Stochastic Processes and their Applications 177 (2024) 104460

Contents lists available at ScienceDirect = s.och:st.:
andtheir
. . . . applications
Stochastic Processes and their Applications e
journal homepage: www.elsevier.com/locate/spa ==

Check for

Droplet dynamics in a two-dimensional rarefied gas under Kawasaki | ="
dynamics

Simone Baldassarri ", Alexandre Gaudilliére *, Frank den Hollander ¢,
Francesca R. Nardi ?, Enzo Olivieri ¢, Elisabetta Scoppola ¢

a Dipartimento di Matematica e Informatica “Ulisse Dini”, Universita degli Studi di Firenze, Viale Morgagni 67/a 50134, Firenze, Italy
b Aix-Marseille Université, CNRS, 12M, 3 place Victor Hugo, 13003 Marseille, France

¢ Mathematisch Instituut, Universiteit Leiden, Einsteinweg 55, 2333 CC Leiden, The Netherlands

d Dipartimento di Matematica, Universita di Roma Tor Vergata, Via della Ricerca Scientifica, 00133 Roma, Italy

¢ Dipartimento di Matematica e Fisica, Universita di Roma Tre, Largo S. Leonardo Murialdo 1, 00146 Roma, Italy

ARTICLE INFO ABSTRACT

MSC: This is the second in a series of three papers in which we study a lattice gas subject to Kawasaki
60K35 conservative dynamics at inverse temperature f > 0 in a large finite box A, C 77 whose volume
82C26 depends on B. Each pair of neighboring particles has a negative binding energy —U < 0, while
82€27 each particle has a positive activation energy A > 0. The initial configuration is drawn from
Keywords: the grand-canonical ensemble restricted to the set of configurations where all the droplets are
Lattice gas subcritical. Our goal is to describe, in the metastable regime 4 € (U,2U) and in the limit as
Kawasaki' c'lynamics f — oo, how and when the system nucleates, i.e., grows a supercritical droplet somewhere in
Metastability A

Nucleation s

In the first paper we showed that subcritical droplets behave as quasi-random walks. In the
present paper we use the results in the first paper to analyze how subcritical droplets form and
dissolve on multiple space-time scales when the volume is moderately large, namely, |A| = eor
with 4 < @ <24-U. In the third paper we consider the setting where the volume is very large,
namely, [Ayl = e® with 4 < ® < I' — (24 - U), where I is the energy of the critical droplet
in the local model, i.e., when A, has a fixed volume not depending on /i and particles can be
created and annihilated at the boundary, and use the results in the first two papers to identify
the nucleation time. We will see that in a very large volume critical droplets appear more or
less independently in boxes of moderate volume, a phenomenon referred to as homogeneous
nucleation.

Since Kawasaki dynamics is conservative, i.e., particles move around and interact but are
preserved, we need to control non-local effects in the way droplets are formed and dissolved.
This is done via a deductive approach: the tube of typical trajectories leading to nucleation is
described via a series of events, whose complements have negligible probability, on which the
evolution of the gas can be captured by a coarse-grained Markov chain on a space of droplets,
which we refer to as droplet dynamics.

Critical droplets
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1. Model and results

In Section 1.1 we provide background on metastability. In Section 1.2 we introduce the Kawasaki dynamics that is the subject
of the present paper. In Section 1.3 we state our main theorems. In Section 1.4 we discuss the theorems and provide an outline of
the remainder of the paper.

1.1. Background

Metastability for interacting particle systems is a thriving area in mathematical physics that is full of challenges. The goal is to
describe the crossover from a metastable state (in which the system starts from a quasi-equilibrium) to a stable state (in which the
system reaches equilibrium) under the influence of a stochastic dynamics. Examples are the magnetization of Ising spins subject to
Glauber dynamics and the condensation of a lattice gas subject to Kawasaki dynamics. The former is an example of a non-conservative
dynamics (the number of up-spins is not preserved), while the latter is an example of a conservative dynamics (the number of particles
is preserved). Conservative systems are harder to deal with than non-conservative systems because the dynamics is non-local. The
monographs [1,2] contain plenty of examples of metastable systems, and include extensive references to the literature. The focus in
these monographs is on the average crossover time from the metastable state to the stable state in parameter regimes that characterize
metastability, on the set of configurations that form the saddle points for the crossover — referred to as the ‘critical droplet’ — and on
the sequence of configurations the system sees prior to and after the crossover — referred to as the ‘tube of typical trajectories’.

In the present paper we adopt the point of view that the identification of the ‘tube of typical trajectories’ is the key towards
getting full control on the metastable crossover. Already in the early mathematical papers on metastability [3-6], and later in papers
on Kawasaki dynamics in finite volume [7,8], the main strategy was to identify sets of configurations of increasing regularity that are
resistant to the dynamics on corresponding increasing time scales. These sets of configurations form the backbone in the construction
of the ‘tube of typical trajectories’. In particular, the idea was to define temporal configurational environments within which the
trajectories of the process remain confined with high probability on appropriate time scales. This approach involves an analysis of
all the possible evolutions of the process, and requires the exclusion of rare events via large deviation a priori estimates. Over the
years, the study of Kawasaki dynamics has been generalized in several directions with the help of this approach (see e.g. [9-12] for
anisotropic interactions, [13,14] for two-particle systems, and [15] for the hexagonal lattice).

The present paper is the second in a series of three papers dealing with nucleation in a supersaturated lattice gas in a large volume.
In particular, we consider a two-dimensional lattice gas at low density and low temperature that evolves under Kawasaki dynamics,
i.e., particles hop around randomly subject to hard-core repulsion and nearest-neighbor attraction. We are interested in how the gas
nucleates in large volumes, i.e., how the particles form and dissolve subcritical droplets until they manage to build a critical droplet
that is large enough to trigger the condensation.

In the first paper [16] we showed that subcritical droplets behave as quasi-random walks. In the present paper we use the
results in the first paper to analyze how subcritical droplets form and dissolve on multiple space-time scales when the volume
is moderately large. In large volumes the possible evolutions of the Kawasaki lattice gas are much more involved than in small
volumes, and multiple events must be considered and controlled compared to the case of finite volume treated earlier. In particular,
it is important to control the history of the particles. For this reason we introduce several new tools, such as assigning colors to
the particles that summarize information about how they interacted with the surrounding gas in the past. The focus remains on the
‘tube of typical trajectories’, even though the control of all the possible evolutions of the Kawasaki lattice gas requires the use of
multiple graphs describing multiple temporal configurational environments. These graphs will be identified in Section 5, which is
the core of the present paper and contains the proofs of all the principal lemmas. In the third paper [17] we consider the setting
where the volume is very large and use the results in the first two papers to identify the nucleation time. The outcome of the three
papers together shows the following:

(1) Most of the time the configuration consists of quasi-squares and free particles. That is why we use the terminology droplet
dynamics. The crossover time between configurations of this type is identified on a time scale that is exponential in § (see
Theorem 1.5).

(2) Starting from configurations consisting of quasi-squares and free particles, the dynamics typically resist, i.e., the dimensions
of the quasi-squares do not change, for an exponential time scale in # depending only on the dimensions of the smallest
quasi-square (see Theorem 1.6).

(3) Starting from configurations consisting of quasi-squares and free particles, the dynamics typically either creates a larger quasi-
square or a smaller quasi-square, depending on the dimensions of the starting quasi-square (see Theorem 1.8). There is a
non-negligible probability that a subcritical quasi-square follows an atypical transition, in that it grows a larger quasi-square,
and this lets the dynamics escape from metastability (see Theorem 1.9).

(4) The crossover from the gas to the liquid occurs because a supercritical quasi-square is nucleated somewhere in a moderately
large box and subsequently grows into a large droplet. In particular, the escape from metastability does not occur by coalescence
of large subcritical droplets. This issue will be addressed in [17].

(5) The configurations in moderately large boxes behave as if they are essentially independent and as if the surrounding gas is ideal.
No information travels between these boxes on the relevant time scale that grows exponentially fast with . The supercritical
quasi-square appears more or less independently in different boxes, a phenomenon referred to as homogeneous nucleation. This
issue will be addressed in [17].
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(6) The tube of typical trajectories leading to nucleation is described via a series of events on which the evolution of the gas consists
of droplets wandering around on multiple space—time scales. This control is achieved via what we call the deductive approach in
Section 5.

(7) The asymptotics of the nucleation time is identified on a time scale that is exponential in  and depends on the entropic factor
related to the size of the box. This issue will be addressed in [17].

Remark 1.1. Kawasaki dynamics in large volumes at low temperatures was studied earlier in [18]. There, the average nucleation
time was computed for a specific starting distribution called the last-exit-biased distribution for the transition from subcritical to
supercritical. The techniques employed in that paper rely on potential theory, which is tailored to deal with hitting probabilities
and hitting times. It does not provide information on how the nucleation takes place. Since the last-exit-biased distribution is not a
good description of the metastable equilibrium, the resulting average nucleation time is not necessarily physically realistic. However,
by controlling the droplet dynamics with the tools of the present paper, we can show that the last-exit-biased distribution falls into
the basin of attraction of the metastable equilibrium, and that therefore the average nucleation time computed in [18] provides an
accurate description, including prefactors. &

Remark 1.2. Kawasaki dynamics in large volumes at low temperature was also studied in [19] (with the help of techniques
developed in [20]). There, the transitions between the different ground states are analyzed in a regime where there is no pure-
gas metastable state! and the process is started from a large square droplet with no surrounding gas. In that setting the interaction
between the gas and the droplet, which is at the core of the present work, is largely avoided. Both [19,20] are closely related to
the aforementioned wandering droplet issue, about which we will say more later on. &

Remark 1.3. It remains a challenge to describe what happens after the exit from metastability, i.e., when the system has grown a
large supercritical droplet that subsequently grows, moves around, absorbs smaller droplets, thereby depleting the surrounding gas,
etc. For Glauber spin-flip dynamics, which is non-conservative, this phase of the dynamics, which is beyond metastability, has been
completely elucidated at low temperatures in [21] and partially elucidated at all subcritical temperatures in [22,23]. However, the
fact that Kawasaki lattice-gas dynamics is conservative represents a major hurdle that makes the analysis much harder. &

For more background on metastability, we refer the reader to the monographs [1,2]. Our reference list is restricted to those
papers that are directly relevant to the work in the present paper.

1.2. Kawasaki dynamics

- Hamiltonian, generator and equilibrium. Let § > 0 denote the inverse temperature. Let A, C 72 be the square box with volume

[A,] = e, 0>0, (1.1)

centered at the origin with periodic boundary conditions. With each x € A, associate an occupation variable ;(x), assuming the
values 0 or 1. A lattice gas configuration is denoted by 7 € Xj; = {0, 1}#. With each configuration # associate an energy given by
the Hamiltonian

Hm=-U Y n(n@), 1.2)
{XJ}EA;

where A% denotes the set of bonds between nearest-neighbor sites in A, i.e., there is a binding energy —U < 0 between neighboring
particles. Let

Inl=Y nex) 1.3)

xEAp

be the number of particles in A, in the configuration #, and let
Xy={n€eXy: nl=N} 1.4

be the set of configurations with N particles. We define Kawasaki dynamics as the continuous-time Markov chain X = (X(1)),»
with state space X given by the generator

LHm= Y cxymlfr)=-fml, nex, 1.5)

(x.y}eay

1 The condition n*L2e~# <« 1 in [19], in the notation introduced in Section 1.2, reads 2(© — 4) + © — U < 0, which, together with © > 4, implies that 4 < U:
particles immediately aggregate up to gas depletion.
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l.—1
” A

Fig. 1. A critical droplet in a finite volume A: a protocritical droplet, consisting of an (£, — 1) x #, quasi-square with a single protuberance attached to one of
the longest sides, and a free particle nearby. When the free particle attaches itself to the protuberance, the droplet becomes supercritical.

where
n(z) if z#xy,
n(@)=q nx) if z=y, 1.6)
ny if z=x,

and
c(x, y, ) = e PH@)=HL, .7

Egs. (1.5)-(1.7) represent the standard Metropolis dynamics associated with H, and is conservative because it preserves the number
of particles, i.e., | X(#)| = | X(0)| for all 7 > 0. The canonical Gibbs measure vy defined as

e—ﬁH(n)]lXN )

vy(m) = 7 s Zy = z e_ﬁH(ﬂ), ne Xﬂ, (1.8)
N

neXy

is the reversible equilibrium of this stochastic dynamics for any N:

VN (ex, y, ) = vy (™ )e(x, y, n™Y). 1.9

We augment the energy H(n) of configuration n by adding a term 4|, with A4 > 0 an activation energy per particle. This models the
presence of an external reservoir that keeps the density of particles in A, fixed at e P4,

« Subcritical, critical and supercritical droplets. Throughout the paper we will refer to cluster, as well as to droplet, as a
connected component of nearest-neighbor particles (see (2.2) for more details). The initial configuration is chosen according to
the grand-canonical Gibbs measure restricted to the set of subcritical droplets. More precisely, denote by
U

‘= |55 =] (1.10)
the critical length introduced in [8] for the local model where A; = A does not depend on § (see Fig. 1) and particles are created
and annihilated at the boundary with rate e#4 and 1, respectively.

We will be interested in the regime

Ae U,2U), p— o, (1.11)

which corresponds to metastable behavior.> We will see that in this regime droplets with side length smaller than #, have a tendency
to shrink, while droplets with a side length larger that #, have a tendency to grow. We will refer to the former as subcritical droplets
and to the latter as supercritical droplets.

Define the set of configurations having subcritical clusters only as

R = {r] € X : all clusters of # have volume at most 7.(¢, — 1) + 2}, (1.12)
and put
e ALH(m+A4n]]
ur(n) = Z—ﬂn(ﬂ), ne X, 1.13)
R

2 In order to avoid trivialities, we assume that £, >2,1e, 4> %U.
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Fig. 2. Each particle is represented by a unit square. A particle is free when it is not touching any other particles and can be moved to infinity without doing
so. A particle is clusterised when it is part of a cluster. Particles 1-5 and 16 are free, particles 6-9, 10, 11-15 are not free. All other particles are clusterised.

where

Zp = Z e ALHm+An]] (1.14)
ner

is the normalizing partition sum. The initial configuration X (0) is drawn from u5 and we are interested in analyzing how and when
the system exits from R. The main difficulty in analyzing the metastable behavior is a proper description of the interaction between
the droplets and the surrounding gas. As part of the nucleation process, droplets grow and shrink by exchanging particles with the
gas around them, as is typical for conservative dynamics. To describe the evolution of our system in terms of a droplet dynamics,
we will show that on an appropriate time scale the dynamics typically returns to the set of configurations consisting of quasi-square
droplets, provided the volume is not too large. The main results of the present paper provide a description of the dynamics in
terms of growing and shrinking wandering droplets. In particular, Theorems 1.5-1.6 and 1.8-1.9 below identify the dominant rates
of growing and shrinking of droplets up to a time horizon that goes well beyond the exit time of R, namely, up to the time of
formation of a droplet with volume of order A(f), an unbounded but slowly increasing function of g. In the follow-up paper [17],
these theorems will be used to identify the nucleation time, i.e., the time of exit of R.

1.3. Main results

1.3.1. Definitions and notation
« Time horizons. In order to state our main results, we first need to clarify the time horizons we are interested in. More precisely,
we will look at the first time the dynamics creates a microscopically large droplet. To make this precise, we define the set

all clusters of # have volume at most #,.(¢, — 1) + 2
R =S neX: . , (1.15)
except for at most one cluster with volume less than 3408
where A(f) is an unbounded but slowly increasing function of f satisfying
A(p) log A(B) = o(log ), B — oo, (1.16)
e.g. A(p) = y/log p. For C* > 0 large enough, our theorems will hold up to time T* defined as
T* =P Amin{r >0: X(t) ¢ R'}. (1.17)

We will see in [17] that our dynamics starting from ug typically exits R’ within a time that is exponentially large in §, and with
a probability tending to 1 does so through the formation of a single large cluster C of volume éll(ﬂ), rather than through two
supercritical droplets. Hence, T* indeed coincides with the appearance time of C, provided C* is large enough.
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« Active and sleeping particles. Asin [16], the notion of active and sleeping particle will be crucial throughout the paper. Since the
precise definition requires additional notations, we give an intuitive description only. For precise definitions we refer to Section 4.3.1.

The division of particles into active and sleeping is related to the notion of free particles. Intuitively, a particle is free if it does not
belong to a cluster and can be moved to infinity without clusterisation, i.e., they can travel anywhere without attaching themselves
and by moving non-clusterised particles only (possibly in a cooperative way). See Fig. 2. Let

D=U+d,

with d > 0 sufficiently small. For t > eP# a particle is said to be sleeping at time ¢ if it was not free during the time interval [t —e?’,1].
Non-sleeping particles are called active. (Note that being active or sleeping depends on the history of the particle.) By convention,
we say that prior to time e?” sleeping particles are those that belong to a large enough quasi-square, where quasi-squares are clusters
with sizes ¢ x ¢, in the set

QS={(¢;.t,) eEN?: ¢, <, <t +1}. (1.18)
In order to declare all the particles in the quasi-square as sleeping before time e?# we require that 7, > 2.

« Local boxes. To define a finite box A as the union of a finite number k of disjoint local boxes A;, 1 <i < k, in analogy with the
local model introduced in [8], we associate with each configuration a local configuration

ie {0,134 =[] 0. 134,
1<i<k
which we identify with {0, 1}4. These local boxes allow us to control the global properties of the gas in terms of its local properties,
namely, via the duality between gas and droplets, which is represented by the duality between active and sleeping particles,
respectively. First, the local boxes have to contain all the sleeping particles. Second, the local boxes are dynamic, namely, A; = A;(?).
Indeed, droplets can move and we want to avoid seeing sleeping particles outside of the local boxes. In particular, the boxes follow
the droplets, i.e., must be redefined only when a particular event occurs, e.g. two droplets are too close to each other, or a cluster
is too close to the boundary of a box, or a particle outside the boxes falls asleep, or particles in a box all turn active. We denote by
dist(-, -) the distance associated with the ¢ -norm on RZ:

I Nl s (e 3) €RZ 5 [x| V [yl (1.19)

Following [24], we introduce a map g5 as an iterative map that merges into single rectangles those rectangles that have distance
< 5 between them, while we leave the other rectangles unchanged. (We refer to (2.6) for the precise definition of the map g, for
a general ¢ > 0.) At any time 7 > 0, we require that the collection of the k(¢) local boxes A(r) = (/f,-(t)),gsk(,) satisfy the following
conditions associated with #, = X():

Bl. A(t) = Uji)A; (1) contains all the sleeping particles.
B2. For all 1 <i < k(?), A;(t) contains at least one sleeping particle.

B3. For all 1 <i < k(1), all particles in the restriction 7;(t) of 5, to A;(t) are either free or at distance > 1 from the internal border
of A;@).

B4. For all 1 <i,j < k() with i # j, dist(A;(t), A;(®) > 5.

Note that each local box can contain more than one cluster. Conditions B1 and B2 allow us to take care of all the sleeping particles,
while condition B3 ensures that there is no clusterised particle outside of the local boxes. Finally, condition B4 means that a free
particle can travel inbetween local boxes without interacting with the particles inside. All together, these conditions are needed in
order to ensure that the dynamics inside these boxes is well approximated by the local model.

Definition 1.4. The collection of boxes A(t) = (A;(t)) 1<i<k(r) 1S constructed as follows. At time ¢ = 0, consider the collection S(0) of
5 x 5 boxes centered at the clusterised particles, and define A(0) = g5(S(0)) \ A*(0), where A*(0) denotes the collection of boxes
belonging to g5(.5(0)) that contain active particles only. Let 13 be the set of special times associated to boxes, refer to as boxes special
times, defined by

B= {t > 0: at time ¢ at least one of the conditions B1 — B4 above is violated by /i(t‘)} . (1.20)
For ¢ > 0, define A(r) as follows:

« If t € B, then define the collection S(t) of 5 x 5 boxes centered at the clusterised particles, and define A(f) = g5(S(®)) \ A*(¥),
where A*(r) denotes the collection of boxes belonging to g5(S(#)) that contain active particles only.
« If t ¢ B, then define A(t) = A(t™).

We will suppress the dependence on ¢ from the notation whenever it is not relevant. See Fig. 3 for an example of local boxes. &
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A

Ay (t7)

As(t")

Ao (1)

SRS 0

[l

Fig. 3. An example of local boxes A(t*) = (4,(*)) ;<3 for 1* > 0, where the gray and the white particles are sleeping, respectively, active.

Since at each time ¢ all the sleeping particles belong to A(t), the boxes induce a partition of the sleeping particles. We say that a
coalescence occurs at time t if there exist two sleeping particles that are in different local boxes at time ¢~, but are in the same local
box at time ¢, i.e., if there exist 1 < i, i, < k(t7), i} # iy, | < i* < k(r) and two sleeping particles s,, s, such that s; € /i,-j () and
s; € Aj=(1), j = 1,2. This phenomenon is related to the possibility that two droplets join to form a single larger droplet. Coalescence is
difficult to control quantitatively, which is why in the present paper we limit ourselves to what happens in the absence of coalescence.
In the follow-up paper [17] we show that metastable nucleation is unlikely to occur via coalescence.

1.3.2. Key theorems: Theorems 1.5-1.6 and 1.8-1.9

« Sets and hitting times. Let X+ be the set of configurations without droplets or with droplets that are quasi-squares with ¢, > 2
(and with additional regularity conditions on the gas surrounding droplets to be specified in Definition 2.9). Let X, be the set of
configurations in X4+ without droplets (see (3.1) and Definition 2.9). Define (7 )en, as the sequence of return times in X after
an active particle is seen in A. Define the hitting time of the set A C X} for the process X as

(X)) =inf{t >0: X (1) € A}. (1.21)

Put 7, = rx,, and, for i € N, define

_ inf{t > 7; : there is an active particle in A(r) at time t}, if X(7;) € Xy+ \ Xp, (1.22)
O; = .
HET) e, if X(7) € X,
and
Ta=inf {r>5,, 1 X(NE Xp}. (1.23)

Recall that |A4,] = €. We assume that 4 < @ < 6, with 6 defined as follows. Let ¢ = 2U — 4, and let #(¢;,¢,) be the resistance of the
¢\ X ¢, quasi-square with 1 < ¢, < ¢, given by

r(€),¢,) =min{(¢ —2)e +2U,24 - U}
=min{QU —4)¢, —U +24-U,24-U}. (1.24)

See Fig. 4. Let § =24 — U —y be the resistance of the largest subcritical quasi-square. Since this quasi-square has sizes (7, — 1) x 7,
we have 24 —U —y =2U + (¢, — 1) — 2)¢, so that

y=4-U - (£, —2e. (1.25)
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[ [

S [

AALT

20-U 20+(-2)QU -A)

Fig. 4. Cost of adding or removing a row of length ¢ in a finite volume.

We will see that y > 0 is an important parameter. The previously mentioned regularity conditions on the gas uses an extra parameter
a > 0 (see below Definition 2.9), which can be chosen as small as desired. Since we defined D = U +d, A" is defined by 4t = A +a.
Call a function f(p) superexponentially small, written SES(f), if

Jim % log £() = —co. (1.26)

« Key theorems. Theorems 1.5-1.6 and 1.8-1.9 below control the transitions between configurations consisting of quasi-squares
and free particles, the times scales on which these transitions occur, and the most likely trajectories they follow.

(I) Our first theorem describes the typical return times to the set X,+.

Theorem 1.5 (Typical Return Times). If A < © < 0, then for any § > 0, and any d and a small enough,

P, (fo > et 7 < T*) = SES(p) (1.27)

and

P, (e(A‘““W <F —F <P yie N 7, < T*) =1-SES(p). (1.28)

(II) Our second theorem describes the typical update times for a configuration in X';+. We denote by r a projection from X+ to a
finite space

Xy = UQSl X -+ X QSK, (1.29)

k>0

where QS' are the sizes of the quasi-square clusters contained in the local boxes A, and are defined in (1.18). See Fig. 5. We can
define a dynamics on the space X+ of sizes of quasi-squares, arranged for example in increasing lexicographic order. For i € Ny, we
denote by (¢, ;,7,;) in QS, with ¢, ; > 2, the sizes of the smallest quasi-square at time 7, if any, and otherwise we set ¢, ; = ¢,; = 0.
Define

T.; =min{f, > 7; 1 7(X(%) # #(X (7))}, (1.30)
recall (1.24), and define the resistance of a configuration in X’y by

r(0,0) =44-2U -6. (1.3

Theorem 1.6 (Typical Update Times). If A < © < 6, then for any § > 0, any d and a small enough, and any i € N,

( if 7,; <T*, then 7,; — 7; < e"C1i020+0)f

or a coalescence occurs between 7; and 7, ;

P/‘ R

) =1-SESp) (1.32)

8
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Ap

O
U

Fig. 5. An example of a configuration # € X,., where the gray and the white particles are sleeping, respectively, are active, such that z(n) = {(2,3),(3,3),(5,6)}.

and

(1.33)

p—oo

l. P l:f ‘EL‘,i s T*! ﬂlen ‘EE,i - 1—-1 Z e(r(flj,fz‘i)_a)ﬂ 1
m = 1.
¥R\ " or a coalescence occurs between 7, and Tei

Remark 1.7. Theorem 1.6 states that, starting from u5 and unless a coalescence occurs, for any i € N, the projected dynamics
typically remains in z(X (7)) through successive visits in X+ for a time of order e"“1:“2/, The SE.S error in (1.32) is related to an
anomalously large realization of a geometric random variable, while an anomalously small realization leads to an error that is only
exponentially small in (1.33). Note that for 7, ; > ¢, all the quasi-squares have the same resistance 24 — U. For the case in which
X (7;) has no quasi-square, its resistance r(0,0) involves the resistance of the empty configuration in the local model and a spatial
entropy that comes from the position in A; where the new droplet can appear. &

(III) Our third theorem describes the typical transition of the system between two successive visits to X4+ conditional on the
dynamics not returning to the same configuration at time 7,,,. Given a configuration X(z;) € X+, define the typical transition
7] as follows. For 7, > 7, set

z) ={ z(#'): n is a configuration obtained from X(,) by adding a row to an arbitrary quasi-square },

where throughout the paper we use the word ‘row’ to mean column as well. See Fig. 6. For 7, ; < 7, we need to distinguish between
the cases #,; >3, #,; =2 and ¢,; = 0. If /,; < ¢, and ¢,; > 3 (respectively, #,, = 2), then we define z] as the singleton made up
of the collection of sizes of quasi-squares obtained from (X (%;)) by modifying one of the smallest quasi-squares, which becomes
(¢y; — 1) x ¢ (respectively, 0 x 0). If £, ; = £, ; = 0, then we define 7:,./ = {z(n")}, where 7’ is the configuration obtained from X(z;)

by creating a 2 x 2 square droplet, namely, z/ = {(2,2)}. See Fig. 7.

Theorem 1.8 (Typical Transitions). If A < © < 6, then for any d and a small enough, and any i € N,

p—oo HR

if 7; T*, th X(%; !
lim P ( if 74 < then z(X(7;4)) € =, 2(X(y ) # ”(X(fi))> -1 (1.34)

or a coalescence occurs between 7; and 7,

(IV) Our fourth and last theorem characterizes the atypical transitions of the system, starting from a subcritical configuration
consisting of a single quasi-square, between two successive visits to X+, with no creation of new boxes and conditional on the
dynamics not returning to the same configuration at time 7;. To this end, given X(7,) € X with 2 < 7}, < 7., we define
7! = (£5;,¢1; + 1). Moreover, we say that a box creation occurs at time t if there exists an active particle at time ¢~ that does
not belong to A(s7) and falls asleep at time 1.
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O

O

O

O

O

Fig. 6. For #, = 4, on the left an example of a configuration n € X,. such that z(n) = {(4,5),(5,5),(6,7)} and on the right one possible typical transition

' ={(4,5),(5,5),(7,7)}, where the gray and the white particles are sleeping, respectively, are active.

O

O

O

O

Fig. 7. On the left an example of a configuration € X, such that z() = {(2,2),(3,3),(5,6)} and on the right the typical transition =’ = {(3,3),(5,6)}, where
the gray and the white particles are sleeping, respectively, are active.

Theorem 1.9 (Atypical Transitions). If A < © < 0, then for any d and « small enough, and any i € N, such that X(z;) € X4+ consists of

a single quasi-square with2 <1, ; < ¢,
if 7,y <T*, then n(X(7;y,)) = x]' and
P ( ! - 2(X (7)) # 2(X(7)

no box creation occurs between 7; and 7,
> ¢~ 124-U)=r(£1.62)+61f

(1.35)

Remark 1.10. Theorem 1.9 provides a lower bound for the atypical transition of ‘going against the drift’ in the case of a subcritical
quasi-square, which will be needed in the follow-up paper [17] to show that the escape from metastability occurs via nucleation
of a supercritical droplet somewhere in the box A,. Indeed, we will characterize the time the dynamics needs to exit R, as well
as the typical paths of configurations visited by the wandering cluster until the formation of a large droplet. The results of the
present paper, which are limited to the case ® < 24 — U — y, will allow us to accomplish this task for larger values of ©, namely,
O < I' —(24-U), where I is the energy of the critical droplet in the local model. &

10
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Remark 1.11. The techniques developed in the present paper make it possible to prove that, for any quasi-square configuration of
size | x ¢, in X+, the cluster exits any finite box centered around the cluster with a volume that does not depend on g within a
time of order e"“12). This is the reason why we speak of a wandering cluster. We will not state this result as a formal theorem. It
is similar to the study performed in [20], with the notable difference that the transition time in that paper is of order €’V#, which
is the time needed to detach a corner from a square droplet in the absence of a surrounding gas, while in our case it is of order e4?,
which is the time needed for the arrival of a free particle in our local boxes. &

1.4. Outline

Section 2 collects certain key tools that are needed throughout the paper. In particular, in Section 2.1 we introduce key notation,
in Section 2.2 we formulate certain regularity properties for the initial configuration that we can impose because their failure is
extremely unlikely. In Section 2.3 we group the configurations into a sequence of subsets of configurations of increasing regularity
and prove a recurrence property to these sets on an increasing sequence of time scales. In Section 3.1 we state three key propositions
(Propositions 3.1-3.3) that are needed along the way. The proof of Theorems 1.5, 1.6, 1.8 and 1.9 are given in Sections 3.2, 3.3,
3.4 and 3.5, respectively, subject to these propositions.

The three propositions are proved in Sections 4.1-4.3. The proof is based on a number of key lemmas (Lemmas 4.1, 4.3, 4.5)
whose proof is given in Section 5. This section, which uses two more key lemmas (Lemmas 5.1-5.2), is long and difficult because
it contains the main technical hurdles of the paper. These hurdles are organized into what we call the deductive approach: the tube
of typical trajectories leading to nucleation is described via a series of events, whose complements have negligible probability, on
which the evolution of the gas consists of droplets wandering around on multiple space-time scales in a way that can be captured by a
coarse-grained Markov chain on a space of droplets.

Appendices A and B provide additional computations that are needed in the paper: environment estimates that exclude
non-regular configurations, respectively, large deviation estimates for certain events that come up in the deductive approach.

2. Key tools

In this section we provide some tools that are needed to prove the theorems. These tools rely on the notion of QRWs (Quasi-
Random Walks). In [16] it was shown that the active particles of a two-dimensional lattice gas under Kawasaki dynamics at low
density evolve in a way that is close to an ideal gas. The results in [16] are formulated in the general context of QRWs for a large
class of initial conditions having no anomalous concentration of particles for time horizons that are much larger than the typical
collision time. More precisely, the process of QRWs used to describe the ideal gas approximation consists of N labeled particles that
can be coupled to a process of N Independent Random Walks (IRWs) in such a way that the two processes follow the same paths
outside rare time intervals, called pause intervals, in which the paths of the QRWs remain confined to small regions.

For the definition of QRWs and their construction, we refer to [16, Sections 2.2-2.4]. We note that for the notion of sleeping
and active particles to be well defined, we need to label the particles and not work with a dynamics of configurations n € X only, as
defined in (1.5). There is flexibility in associating a particle dynamics with a configuration dynamics. In particular, as in [16] we can
allow instantaneous permutation of particles inside a given cluster. Later we will use this flexibility by specifying a local permutation
rule (see Section 4.3.1). For now we only assume that such a rule has been chosen. We encourage the reader to inspect the main
properties of QRWs, which will be a key tool in the remaining part of the paper. In particular, we refer to [16, Theorems 3.2.3,
3.2.4, 3.2.5, 3.3.1] for the non-superdiffusivity property and for upper and lower bounds on the spread-out property, respectively.

2.1. Definitions and notations
In this section we introduce some definitions and notations that will be needed throughout the sequel.

Definition 2.1.

1. Asin [16], a and d are two positive parameters that can be chosen as small as desired, and A(f) is an unbounded but slowly
increasing function of g that satisfies (1.16). Moreover, C* is a positive parameter that can be chosen as large as desired. Once
chosen, a, d, A and C* are fixed. We write O(5), O(«) and O(d) for quantities with an absolute value that can be bounded by
a constant times |§|, |a| and |d|, for small enough values of these parameters. We write O(6, a, d) for the sum of three such
quantities.

2. We use short-hand notation for a few quantities that depend on the old parameters 4 € ( %U,ZU )and @ € (4,24 - U), and on
the new parameters a, d. Recall that

€=2U - 4, 4.:[91, y=A-U~-((,~e, 0=24-U~—y,
€

and
D=U+d, At =A+aq,

and abbreviate
44-0
3
For C > 0, write T, for the time scale T, = e®/.

S =

2.1

11
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3. For convenience we identify a configuration n € X with its support supp(n) = {z € A4 : n(z) = 1} and write z € 5 to indicate
that 5 has a particle at z. For € X}, denote by n¢! the clusterised part of n:

n'={zen: || z—2 |I=1 for some z’' €}, (2.2)

where || - || is defined in (1.19). Call clusters of n the connected components of the graph drawn on #/ obtained by connecting
nearest-neighbor sites that are not a singleton.

4. Denote by B(z,r),z € R2,r > 0, the open ball with center z and radius r in the norm defined in (1.19). The closure of A C R?
is denoted by A.

5. For A c Z?, denote by 0~ A the internal boundary of 4, i.e.,

0"A={ze€A: || z—Z ||=1 for some z' € Z? \ A}. (2.3)
For s > 0, put
[A.s1= | Bz.e2/)n 72 (2.4)
ZEA
Call A a rectangle on 72 if there are a, b,c,d € R such that
A =[a,b] X [c,d] N 7>, (2.5)

Write RC(A), called the circumscribed rectangle of A, to denote the intersection of all the rectangles on Z? containing A.
Moreover, denote by Z the set of all finite sets of rectangles on Z>.

6. Given ¢ > 0 and S = {R, ... JRis)) € Z, two rectangles R and R’ in S are said to be in the same equivalence class if there
exists a finite sequence Ry, ..., R, of rectangles in .S such that

R=R;, R =R, dist(R;,R;,)<cV1<j<k.

Let C indicate the set of equivalent classes, define the map

[ S‘e%»—»{RC(U Rj>} €,
Jj€e ceC

and let (gf,k))keNU € RY be the sequence of iterates of g,. Define
£(8) = lim g(S). (2.6)

As discussed in [24], the sequence (gf,k)(S‘))keNO ends up being a constant, so the limit is well defined.

2.2. Environment estimates

In this section we introduce a subset of configurations X* C Xy, to which we refer as the typical environment, with the property
that if our system is started from the restricted ensemble, then it can escape from X* within any time scale that is exponential in g
with a negligible probability only. In words, the properties of the configurations in X* are the following:

* Moderately large boxes contains a “finite” number of clusters only (see X| below).

» In moderately large boxes there exists a critical space scale distinguishing how many 4-tuples of particles are separated by
such a distance, being “finite” below that size and “exponentially large” above that size (see Xz“ and X;‘ below).

«» There exists a critical box size such that smaller boxes contain a “finite” number of particles only, while larger boxes contain
an “exponentially large” number of particles (see &, and A below).

Recall (2.1) for the definition of the parameter .S.

Definition 2.2. For © > A, define

5
X =) A 2.7)

j=1
where, for A satisfying (1.16), S given by (2.1), and boxes referring to square boxes,
X ={neAy: inany box of volume e the number of clusters is at most A() }.

in any box of volume e?” the number of 4-tuples of particles in different
X=qneX;:

connected components with diameter smaller than V/eS? is at most A(f)

12
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in any box of volume e’ the number of 4-tuples of particles in different connected components

Xy=qneX;: ,
with diameter smaller than Ve4# is at most e(3A—44+0+408 for any § < A < A

3 1
X, = {'1 € X, in any box of volume e+®# the number of particles is at most e2*”and at least e2%/ } )

(4

X = {r[ € X3 @ in any box of volume e =% the number of particles is at most i/l(ﬁ) } .

L)

Remark 2.3. The choice of S comes from the fact that we require the probability to have 4 particles anywhere in a box of volume
e5/ to tend to zero under the measure jx as f — co. #

Remark 2.4. The exit time of X coincides with the first time 7, ; when an anomalous concentration event occurs [16]. Since the
QRW-estimates of [16] hold up to this time, we can use them as long as the system stays in X* C X;. &

Remark 2.5. The reason why we define X* for any © > 4 (i.e., without the restriction ©® < 0) is that in [17] we will need
Proposition 2.6, which says that starting from x5 the system exits X* within any given exponential time with SE.S(p) probability
only. The main theorems of the present paper, which hold for the dynamics in a box of volume at most e?”, with periodic boundary
conditions, immediately extend to the case where such a small box is embedded into a larger box of volume e®”, with open boundary
conditions, as long as the system remains in the typical environment X*. &

Recall the definition of the set R given in (1.12), of the set R’ > R given in (1.15) and of the time T* given in (1.17).
Proposition 2.6. P, (TX,,\X* <T*)=SES(p).

Proof. Denote by A, the event that the dynamics exits X* at time ¢, and by A,R’ the event A, when the dynamics is restricted to
R’ (by ignoring jumps that would lead the dynamics out of R’). Given a Poisson process on R, with rate e/, denote by M) the
number of times the clock rings up to time ¢ > 0, and write P to denote its law. Let (X;),cy be the embedded discrete-time process
such that the original process (X(#)),»o can be written as X (¢) = X M- Estimate, for 6 > 0,

P, A1<T*A)

u(n) *
= —P (3 T, A
2 e <A

IN

uR) u(n)
HR) ,,627“3, HR")

!
MR p (3r<e,a7)

P,31<T* A)

<
= UR)
!

< /4(7;)[PMR/(M(ec*p)ze(9+c*+5)/i>+ 2 P}IR/()?k € X\ &%)

u(R) |<k<e(@+C*+5)p

5

u(R') (©+C*+6)p *
< SES(B) +¢ I(CDIE

M(R)[ 0) ;m ()]

where the term SES(f) comes from the Chernoff bound for a Poisson random variable, and - stan_ds for the grand-canonical
Gibbs measure conditioned to R'. Since |R'| = |R|e“? for some C > 0, we deduce that u(R')/u(R) < e“? for some C > 0. Thus, to
get the claim, it suffices to prove that urp/((X7)°) = SES() for any i. This is done in Appendix A. [

Remark 2.7. Proposition 2.6 allows us to work with configurations in X*. Replacing the original dynamics by the dynamics
restricted to X*, we can couple the two dynamics in such a way that they have the same trajectories up to any time that is exponential
in g with probability 1 — SES(f). &

2.3. Recurrence properties

In this section we group the configurations in &) into a sequence of subsets of configurations of increasing regularity, and we
prove a recurrence property of the associated Markov processes restricted to these sets on an increasing sequence of time scales. To that
end, denote by

H@)=-U Y ntonm+4 Y nx)

{x.y}EA;(t)* x€A; (1)

the local energy of j; = n)4, at time 7 inside the box A,(r), where A,(1)* denotes the set of bonds in A,(f). We emphasize that, alongside
the local model, we need to introduce two additional sets, X', and X, to control the regularity of the gas surrounding the droplets.

13
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Remark 2.8. With each particle i we can associate, at any time ¢ > 0, the time
s;(t) = inf {s € [0,7) : particle i is not free during the entire time interval [s, t]}, (2.8)

so that s7 (1) = ePP —(t —5,(1)) is the time that particle i needs to remain not free in order to fall asleep. By convention, for a sleeping
(respectively, free) particle at time ¢ we put s7(t) = 0 (respectively, s7(r) = o). In this way we are able to characterize active and
sleeping particles at any time ¢. In addition, the process Y = (X (¢), (sl.*(t))fi B /i(t)),zo is Markovian. In the sequel we will simply refer
to this process as the original process X = (X(t)),». In Section 4.3.1 we will consider a slight generalization of the process Y in
which more information about particles is included, again referring to it as the original process X. &

Definition 2.9. For any time 7 > 0, given a configuration , = X(¢) € Xy and the collection A(f) = (/i,-(t))ls,-sk(,) of finite boxes in
Ay as in Definition 1.4, we say that #, is O-reducible (respectively, U-reducible) if for some i the local energy of #; can be reduced
along the dynamics with constant A(r) without exceeding the energy level H,(#;) +0 (respectively, H;(#;)+U). If 5, is not 0-reducible
or U-reducible, then we say that #, is 0-irreducible or U-irreducible, respectively. We define

Xy ={n € X*: n, is O-irreducible},

Xy ={n € Xy: n, is U-irreducible},

Xp = {n, € &y : all the particles in A(¢) are sleeping},

Xg  ={n, € X} : each box of volume e/ contains three active particles at most},

7l; is a union of at most A(f) quasi-squares with

£
|

1, € Xg: mo particle inside |J,[4,(), 4 — «] except for those ¢,

in the quasi-squares, one for each local box A;(t)

where [A;(f), A — a] are the boxes of volume e4~®# with the same center as A,(t). &

Remark 2.10. Note that if € X4+ and ¢, = 2, then #| = 2. Indeed, a 1 x 2 dimer does not belong to X}, and therefore is not in
Xyr. &

Recall that T, = e?? for A € {0,U, D, S, A*}. Note that we have used the index 4* to define the set X+, despite the fact that
it explicitly depends on the quantity 4 — «. This is needed to provide an upper bound for the return times in X4+, namely, the
recurrence property stated in the following proposition, which uses the usual shift operator 9, s > 0, defined by 9,(X) = X(s + -),
so that s +7x, 09, =min{r > s X(1) € Xy}

Proposition 2.11. For all A € {0,U, D, S, A"}, all 56 > 0 and any stopping time t,

P, (72,09, 2 T4e”, 141y 09, <T*) = SES(p).

To prove Proposition 2.11, we need the following lemma, which is needed here only and whose proof is postponed until after
the proof of Proposition 2.11.

Lemma 2.12. Lett > 0 be the time at which an active particle p joins a cluster C with at most two particles, and let t* = t+(t, At,)od,, where
t, (respectively, t,) is the first time when the cluster C contains at least four particles (respectively, does not contain particle p artymore).
The probability that particle p falls asleep during the time interval [t,1*] is SES(p).

3 5
Proof of Proposition 2.11.