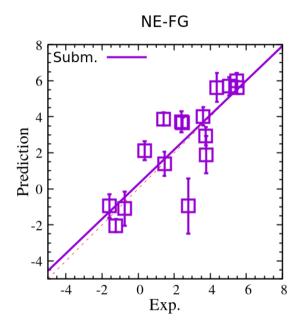
Joint UNIFI-ENEA participation in the international SAMPL9 blind challenge for predicting toluene-water LogP partition coefficients using massively parallel non equilibrium alchemical simulations


Piero Procacci(UNIFI) and Guido Guarnieri (ENEA)

The Challenge: predicting the $LogP_{tw}$ for a series of 16 compounds with disparate flexibility or molecular weight and coarsely spanning a significant portion of the ``drug-like'' chemical space, including moieties such as carboxyl, carbonyl, sulfonic, oxydryl, amino, amide, halogen, phenyl, hetero-cyclic, alkyl

Method: calculation of the solvation energies using **nonequilibrium** alchemical molecular dynamics simulations (**NE-FG**) where the solute-solvent interaction potential is rapidly switched on (fast growth) in *explicit* solvent (450 ps in water and toluene). GAFF2 force field for solute and solvent. Each LogP required two NE simulations (jobs) using 576 cores (12 nodes) on **CRESCO6** *requiring a total of two wall clock time hours*

Results: correlation plot between calculated and experimental LogP

Metrics CCC (Lin) = 0.82 R (Pearson) = 0.83 slope = 0.96 intercept = 0.25 tau (Kendall) = 0.58 MUE = 1.12 MSE = -0.16

Comparison with other MD methods:

Subm.	method	FF	Charges	Ranked	t _{sim} /ns	CCC	MAE	R
VoltzLab	FEP/alchemy/EE	OpenFF-2.0	AM1-BCC	T	≃(3E4	0.82	1.26	0.90
NE-FG	NE/alchemy	GAFF2	AM1-BCC	Т	90	0.82	1.12	0.83
Beckstein-Iorga	FEP/alchemy	GAFF/TIP3P	AM1-BCC	F	$\simeq 250$	0.75	1.50	0.79
Beckstein-Iorga	FEP/alchemy	OPLS/M24	mol2ff	Т	$\simeq 250$	0.73	1.72	0.88
Beckstein-Iorga	FEP/alchemy	OPLS/TIP4P	CM1A	F	$\simeq 250$	0.72	1.88	0.91
Sprick	FEP/alchemy/HREM	GAFF/TIP3P	IpolQ-Mod	Т	240	0.47	3.03	0.66
Oxford	E-S/MCC	GAFF2/TIP3P	AM1-BCC	Т	1200	0.42	1.78	0.44
MD(Patel)	FEP/alchemy	CGenFF/TIP4P	cGenFF	F	216	0.21	2.63	0.25

NE-FG resulted as **the best MD-based SAMPL9 prediction** for the Mean Unsigned Error (MUE), the Lin Concordance coefficient (CCC) and the benefit-cost ratio. The computational cost of NE-FG (t_{sim} /ns) was the **lowest** among all MD-based approaches