑖 = 1. Recall that, for 𝜂 ∈ X𝛽 , 𝜂𝑐𝑙 is the union of the connected components of size at least two, so that |𝜂 ⧵ 𝜂𝑐𝑙| denotes the

number of connected components that are reduced to single particles. We get

𝜇R(X𝛽 ⧵X∗
1) (A.1)

≤ 1
𝑍R

e𝜃𝛽
∑

𝑘=0

∑

𝜂∈R⧵X∗
1

|𝜂⧵𝜂𝑐𝑙 |=𝑘

e−𝛽[𝐻(𝜂)+𝛥|𝜂|] ≤ 1
𝑍R

(

e−(2𝛥−𝑈 )𝛽e𝜃𝛽
)𝜆(𝛽) e𝜃𝛽

∑

𝑘=0

∑

𝜂∈R
𝜂𝑐𝑙=∅,|𝜂|=𝑘

e−𝛽[𝐻(𝜂)+𝛥|𝜂|]

≤
𝑍R
𝑍R

e−(2𝛥−𝑈−𝜃)𝛽𝜆(𝛽) = 𝑆𝐸𝑆(𝛽),

where we use that 𝜃 < 2𝛥 − 𝑈 .
∙ 𝑖 = 2. Note that X𝛽 ⧵X∗

2 implies that the number of disjoint quadruples of particles with diameter smaller than
√

e𝑆𝛽 is at least
(𝜆1∕4(𝛽))∕4. Given 𝑘 = 𝜆1∕4(𝛽)∕4 and a collection 𝑥 = (𝑥𝑗𝑖 )𝑖<4,𝑗<𝑘 ∈ 𝛬4×𝑘

𝛽 , we define the set

𝛬𝑥 =
⋃

𝑖<4
𝑗<𝑘

𝐵(𝑥𝑗𝑖 ,𝓁
2
𝑐 ).

Using the DLR equation, we obtain

𝜇R(X𝛽 ⧵X∗
2) ≤

∑

𝑥00 ,…,𝑥03∈𝛬𝛽

diam{𝑥0𝑖 ,𝑖<4}<e𝑆𝛽∕2

⋯
∑

𝑥𝑘−10 ,…,𝑥𝑘−13 ∈𝛬𝛽

diam{𝑥𝑘−1𝑖 ,𝑖<4}<e𝑆𝛽∕2

∑

𝜎∈{0,1}𝛬𝛽

𝜇R(𝜎)𝜇R,𝛬𝑥 ,𝜎

(

the sites in 𝑥

are occupied

)

≤
(

e(3𝑆−4𝛥+𝜃)𝛽
)

𝜆1∕4(𝛽)
4 = 𝑆𝐸𝑆(𝛽),

where 𝑆 = 4𝛥−𝜃
3 − 𝛼.

∙ 𝑖 = 3. Let 𝑆 < 𝐴 < 𝛥 and divide the box 𝛬𝛽 into e(3𝐴−4𝛥+𝛩+3𝛼)𝛽 boxes of volume e(4𝛥−3𝐴−3𝛼)𝛽 . Note that X𝛽 ⧵ X∗
3 implies that

here exists one box containing at least (e𝛼𝛽∕4)∕4 disjoint quadruples of particles with diameter smaller than
√

e𝐴𝛽 . Using the DLR
35
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equation and arguing as above, we get

𝜇R(X𝛽 ⧵X∗
3) ≤ e(3𝐴−4𝛥+𝛩+3𝛼)𝛽

(

e−4𝛥𝛽e(4𝛥−3𝐴−3𝛼)𝛽
3
∏

𝑖=1
(e𝐴𝛽 − 5𝑖)

)
e
𝛼𝛽
4
4

≤ e(3𝐴−4𝛥+𝜃+3𝛼)𝛽e−
3
4 𝛼𝛽e

𝛼𝛽
4 = 𝑆𝐸𝑆(𝛽).

∙ 𝑖 = 4. Note that X𝛽 ⧵ X∗
4 implies that there exists a box of volume e(𝛥+𝛼)𝛽 containing either at least e

3
2 𝛼𝛽 or at most e

1
2 𝛼𝛽

particles. We consider these cases separately. Concerning the former case, by dividing the box of volume e(𝛥+𝛼)𝛽 into e
5
4 𝛼𝛽 boxes of

volume e(𝛥−
𝛼
4 )𝛽 , we have that there exists a box containing at least e

𝛼
4 𝛽 particles. Concerning the latter case, by dividing the box of

olume e(𝛥+𝛼)𝛽 into e
𝛼
2 𝛽 boxes of volume e(𝛥+

𝛼
2 )𝛽 , we have that there exists a box containing no particle. We proceed to estimate the

enominator in this latter case by considering all the configurations with one particle in each box of volume e(𝛥+
𝛼
4 )𝛽 inside a box

of volume e(𝛥+
𝛼
2 )𝛽 , namely, these boxes are e

𝛼
4 𝛽 . Using the DLR equation and arguing as above, we get

𝜇R(X𝛽 ⧵X∗
4) ≤ e

5
4 𝛼𝛽

(

e−𝛥𝛽e(𝛥−
𝛼
4 𝛽)

)e
𝛼
4 𝛽

+ e
𝛼
2 𝛽 1

(

e−𝛥𝛽e(𝛥+
𝛼
4 )𝛽

)e
𝛼
4 𝛽

= 𝑆𝐸𝑆(𝛽).

∙ 𝑖 = 5. Using the DLR equation and arguing as above, we get

𝜇R(X𝛽 ⧵X∗
5) ≤ e−𝛥𝛽

𝜆(𝛽)
4

∏

𝑖< 𝜆(𝛽)
4

(e(𝛥−
𝛼
4 )𝛽 − 5𝑖) ≤ e−

𝛼
4 𝛽

𝜆(𝛽)
4 = 𝑆𝐸𝑆(𝛽).

To conclude, consider the case 𝛩 > 𝜃. Dividing 𝛬𝛽 into boxes of volume e𝜃𝛽 and arguing as above with the help of the DLR
equation, we get the claim.

Appendix B. Cost of large deviation events

Event 𝐴. The cost of event 𝐴 follows from Proposition 2.11 and [16, Theorem 3.2.3].

vent 𝐵. Each special time except 𝜏𝑘 is related to a free particle that moves in �̄�, but the number of special times 𝜏𝑘 is equal to the
one of 𝜎𝑘 by definition. The claim follows after arguing as in the proof of Proposition 3.1: at each special time each free particle has
a non exponentially small probability to avoid the box after leaving it, so that it visits this box e𝛿𝛽 times with a super-exponentially
small probability. Since, by non-superdiffusivity, the special times are associated with no more than e(3𝛼∕2+𝛿)𝛽 particles up to a
𝐸𝑆(𝛽)-event, 𝐵 occurs with probability 1 − 𝑆𝐸𝑆(𝛽).

vent 𝐶. Let 𝐾 denote the number of special times. By the event 𝐵, we have 𝐾 ≤ e𝛿𝛽 with probability 1 − 𝑆𝐸𝑆(𝛽). Let 𝑆0,… , 𝑆𝐾−1
e the special times. Divide the time interval [0, 𝑇𝛥+e𝛿𝛽 ] into intervals [𝑡𝑖, 𝑡𝑖 + e𝛿𝛽 ] of length e𝛿𝛽 , with 1 ≤ 𝑖 < e(𝛥+𝛼)𝛽 . Introduce the
ollowing events: 𝐶 𝑖

1 = {∃𝑗 ∈ {0,… , 𝐾 −1} such that 𝑆𝑗 ∈ [𝑡𝑖, 𝑡𝑖 + e𝛿𝛽 ]} and 𝐶 𝑖
2 = {there is a move of cost ≥ 𝑈 in [𝑆𝑗 , 𝑡𝑖 +e𝛿𝛽 ]}. Using

he strong Markov property at the stopping time 𝑆𝑗 , we obtain

𝑃 (𝐶) ≤
∑

𝑖<e(𝛥+𝛼)𝛽
𝑃 (𝐶 𝑖

2|𝐶
𝑖
1)𝑃 (𝐶

𝑖
1) ≤ e−𝑈𝛽e𝛿𝛽

∑

𝑖<e(𝛥+𝛼)𝛽
𝑃 (𝐶 𝑖

1) ≤ e−𝑈𝛽e𝑂(𝛿)𝛽

nd therefore 𝑐(𝐶) ≥ 𝑈 − 𝑂(𝛿).

vent 𝐶 ′. We control the cost of this event as for the event 𝐶 by using, instead of the strong Markov property, the independence of
he dynamics of particles outside �̄� from the marks used in �̄�.

vent 𝐷. Divide the time interval [0, 𝑇𝛥+e𝛿𝛽 ] into intervals [𝑡𝑖, 𝑡𝑖 + e𝐷𝛽 ] of length e𝐷𝛽 , with 1 ≤ 𝑖 < e(𝛥+𝛼−𝐷)𝛽e𝛿𝛽 and argue as for the
vent 𝐶.

vent 𝐷′. Divide the time interval [0, 𝑇𝛥+e𝛿𝛽 ] into intervals [𝑡𝑖, 𝑡𝑖 + e𝐷𝛽 ] of length e𝐷𝛽 , with 1 ≤ 𝑖 < e(𝛥+𝛼−𝐷)𝛽e𝛿𝛽 and argue as for the
event 𝐶.

Event 𝐸. Divide the time interval [0, 𝑇𝛥+e𝛿𝛽 ] into intervals [𝑡𝑖, 𝑡𝑖 + e𝛿𝛽 ] of length e𝛿𝛽 , with 1 ≤ 𝑖 < e(𝛥+𝛼)𝛽 . For 𝑡1, 𝑡2 and 𝑘 = |�̄�0| fixed,
by defining X̄𝑘 = {�̄� ∈ {0, 1}�̄�| |�̄�| = 𝑘} and using the reversibility of the measure 𝜇, we obtain

𝑃𝜂0 (�̄�(�̄�(𝑡2 − 𝑡1)) ≥ �̄�(�̄�(�̄�0)) + 3𝑈 ) ≤ 𝑃�̄�0 (�̄�(�̄�(𝑡2 − 𝑡1)) ≥ �̄�(�̄�(�̄�0)) + 3𝑈 )

≤ e−3𝑈𝛽
∑

�̄�∈X̄𝑘

𝑃𝜂(�̄�𝑘(𝑡) = �̄�0) ≤ e−3𝑈𝛽e𝛿𝛽 .
36
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Because the temporal entropy is e𝛿𝛽 for 𝑡1 and 𝛥+ for 𝑡2, we get follows 𝑐(𝐸) ≥ 3𝑈 − 𝛥 − 𝛼 − 𝑂(𝛿).

vent 𝐹𝑚+1. Divide the time interval [0, 𝑇𝛥+e𝛿𝛽 ] into intervals [𝑡𝑖, 𝑡𝑖 + e𝐷𝛽 ] of length e𝐷𝛽 , with 1 ≤ 𝑖 < e(𝛥+𝛼−𝐷)𝛽e𝛿𝛽 . First consider the
vent 𝐹1, to obtain

𝑃 (𝐹1) ≤
∑

1≤𝑖<e(𝛥+𝛼−𝐷)𝛽e𝛿𝛽

[

𝑃 (move of cost 2𝑈 in [𝑠𝑖, 𝑠𝑖 + e𝐷𝛽 ])

+𝑃 (move of cost 𝑈 at time 𝑡 ∈ [𝑠𝑖, 𝑠𝑖 + e𝐷𝛽 ] and at time 𝑡′ such that 𝑡 < 𝑡′ are 𝛿-close)
]

≤ e(𝛥+𝛼−2𝑈 )𝛽e𝑂(𝛿)𝛽 ,

which implies 𝑐(𝐹1) ≥ 2𝑈 − 𝛥− 𝛼 −𝑂(𝛿). We can easily compute the cost of the event 𝐹𝑚+1 by applying the strong Markov property
at the stopping times related to each attribution of the red color.

Event 𝐻2. Divide the time interval [0, 𝑇𝛥+e𝛿𝛽 ] into intervals [𝑡𝑖, 𝑡𝑖 + e𝐷𝛽 ] of length e𝐷𝛽 , with 1 ≤ 𝑖 < e(𝛥+𝛼−𝐷)𝛽e𝛿𝛽 . We obtain

𝑃 (𝐻2) ≤
∑

1≤𝑖<e(𝛥+𝛼−𝐷)𝛽e𝛿𝛽
𝑃 (there are two green particles in [�̄�, 𝐷 + 2𝛿] at time (𝑖 + 1)e𝐷𝛽 )

≤
∑

1≤𝑖<e(𝛥+𝛼−𝐷)𝛽e𝛿𝛽

(

e(𝐷+2𝛿)𝛽e𝛿𝛽
e(𝛥+𝛼)𝛽

)2

≤ e(𝐷−𝛥−𝛼)𝛽e𝑂(𝛿)𝛽 ,

which implies 𝑐(𝐻2) ≥ 𝛥 −𝐷 + 𝛼 − 𝑂(𝛿). Note that we use the spread-out property on time scale 𝑇𝛥+ for the green particle because
this cannot reach [�̄�, 𝐷 + 2𝛿] on time scale e𝐷𝛽 .

Event 𝐺. For a particle 𝑖 that is colored red at time 𝑆𝑗 , applying the spread-out property and the strong Markov property at time 𝑆𝑗 ,
we get

𝑃 (𝜉𝑖(𝑡) ∈ [�̄�, 𝐷 + 𝛿]) ≤ E
[ e(𝐷+𝛿)𝛽

𝑡 − 𝑆𝑗
∧ 1

]

≤ e𝑂(𝛿)𝛽
∫

𝑡

0
d𝑠 e−2𝑈𝛽

( e𝐷𝛽

𝑡 − 𝑠
∧ 1

)

≤ e−(2𝑈−𝐷−𝑂(𝛿))𝛽 .

Dividing the time interval [0, 𝑇𝛥+e𝛿𝛽 ] into intervals [𝑡𝑖, 𝑡𝑖+e𝐷𝛽 ] of length e𝐷𝛽 , with 1 ≤ 𝑖 < e(𝛥+𝛼−𝐷)𝛽e𝛿𝛽 , we get 𝑐(𝐺) ≥ 𝑈−𝑑+𝜖−𝛼−𝑂(𝛿).

Event 𝐺′. Divide the time interval [0, 𝑇𝛥+e𝛿𝛽 ] into intervals [𝑡𝑖, 𝑡𝑖 + e𝐷𝛽 ] of length e𝐷𝛽 , with 1 ≤ 𝑖 < e(𝛥+𝛼−𝐷)𝛽e𝛿𝛽 . Arguing as for the
events 𝐻2 and 𝐺, we deduce that 𝑐(𝐺′) ≥ 𝑈 − 𝑑 − 𝛼 − 𝑂(𝛿).

Event 𝐺′
4. In case the four particles do not come from a cluster, namely, at time 𝑡 = 0 they are outside the box [�̄�, 𝛥− 𝛼], the cost of

this event has already been computed in (2.11). Consider the case in which the four particles come from a cluster. In particular, we
consider the case in which all four particles are green, otherwise the cost of the event is larger. Dividing 𝛬𝛽 into boxes of volume
e(𝐷+𝛿)𝛽 and the time interval [0, 𝑇𝛥+e𝛿𝛽 ] into intervals of length e𝐷𝛽 , we obtain

𝑃 (𝐺′
4) ≤

∑

𝑖<e(𝜃−𝐷−𝛿)𝛽

∑

𝑗<e(𝛥+𝛼−𝐷+𝛿)𝛽

( e(𝐷+𝛿)𝛽e𝛿𝛽
e(𝛥+𝛼)𝛽

)4
≤ e−(3𝛥−2𝑈−𝜃+3𝛼−2𝑑)𝛽e𝑂(𝛿)𝛽 ,

where we use the spread-out property on time scale e(𝛥+𝛼)𝛽 , because particles cannot be colored green on a shorter time scale. The
ases in which there is at least one green particle and one particle not coming from a cluster can be treated in a similar way.

vent �̃�. The cost of this event can be computed similarly as the cost of the event 𝐵.

Event �̃�. The cost of this event can be computed similarly as the cost of the event 𝐶.

Event 𝐺′
3. We only need to consider the case concerning the presence of one yellow particle from a cluster, otherwise we reduce to

a case already taken into account by 𝐺′
4. We can argue in a similar way as for the event 𝐺′

4.

Event �̃�. The cost of this event can be computed similarly as the cost of the event 𝐷.

Event 𝐹𝑚+1. We need to estimate the cost of the occurrence of one of the events 𝐽 𝑖𝑗 . By Proposition 2.6 and the event 𝐵𝑐 , we have
𝑃 (∪𝑖,𝑗𝐽 𝑖𝑗 ) ≤ e𝑂(𝛿)𝛽𝑃 (𝐽 𝑖𝑗 ). In order to estimate the probability that one of the events 𝐽 𝑖𝑗 occurs, we need the following observations:

(i) If the particles 𝑖 and 𝑗 are both free in �̄�, then the cluster cannot move. Indeed, an (𝑚+ 2)𝑡ℎ attribution of the red color is not
allowed.

(ii) In the time intervals in which the particles 𝑖 and 𝑗 are both free in �̄�, they evolve as independent random walks with
simultaneous stops.

Suppose that the cluster does not move via interactions with the free particles. The dynamics of the 𝓁′
1𝓁

′
2+2 particles can be seen as

the dynamics of two independent simple random walks 𝜉 = (𝜉𝑡)𝑡≥0 and 𝜉′ = (𝜉′𝑡 )𝑡≥0 with a trap at the origin: the jump rate is 4e−𝑈𝛽

at the origin and 4 at the other sites, towards a nearest-neighbor site chosen uniformly at random. Thus it suffices to prove that, if
t least one particle starts either in the origin or at distance e(𝐷+𝛿)𝛽 from the origin, then

𝑃 (∃𝑡 ≤ 𝑇 e𝛿𝛽 , 𝜉 , 𝜉′ ∈ �̄� ⧵ {0}) ≤ e−
1
2 (2𝑈−𝛥−𝛼−𝑂(𝛿))𝛽 . (B.1)
37
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To this end, note that we can associate to 𝜉 a simple random walk 𝜉 = (𝜉𝑡)𝑡≥0 during every time interval in which 𝜉𝑡 ∉ 0. Denoting
(𝑡) = max{𝑠 ≤ 𝑡| 𝜉𝑠 = 0} for 𝑡 ≤ 𝑇𝛥+e𝛿𝛽 , we obtain

𝑃0(𝜉𝑡 ∈ �̄� ⧵ {0}) =
∑

𝑥∈�̄�⧵{0}

𝑃0(𝜉𝑡 = 𝑥) =
∑

𝑥∈�̄�⧵{0}
∫

𝑡

0
𝑃0(𝑠(𝑡) ∈ d𝑠, 𝜉𝑡 = 𝑥)

≤
∑

𝑥∈�̄�⧵{0}
∫

𝑡

0
d𝑠 4e−𝑈𝛽𝑃0(𝜉𝑡−𝑠 = 𝑥) ≤

∑

𝑥∈�̄�⧵{0}
∫

𝑡

0
d𝑠 4e−𝑈𝛽

( 𝑐𝑠𝑡
1 + 𝑡 − 𝑠

)

≤ 𝐶|�̄�|(log 𝑡 + 1)e−𝑈𝛽 ≤ 𝐶|�̄�|((𝛥 + 𝛼 + 𝛿)𝛽 + 1)e−𝑈𝛽 .

(B.2)

ence, by (B.2),

𝑃(0,0)(∃ 𝑡 ≤ 𝑇𝛥+e𝛿𝛽 , 𝜉𝑡, 𝜉′𝑡 ∈ �̄� ⧵ {0}) ≤ ∫

𝑇𝛥+ e𝛿𝛽

0
d𝑡 𝑃0(𝜉𝑡 ∈ �̄� ⧵ {0})2 ≤ e(𝛥+𝛼−2𝑈 )𝛽e𝑂(𝛿)𝛽 .

uppose that 𝑥 ∈ [�̄�, 𝐷 + 𝛿] ⧵ {0}. Letting 𝜏 the first time at which a particle detaches from the origin and 𝜏′0 the first time at which
′ reaches the origin, we get

𝑃(0,𝑥)(∃𝑡 ≤ 𝑇𝛥e𝛿𝛽 , 𝜉𝑡, 𝜉′𝑡 ∈ �̄� ⧵ {0}) ≤ ∫

𝑇𝛥+ e𝛿𝛽

0
d𝑡 𝑃(0,0)(𝜉𝑡, 𝜉′𝑡 ∈ �̄� ⧵ {0}) + ∫

𝑇𝛥+ e𝛿𝛽

0
d𝑡 𝑃(0,𝑥)(𝜉𝑡, 𝜉′𝑡 ∈ �̄� ⧵ {0}, 𝜏′0 > 𝜏).

o prove (B.1), by the non-superdiffusivity property we can bound the second integral from above as

∫

𝑇𝛥+ e𝛿𝛽

0
𝑑𝑡∫

𝑡

0
d𝑠 e−𝑈𝛽e−𝑠e−𝑈𝛽

𝑃1(𝜉𝑡−𝑠 ∈ �̄� ⧵ {0})
∑

𝑦∈𝐵(𝑥,
√

𝑠e𝛿𝛽 )⧵{0}

𝑐𝑠𝑡
1 + 𝑠

𝑃𝑦(𝜉′𝑡−𝑠 ∈ �̄� ⧵ {0}).

Dividing the integral from 0 to 𝑡 into the integral from 0 to e(𝑈− 1
2 (𝜖−𝛼))𝛽 and e(𝑈− 1

2 (𝜖−𝛼))𝛽 to 𝑡, we obtain the desired lower bound.
ndeed, the former integral gives e(𝛥+𝛼)𝛽 (e−𝑈𝛽∕e(𝑈− 1

2 (𝜖−𝛼))𝛽 ) = e−
1
2 (𝜖−𝛼)𝛽e𝑂(𝛿)𝛽 as upper bound, while the second integral gives

−(𝜖−𝛼)𝛽e𝑂(𝛿)𝛽 as upper bound arguing as in (B.2). This concludes the proof of (B.1).
It remains to consider the case in which the cluster can move after interacting with the free particles. We observe that if each

ime the cluster moves we translate it to the origin, then it remains fixed during the whole time interval and there is a resulting
erturbation to the remaining free particle. By arguing as before, we get the same result.

vent 𝐻3. We can argue as for the event 𝐻2.

vent 𝐻 ′
3. Divide the time interval [0, 𝑇𝛥+e𝛿𝛽 ] into intervals [𝑡𝑖, 𝑡𝑖 + e𝐷𝛽 ] of length e𝐷𝛽 , with 1 ≤ 𝑖 < e(𝛥+𝛼−𝐷)𝛽e𝛿𝛽 . If 𝐻 ′

3 occurs, then
there are two possible situations: either the two different pairs of green particles are (𝑙, 𝑗) and (𝑟, 𝑘) with 𝑗 ≠ 𝑘, which we refer to
as 𝐻 ′,1

3 , or (𝑙, 𝑗) and (𝑙, 𝑘) with 𝑙, 𝑗, 𝑟, 𝑘 are all different from each other, which we refer to as 𝐻 ′,2
3 . Using an argument similar to the

ne used for the event 𝐻2, we obtain

𝑃 (𝐻 ′,1
3 ) ≤ e2𝐷𝛽e−2(𝛥+𝛼)e𝑂(𝛿)𝛽 ,

𝑃 (𝐻 ′,2
3 ) ≤ e2𝐷𝛽e−2(𝛥+𝛼)e𝑂(𝛿)𝛽 ,

hich imply that 𝑐(𝐻 ′
3) ≥ 2(𝛥 −𝐷 + 𝛼) − 𝑂(𝛿).

Event 𝐼 . We can argue as for the event 𝐹𝑚+1.

Event �̃�2 We have 𝑐(�̃�2) = min {𝑐(𝐻3), 𝑐(𝐻 ′
3), 𝑐(𝐼)} ≥ 𝑈 − 1

2 𝜖 −
3
2𝛼 − 𝑑 − 𝑂(𝛿).

vent 𝐾1 Use time scale e(𝛥+𝛼)𝛽 for the green particles, because of the condition on X𝛥+ and the fact that the yellow particle is inside
he box [�̄�, 𝐷 + 𝛿]. Using the spread-out property for green/red and yellow particles, we obtain

𝑃 (𝐾1 ∩ 𝐺′𝑐 ∩𝐻𝑐
2 ) ≤

∑

𝑡∗≤𝑖e𝐷𝛽≤e(𝛥+𝛼+𝛿)𝛽

∑

𝑗<𝑖

(

e𝐷𝛽e𝛿𝛽
e(𝛥+𝛼)𝛽

)3(
e𝐷𝛽e𝛿𝛽

(𝑖 + 1)e𝐷𝛽

)

≤ e(2(𝐷−𝛥)−2𝛼)𝛽e𝑂(𝛿)𝛽 .

This implies that

𝑃 (𝐾1) ≤ 𝑃 (𝐾1 ∩ 𝐺′𝑐 ∩𝐻𝑐
2 ) + 𝑃 (𝐻2)e𝛿𝛽 ≤ e−(𝛥−𝐷+𝛼−𝑂(𝛿))𝛽

and therefore 𝑐(𝐾1) ≥ 𝛥 −𝐷 + 𝛼 − 𝑂(𝛿).

Event 𝐾2. We argue as for the event 𝐾1.
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