
1

A Semantic-Oriented Federated Learning for Hybrid
Ground-Aqua Computing Systems

Benedetta Picano, Member, IEEE and Romano Fantacci, Fellow, IEEE,

Abstract—Nowadays, an ambitious target of the next gen-
eration networks is to develop intelligent overarching space-
air-ground-aqua computing systems, in order to provide a
smart ecosystem able to efficiently operate computation in
heterogeneous domains. In particular, in such a context, the
underwater environment requires a special attention, since it
is recognized as the most challenging domain, due to channel
impairments and adverse propagation conditions. This paper
proposes a self-intelligent system able to efficiently perform
underwater environment monitoring or underwater survey of
critical infrastructure, by resorting to the use of the semantic
communication paradigm to lower the impairments due to the
underwater channel propagation conditions. In particular, in our
case, images sent by underwater devices are collected by shore
small base stations (SSBSs) to form their training dataset to take
part in a federated learning process with a ground base station. In
particular, the paper considers a semantic communication scheme
based on a deep-convolution neural networks encoder-decoder
architecture for an efficient exploitation of the data transmission
from underwater devices to the linked SSBSs. Performance
analysis is provided to show the better behavior of the proposed
system in comparison with the conventional alternative that does
not involve the use of the semantic communications approach.
Finally, a specific performance evaluation analysis is devoted to
the investigation of the convergence behavior of the proposed
federated learning procedure in reference to the cross ground-
aqua system considered in order to highlight its advantages with
respect to a classical implementation.

Index Terms—underwater communications, semantic commu-
nications, federated learning

I. INTRODUCTION

The emergence of the next generation networks is giving
rise to a novel and wide class of applications, requiring to
create an intelligent environment able to properly support
disruptive new generation applications. During last decade,
the emergence of these challenging aspects, alongside the ever
increasing proliferation of mobile computing and Internet of
Everything (IoE) devices, accordingly to which every single
object on the Earth will be connected to the Internet for
information exchange and communication, realizing intelligent
and supervisory functions [1], has led to the need of develop-
ing seamlessly integration of systems operating in different
domains, e.g., ground, air, space end even underwater [1].
Nowadays, this has generated an intense research efforts to
push the artificial intelligence (AI) frontiers to the network
edge regardless of the domain in which they operate [2],
e.g., to perform communication channel conditions prediction
[3]. This trend is in accordance with the emerging edge-
intelligence (EI) paradigm which involves the use of edge
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computing nodes (ENs), arranged in proximity of the source
of data, to support data gathering and computations with
the aim at hosting dedicated machine learning procedure to
properly interpret and manipulate data stemmed from the
network devices [4]. Nevertheless, EI is still at its infancy
and the effective exploitation of AI techniques at network
edges still represents a crucial problem. Recently, with the
advent of 6G technology and the highfalutin applications
which brings with it, has generated the imperative need to
extend the unified AI-based network paradigm to space-air-
ground-aqua integrated domains [1]. Such an innovative vision
finds its roots in the fact that the about 71% of the Earth area
is occupied by oceans, hosting critical infrastructures such
as submarine pipelines, oil platforms to name a few, while
large ocean areas are still unexplored. However, the effective
realization of computations in the underwater domain is bound
to data sensing, transmission, and forwarding, which makes the
transmission of large volumes of data costly in terms of both
time and power. In fact, such a novel computation paradigm
implies that information is extracted under the water using
embedded processors via data mining and/or data compression
[5]. The main objective here is to include AI capabilities at
the edge of a new generation integrated network (NGIN), to
give rise to an EI-NGIN capable of information acquisition,
processing, interpreting, and transmission in different domains
and in relation to application purposes [1].

Whereas the interest in networks overlapping ground and
underwater domains, to provide sustainable marine develop-
ment and exploitation, is self-evident and it represents one
of the most desideratum today’s network challenges, there
are still numerous issues to be addressed before it becomes
a concrete reality. In particular, the limited communication
conditions in the underwater environment dictates to decide
between low transfer delay and short communication distance
(expensive optical links), or longer communication delay with
longer communication range (acoustic-based communications)
[6]. The ambition of this paper is the proposal of an AI-driven
framework to exploit beyond-the-edge computation capabil-
ities, promoting the functional integration between machine
learning and the device-centric approach, according to which
end-devices play an active role in computing and communica-
tion. In this sense, the device-centric perspective is devoted to
implement a novel AI based semantic communication scheme
to mitigate the drawbacks due to the hostile behavior of
underwater environments, then exploited to perform FL on the
ground. This approach may enable important advancements in
several application fields as ambient monitoring, conservation
biology, and marine security. Note that, for the best of au-
thors’ knowledge, this is the first paper proposing a semantic
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based communication framework to enable hybrid ground-
aqua FL paradigm, which typically is exclusively confined to
the ground domain.

In this picture, this paper considers the case of a proper
ground-aqua EI-NGIN able to support the federated learning
(FL) paradigm [7]–[9] to effectively train models on data (i.e.,
images) collected by underwater devices. In this context, the
optimization of underwater data communications becomes cru-
cial. Therefore, an AI-empowered semantic communications
framework has been envisaged to extract and send only bits
related to the semantic information of each collected images,
instead of bits due to the statistic knowledge of source sym-
bols. This involves a significant reduction in the amount of data
to be transmitted and consequently a significant performance
improvement in terms of transmission time reduction and data
delivery reliability. Therefore, the contributions of the paper
can be summarized as follows

• The design and development of a ground-aqua frame-
work, applied to perform data gathering from underwater
devices, to create image dataset at the SSBSs that perform
FL with the ground SBS and, successively, to accomplish
intelligent tasks. Image transmission among underwater
devices and SSBSs is realized through the involvement
of the semantic communications paradigm, in order to
send only semantic information through the underwater
channel, usually allowing slow transmission rates and
subjected to severe communication impairments. It is
important to highlight that existing frameworks devoted
to realize collaborative federated analytics approaches,
are typically confined to the ground domain exclusively,
assuming the dataset on which they act yet gathered.
Differently, this paper develops a cross-domain (i.e., aqua
and ground) FL framework, considering and optimizing
the underwater communication aspects involved in the
data collection process;

• The proposal of a semantic communication scheme to
overcome the criticalities of the underwater environ-
ment, enabling efficient and effective image transmission
stemmed from the underwater devices, and devoted to
cross-domain FL functioning. In this reference, a ma-
chine learning module based on the convolution neural
networks (CNNs) has been applied, realizing the semantic
encoder through the usage of a stack of Conv2D and max-
pooling layer, whereas the decoder consists of a stack of
Conv2D and Upsampling Layer;

• An in-depth performance analysis to test the proposed
framework, in order to exhibit the validity of the approach
adopted, especially focusing on performance measure-
ments due to the underwater transmission, that represents
the bottleneck of the whole system. Specifically, results
investigate performance of the semantic encoder/decoder
scheme, expressed in terms of loss function and underwa-
ter transmission time, and the performance of the whole
FL-based framework, given in terms of convergence time
and accuracy of the learning model trained.

The rest of the paper is organized as follows. In Section II an
in-depth review of the related literature is presented. Section

III details the system model and the problem considered,
while Section IV presents the proposed overarching framework
approach. Performance evaluations are presented in Section V
and, finally, our conclusions are drawn in Section VI.

II. RELATED WORKS

The potentialities of the semantic communications in the
next generation networks have been accurately discussed in
[10], in which an in-depth survey about the application of
machine learning techniques to the transmission systems to
extract and retrieve the meaningful information has been
proposed. Likewise, paper [11] investigates the applications of
machine learning to the semantic transmission, considering the
human-to-human, human-to-machine and machine-to-machine
transmission modalities. The exploitation of EI to perform
semantic transmission has been presented in [4], whereas a
joint semantics-noise coding has been the object of the analysis
addressed in [12], where a reinforcement learning approach
has been applied. Furthermore, in [12], a critical discussion of
the semantic approach has been provided, especially in relation
to security and information overhead aspects. Differently,
coexistence of heterogeneous tasks types has been the focus in
[13], where an encoder architecture able to discern between
classification and detection has been designed. Similarly, in
[14] it was outlined the development of a dynamic context
aware machine learning decoder to dynamically interpret the
tasks type, aiming at performing proper semantic extraction.

A deep learning scheme has been applied in [15] to give
rise to a semantic transmission system able to interpret and
transmit natural language sentences. Moreover, in [15], the
simultaneous maximization of both the cross-entropy and the
Kullback-Leibler metric has been provided. Speech transmis-
sion has been the focus in [16], where a deep encoder-decoder
neural network is developed minimizing the mean-square-
error. In [17] a pruning redundancy method is propose to
provide semantic communications in case of spectrum scarcity.
In addition, fading channel effects have been considered, as
well as channel state information aiming at mitigating the
drawbacks of bad channel quality occurrence during transmis-
sion. The resource allocation problem has been analyzed in
[18], where two novel semantic metrics have been proposed,
namely the semantic rate and the semantic spectral efficiency.
In addition, paper [19] presents a novel semantic networking
concept, in which the semantic training has been performed
thorough FL to support offloading strategies.

Similarly, the FL paradigm has been exploited in [20] to
perform traffic classification, applying deep learning and the
cross-silo horizontal technique to improve privacy and security.
A FL has been tested in [21], aiming at evaluating the actual
potentials of the FL technology having privacy as main focus.
The FL has been also exploited in [22] to enable both the
mobile intelligent surfaces reconfiguration and the users power
allocation, in order to maximize channel quality, spectrum
efficiency and users data rate. Authors in [23] focused on an
edge computing landscape enabling tasks offloading. In that
context, the FL has been applied to predict the execution time
of the edge server considering an asymmetrical information
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environment, aiming at optimizing the delay energy product
metric, performing proper offloading policies.

Then, in [1], the hierarchical space-air-ground-underwater
architecture is proposed, focusing on the protocol aspects of
realizing a flexible and cross domain communications. Differ-
ently, a data-driven approach based on the usage of an echo-
state-network has been provided in [24], in order to model
the underwater channel conditions. The underwater domain is
also the objective of paper [6] where Autonomous Underwater
Vehicle (AUV)-assisted Underwater Wireless Networks are
devoted to monitor and track underwater pollution. More in
detail, authors propose a software-defined AUV networking
system based on artificial potential field theory, devoted to net-
work control to properly track underwater pollution. Underwa-
ter target tracking, along with target detection, is investigated
also in [25], in which authors review several solutions to track
unmanned underwater vehicles and they describe different
ray tracing models, useful to perform tracking in underwater
landscapes. A comprehensive survey about marine big data
and corresponding data processing techniques, considering the
problems typical of underwater environments, is represented
by the paper [26]. The paper [27] focuses on AUV hybrid wire-
less network, where acoustic communications and magnetic
induction coexist in the same network environment. The main
contribution of that paper is the design and implementation of
an alternating scheme to optimize AUV path planning and
network data flow routing. Data collection problem within
AUV sensor network is also the focus of paper [28], in which
a data collection scheme integrating the AUV mobility is
designed. In particular, the mobility model taken into account
in [28] includes direction and velocity to produce a realistic 3D
AUV mobility pattern. Exploiting AUVs as edge computing
platform, authors propose a data collection and target node
selection algorithm to effectively and efficiently visit all nodes
in the network, balancing time and energy consumption. A
cloud-based solution to real-time aquatic monitoring, involving
underwater acoustic telemetry supported by edge computing
paradigms, is proposed in [29]. The framework developed in
[29] integrates a custom-designed, miniaturized, printed circuit
board to compresse data and to increase transmission speed.
A low-complexity algorithm to efficiently compute sound
velocity, defined as the difference between the sound velocities
at the transmitter and the receiver, for deep-sea Internet of
Underwater Things (IoUT) networks, is developed in [30].
The paper [31] exploits stochastic geometry to optimize the
densities of surface stations of a K-tier space–air–ground–sea
underwater acoustic network, adopting realistic communica-
tion channel models, to maximize the coverage probability
of the system. The design and realization of an efficient
overarching Space–Air–Ground–Ocean network is also studied
in [32], where a lightweight recurrent neural network is placed
on board of low-consumption AUVs to self-navigate within the
aquatic environment, safeguarding the limited AUV resources.
The paper [33] applies contrastive learning within underwater
networks to compress machine-friendly features under low
bit-rates, devoted to underwater machine vision. Machine
learning is also exploited in paper [34], whose main goal is
to optimally set transmission parameters to avoid bandwidth

Fig. 1. FL over a Ground-Aqua Network Architecture

loss in underwater acoustic communications when compressed
images are sent. In particular, the decision making selection
strategy is achieved through reinforcement learning. Authors
in paper [35] propose a comparison among machine learning
techniques, properly tested on real underwater measurement
gathered near the Gulf of Incheon, South Korea, to predict the
most adequate communication parameters to mitigate the high
propagation loss and drastic channel fluctuation problems.

In reference to the existing literature summarized before,
this paper, for the best of authors’ knowledge, is the first paper
proposing the use of the semantic communications paradigm
in an underwater environment, as well as a combined ground-
aqua FL process.

III. PROBLEM STATEMENT

A. System Model

The scenario considers the application of the FL to a
cross domain network arranged to classify images stemmed
from underwater devices. In reference to Figure 1, a two
layers EI-network has been considered. Whereas the first layer
represents the aqua network domain, the second layer consists
of the ground network level, in which a SBS S coincides
with a cloud/edge network node (ENN), for which terms
SBS and ENN will be used interchangeably. In the aqua
domain we have a set B = {1, ..., B} of SSBSs, equipped
with processing and storage capability, having the ability to
handle semantic communications with a set of underwater-
devices M = {1, ...,M}, that collect the images to be
used at the linked SSBSs to locally training the FL model
in cooperation with the ENN and the other SSBSs. After
completion of the FL training process the ENN broadcasts the
trained model to each SSBS. Then, the images subsequently
sent by the underwater-devices to the SSBSs according to the
semantic communications paradigm are used to take, whenever
necessary, intelligent actions. In particular, in our case, each
underwater device, after capturing a new image, su, exploits
a semantic encoding process as described in Section IV, to
extract the corresponding semantic information ιu and, then,
send it out to the linked SSBS.
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B. Federated Learning Remarks

The FL [36], [37] represents a cooperative learning
paradigm in which two type of agents, i.e, participants, are typ-
ically involved: the low level devices (generally end-devices),
and a more structured and powerful node, for example a central
unit or more in general an aggregator. End-devices individually
perform a learning task by only send the local learning
model to the aggregator instead of transfer the whole training
data base. The FL is an iterative process, and it consists
of global epochs, each of which, in its turn, split in three
further phases: 1) local computation; 2) model exchange; 3)
central computation. Due to the to the very hostile underwater
environment such as propagation, absorption, and so on, the
FL in this framework is performed between the SSBSs and the
ENN. More specifically, the SSBSs represent the framework
level typically attributed to end-devices, where the data on
which the SSBSs train their models are gathered collecting
the images sent by the underwater devices belonging to M.
Then, the central aggregator is represented here by the ENN,
linked to the SSBSs through radio frequency channels.

In step 1) the SSBSs provide local data training considering
the shared model previously download from the ENN, and the
dataset created collecting images from devices belonging to
the aqua layer following the approach presented in Section IV.
Therefore, we denote with Db the dataset of the SSBS b, with
b ∈ B, composed by the images received by all the underwater
devices linked to it1. Consequently, for each sample j in Db,
the main goal is the identification of a model parameter w that
minimizes the loss function Lj(w). Therefore, each SSBS b
solves the minimization problem [7]

min
w

Lb(w) =
1

|Db|
∑
j∈Db

Lj(w). (1)

The corresponding learning model is represented by the min-
imization of the global loss function given by

min
w∈Re

L(w) =
B∑

b=1

|Db|∑B
b=1 |Db|

Lb(w), (2)

in which e is the input size. Furthermore, during each local
computation round t of the FL framework, the SSBS b solves
the local problem [7]

w
(t)
b = argmin

wb∈Re

Fb(wb|w(t−1),∇L(t−1)), (3)

in which Fb represents the objective function of SSBS b,
w(t−1) is the global parameter produced during the previous
iteration, and L(t−1) is the global loss function at time (t−1).
Once each SSBS b has completed the local model training,
the SSBS b uploads wt

b to the ENN during the second step,
in which the ENN collects the weights received by the SSBSs
belonging to B. In its turn, in step 3), the ENN improves the
global model by performing the weighted average of the local
updates wt

b previously uploaded by the SSBSs.

1We have assumed that each underwater device sends gathered images to
the nearest SSBS.

Hence, the ENN aggregates the received information by
performing the following computations

w(t+1) =
1

B

B∑
b=1

w
(t)
b , (4)

and

∇L(t+1) =
1

B

B∑
b=1

∇L(t)
b , (5)

This procedure is iteratively repeated , until the desired accu-
racy is achieved or as a consequence of a termination criterion
such as the reaching of the maximum number of iterations. In
reference to the model architecture of the FL, we adopted the
vanilla FL averaging, consisting of a CNN designed as follows
[38]

• two 5x5 convolution layers ( with 32 channels and 64,
respectively, and in cascade two 2x2 max pooling, one
for each layer),

• one fully connected layer with 512 units and ReLu
activation,

• one softmax output layer.

C. Channels and Computation Modeling

In reference to Figure 1, we have to take into account that
the underwater channel has different propagation conditions
than the wireless channel used for communications between
SSBSs and the ENN. Hence, due to the heterogeneity of
the nature of the channels involved, the link capacity char-
acterization has to be specific of the channel considered, i.e.,
underwater or wireless2. In particular, the wireless connections
between each SSBS and the ENN are accomplished on indi-
vidual no-interfering channels in the THz band, characterized
by a channel capacity, i.e., maximum data rate Rb,S given by

Rb,S = W1 log2

(
1 + SNRt

)
, (6)

SNRt =
PA0d

−2
0 e−K(f)d0

N0
(7)

in which P is the transmission power assumed equal for both
the SSBSs and ENN , whereas W1 represents the bandwidth
of the communication link, d0 is the distance, between the
source and it destination and N0, considering both the
molecular absorption noise and the Johnson-Nyquist noise at
the receiving site, results in

N0 =
W1ζ

4π
gBT0 + PA0d

−2
0 (1− e−K(f)d0), (8)

where gB consists of the Boltzmann constant, T0 is the
temperature in Kelvin, ζ is the wavelength, K(f) the global
absorption coefficient of the physical medium and A0 =

c2

16π2f2 [40]. In reference to the underwater acoustic channels,
it is widely recognized that they are related to one of the
most hostile communication media. As a consequence of

2Note that similarly to [39], this paper exclusively considers the uplink
channel. In addition, in this paper interference issues are not taken into
account.
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this, it is clearly certificated in the literature that acoustic
underwater communications can be suitable exploited only
at low frequencies, usually allowing a limited communication
bandwidth. An in-depth discussion of the underwater acoustic
channel behavior and related modelling approaches is anyhow
out of the scope of this paper. Any interested reader can find
more details on this issue in [41] and references therein. Here,
we limit our discussion to characterize the underwater acoustic
channel capacity according to [42], [43] as :

Rm,b = W2 log2

(
1 +

Ps

Pn

)
. (9)

where W2 is the signal bandwidth, Ps and Pn denote the mean
received signal power and overall noise power, respectively,
within W2, at the receiving side.

In reference to the computation model, each SSBS b has on
board a CPU with working frequency fb, given in number of
CPU cycles per unit time. Therefore, the time needed by the
SSBS b to perform the local model computation is

tb = log

(
1

ϵb

)
fbDb, (10)

where log

(
1
ϵb

)
is the number of local iterations needed to

achieve the local accuracy ϵb [44], [45] with respect to problem
(1). Let vb be the local parameter size expressed in bits
associated to the SSBS b, each communication round exhibits
a cost in time defined as

τb =
vb

Rb,S
(11)

Therefore, considering the b-th SSBS, denoting with N the
number of communications rounds, the total amount of time
spent results in

Tb = N(tb + τb) + γb, (12)

where γb represents the time needed to collect data from
underwater devices. More in detail, defining with K the total
number of steps necessary to gather images, the overall time
spent by the SSBS to populate the whole dataset can be defined
recursively as follows.

γb =

K∑
χ=1

νχ, (13)

where

νχ =

max

{
uχ,m

Rm,b

}
, if χ = 1,

max{νχ−1, νχ}, if χ > 1,

and uχ,m is the size in bits of the data sent by the underwater
device m towards the associated SSBS b, at step χ.

Note that terms γb and N are not related to each other.
More in depth, γb refers to the time spent to gather data in
the underwater domain, and it depends on factors such as
the size of the semantic information to be transmitted, the
rate of the underwater channel, the numerosity of the dataset
we want to build, etc. Differently, N is the number of FL
rounds which are related to both the local accuracy ϵb and
the convergence accuracy of the FL we desire to reach. Note

Fig. 2. Underwater semantic communications framework

that the number of SSBSs is determined in dependence on the
number and position of underwater devices to which SSBSs
have to provide coverage. In this respect, it is important to
highlight that the SSBSs have a triple role:

• To provide coverage to underwater devices. Therefore, the
choice about the number of SSBSs deployed is typically
ascribed to a prior phase of network design.

• To gather data deriving from underwater device, in order
to build the dataset exploited by the FL framework.

• To perform the FL with the ground SBS and the other
SSBSs involved in the process. In this reference, note
that the number of SSBSs does not directly impact on the
convergence time of the FL. In fact, such a time is the
result of multiple factors, for example data distribution,
size of dataset, and so on.

D. Problem Formulation

With the aim at optimizing the FL framework for hybrid
aqua-ground domain, the minimization of the mean overall
time, i.e., the time needed to receive data from the underwater
layer plus the time spent to actually training the model is
crucial. Therefore, the main objective of the paper is to design
an overarching framework able to optimize the following
problem

min
1

B

B∑
b=1

Tb (14)

The optimization problem given in (14) is very challenging,
due to the strong influence provided by terms γb on Tb

values3, with 1 ≤ b ≤ B. Therefore, in what follows, we
will focus on the minimization of terms uχ,m

Rm,b
, by proposing a

semantic communication framework that aims at the successful
transmission of semantic information extracted from an image
instead of a set of symbols or bits regardless of their meaning.

IV. UNDERWATER SEMANTIC COMMUNICATIONS

In the semantic communications, the main goal is repre-
sented by the transmission of the semantic meaning of the
source data instead of the whole data. The key difference with
classical systems is the use of a semantic encoder (Figure 2)
at the transmitter site able to extract the semantic features.
As a consequence, semantic features exclusively are sent out,
whereas data, once received at the destination, are processed
on a semantic basis only by the receiver site, instead of
at the bit level as in traditional systems. As depicted in

3As deeply certified by literature, the convergence time of the FL frame-
work, once the dataset is built, is in the order of milliseconds [7], [46].
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Fig. 3. Underwater semantic communications architecture

Figure 2, the semantic communications framework consists
of two individual cascaded sub-modules: the semantic and the
transmission part.

The first is responsible of semantic encoding and decoding
performing information processing and semantic extraction,
whereas the transmission level focuses on correctly trans-
mitting the semantic information over the physical channel.
The underwater channel is notoriously afflicted by numerous
impairments and bad propagation conditions. For this reason,
many efforts have been made during years to reduce such
drawbacks by identifying suitable modulation procedures, in
particular, to lower problems due to the low data-rate. How-
ever, in reference to this, we have to point out that an in-depth
discussion of underwater communication techniques is out of
the scope of this paper. As a consequence, in the following,
we will refer to the multicarrier binary frequency shift keying
(MC-BFSK) scheme, recently proposed in [42], just as an
example of a promising scheme for handle underwater com-
munications without pretending to propose a definitive solution
for this issue. Hence, in order to summarize the main features
of the MC-BFSK scheme4 we can say that, accordingly to
[42], M

2 parallel and independent subcarriers from a single
transducer has been considered, resulting into a composite
signal where each signaling instance carries M

2 channel coded
bits [42]. From results reported in [42], it emerges that by
a suitable selection of the modulation scheme parameters an
error-free data transmission may be guaranteed for signal-to-
noise ratio (SNR) about greater than 2 dB [42]. Consequently,
the errors due to channel impairments in our paper have
been assumed negligible. Before transmission, the picture s
is mapped into symbols xm in order to be sent over the
physical channel, experiencing transmission impairments due
to sea environment, which implies that the symbol received at
the receiver ym,b is subjected to wireless channel impairments
[16], [17].

The framework of interest here focuses on the image-
transmission and consists of an encode-decoder architecture
based on deep CNNs. More in depth, the semantic encoder
is realized through the usage of a stack of Conv2D and
max-pooling layer, whereas the decoder consists of a stack
of Conv2D and Upsampling Layer, whose architecture is
described in Figure 3. As depicted in Figure 2, accordingly
to literature, the encoder part is formed by a semantic and

4Any interested readers can refer to [42] and refrences therein for a more
insightful discussion of this topic.

a physical coding modules. Let α1 and α2 be the neural
network parameters set for the channel and the semantic
encoder modules, respectively. Therefore, the encoded symbol
xm can be expressed as

xm = Cα1
(Sα2

(s)), (15)

where Cα1
(·) and Sα2

(·) express the channel and the semantic
encoder functions, respectively. Then, ym,b is decoded by
the receiver, with the aim at retrieving the original s. As a
consequence, the retrieved copy of s, ŝ, results in

ŝ = S−1
β1

(C−1
β2

(ym,b)), (16)

in which S−1
β1

(·) is the semantic decoder with parameter
β1, whereas C−1

β2
(·) is the channel decoder having parameter

β2. Since the sea environment usually exhibits deep channel
fluctuations and adverse propagation conditions, the primary
objective here is to design an integrated channel-semantic
coding able to maximize the similarity between ŝ and s.
Referring to [4], [15], a common loss function adopted is
represented by the binary cross-entropy metric that, with the
Adam optimizer, aims at giving insight about the similarity
between ŝ and s. In order to have a measurement of the
goodness of the encoding-decoding procedure provided, for a
underwater device m, with m ∈ M, transmitting towards the
SSBS b, with b ∈ B, the cosine images similarity metric [47]
has been exploited. Hence, the similarity between the image
sent by underwater device m toward the SSBS b results in

ζm,b =
s · ŝ

||s||||ŝ||
, (17)

that is the ratio between the dot product of the images
expressed as vectors, and the product of L2-norm of both
the vectors. The meaning of parameter ζm,b is of a feedback
metric to catch the level of validity and accuracy provided by
the transmission system. In fact, a ζm,b decrease due to hash
propagation conditions, has a negative impact on the semantic
communication quality. Note that the semantic framework
exhibits a worst case complexity driven by the presence
of the convolution operation. Therefore, its computational
complexity is mainly in the order of O(U · V · u · v), where
U · V and u · v express the size of the original image and the
size of the kernel applied during convolution.

V. PERFORMANCE ANALYSIS

This section provides a performance analysis of the pro-
posed system whose focus is the functional integration of a FL
process with an underwater semantic communications system.
As stated before in Sec.IV, being the investigation of the
data underwater transmission schemes out of the scope of this
paper in its present form, without loss of generality, we have
referred here, as an example, to the MC-BFSK underwater data
communication technique proposed in [42] and referring for
the system parameter values to those reported therein in Table
I. In particular, the information data transmission rate assumed
in our computer simulations is derived in accordance with Eq.
(6) of [42], that depends on the modulation profile selected in
accordance with the procedure outlined in Sec. II of the same
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Fig. 4. Loss function as a function of the number of epochs.

Fig. 5. Loss function as a function of the encoder dimension.

paper. Furthermore, in order to properly test the performance
of the proposed framework, we have resorted to the MNIST
handwritten digits dataset [48], considering images resolution
of 28 x 28 pixels, where one pixel has been assumed composed
by 8 bits. The 70% of the dataset is devoted to the training
phase, and the 30% is used for testing. We have assumed a
number of SSBSs involved in the FL process equal to 15. Such
an assumption is justified by the fact that, in our scenario,
it represents the best trade-off between the accuracy reached
performing the FL and the number of SSBSs taking part in
the process (a greater number of SSBSs does not remarkably
improve accuracy, whereas a lower number of SSBSs gets
worse accuracy values). Aiming at validating the proposed
scheme (SC curve), Figure 4 shows the loss function value as

Fig. 6. Underwater transmission time as a function of the data rate.

Fig. 7. FL convergence time as a function of the data rate.

the number of learning epochs grows. As it is straightforward
to note in this figure, the loss function decreases, i.e., the
performance of the learning model improves, considering high
values of the number of epochs. The performance behavior
depicted in Figure 4 is also confirmed by the increase of
the encoder dimension considered in Figure 5 in relation to
the achieved loss function performance. Also in this case,
the loss trend grows as the number of neural unit increases.
This is clearly due to the fact that as the encoder dimension
grows, the intelligence capability of the considered deep-
CNNs network increases. Then, Figure 6 shows the ability
of the SC approach in performing image size reduction, in
comparison with the JPEG2000 compression technique, as a
function of data rates reported in [42]. As it is evident to
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Fig. 8. Accuracy reached by the FL model as a function of the number of
iterations.

note, the SC curve remarkably lowers the transmission time,
representing a useful solution to reduce the impact of the
underwater environment on the FL framework. Differently,
Figure 6 illustrates the trend of the overall FL convergence
time as a function of the data rates, comparing the scheme
applying the SC and that in which the SC are not involved
(WSC curve). When the semantic communications are not
applied (WSC curve), the image is sent in the conventional
method, without extracting and sending exclusively the se-
mantic information. As it is evident to note from the Figure
7, the time required to send data when the semantic commu-
nications (SC curve) approach is used, is significantly lower
than the time spent with the conventional method, implying a
significant impact on the overall FL completion time, which
means an improvement on the practical applicability of the
training framework. The behavior due to the results provided
in Figure 7 becomes clear evident when cross-analyzed them
with those given in Figure 8, dealing with the accuracy gap
in comparison with the ideal case achieved by resorting to
the considered FL scheme, i.e., by performing the semantic
extraction/reconstruction process (WSC curve). As it is evident
from this Figure, the accuracy is not significantly afflicted
by the semantic extraction/reconstruction process, and, as a
consequence, the FL process reaches almost the same accuracy
values of the scheme exploiting original images. Consequently,
jointly considering Figure 7 and Figure 8, it is easy to note
that the convergence time improvements due to the semantic
extraction-reconstruction process does not significantly afflict
the accuracy of the overall framework, while it introduces
significant benefits in terms of lowering the amount of data to
be transmitted, thus speeding up the FL convergence process.
Hence, as a final remark, we can say that the results provided
in this section highlight the concrete possibility to implement
an EI-ground-aqua network based on the exploitation of the
semantic communications to counteract the hostile behavior of

the underwater communication channels without a significant
impact on the accuracy of the retrieved data and allowing
a strong reduction of the FL convergence time that is of
paramount important in several application cases.

VI. CONCLUSION

This paper has investigated the problem of enabling the he
FL paradigm execution in an integrated ground-aqua environ-
ment by exploiting data stemmed from underwater devices.
In this reference, a ground-aqua network, mainly devoted to
monitoring activities based on images transmissions, has been
considered, in order to properly perform the FL framework. In
addition, the semantic communication approach has been in-
troduced to face with the hostile sea propagation environment
and long data transmission delays. For this purpose, a deep-
CNNs architecture has been designed, and its performance are
validated by assuming a proper underwater channel model.
Finally, performance analysis has been provided, in order to
exhibit the validity of the overarching framework proposed,
especially in terms of the accuracy and overall time needed
by the considered FL process. Future works may include
the integration of AI-based techniques to forecast underwater
channel behaviour in order to adapt to it the selection of the
most suitable data transmission scheme.
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