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Abstract
Port-based teleportation (PBT) is a teleportation protocol that employs a num-
ber of Bell pairs and a joint measurement to enact an approximate input-output
identity channel. Replacing the Bell pairs with a different multi-qubit resource
state changes the enacted channel and allows the PBT protocol to simulate qubit
channels beyond the identity. The channel resulting from PBT using a general
resource state is consequently of interest. In this work, we fully characterise
the Choi matrix of the qubit channel simulated by the PBT protocol in terms
of its resource state. We also characterise the PBT protocol itself, by finding a
description of the map from the resource state to the Choi matrix of the channel
that is simulated by using that resource state. Finally, we exploit our expressions
to show improved simulations of the amplitude damping channel by means of
PBT with a finite number of ports.

Keywords: quantum information, port-based teleportation, quantum channel
simulation

(Some figures may appear in colour only in the online journal)

1. Introduction

Quantum teleportation [1–3] is a powerful tool in quantum information [4–10]. Teleporta-

tion protocols utilise entanglement between quantum states held by a sender and a receiver to
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transmit a state. The resulting quantum channel mapping the sent state to the received state is
determined by the protocol used and by the resource state held by the sender and receiver prior
to the protocol being enacted. Such protocols have applications in quantum communications
protocols (for example, superdense coding [4]) as well as in quantum computing (quantum gate
teleportation [11]), and they can be used as a mathematical tool for the simulation of quantum
channels [12, 13] and quantum networks [14, 15].

The standard teleportation protocol, as proposed by Bennett et al [1], uses a shared (between
the sender and the receiver) two-qubit state. A measurement is performed on the sender’s qubit
and the qubit to be teleported, projecting the pair of qubits onto a Bell state. Based on the result
of this measurement, one of the four Pauli operators (including the identity) is applied to the
receiver’s state. The quantum channel resulting from teleportation using this protocol depends
on the resource state used. This protocol has limitations, however, as it is only able to simulate
Pauli channels [16]. This stems from the fact that the Pauli operators, which are probabilisti-
cally applied to the receiver’s state, do not commute with every unitary operator. The class of
simulable channels was expanded using a generalisation of the standard teleportation protocol,
however this protocol is still not capable of simulating all channels [17].

In reference [18, 19], Ishizaka and Hiroshima introduced a new teleportation protocol, called
port-based teleportation (PBT). We consider the qubit version of this protocol. In the protocol,
the sender and receiver each hold part of a resource state. Each qubit held by the receiver
corresponds to a qubit held by the sender, and this shared two-qubit state is referred to as
a port. In the standard case introduced by Ishizaka and Hiroshima, each port is an identical
Bell pair. Then, a joint measurement is carried out on the sender’s states and the qubit to be
teleported; the result of this measurement is transmitted to the receiver, and based on this result,
the receiver selects one of the ports and traces out the others. This measurement is chosen
to be the square-root measurement, which projects the qubit to be teleported and one of the
sender’s resource qubits onto a Bell pair. The square-root measurement is optimal, in terms
of entanglement fidelity, for PBT with a maximally entangled resource state, in both the qubit
[18] and qudit cases [20, 21]. For a finite number of ports, N, the input-output channel from
the PBT protocol is a depolarising channel whose diamond norm from the identity channel is
exactly known [22] and decreases to zero in the limit of N →∞.

In a more general setting, one can replace the original Bell pairs of the PBT protocol with any
two-qubit state, and we may even allow entanglement between the ports. Here we investigate
this general case, deriving the Choi matrix of the resulting PBT channel in terms of a multi-
qubit resource state chosen for its ports. More precisely, we derive an explicit expression for the
Choi matrix characterising the qubit channel given by enacting PBT using a given resource state
and the square-root measurement (parametrised by the resource state). We make an assumption
about the symmetry of the resource state under exchange of the labels of the ports, and show
that resource states that fulfill this assumption can simulate any channel. We also show how this
Choi matrix can be converted into the alternative channel representation of Kraus operators.
We then find explicit expressions for the Kraus operators characterising the channel mapping
from the resource state to the Choi matrix of the simulated qubit channel. These expressions
characterise the PBT protocol itself, and can be used for optimising the finite-port simulation
of a target channel over the convex set of resource states.

As an example of how the formulae can be applied, for two ports we give simple expressions
for the Choi matrix of the simulated qubit channel. We also study families of resource states
and, in particular, we define what we call ‘Choi resources’, namely states made by N copies
of a generic state with a maximally mixed marginal. Via the Choi–Jamiołkowski isomorphism
[23, 24], each of these states is in one-to-one correspondence with a quantum channel, but
not necessarily the channel we are interested in simulating. As an application, we simulate

2



J. Phys. A: Math. Theor. 54 (2021) 205301 J Pereira et al

the amplitude damping (AD) channel using various Choi resources and show that a better
simulation of the channel can be achieved using a Choi resource that corresponds to a possibly
different AD channel. We find that the diamond norm (quantifying the quality of the simulation)
can be found analytically at two different damping probabilities. Finally, we also investigate the
simulation performance that is achievable with another family of resource states, with tensor-
product structure, and such that they cannot be expressed as N copies of the Choi matrix of
some channel. At low N, this type of resource state is better at simulating an AD channel with
low damping than any resource expressable as N copies of the Choi matrix of an AD channel.

Our manuscript is structured as follows. In section 2, we compute the expression of Choi
matrix of the qubit channel simulated by PBT with an arbitrary multi-qubit resource state.
In section 3 we briefly discuss how to derive the Kraus operators of the simulated channel.
Then, in section 4, we characterise the PBT map from the resource state to the Choi matrix
of the simulated channel. In section 5, we show the example of two-port PBT, in section 6,
we use our expressions to calculate the depolarisation probability for PBT with a maximally
entangled resource, and in section 7, we present the various improved simulations of the AD
channel. Section 8 is for conclusions.

2. Calculating the Choi matrix for qubit PBT

We consider an N-port qubit PBT protocol. We call the sender’s part of the resource state
the A modes and the receiver’s part of the resource state the B modes. In order to char-
acterise the channel simulated by PBT using a given resource state, we calculate the Choi
matrix for that channel. To do so, we consider a maximally entangled two-mode state,
|C0C1〉 = 1√

2

(
|00〉+ |11〉

)
. C0 denotes the idler mode and C1 denotes the teleported mode.

The measurement consists of a POVM described by the operators Ôi = Πi,AC1 ⊗ 1BC0 , where
i = 1, . . . , N. We consider the case in which theΠis describe a square-root measurement. Given
a certain measurement result i, Bob assumes that the state is teleported to the ith mode Bi and
discards all the other ports via a partial trace applied to all Bj with j �= i, all the A modes and
C1.

We assume that each port is symmetric under permutation of labels, i.e. that a swap operation
that swaps both ports Ai and Aj and ports Bi and B j does not change the density matrix of the
resource state. This does not mean that the ports have to be independent of each other; it is
still possible for the A modes (or the B modes, or both) to have some entanglement with each
other. Consequently, all measurement outcomes are equally likely and all outcomes result in
the same channel for the teleported state. We can therefore assume that the state is teleported
to the first B port without loss of generality, and so only consider one operator. We can justify
this assumption as it simple to show that, for any non-symmetric resource state φ, there exists
a symmetric resource state φsym that gives precisely the same channel [25].

Defining Pπ as the qubit channel resulting from PBT using the program state π, we write

PπAB (ρC1) =
N∑

i=1

TrAB̄iC1

[(√
ΠiAC1

⊗ 1B

) (
πAB ⊗ ρC1

) (√
ΠiAC1

⊗ 1B

)†]
, (1)

where Bi is the port to which the state is teleported, B̄i denotes all ports except for Bi and
Πi is the measurement operator applied to teleport the state to port i. Applying the symmetry
condition, each value of i gives the same output state, so we can carry out the sum and write

PπAB (ρC1) = N TrAB̄1C1

[ (√
Π1AC1

⊗ 1B

) (
πAB ⊗ ρC1

) (√
Π1AC1

⊗ 1B

)†]
. (2)

3



J. Phys. A: Math. Theor. 54 (2021) 205301 J Pereira et al

The Choi matrix of this channel is then given by

1C0 ⊗ PπAB(|Φ〉 〈Φ|C0C1
), (3)

where |Φ〉 = 1√
2

(
|00〉+ |11〉

)
is a Bell state.

For simplicity, let us initially consider what happens to a teleported arbitrary state ρC1 (i.e.
temporarily ignore the idler mode). Using the fact that the operator enacts the identity on the
B modes, we can take the trace on the B̄ modes prior to the action of the operator. This allows
us the simplification

PπAB (ρC1) = N TrAC1

[ (√
Π1AC1

⊗ 1B1

)
TrB̄1

[
πAB ⊗ ρC1

] (√
Π1AC1

⊗ 1B1

)†]
. (4)

We denote the matrix representation of PπAB(ρC1 ) as Vout. We can then write

Vout =

(
V00

out V01
out

V10
out V11

out

)
, (5)

Vi j
out = 〈i|PπA B(ρC1 )| j〉

= N

〈
i

∣∣∣∣TrAC1

[(√
Π1AC1

⊗ 1B1

)
TrB̄1

[
πA B ⊗ ρC1

](√
Π1AC1

⊗ 1B1

)†]∣∣∣∣ j
〉
.

(6)

Again using the fact that we enact the identity on the B modes, we can take the contraction
over the mode B1 within the operation, arriving at

Vi j
out = N Tr

[√
Π1AC1

〈
i|TrB̄1

[
πA B ⊗ ρC1

]
| j
〉√

Π1
†
AC1

]
= N Tr

[
Π1

〈
i|TrB̄1

[
πA B ⊗ ρC1

]
| j
〉]

, (7)

where we have used the cyclic invariance of the trace and the fact thatΠ1 is a hermitian operator.
In the second line and henceforth, we neglect the subscripts on Π1. We now define Ri+1, j+1 =〈
i|B1 TrB̄1

[πAB]| j
〉

B1
(the +1 is so that the labels run from 1 to 2 rather than from 0 to 1). Using

this, we can simplify the expression for Vout to

Vout = N

(
Tr[Π1(R11 ⊗ ρC1 )] Tr[Π1(R12 ⊗ ρC1 )]
Tr[Π1(R21 ⊗ ρC1 )] Tr[Π1(R22 ⊗ ρC1 )]

)
. (8)

Returning to considering the Choi matrix, C, we can use this simplification to write

C =
N
2

⎛
⎜⎜⎝
χ11

00 χ12
00 χ11

01 χ12
01

χ21
00 χ22

00 χ21
01 χ22

01

χ11
10 χ12

10 χ11
11 χ12

11

χ21
10 χ22

10 χ21
11 χ22

11

⎞
⎟⎟⎠ , (9)

χi j
mn = Tr[Π1(Ri j ⊗ |m〉 〈n|C1

)]. (10)

It is worth noting that the Choi matrix is valid density matrix, so we need only find expres-
sions for the terms on or above the main diagonal. It is also worth noting that R11 and R22 are
(unnormalised) density matrices, while R12 and R21 are not, in general.

4



J. Phys. A: Math. Theor. 54 (2021) 205301 J Pereira et al

Let us now consider the structure of the measurement Π1, in a similar way to the analysis in
[19]. Π1 is a square-root measurement and can be linearly decomposed as Π1 = ρ−

1
2 σ1ρ

− 1
2 +

1
N (1 − ρ−

1
2 ρρ−

1
2 ), where σi is the projector onto the Bell pair 1√

2
(|01〉 − |10〉) between qubit C

and the ith qubit in the sender’s resource state (note that it is a different Bell pair from |Φ〉, the
Bell pair we used to define the Choi matrix) and ρ =

∑N
i=1σi, as defined in [19]. Note that the

powers of ρ are taken over its support. Let us call the first term in this linear decomposition M1

and call the second term M2; we then have Π1 = M1 + M2. Ishizaka and Hiroshima found that
the eigenvalues of ρ take one of two possible forms: λ−

j = 1
2

(
N
2 − j

)
or λ+

j = 1
2

(
N
2 + j + 1

)
(these expressions differ slightly from those given in [19], using a pre-factor of 1

2 rather than 1
2N ;

this is purely due to defining σi slightly differently). The two types of eigenvalue correspond
to two types of eigenvector:

∣∣Ψ(λ∓
j , m,α)

〉
= Ξ±−

(
j, m +

1
2

) ∣∣∣∣Φ[N]

(
j, m +

1
2

,α

)〉
A

|0〉C+

× Ξ±+

(
j, m − 1

2

) ∣∣∣∣Φ[N]

(
j, m − 1

2
,α

)〉
A

|1〉C, (11)

Ξ++( j, m) =

〈
j, m,

1
2

,
1
2

∣∣∣∣ j + 1
2

, m +
1
2

〉
,

Ξ+−( j, m) =

〈
j, m,

1
2

,−1
2

∣∣∣∣ j + 1
2

, m − 1
2

〉
,

Ξ−+( j, m) =

〈
j, m,

1
2

,
1
2

∣∣∣∣ j − 1
2

, m +
1
2

〉
,

Ξ−−( j, m) =

〈
j, m,

1
2

,−1
2

∣∣∣∣ j − 1
2

, m − 1
2

〉
,

(12)

where Ξ±±( j, m) represents a Clebsch–Gordan coefficient, with the first superscripted sign
determining whether j increases or decreases by 1

2 and the second superscripted sign determin-
ing whether m increases or decreases by 1

2 . Note that 〈 j, m, 1/2,±1/2|J, M〉 = 0 if |M| > J or
m ± 1/2 �= M.

Ishizaka and Hiroshima treat the qubits as spins and hence treat the state AC as a combina-
tion of an N-spin system and a spin singlet;

∣∣Φ[N](λ∓
j , m,α)

〉
then gives the orthogonal basis

vectors of an N-spin system. j corresponds to the magnitude of the spin of the resource state;
this is a positive (half-)integer with minimum value 0 ( 1

2 ) when N is even (odd). We call the
magnitude of the total spin (of the A and C modes) s; s has a maximum value of N+1

2 , which
occurs when every spin is aligned (all qubits in AC are 0 or all are 1). m corresponds to the spin
of the total system in the z-direction. For fixed s, m runs from −s to s. The eigenvectors with
eigenvalues λ−

j correspond to those states in which the total spin magnitude of the system AC
is the sum of the spin magnitudes of the systems A and C (i.e. the A qubits have total spin j,
the C qubit has total spin 1

2 , so the system AC has total spin j + 1
2 ) and the eigenvectors with

eigenvalues λ+
j correspond to states in which the spins subtract (i.e. the A qubits have total

spin j, the C qubit has total spin 1
2 , so the system AC has total spin j − 1

2 ). Consequently, for
fixed s, we have eigenvalues λ−

j with j taking values up to s − 1
2 and eigenvalues λ+

j with j
taking values up to s + 1

2 (we also cannot have λ+
0 , since this would require the A qubits to

have negative total spin). For some values of j, multiple states
∣∣Φ[N](λ∓

j , m)
〉

exist (i.e. j and m
do not uniquely define a basis vector); in this case, we label the different states with α, which
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runs from 1 to the degeneracy of the j-value, g(N, j), (which depends only on N and j, not on
m).

Ishizaka and Hiroshima then divide the vectors in the N-spin basis into two types, based

on how they are constructed from the (N − 1)-spin basis; these are labeled
∣∣∣Φ[N]

I ( j, m,α)
〉

and∣∣∣Φ[N]
II ( j, m,α)

〉
. The eigenvectors of ρ constructed using these basis vectors are then labeled∣∣ΨI(λ∓

j , m,α)
〉

and
∣∣ΨII(λ∓

j , m,α)
〉
. This categorisation is useful, because we can express ρ

and M1 in terms of these vectors. The N-spin vectors are constructed as∣∣∣Φ[N]
I ( j, m,α)

〉
= Ξ−−

(
j +

1
2

, m +
1
2

) ∣∣∣∣Φ[N−1]

(
j +

1
2

, m +
1
2

,α

)〉
Ā

|0〉A1

+ Ξ−+

(
j +

1
2

, m − 1
2

)

×
∣∣∣∣Φ[N−1]

(
j +

1
2

, m − 1
2

,α

)〉
Ā

|1〉A1
, (13)

∣∣∣Φ[N]
II ( j, m,α)

〉
= Ξ+−

(
j − 1

2
, m +

1
2

) ∣∣∣∣Φ[N−1]

(
j − 1

2
, m +

1
2

,α

)〉
Ā

|0〉A1

+ Ξ++

(
j − 1

2
, m − 1

2

)

×
∣∣∣∣Φ[N−1]

(
j − 1

2
, m − 1

2
,α

)〉
Ā

|1〉A1
, (14)

and the eigenvectors of ρ are constructed as

∣∣ΨI(λ
∓
j , m,α)

〉
= Ξ−−

(
j +

1
2

, m + 1

)
Ξ±−
(

j, m +
1
2

)

×
∣∣∣∣Φ[N−1]

(
j +

1
2

, m + 1,α

)〉
Ā

|00〉A1C

+ Ξ−+

(
j +

1
2

, m

)
Ξ±−
(

j, m +
1
2

)

×
∣∣∣∣Φ[N−1]

(
j +

1
2

, m,α

)〉
Ā

|10〉A1C

+ Ξ−−
(

j +
1
2

, m

)
Ξ±+

(
j, m − 1

2

)

×
∣∣∣∣Φ[N−1]

(
j +

1
2

, m,α

)〉
Ā

|01〉A1C

+ Ξ−+

(
j +

1
2

, m − 1

)
Ξ±+

(
j, m − 1

2

)

×
∣∣∣∣Φ[N−1]

(
j +

1
2

, m − 1,α

)〉
Ā

|11〉A1C, (15)

∣∣ΨII(λ
∓
j , m,α)

〉
= Ξ+−

(
j − 1

2
, m + 1

)
Ξ±−
(

j, m +
1
2

)

6
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×
∣∣∣∣Φ[N−1]

(
j − 1

2
, m + 1,α

)〉
Ā

|00〉A1C

+ Ξ++

(
j − 1

2
, m

)
Ξ±−
(

j, m +
1
2

)

×
∣∣∣∣Φ[N−1]

(
j − 1

2
, m,α

)〉
Ā

|10〉A1C

+ Ξ+−
(

j − 1
2

, m

)
Ξ±+

(
j, m − 1

2

)

×
∣∣∣∣Φ[N−1]

(
j − 1

2
, m,α

)〉
Ā

|01〉A1C

+ Ξ++

(
j − 1

2
, m − 1

)
Ξ±+

(
j, m − 1

2

)

×
∣∣∣∣Φ[N−1]

(
j − 1

2
, m − 1,α

)〉
Ā

|11〉A1C. (16)

These explicit expressions will be useful later.
First, we write ρ as a sum of projectors,

ρ =

N+1
2∑

s=smin

[
λ−

s− 1
2

s∑
m=−s

∑
α

(∣∣∣ΨI

(
λ−

s− 1
2
, m,α

)〉〈
ΨI

(
λ−

s− 1
2
, m,α

)∣∣∣
+
∣∣∣ΨII

(
λ−

s− 1
2
, m,α

)〉〈
ΨII

(
λ−

s− 1
2
, m,α

)∣∣∣)

+ λ+

s+ 1
2

s∑
m=−s

∑
α

(∣∣∣ΨI

(
λ+

s+ 1
2
, m,α

)〉〈
ΨI

(
λ+

s+ 1
2
, m,α

)∣∣∣
+
∣∣∣ΨII

(
λ+

s+ 1
2
, m,α

)〉〈
ΨII

(
λ+

s+ 1
2
, m,α

)∣∣∣)
]
. (17)

We then write ρ−
1
2 in the same way, getting

ρ−
1
2 =

N+1
2∑

s=smin

[(
λ−

s− 1
2

)− 1
2

s∑
m=−s

∑
α

(∣∣∣ΨI

(
λ−

s− 1
2
, m,α

)〉〈
ΨI

(
λ−

s− 1
2
, m,α

)∣∣∣
+
∣∣∣ΨII

(
λ−

s− 1
2
, m,α

)〉〈
ΨII

(
λ−

s− 1
2
, m,α

)∣∣∣)

+
(
λ+

s+ 1
2

)− 1
2

s∑
m=−s

∑
α

(∣∣∣ΨI

(
λ+

s+ 1
2
, m,α

)〉〈
ΨI

(
λ+

s+ 1
2
, m,α

)∣∣∣
+
∣∣∣ΨII

(
λ+

s+ 1
2
, m,α

)〉〈
ΨII

(
λ+

s+ 1
2
, m,α

)∣∣∣)
]
. (18)

The above expression is taken only over the support of ρ; some of the eigenvectors have an
eigenvalue of 0, and we leave these out of the sum. From the form of the eigenvalues, we can
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see that they are all positive definite, except for in the case where j = N
2 , and that λ−

N
2
= 0.

The corresponding eigenvectors,
∣∣∣ΨII(λ−

N
2

, m,α)
〉

, define the vector space that is not part of the

support of ρ and hence the sum of the corresponding projectors gives us M2 (since ρ−
1
2 ρρ−

1
2

is the identity over the support of ρ). Note that there is no
∣∣∣ΨI(λ−

N
2

, m,α)
〉

vector, since this

would require basis vectors of the (N − 1)-spin subsystem with j = N+1
2 to exist. We can write

the expression for M2,

M2 =
1
N

N+1
2∑

m=− N+1
2

∑
α

∣∣∣ΨII

(
λ−

N
2

, m,α
)〉〈

ΨII

(
λ−

N
2

, m,α
)∣∣∣ . (19)

We now want to find the form of M1 = ρ−
1
2 σ1ρ

− 1
2 . We express σ1 as

σ1 =
1
2

(|01〉 − |10〉)(〈01| − 〈10|)A1C ⊗
N−1

2∑
j= jmin

j∑
m=− j

∑
α

∣∣Φ[N−1]( j, m,α)
〉

×
〈
Φ[N−1]( j, m,α)

∣∣
Ā
. (20)

We then want to find 1√
2
(〈01| − 〈10|)A1C

∣∣∣ΨI(λ∓
s∓ 1

2
, m,α)

〉
AC

and 1√
2
(〈01| − 〈10|)A1C∣∣∣ΨII(λ∓

s∓ 1
2
, m,α)

〉
AC

; these will allow us to calculate ρ−
1
2 σ1ρ

− 1
2 . Ishizaka and Hiroshima cal-

culated these using the expressions in equations (15) and (16) (and the explicit form of the
Clebsch–Gordan coefficients), finding

1√
2

(〈01| − 〈10|)A1C

∣∣∣ΨI

(
λ−

s− 1
2
, m,α

)〉
AC

=

√
s

2s + 1

∣∣Φ[N−1](s, m,α)
〉

Ā
, (21)

1√
2

(〈01| − 〈10|)A1C

∣∣∣ΨI

(
λ+

s+ 1
2
, m,α

)〉
AC

= 0, (22)

1√
2

(〈01| − 〈10|)A1C

∣∣∣ΨII

(
λ−

s− 1
2
, m,α

)〉
AC

= 0, (23)

1√
2

(〈01| − 〈10|)A1C

∣∣∣ΨII

(
λ+

s+ 1
2
, m,α

)〉
AC

= −
√

s + 1
2s + 1

∣∣Φ[N−1](s, m,α)
〉

Ā
.

(24)

Combining our expressions for ρ−
1
2 and σ1, and equations (21)–(24), we find that M1 takes the

form

M1 =

N−1
2∑

s=smin

s∑
m=−s

∑
α

[(
λ−

s− 1
2

)−1 s
2s + 1

∣∣∣ΨI

(
λ−

s− 1
2
, m,α

)〉〈
ΨI

(
λ−

s− 1
2
, m,α

)∣∣∣
−
(
λ−

s− 1
2
λ+

s+ 1
2

)− 1
2

√
s(s + 1)
2s + 1

(∣∣∣ΨI

(
λ−

s− 1
2
, m,α

)〉〈
ΨII

(
λ+

s+ 1
2
, m,α

)∣∣∣
8
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+
∣∣∣ΨII

(
λ+

s+ 1
2
, m,α

)〉 〈
ΨI

(
λ−

s− 1
2
, m,α

)∣∣∣)+ (λ+

s+ 1
2

)−1 s + 1
2s + 1

×
∣∣∣ΨII

(
λ+

s+ 1
2
, m,α

)〉 〈
ΨII

(
λ+

s+ 1
2
, m,α

)∣∣∣ ] . (25)

We have summed s from smin to N−1
2 , rather than to N+1

2 , since λ−
N
2
= 0 and the vector∣∣∣Ψ(λ+

N
2 +1

, m,α)
〉

does not exist.

We now calculate
〈

0|ΨI(λ∓
s∓ 1

2
, m,α)

〉
,
〈

0|ΨII(λ∓
s∓ 1

2
, m,α)

〉
,
〈

1|ΨI(λ∓
s∓ 1

2
, m,α)

〉
and〈

1|ΨII(λ∓
s∓ 1

2
, m,α)

〉
(where the contraction is over the C qubit). Using the expressions in

equations (15) and (16), and finding the explicit form of the Clebsch–Gordan coefficients [19],
we calculate

〈
0
∣∣∣ΨI(II)

(
λ−

s− 1
2
, m,α

)〉
=

√
1
2
− m

2s

∣∣∣∣Φ[N]
I(II)

(
s − 1

2
, m +

1
2

,α

)〉
A

, (26)

〈
1
∣∣∣ΨI(II)

(
λ−

s− 1
2
, m,α

)〉
=

√
1
2
+

m
2s

∣∣∣∣Φ[N]
I(II)

(
s − 1

2
, m − 1

2
,α

)〉
A

, (27)

〈
0
∣∣∣ΨI(II)

(
λ+

s+ 1
2
, m,α

)〉
=

√
1
2
+

m
2(s + 1)

∣∣∣∣Φ[N]
I(II)

(
s +

1
2

, m +
1
2

,α

)〉
A

, (28)

〈
1
∣∣∣ΨI(II)

(
λ+

s+ 1
2
, m,α

)〉
= −
√

1
2
− m

2(s + 1)

∣∣∣∣Φ[N]
I(II)

(
s +

1
2

, m − 1
2

,α

)〉
A

. (29)

We now have enough to start calculating the components of the Choi matrix. As an example,
let us consider the top-left component,χ11

00. We are given R11, R12 and R22 as the specification of

the resource state. Let us demand that these are given in the N-spin basis (the
∣∣∣Φ[N]

I(II)( j, m,α)
〉

basis). In order to make it clear which components of the resource state we are referring to
without choosing some specific matrix representation, we define the function f 11

I,I such that

f 11
I,I ( j1, m1,α1, j2, m2,α2) is the coefficient of

∣∣∣Φ[N]
I ( j1, m1,α1)

〉〈
Φ[N]

I ( j2, m2,α2)
∣∣∣ in R11. We

similarly define f 11
I,II, f 11

II,I and f 11
II,II, and similar functions for R12, R21 and R22. These functions

are simply a way of specifying the resource state. Together, R11, R12 and R22 give the resource
state after tracing over all but one B mode. With our assumption that the resource state is
unchanged by a swap operation between two ports, this is sufficient to specify the resource
state.

We then calculate contributions to the Choi matrix from M1 and M2, using the expressions
in equations (25) and (19), and equations (26)–(29). Recall that M1 acts on the support of ρ
and M2 acts on the part of the resource state that is not on the support of ρ. The contribution
to χ11

00 from M1 is

Tr[M1(R11 ⊗ |0〉 〈0|C1
)]

=

N−1
2∑

s=smin

s∑
m=−s

∑
α

[
q2
− f 11

I,I

(
s − 1

2
, m +

1
2

,α, s − 1
2

, m +
1
2

,α

)

9
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− q−r+

(
f 11

I,II

(
s − 1

2
, m +

1
2

,α, s +
1
2

, m +
1
2

,α

)
+ f 11

II,I

×
(

s +
1
2

, m +
1
2

,α, s − 1
2

, m +
1
2

,α

))

+ r2
+ f 11

II,II

(
s +

1
2

, m +
1
2

,α, s +
1
2

, m +
1
2

,α

)]
, (30)

q± =

√
2(s ± m)

(N + 1 − 2s)(2s + 1)
, (31)

r± =

√
2(s ± m + 1)

(N + 3 + 2s)(2s + 1)
, (32)

where we have used the explicit form of the eigenvalues. The contribution to χ11
00 from M2 is

Tr[M2(R11 ⊗ |0〉 〈0|C1
)] =

1
N

N+1
2∑

m=− N+1
2

(
1
2
− m

N + 1

)
f 11

II,II

×
(

N
2

, m +
1
2

, 1,
N
2

, m +
1
2

, 1

)
. (33)

We do not need to sum over α, since there is no degeneracy in the states we sum over. By
adding these two contributions and multiplying by N

2 (as per equation (9)), we get the top-left
component of the Choi matrix. We call this component C11. Then,

C11 =
N
2

N−1
2∑

s=smin

s∑
m=−s

∑
α

[
q2
− f 11

I,I

(
s − 1

2
, m +

1
2

,α, s − 1
2

, m +
1
2

,α

)

− q−r+

(
f 11

I,II

(
s − 1

2
, m +

1
2

,α, s +
1
2

, m +
1
2

,α

)
+ f 11

II,I

×
(

s +
1
2

, m +
1
2

,α, s − 1
2

, m +
1
2

,α

))

+ r2
+ f 11

II,II

(
s +

1
2

, m +
1
2

,α, s +
1
2

, m +
1
2

,α

)]

+
1
2

N+1
2∑

m=−N+1
2

(
1
2
− m

N + 1

)
f 11

II,II

(
N
2

, m +
1
2

, 1,
N
2

, m +
1
2

, 1

)
. (34)

We can express this more succinctly by defining the functions

ga
b[−+−+](s, m) =

∑
α

f a
b

(
s − 1

2
, m +

1
2

,α, s − 1
2

, m +
1
2

,α

)
, (35)

where the index a could be ‘11’, ‘12’, ‘21’ or ‘22’ and the index b could be ‘I, I’, ‘I, II’, ‘II, I’
or ‘II, II’. Equally, the signs given as arguments to the g function can be changed (e.g. we

10
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could have ‘++++’ instead of ‘−+−+’), and in this case the signs in the f function change
accordingly. We can then express C11 as

C11 =
N
2

N−1
2∑

s=smin

s∑
m=−s

[
q2
−g11

I,I [−+−+](s, m)

− q−r+
(
g11

I,II[−+++](s, m) + g11
II,I[++−+](s, m)

)

+ r2
+g11

II,II[++++](s, m)
]
+

1
2

N+1
2∑

m=− N+1
2

(
1
2
− m

N + 1

)

× g11
II,II[−+−+]

(
N + 1

2
, m

)
. (36)

To get the expressions for C12 and C22, we simply replace g11 with g12 and g22 respectively in
the expression for C11. Equally, once we have the expression for C13, we can get the expressions
for C14, C23 and C24 by replacing g11 with g12, g21 and g22 respectively in the expression for
C13. Similarly, starting from the expressions for C33, we get the expressions for C34 and C44 by
replacing g11 with g12 and g22 respectively in the expression for C33. Essentially, if we divide
the Choi matrix into quarters, we only need one expression per block of four elements, and
the other expressions only require trivial modifications. We also only need the expressions for
the upper triangle of the Choi matrix, since the Choi matrix is a valid density matrix and so is
Hermitian. We give the expressions for C13 and C33 below:

C13 =
N
2

N−1
2∑

s=smin

s∑
m=−s

[
q−q+g11

I,I [−+−−](s, m) + q−r−g11
I,II[−++−]

× (s, m) − q+r+g11
II,I[++−−](s, m) − r−r+g11

II,II[+++−](s, m)
]

+
1
2

N+1
2∑

m=−N+1
2

√
1
4
−
(

m
N + 1

)2

g11
II,II[−+−−]

(
N + 1

2
, m

)
, (37)

C33 =
N
2

N−1
2∑

s=smin

s∑
m=−s

[
q2
+g11

I,I [−−−−](s, m) + q+r−
(
g11

I,II[−−+−](s, m)

+ g11
II,I[+−−−](s, m)

)
+ r2

−g11
II,II[+−+−](s, m)

]

+
1
2

N+1
2∑

m=−N+1
2

(
1
2
+

m
N + 1

)
g11

II,II[−−−−]

(
N + 1

2
, m

)
. (38)

These are, in fact, fairly simple expressions, although quite long when written in this form. If
we impose constraints on the resource state, we can simplify the expressions.

We now have an analytical expression for the Choi matrix for any PBT qubit operation.
The only assumption made is that all ports are identical. Any channel simulable via PBT can
be simulated using a resource state of this type [26]. See the supplementary material for a
Mathematica implementation of these expressions [30].

11
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To show how the Choi matrix, C, is constructed from the components given, we write the fol-
lowing, where ∗ denotes the complex conjugate and where Ci j(g11 → gkl) means the expression
for Ci j with all instances of g11 replaced with gkl:

C =

⎛
⎜⎜⎝

C11(g11) C11(g11 → g12) C13(g11) C13(g11 → g12)
C11(g11 → g12)∗ C11(g11 → g22) C13(g11 → g21) C13(g11 → g22)

C13(g11)∗ C13(g11 → g21)∗ C33(g11) C33(g11 → g12)
C13(g11 → g12)∗ C13(g11 → g22)∗ C33(g11 → g12)∗ C33(g11 → g22)

⎞
⎟⎟⎠ . (39)

We may also wish to find the Kraus operators [23] of the qubit channel resulting from PBT
using a given resource state. This is an alternative but equivalent channel representation to the
Choi matrix. We may also wish to characterise the channel mapping from a given resource
state to the output Choi matrix of the qubit channel. This channel takes a resource state as
input and outputs the Choi matrix of the qubit channel resulting from PBT using that resource
state. These Kraus operators are rectangular (the number of qubits in the output is less than
the number in the input). They characterise the processor (i.e. the operation of carrying out a
square-root measurement on the modes AC1, followed by the selection of a B port based on the
measurement outcome).

3. Converting from the Choi matrix to the Kraus operators of the qubit
channel

The Choi matrix holds all information about the state, but we would like to also be able to
express the channel as a set of Kraus operators [23]. We can do this using the following
algorithm, starting from the Choi matrix V .

(a) Find the eigendecomposition of V , and write:

V =
4∑

i=1

λi |v′i〉 〈v′i | . (40)

(b) We then define |vi〉 =
√
λi |v′i〉, so that we can write:

V =

4∑
i=1

|vi〉 〈vi| . (41)

(c) The (up to) four Kraus operators, labeled as Ki, are then written (in the canonical basis)
as

Ki =

(
〈00|vi〉 〈10|vi〉
〈01|vi〉 〈11|vi〉

)
. (42)

We can verify that if the Kraus operators constructed in this way are applied to a Bell state,
we recover the initial Choi matrix. Numerically, this algorithm is simple to implement, since
we are only finding the eigendecomposition of a 4 by 4 matrix.

4. Finding the Kraus operators of the channel from the program state to the
Choi matrix of the simulated qubit channel

We want to characterise the channel mapping from the (input) program state (with 2N qubits)
to the (output) Choi matrix of the PBT channel (with 2 qubits). This is a characterisation of the

12
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PBT protocol itself (with the square-root measurement and a permutation-symmetric resource
state). An implicit expression for this map is derived in [25], however here we derive explicit
expressions.

Defining Λ as the channel from the program state to the Choi matrix of the qubit channel,
we can write

Λ(π) =
N∑

i=1

TrAB̄iC1

[ (√
ΠiAC1

⊗ 1BC0

) (
πAB ⊗

∣∣ΦC0C1

〉

×
〈
ΦC0C1

∣∣) (√ΠiAC1
⊗ 1BC0

)†]

=
∑

ik

KikπK†
ik, (43)

where Bi is the port to which the state is teleported, Πi is the measurement operator applied to
teleport the state to port i and

Kik =
〈

e(i)
k |
√

ΠiAC1
⊗ 1BC0 |ΦC0C1

〉
. (44)

The
∣∣∣e(i)

k

〉
are basis vectors on the systems AB̄iC1 (the traced over systems).

First, let us apply the assumption of symmetry under exchange of labels. We can there-
fore replace Kik with Kk =

√
NK1k. We can now calculate

√
Π1, using the expressions in

equations (25) and (19). From the fact that M1 and M2 have orthogonal supports, we can take
the square roots of each separately. In fact, due to M1 having no mixing between basis vectors
with different s, m or α values, we can treat each set of values {s, m,α} separately, and hence
can write √

Π1 =
∑
smα

√
Msmα

1 +
√

M2, (45)

where Msmα
1 is the contribution to M1 from the two eigenvectors

∣∣∣ΨI(λ−
s− 1

2
, m,α)

〉
and∣∣∣ΨII(λ

+

s+ 1
2
, m,α)

〉
. Since M2, as expressed in equation (19), is already diagonal, it is trivial

to write

√
M2 =

1√
N

N+1
2∑

m=− N+1
2

∣∣∣ΨII

(
λ−

N
2

, m
)〉〈

ΨII

(
λ−

N
2

, m
)∣∣∣ , (46)

where we have removed the sum over α, due to there being no degeneracy in the component
eigenvectors.

We now want to find
√

Msmα
1 , starting from

Msmα
1 =

(
λ−

s− 1
2

)−1 s
2s + 1

∣∣∣ΨI

(
λ−

s− 1
2
, m,α

)〉〈
ΨI

(
λ−

s− 1
2
, m,α

)∣∣∣
−
(
λ−

s− 1
2
λ+

s+ 1
2

)− 1
2
√

s(s + 1)
2s + 1

(∣∣∣ΨI

(
λ−

s− 1
2
, m,α

)〉
×
〈
ΨII

(
λ+

s+ 1
2
, m,α

)∣∣∣+ ∣∣∣ΨII

(
λ+

s+ 1
2
, m,α

)〉〈
ΨI

(
λ−

s− 1
2
, m,α

)∣∣∣)
13
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+
(
λ+

s+ 1
2

)−1 s + 1
2s + 1

∣∣∣ΨII

(
λ+

s+ 1
2
, m,α

)〉〈
ΨII

(
λ+

s+ 1
2
, m,α

)∣∣∣ . (47)

From the form of equation (47), we can see that Msmα
1 can be written as

Msmα
1 = |vecsmα〉 〈vecsmα| , (48)

|vecsmα〉 =
√(

λ−
s− 1

2

)−1 s
2s + 1

∣∣∣ΨI

(
λ−

s− 1
2
, m,α

)〉

−
√(

λ+

s+ 1
2

)−1 s + 1
2s + 1

∣∣∣ΨII

(
λ+

s+ 1
2
, m,α

)〉
, (49)

where it must be noted that |vecsmα〉 is unnormalised. This means that Msmα
1 has only one

non-zero eigenvalue, given by

eigsmα =
(
λ−

s− 1
2

)−1 s
2s + 1

+
(
λ+

s+ 1
2

)−1 s + 1
2s + 1

=
4(N + 1)

(N + 1 − 2s)(N + 3 + 2s)
. (50)

Consequently, we can write

√
Msmα

1 = (eigsmα)−
1
2 |vecsmα〉 〈vecsmα| . (51)

Combining our expressions for M1 and M2, we have

√
Π1 =

1√
N

∑
m

∣∣∣ΨII

(
λ−

N
2

, m
)〉〈

ΨII

(
λ−

N
2

, m
)∣∣∣

+
∑
smα

√
(N + 1 − 2s)(N + 3 + 2s)

4(N + 1)
|vecsmα〉 〈vecsmα| . (52)

We now express the basis vectors
∣∣∣e(1)

k

〉
as

|ek〉 = |ek1〉AC1
|ek2〉B̄, (53)

where B̄ refers to the B modes except for B1. |ek1〉AC1
are the |vecsmα

2 〉 basis vectors (on the
system AC1) and the |ek2〉B̄ are any choice of orthonormal basis vectors on the system B̄. There
are two types of Kraus operator, depending on whether |ek1〉AC1

lies in the support of M1 or of

M2. We will label these Kraus operators K1
k and K2

k respectively. Using equations (26)–(29),
we find that the Kraus operators K2

k take the form

K2
k =

1√
2

(√
1
2
− m

N + 1
|0〉C0

〈
ΦII

(
N
2

, m +
1
2

)∣∣∣∣
AC1

+

√
1
2
+

m
N + 1

|1〉C0

〈
ΦII

(
N
2

, m − 1
2

)∣∣∣∣
AC1

)
〈ek2 |B̄ ⊗ 1B1 , (54)

14
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where the label k determines the m value and the choice of basis vector |ek2〉B̄. We find that the
Kraus operators K1

k take the form

K1
k =

√
N
2

[
|0〉C0

(√(
λ−

s− 1
2

)−1 s
2s + 1

(
1
2
− m

2s

)〈
ΦI

(
s − 1

2
, m +

1
2

,α

)∣∣∣∣
−

√(
λ+

s+ 1
2

)−1 s + 1
2s + 1

(
1
2
+

m
2(s + 1)

)〈
ΦII

(
s +

1
2

, m +
1
2

,α

)∣∣∣∣
)

AC1

+ |1〉C0

(√(
λ−

s− 1
2

)−1 s
2s + 1

(
1
2
+

m
2s

)〈
ΦI

(
s − 1

2
, m − 1

2
,α

)∣∣∣∣
+

√(
λ+

s+ 1
2

)−1 s + 1
2s + 1

(
1
2
− m

2(s + 1)

)

×
〈
ΦII

(
s +

1
2

, m − 1
2

,α

)∣∣∣∣
)

AC1

]
〈ek2 |B̄ ⊗ 1B1 , (55)

where the label k determines the values of s, m and α, and the choice of basis vector |ek2〉B̄. We
can simplify this expression, and so can write

K1
k =

√
N
2

[
|0〉C0

(
q−

〈
ΦI

(
s − 1

2
, m +

1
2

,α

)∣∣∣∣
− r+

〈
ΦII

(
s +

1
2

, m +
1
2

,α

)∣∣∣∣
)

AC1

+ |1〉C0

(
q+

〈
ΦI

(
s − 1

2
, m − 1

2
,α

)∣∣∣∣
+ r−

〈
ΦII

(
s +

1
2

, m − 1
2

,α

)∣∣∣∣
)

AC1

]
〈ek2 |B̄ ⊗ 1B1 , (56)

where q± and r± are defined as per equations (31) and (32).
Note that the basis vectors |ek2〉B̄ simply trace over the B̄ system, i.e. for each Kraus operator,

there are 2N − 1 other Kraus operators that are identical up to a change in k2. Hence, we can
trace over the B̄ modes of the resource state; in this case the Kraus operators of the channel
from TrB̄ [πAB] to the output Choi matrix are K1

k and K2
k without the vectors |ek2〉B̄ (i.e. the

labels k determine only the values of s, m and α).

5. Two port PBT

As an example, suppose we only have two ports. Let us calculate the Choi matrix for
this case. We again assume that the two ports are identical under exchange of labels.
The reduced resource states R11, R12 and R22 are then 4 by 4 matrices. We will write
them in the basis: { 1√

2
(|10〉 − |01〉), |00〉 , 1√

2
(|10〉+ |01〉), |11〉}. These are the vectors

{
∣∣∣Φ[2]

I (0, 0)
〉

,
∣∣∣Φ[2]

II (1,−1)
〉

,
∣∣∣Φ[2]

II (1, 0)
〉

,
∣∣∣Φ[2]

II (1, 1)
〉
}. Note that there are no degenerate

( j, m) combinations for two ports, so we do not need to specify the degeneracy, α. We can
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therefore immediately remove the sum over α. Since s = 1
2 is the only value of s for which

either
∣∣∣Φ[2]

I (s − 1
2 , m)
〉

or
∣∣∣Φ[2]

II (s + 1
2 , m)
〉

exist, we do not need to sum over s either, and

simply set s = 1
2 . Ri j takes the form

Ri j =

⎛
⎜⎜⎝

f i j
I,I(0, 0, 0, 0) f i j

I,II(0, 0, 1,−1) f i j
I,II(0, 0, 1, 0) f i j

I,II(0, 0, 1, 1)
f i j

II,I(1,−1, 0, 0) f i j
II,II(1,−1, 1,−1) f i j

II,II(1,−1, 1, 0) f i j
II,II(1,−1, 1, 1)

f i j
II,I(1, 0, 0, 0) f i j

II,II(1, 0, 1,−1) f i j
II,II(1, 0, 1, 0) f i j

II,II(1, 0, 1, 1)
f i j

II,I(1, 1, 0, 0) f i j
II,II(1, 1, 1,−1) f i j

II,II(1, 1, 1, 0) f i j
II,II(1, 1, 1, 1)

⎞
⎟⎟⎠ ,

(57)

where we have excluded α from the arguments of f. We again note that R11, R12, R21 and R22

are derived from the density matrix of the full resource state by taking the trace over all B
modes except for the first B mode. In the two mode case, they can be written as

R11 = 〈0|B1 TrB2 (R) |0〉B1, (58)

R12 = 〈0|B1 TrB2 (R) |1〉B1, (59)

R21 = 〈1|B1 TrB2 (R) |0〉B1, (60)

R22 = 〈1|B1 TrB2 (R) |1〉B1. (61)

The expression for C11, in equation (36), now reduces to

C11 =
1
2

Tr
[
R11
]
− 1

2
√

3

(
f 11

I,II(0, 0, 1, 0)+ f 11
II,I(1, 0, 0, 0)

)
, (62)

where we have used

Tr
[
R11
]
= f 11

I,I (0, 0, 0, 0)+ f 11
II,II(1,−1, 1,−1)+ f 11

II,II(1, 0, 1, 0)+ f 11
II,II(1, 1, 1, 1)

= Tr
[
〈0|B1R|0〉B1

]
. (63)

The expressions for C13 and C33, in equations (37) and (38), reduce to

C13 =
1√
6

(
f 11

I,II(0, 0, 1,−1)− f 11
II,I(1, 1, 0, 0)

)
, (64)

C33 =
1
2

Tr
[
R11
]
+

1

2
√

3

(
f 11

I,II(0, 0, 1, 0)+ f 11
II,I(1, 0, 0, 0)

)
. (65)

6. Calculating the depolarisation probability for qubit PBT with a maximally
entangled resource

As a second example, we can calculate the channel enacted by PBT with a maximally entan-
gled resource state. PBT with such a resource state enacts a depolarising channel [19]. Our
analytical formulae for the components of the output Choi matrix give an easy way to calcu-
late the depolarising probability of the channel simulated by N-port PBT. This probability is
calculated in a similar way in Ref. [22], where it is referred to as the ‘PBT number’ for a given
N, but without using the explicit formulae presented here.
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The Choi matrix of a depolarising channel is

Cdep =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1
2
− ξ

4
0 0

1
2
− ξ

2
0

ξ

4
0 0

0 0
ξ

4
0

1
2
− ξ

2
0 0

1
2
− ξ

4

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (66)

where ξ is the depolarising probability of the channel. Since the channel has only one param-
eter, we only need to find one (non-zero) element of the Choi matrix in order to characterise
it. We pick C33

dep (the third element on the main diagonal); the expression for this component is
given by equation (38).

We start by finding R11 for the maximally entangled resource
∣∣ΦBell

〉 〈
ΦBell
∣∣⊗N

, where∣∣ΦBell
〉
= 1√

2
(|01〉 − |10〉). We find

R11 = 〈0|B1 TrB̄1
[
∣∣ΦBell

〉 〈
ΦBell
∣∣⊗N

AB
]|0〉B1

=
1

2N−1
〈0|B1

∣∣ΦBell
〉 〈

ΦBell
∣∣
A1B1

|0〉B1 ⊗ IĀ1

=
1

2N
|1〉 〈1|A1

⊗
(∑

j,m,α

∣∣Φ[N−1]( j, m,α)
〉 〈

Φ[N−1]( j, m,α)
∣∣
Ā1

)
, (67)

where the sum is over all valid values of j, m, and α. We can express R11 in the N-spin basis
using equations (13) and (14). This allows us to write the functions

f 11
I,I

(
s − 1

2
, m − 1

2
, s − 1

2
, m − 1

2

)
=

1
2N

[
Ξ−+(s, m − 1)

]2
=

s − m + 1
2N(2s + 1)

(68)

f 11
I,II

(
s − 1

2
, m − 1

2
, s +

1
2

, m − 1
2

)
=

1
2N

[
Ξ−+(s, m − 1)Ξ++(s, m − 1)

]

= −
√

(s − m + 1)(s + m)
2N(2s + 1)

(69)

f 11
II,II

(
s +

1
2

, m − 1
2

, s +
1
2

, m − 1
2

)
=

1
2N

[
Ξ++(s, m − 1)

]2
=

s + m
2N(2s + 1)

, (70)

noting also that f 11
I,II = f 11

II,I, since R11 is a conditional density matrix (and therefore must be
hermitian).

We can express the degeneracy for the N − 1-spin basis as

γ(N − 1, s) =
(2s + 1)(N − 1)!(

N−1
2 − s

)
!
(

N+1
2 + s

)
!
=

2s + 1
N

(
N

N−1
2 − s

)
, (71)

where the expression on the right-hand side uses a binomial coefficient. We can therefore write

q2
+gI,I + r2

−gII,II + q+r−
(
gI,II + gII,I

)
=

(s + m)(s − m + 1)
2N+1N(2s + 1)

(
N

N−1
2 − s

)[(
λ−

s− 1
2

)− 1
2 −
(
λ+

s+ 1
2

)− 1
2
]2

, (72)
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where it is implicit that the indices for the g-functions are those found in the first sum in
equation (38). We then carry out the sum

s∑
m=−s

(s + m)(s − m + 1) =
2
3

s(s + 1)(2s + 1). (73)

We expand the last term in equation (72), getting

[(
λ−

s− 1
2

)− 1
2 −
(
λ+

s+ 1
2

)− 1
2
]2

= 8
(N + 2) −

√
(N + 2)2 − (2s + 1)2

(N + 2)2 − (2s + 1)2
. (74)

We then calculate(
1
2
+

m
N + 1

)
gII,II =

1
2NN(N + 1)

(
N − 1

2
+ m

)(
N + 1

2
+ m

)
, (75)

where it is implicit that the indices for the g-function are those found in the second sum in
equation (38). We perform the sum

N+1
2∑

m=− N+1
2

(
N − 1

2
+ m

)(
N + 1

2
+ m

)
=

1
3

N(N + 1)(N + 2). (76)

Substituting these expressions into equation (38), we get

C33
dep =

1
3 × 2N−2

N−1
2∑

s=smin

[
s(s + 1)

(
N

N−1
2 − s

)

× (N + 2) −
√

(N + 2)2 − (2s + 1)2

(N + 2)2 − (2s + 1)2

]
+

N + 2
3 × 2N+1

, (77)

which immediately gives

ξN =
1

3 × 2N−4

N−1
2∑

s=smin

[
s(s + 1)

(
N

N−1
2 − s

)
(N + 2) −

√
(N + 2)2 − (2s + 1)2

(N + 2)2 − (2s + 1)2

× (N + 2) −
√

(N + 2)2 − (2s + 1)2

(N + 2)2 − (2s + 1)2

]
+

N + 2
3 × 2N−1

, (78)

where ξN is the depolarising probability of the N-port qubit PBT channel with a maximally
entangled resource. We numerically observe that ξN scales approximately with 1

N for large N.

7. Simulating the AD channel

We know that in the limit of N →∞, a resource state comprised of N copies of the Choi matrix
of a given channel perfectly simulates that channel. This is because PBT over such a resource
state is equivalent to passing the transmitted state through an identity channel followed by the
desired channel. However, for finite N, it may be the case that there is a resource state that
simulates a given channel better than N copies of the Choi matrix or even perfectly. Our metric
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for judging which of two channels is a better simulation of a given channel is the diamond
norm, D�, between the simulated channel and the channel simulating it. The diamond norm
between channels E1 and E2 is defined by

D� = sup
φ

Tr |I⊗ E1(φ) − I⊗ E2(φ)| , (79)

where the supremum is taken over all input states φ (and where the identity is enacted on
idler modes of φ). Of particular interest are resource states with tensor-product structure (i.e.
N identical copies of a two-qubit state). The simple structure of such states makes it easier
to carry out calculations on them for channel simulation. For instance, [12] found that the
achievable secret key rate of a quantum channel can be upper bounded by the relative entropy
of entanglement (REE) of a resource state that can be used to simulate that channel. If a state
has tensor-product structure, the calculation of its REE can be simplified: the REE of such a
state is N times the REE of a single copy of the two-qubit state. Let us refer to all resource
states with tensor-product structure as tensor-product resources.

One channel of interest is the AD channel. This channel is characterised by the Choi matrix
(for the input state

∣∣ΦBell
〉
= 1√

2
(|01〉 − |10〉))

R(p) =

⎛
⎜⎜⎜⎜⎜⎜⎝

p
2

0 0 0

0
1 − p

2
−
√

1 − p
2

0

0 −
√

1 − p
2

1
2

0

0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

, (80)

where p is the probability of a qubit with value one being flipped to a zero. One possible type
of resource state is comprised of N copies of this state, R(p1)⊗N , where p1 is the damping
probability of the AD channel used to generate the resource state, i.e. the resource state is N
copies of the output Choi matrix of an AD channel with damping probability p1. Note that this
is not the same Bell state that we have been using to define the Choi matrix previously; we
have previously used the input state 1√

2
(|00〉+ |11〉). We have chosen the state

∣∣ΦBell
〉

in this

case because it is the resource state
∣∣ΦBell

〉 〈
ΦBell
∣∣⊗N

that simulates the identity channel (due to
the structure of the measurement). Consequently, it is the resource R(p1)⊗N that asymptotically
gives a perfect simulation of the AD channel. Note that a different choice of Bell state would
result in the simulated channel being a Pauli unitary and, similarly, the Choi matrices of a
channel defined by different input Bell states are equivalent up to a Pauli unitary on one of the
modes. Let p0 be the damping probability of the AD channel that we are trying to simulate;
this need not necessarily be equal to p1. We denote the Choi matrix of the PBT channel with
resource state φ, PBT[φ]. Applying the explicit expressions that we have derived, we find

PBT[R(p1)⊗N] =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
2
− ξN

4
(1 − p1) 0 0

(
1
2
− ξN

2

)√
1 − p1

0
ξN

4
(1 − p1) 0 0

0 0 p1

(
1
2
− ξN

4

)
+

ξN

4
0(

1
2
− ξN

2

)√
1 − p1 0 0 (1 − p1)

(
1
2
− ξN

4

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (81)

We will refer to such a resource state (N copies of the Choi matrix of an AD channel, with
damping probability generally different from that of the simulated channel) as a Choi resource.

Consider the special case of p1 = p0 (simulating an AD channel with N copies of its own
output Choi matrix); it has been shown that in this case, the diamond norm of the simulated
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channel from the simulating channel is the same as the trace norm between the Choi matrices
[22]. We will denote the diamond norm using this resource as D0

�; it is given by

D0
� = ξN

(
1 − p0

2
+
√

1 − p0

)
, (82)

where ξN is the depolarisation probability when carrying out PBT with a maximally entangled
resource state, as given by equation (78). ξN � 6−

√
3

6  0.71, since this is the value for 2 ports.
D0

� provides a useful benchmark, since we know it converges to 0 in the limit of infinite ports,
and hence R(p0)⊗N is a common choice of resource state for calculations involving channel
simulation. For instance, in [22], resource states composed of N copies of the Choi matrix of
the simulated channel were used to obtain a general bound on channel discrimination, and this
bound was specifically applied to the AD channel.

In the asymptotic limit, in the case of p1 = p0, the output Choi matrix in equation (81) tends
to the Choi matrix of the simulated channel, as expected. However, for finite N, a lower D� can
be achieved by choosing a value of p1 for the resource state different from p0 (the damping
probability of the channel we are simulating).

Let us consider for which values of p1 we can know the diamond norm exactly. We have
upper and lower bounds on the diamond norm between (qubit) channels with Choi matrices X
and Y given by [27]:

Tr |X − Y| � D� � 2‖Tr2 |X − Y|‖∞, (83)

where the trace is taken over the mode which passed through the channel. These two bounds
are equal (and therefore give the exact diamond norm) if the matrix Tr2 |X − Y| is scalar (pro-
portional to the identity matrix). The difference between the Choi matrices of the simulated
and simulating channels, in this case, is

PBT[R(p1)⊗N] − R′(p0) =

⎛
⎜⎜⎝
−e1 0 0 −c

0 e1 0 0
0 0 e2 0
−c 0 0 −e2

⎞
⎟⎟⎠ , (84)

e1 =
ξN

4
(1 − p1), (85)

e2 = e1 −
p0 − p1

2
, (86)

c =
1
2

(√
1 − p0 − (1 − ξN)

√
1 − p1

)
, (87)

where R′ is the Choi matrix for the input state 1√
2
(|00〉+ |11〉). If e1 = ±e2, the modulus of

the matrix, with the trace taken over the second mode, will be scalar. This is true in two cases:

p1 = p0, (88)

p1 =
p0 − ξN

1 − ξN
. (89)

20



J. Phys. A: Math. Theor. 54 (2021) 205301 J Pereira et al

Figure 1. The trace norm, the numerically found diamond norm and the analytical upper
bound on the diamond norm from [27] are plotted against p1, the damping value of the
AD channel used to produce the resource state, for the resource given in equation (80).
The plot with p0 = 0.36 lies in the regime where p1 = p0 gives a better simulation than
p1 = p0−ξN

1−ξN
, and the plot with p0 = 0.7 lies in the regime where the opposite is true. In

both cases, the actual minimum of the diamond norm lies between these points, and lies
near the minimum of the trace norm. In both cases, this minimum of the trace norm lies
at exactly p1 = 2p0−ξN

2−ξN
.

The first case is the known case of N copies of the Choi matrix of the simulated channel. In
the second case, we find that the diamond norm, D1

�, is given by

D1
� =

1
2

⎛
⎝ (1 − p0)ξN

1 − ξN
+

√
4(1 − p0)

(
1 −
√

1 − ξN

)2
+

(1 − p0)2ξ2
N

(1 − ξN)2

⎞
⎠ . (90)

For sufficiently low values of ξN and sufficiently high values of p0, this second expression for
the diamond norm, D1

� is lower than D0
�. Specifically, we find that there is a function in ξN

separating the two regimes. This function crosses p0 = 0 at a ξN value of about 0.237, and
for values of ξN < 0.237, the second expression is always lower (except in the trivial case of
p0 = 1). ξN < 0.237 for a number of ports equal to or greater than 6, so for N � 6, D1

� � D0
�.

Note that if p0 < ξN , this second point does not exist, since that would require a negative value
of p1. The plots in figure 1 illustrate these two regimes in the case of 4 ports. We therefore have
a resource that simulates a given AD channel better than N copies of the Choi matrix of that
channel, for any finite number of ports, with an analytical expression for the diamond norm
between the channels.

Asymptotically (in N), the right-hand side of equation (89) tends to the right-hand
side of equation (88), since ξN tends to 0. This is as expected, since we know that the
Choi resource with p1 = p0 simulates the AD channel perfectly in the asymptotic limit of
N.

Although we have two points for which the diamond norm is known exactly, this does not
mean that the minimum diamond norm for simulating a given channel lies at either of these
two points. In fact, we find numerically that the minimum of the diamond norm often lies near
the minimum of the trace norm between the Choi matrices, rather than at either of these known
points. We also find (in an appendix) that for all p0 � v1, where v1 is a function of ξN that is
always greater than 2

5 , the minimum of the trace norm lies at 2p0−ξN
2−ξN

, and that for all p0 � v2,
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Figure 2. The trace norm, the numerically found diamond norm and the analytical upper
bound on the diamond norm from [27] are plotted against p1, the damping value of the
AD channel used to produce the resource state, for the resource given in Equation (80). In
both of the cases shown, the minimum of the trace norm no longer lies at p1 = 2p0−ξN

2−ξN
,

but rather at a lower value of p1. In the case of p0 = 0.85, the minimum of the trace
norm (and therefore of the diamond norm) still lies between the two points for which
the diamond norm is exactly known (p1 = p0−ξN

1−ξN
and p1 = p0), whereas for p0 = 0.95,

this is no longer the case.

where v2 is a function of ξN that is always greater than 2
3 , the minimum of the trace norm lies

between p1 = p0−ξN
1−ξN

and p1 = 2p0−ξN
2−ξN

.

If the minimum of the trace norm lies between p1 = p0−ξN
1−ξN

and p1 = p0, the two points at
which the diamond norm is equal to the trace norm, we are guaranteed that the minimum of the
diamond norm will fall between those two points, since the trace norm, which lower bounds
the diamond norm, will have no local minima outside of these points. This means that the trace
norm will have a negative gradient at every point below p1 = p0−ξN

1−ξN
and a positive gradient at

every point above p1 = p0. The plots in figure 2 show values of p0 for which the minimum of
the trace norm does not lie at p1 = 2p0−ξN

2−ξN
.

While the Choi resource with p1 chosen to minimise the diamond norm simulates the AD
channel better than the case of p1 = p0, the two resources tend toward each other as N increases.
A resource state of interest would be one that has tensor-product structure, simulates some AD
channel better than the Choi resource and is distinct from the Choi resource for all p1 values.
We find that such a resource exists. Let Rnew(a) be a two-qubit state, defined by

Rnew(a) =

⎛
⎜⎜⎝

0 0 0 0
0 a −

√
a(1 − a) 0

0 −
√

a(1 − a) 1 − a 0
0 0 0 0

⎞
⎟⎟⎠ , (91)

where a is a parameter characterising the density matrix. Consider the resource state Rnew(a)⊗N

(N copies of Rnew(a), such that each port is a copy of Rnew(a)). This is a tensor-product resource
and the state of each port is clearly different from the state in equation (80) for all parameter
values except for the case of p = 0 and a = 1

2 . This resource state illustrates the importance
of the explicit expressions for the components of the Choi matrix resulting from PBT: while it
would be possible to calculate PBT[R(p)⊗N] by applying an AD channel to the (known) output
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of the PBT channel using a maximally entangled resource, the same technique cannot be used
to calculate PBT

[
Rnew(a)⊗N

]
.

Carrying out PBT using this resource state, which we will call the alternate resource, results
in the Choi matrix:

PBT
[
Rnew(a)⊗N

]
=

⎛
⎜⎜⎜⎜⎝

x 0 0 z

0
1
2
− x 0 0

0 0 y 0

z 0 0
1
2
− y

⎞
⎟⎟⎟⎟⎠ , (92)

x =

N−1
2∑

s=smin

s∑
m=−s

a
N+1

2 +m(1 − a)
N−1

2 −m

×
N!

[(
N+1

2 − s
)− 1

2 (s − m) +
(

N+3
2 + s

)− 1
2 (s + m + 1)

]2

2
(

N−1
2 − s

)
!
(

N+1
2 + s

)
!(2s + 1)

+

N+1
2∑

m=− N+1
2

a
N+1

2 +m(1 − a)
N−1

2 −m

(
N+1

2 + m
) (

N+1
2 − m

)
2N(N + 1)

, (93)

y =

N−1
2∑

s=smin

s∑
m=−s

a
N−1

2 +m(1 − a)
N+1

2 −m

×
N!(s + m)(s − m + 1)

[(
N+1

2 − s
)− 1

2 −
(

N+3
2 + s

)− 1
2

]2

2
(

N−1
2 − s

)
!
(

N+1
2 + s

)
!(2s + 1)

+

N+1
2∑

m=− N+1
2

a
N−1

2 +m(1 − a)
N+1

2 −m

(
N−1

2 + m
) (

N+1
2 + m

)
2N(N + 1)

, (94)

z =

N−1
2∑

s=smin

s∑
m=−s

a
N
2 +m(1 − a)

N
2 −mN!

2
(

N−1
2 − s

)
!
(

N+1
2 + s

)
!(2s + 1)

×
[(

N + 1
2

− s

)−1

(s2 − m2) + 2

(
N + 1

2
− s

)− 1
2
(

N + 3
2

+ s

)− 1
2

× (s2 + m2 + s) +

(
N + 3

2
+ s

)−1

((s + 1)2 − m2)

]

−
N+1

2∑
m=− N+1

2

a
N
2 +m(1 − a)

N
2 −m

(
N+1

2 + m
) (

N+1
2 − m

)
2N(N + 1)

, (95)
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Figure 3. The trace norm, the numerically found diamond norm and the analytical
upper bound on the diamond norm from [27] are plotted against a, the parameter that
parametrises the state in equation (91). Comparing with figure 1, we can see that at
the ‘known points’ where the diamond norm is known analytically (where the trace
norm coincides with the diamond norm), the diamond norm is significantly lower for the
resource Rnew(a)⊗N than at the known points for the Choi resource. Further, the minimum
diamond norm for this new resource is significantly lower than the minimum diamond
norm for the Choi resource.

where smin is 0 for odd N and 1
2 for even N. The elements of the Choi matrix have been

calculated using the expressions in equations (36)–(38). We can therefore write

PBT
[
Rnew(a)⊗N

]
− R′(p0) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

x − 1
2

0 0 z −
√

1 − p0

2
0

1
2
− x 0 0

0 0 y − p0

2
0

z −
√

1 − p0

2
0 0

p0

2
− y

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (96)

Again, we can find the values of a at which this matrix is scalar by finding the points at
which x − 1

2 = ±
(
y − p0

2

)
. In this case, however, we have a more complicated expression in

terms of a and p0, which depends on N, making it difficult to find a general (for arbitrary N)
expression for the diamond norm at these points where the diamond norm is known exactly
(however it is simple to find the expression for fixed N).

Using this resource, we can prove that for all N and for some range of p0 values, there
exists some tensor-product resource, which is distinct from R(p)⊗N , for which the diamond
norm from the AD channel can be found analytically and is smaller than the diamond norm
using the resource state R(p)⊗N for both p = p0 and p = p0−ξN

1−ξN
. This means that, for any finite

value of N, there are some (low) values of p0 for which we can find a tensor-product resource
state that gives a diamond norm from the AD channel lower than either D0

� or D1
�. This is

demonstrated in figure 3, for N = 4, using the resource state Rnew(a)⊗N , and is proven in an
appendix.

For low N, the alternate resource beats the Choi resource over a large range of p0 values,
and by a significant amount. This can be seen for the case of N = 6 in figure 4. Note that at
a = 1

2 and p = 0, the two resources are the same, and these parameter values are the starting
points of the graphs in the figure.
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Figure 4. The diamond norm is plotted against the damping probability of the AD chan-
nel being simulated for PBT with the resource state Rnew(a)⊗N (new resource) and the
resource state R(p1)⊗N (Choi resource). In the left-hand plot, we choose p1 = p0−ξN

1−ξN

and choose a such that x(a) − y(a) = 1−p0
2 , so that the trace norm coincides with the

diamond norm. In the right hand plot, we choose p1 = 2p0−ξN
2−ξN

and choose a such that
y(a) = p0

2 ; these are close to the optimal parameters to minimise the diamond norm. In
both cases, we start at the minimum value of p0 for which p1 is non-negative. The new
resource is better than the Choi resource for a large range of p0 values, and especially
for low p0.

Similarly to the case of the Choi resource, we find numerically that for a large range of
p0 values, the value of a that gives the minimum of the trace norm coincides with the value
that minimises the diamond norm, and is the a value for which y − p0

2 = 0 (just as, for the
Choi resource, the minimum of the trace norm occurs at the value of p that sets e2 = 0, for
all p0 < 2

5 ). Numerically we find a trend that there exists a range of p0 values such that the
resource state Rnew(a)⊗N , with a chosen so that y = p0

2 , gives a better simulation of the AD
channel (lower diamond norm) than R(p1)⊗N , for any value of p1. However, this range of p0

values becomes increasingly small as N increases. This has been numerically confirmed for
N < 11. Specifically, this occurs for low p0.

The explicit expressions for the Choi matrix of the PBT channel therefore allow us to
calculate the diamond norm for a resource that simulates certain AD channels better than a
tensor-product of Choi matrices.

8. Conclusion

Qubit PBT simulates a quantum channel on the teleported qubit, with the channel depending on
the resource state used. Using equations (36)–(39), we can find the Choi matrix for the channel
simulated by a given resource state. We assume this resource state to be symmetric under
exchange of labels, since this assumption does not restrict the simulable channels. We also
provide a simple algorithm for converting to the alternative channel representation of Kraus
operators. We show how the Choi matrix can be easily calculated in the two port case, giving
simplified expressions (namely, equations (62), (64) and (65)).

In equations (56) and (54), we give the Kraus operators that describe the PBT protocol
itself (for a fixed number of ports, the square-root measurement and a resource state that is
symmetric under exchange of labels). These Kraus operators characterise the map from the 2N-
qubit resource state to the two-qubit Choi matrix, and thus offer a complete description of the
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PBT protocol. This is a complete analytical characterisation that could be efficiently exploited
in reference [25] where techniques of machine learning and semi-definite programming are
employed to find the optimal resource state for PBT (and other teleportation protocols).

We consider simulating the AD channel with PBT and find that, for finite numbers of ports,
using N copies of the Choi matrix of the simulated channel as the resource state gives a higher
diamond norm than using N copies of the Choi matrix of a different AD channel. We also
find that there exist resource states with tensor-product structure that simulate the AD channel
better than any Choi resource, in the low damping range.

In this paper, we only present results for the qubit case. Future work could explore PBT in the
qudit or continuous variable cases. In the qudit case, this is complicated by the Clebsch–Gordan
coefficients, which do not take the simple form they take in the qubit case. Clarifying the mathe-
matical aspects of PBT is important for the fundamental role that this protocol plays in various
areas of quantum information theory, not only in problems of ultimate channel discrimina-
tion [22] but also in communication problems such as position-based quantum cryptography
[28, 29].
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Appendix A. Appendices

A.1. Proof of the location of the minima of the trace norm, for the Choi resource

Let us calculate the trace norm by finding the eigenvalues of the matrix resulting from taking
the difference of the Choi matrices of the simulated and simulating channel (i.e. the right-hand
side of equation (84)). This matrix has eigenvalues ei, where e1 and e2 have already been given
in equations (85) and (86). The remaining eigenvalues are:

e3 = −1
2

(
(e1 + e2) +

√
(e1 − e2)2 + 4c2

)
, (A1)

e4 = −1
2

(
(e1 + e2) −

√
(e1 − e2)2 + 4c2

)
. (A2)

The trace norm is the sum of the absolute values of the eigenvalues. We can show that
e3 is always negative and e4 is always positive. We start by showing that |e1 + e2| �√

(e1 − e2)2 + 4c2. Note that e1 is a linear function of p1 that is always positive and that e2 is
a linear function of p1 that goes to 0 at p1 = 2p0−ξN

2−ξN
, and is negative for p1 less than this value.

For p1 = p0−ξN
1−ξN

, e1 + e2 = 0, and above this value of p1, it is positive. We can therefore show
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that 2c � |e1 + e2| in the regime in which e1 + e2 is positive, using

d(2c)
dp1

=
1 − ξN

2
√

1 − p1
,

d(e1 + e2)
dp1

=
1 − ξN

2
,

d(2c)
dp1

� d(e1 + e2)
dp1

, (A3)

2c|
p1=

p0−ξN
1−ξN

=
√

1 − p0 − (1 − ξN)

√
1 − p− ξN

1 − ξN
=
√

1 − p0(1 −
√

1 − ξN) � 0. (A4)

Since the gradient of 2c is always larger than the gradient of e1 + e2 in this regime, and since
c is positive at p1 = p0−ξN

1−ξN
, while e1 + e2 is equal to 0, 2c � |e1 + e2| for p1 � p0−ξN

1−ξN
. For

p1 < p0−ξN
1−ξN

, e1 − e2 = p0−p1
2 � |e1 + e2|, because e2 is negative in this region. Hence, at all

points,

|e1 + e2| � max[e1 − e2, 2c] �
√

(e1 − e2)2 + 4c2. (A5)

As a result, e3 is always negative and e4 is always positive. We therefore find

|e3|+ |e4| =
√

(e1 − e2)2 + 4c2. (A6)

|e1|+ |e2| has two regimes, corresponding to p1 � 2p0−ξN
2−ξN

and p1 > 2p0−ξN
2−ξN

. In the first

regime, |e1|+ |e2| = p0−p1
2 , and in the second, |e1|+ |e2| = ξN

2 (1 − p1) − p0−p1
2 . The gradient

of |e1|+ |e2| is − 1
2 in the first regime and 1−ξN

2 in the second regime, with a discontinuity at
p1 = 2p0−ξN

2−ξN
. Taking the second derivative of (e1 − e2)2 + 4c2, we find that it is always posi-

tive, so the gradient of |e3|+ |e4| is always increasing, and hence |e3|+ |e4| has at most one
minimum.

The gradient of |e3|+ |e4| is given by

d|e3|+ |e4|
dp1

=
p1 − p0 + 2(1 − ξN)

(√
1−p0
1−p1

− (1 − ξN)
)

4
√

p0−p1
2

2
+ (

√
1 − p0 − (1 − ξN)

√
1 − p1)2

, (A7)

and the gradient of the total trace norm, Dtrace, is given by

dDtrace

dp1

∣∣∣∣
p1<

2p0−ξN
2−ξN

=
d|e3|+ |e4|

dp1
− 1

2
, (A8)

dDtrace

dp1

∣∣∣∣
p1>

2p0−ξN
2−ξN

=
d|e3|+ |e4|

dp1
+

1 − ξN

2
. (A9)

Note that the expressions for the gradient of the trace norm are different in each regime (on
either side of the discontinuity).

Consider the case in which the minimum of |e3|+ |e4| occurs ‘after’ the discontinuity (i.e.
at p1 > 2p0−ξN

2−ξN
). There are two possibilities: if the (second) expression for the gradient of the

trace norm assessed at p1 = 2p0−ξN
2−ξN

is negative, the minimum of the trace norm will lie in the

region p1 > 2p0−ξN
2−ξN

, whereas if it is positive, there is no stationary point and the minimum of the
trace norm is located exactly at the discontinuity. By numerically minimising the expression
for the gradient assessed at the discontinuity over p (between 0 and 1) and over ξN (between
0 and 6−

√
3

6 ), we find that it is always positive. Hence, if the minimum of |e3| + |e4| occurs at
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p1 > 2p0−ξN
2−ξN

, the minimum of the trace norm lies at 2p0−ξN
2−ξN

. Note that this is the point at which
e2 = 0.

Similarly, if the minimum of |e3|+ |e4| occurs ‘before’ the discontinuity, but the (first)
expression for the gradient of the trace norm remains negative up to the discontinuity, the
minimum of the trace norm will be at the discontinuity. Solving for this gradient to equal 0,
we get a function in ξN and p0, giving the value of p1 at which the minimum of the trace
norm occurs (or would occur, if it is after the discontinuity). When this value becomes less
than 2p0−ξN

2−ξN
, the minimum of the trace norm lies at the value of this function, rather than at the

discontinuity. We can find the value of p0 at which this occurs for a given value of ξN . This is
a function of ξN only. Higher values of ξN require higher values of p0, and the minimum value
of p0 for which the minimum of the trace norm can occur in the the region p1 < 2p0−ξN

2−ξN
is 2

5 .

For all p0 < 2
5 , the minimum trace norm always lies at p1 = 2p0−ξN

2−ξN
.

We can find the value of p0 at which the minimum of the trace norm crosses the line
p1 = p0−ξN

1−ξN
, which we denote pcross

0 . We find that we have another function of
ξN :

pcross
0 =

1 + 4ξN − 8ξ2
N + 5ξ3

N + (1 − ξN)
7
2 − ξ4

N

3 − 3ξN + ξ2
N

. (A10)

This function has a minimum value of 2
3 , at ξN = 0. Note that if p0 � pcross

0 , the gradient
of |e3|+ |e4| is always negative in the range p1 < p0−ξN

1−ξN
and is always positive in the range

p1 > p0, and hence the same is true of the gradient of the trace norm. Hence, for all p0 � 2
3 ,

we are guaranteed that the minimum of the diamond norm lies between p1 = p0−ξN
1−ξN

and

p1 = 2p0−ξN
2−ξN

. For more detail, see the supplementary information [30].

A.2. Proof the alternate resource simulates the amplitude damping channel better than the
Choi resource at low damping, at known points

Carrying out PBT using a resource consisting of N copies of the state in equation (91) (which
we will call the alternate resource) results in the Choi matrix given in equation (92). The
difference between Choi matrices with the AD channel is (as given in the main text)

PBT
[
Rnew(a)⊗N

]
− R′(p0) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

x − 1
2

0 0 z −
√

1 − p0

2
0

1
2
− x 0 0

0 0 y − p0

2
0

z −
√

1 − p0

2
0 0

p0

2
− y

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (A11)

with x, y and z defined in the main text. We define aknown as the value of a such that the first
diagonal element of this matrix is the same as the third diagonal element. This is a value of
a for which the diamond norm is known analytically and is equal to the trace norm between
Choi matrices; we refer to this as a known point. At the point aknown = 1

2 the resource state is
simply a maximally entangled state.

Carrying out PBT using a resource consisting of N copies of the state in equation (80)
(which we will call the Choi resource) results in the Choi matrix given in equation (81), and
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the difference between Choi matrices is (as given in the main text)

PBT[R(p1)⊗N] − R′(p0) =

⎛
⎜⎜⎝
−e1 0 0 −c

0 e1 0 0
0 0 e2 0
−c 0 0 −e2

⎞
⎟⎟⎠ , (A12)

with e1, e2 and c defined in the main text. We define pknown
1 as the value of p1 such that the

first diagonal element of this matrix is the same as the third diagonal element, similarly to
aknown. The minimum value of pknown

1 is 0; at this point the resource state is again a maximally
entangled state.

The corresponding p0 value for aknown = 1
2 is ξN

2 . The corresponding p0 value for pknown
1 = 0

is also ξN
2 . Consequently, at this point, both resources simulate the AD channel equally well.

Differentiating the expression in equation (90), we find that the gradient of the diamond norm
for the Choi resource at p1 = pknown

1 , D1
�, is

dD1
�

dp0
= −1

2

⎛
⎝ ξN

1 − ξN
+

2
(
1 −

√
1 − ξN

)2
+

(1−p0)ξ2
N

(1−ξN )2√
4(1 − p0)

(
1 −

√
1 − ξN

)2
+

(1−p0)2ξ2
N

(1−ξN )2

⎞
⎠ , (A13)

which is finite and negative for all ξN < 1 (a condition which holds for all N � 2). We will now
show that the gradient of the diamond norm for the alternate resource at a = aknown, which we
will denote as D2

�, diverges as aknown tends to 1
2 from above.

We first find that D2
� takes the form

D2
� = p0 − 2y +

√
(p0 − 2y)2 + (

√
1 − p0 − 2z)2

∣∣∣∣
a=aknown(p0)

, (A14)

by using the fact that the eigenvalues of a matrix of the form⎛
⎜⎜⎝

x1 0 0 x2

0 −x1 0 0
0 0 x1 0
x2 0 0 −x1

⎞
⎟⎟⎠ (A15)

are {±x1,
√

x2
1 + x2

2}. We then differentiate D2
�, getting

dD2
�

dp0
= 1 − 2

dy
da

daknown

dp0

+

(p0 − 2y)
(

1 − 2 dy
da

daknown

dp0

)
+ (

√
1 − p0 − 2z)

(
−1

2
√

1−p0
− 2 dz

da
daknown

dp0

)
√

(p0 − 2y)2 + (
√

1 − p0 − 2z)2

=

⎛
⎝1 +

(p0 − 2y) − 1
2 + 2z

2
√

1−p0√
(p0 − 2y)2 + (

√
1 − p0 − 2z)2

⎞
⎠

− 2
daknown

dp0

(
dy
da

+
(p0 − 2y) dy

da + (
√

1 − p0 − 2z) dz
da√

(p0 − 2y)2 + (
√

1 − p0 − 2z)2

)
, (A16)
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where y and z are evaluated at a = aknown(p0). We will show that the term in the right-hand
bracket of equation (A16) is positive sufficiently close to a = 1

2 . Note that since x � 1
2 and

x − 1
2 = y − p0

2 , p0 − 2y � 0
Let us find an expression for dy

da . Recall that y is given by

y =

N−1
2∑

s=smin

s∑
m=−s

a
N−1

2 +m(1 − a)
N+1

2 −m

×
N!(s + m)(s − m + 1)

[(
N+1

2 − s
)− 1

2 −
(

N+3
2 + s

)− 1
2

]2

2
(

N−1
2 − s

)
!
(

N+1
2 + s

)
!(2s + 1)

+

N+1
2∑

m=− N+1
2

a
N−1

2 +m(1 − a)
N+1

2 −m

(
N−1

2 + m
) (

N+1
2 + m

)
2N(N + 1)

, (A17)

and define conty1(s, m) and conty2(m) such that

y =

N−1
2∑

s=smin

s∑
m=−s

a
N−1

2 +m(1 − a)
N+1

2 −m conty1(s, m)

+

N+1
2∑

m=− N+1
2

a
N−1

2 +m(1 − a)
N+1

2 −m conty2(m), (A18)

noting that conty1(s, m) and conty2(m) have no a-dependence. Hence, applying the product rule
of differentiation,

dy
da

=
N(1 − 2a)
2a(1 − a)

y +

N−1
2∑

s=smin

s∑
m=−s

a
N−1

2 +m(1 − a)
N+1

2 −m 2m − 1
2a(1 − a)

conty1(s, m)

+

N+1
2∑

m=− N+1
2

a
N−1

2 +m(1 − a)
N+1

2 −m 2m − 1
2a(1 − a)

conty
2(m). (A19)

Note that if m goes to 1 − m, conty1(s, m) is unchanged (i.e. conty
1(s, m) = conty1(s, 1 − m)) and

2m − 1 goes to −(2m − 1). Note too that conty1(s,−s) = 0 and that m = 1
2 sets 2m − 1 to 0,

meaning that we can write

dy
da

=
N(1 − 2a)
2a(1 − a)

y +

N−1
2∑

s=smin

s∑
m={1, 3

2}

(
a

N−1
2 +m(1 − a)

N+1
2 −m

− a
N+1

2 −m(1 − a)
N−1

2 +m
) 2m − 1

2a(1 − a)
conty1(s, m)
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+

N+1
2∑

m={1, 3
2}

(
a

N−1
2 +m(1 − a)

N+1
2 −m conty2(m)

− a
N+1

2 −m(1 − a)
N−1

2 +m conty2(1 − m)
) 2m − 1

2a(1 − a)
, (A20)

where the minimum value of m is 1 for odd N and 3
2 for even N. We now note that, for a � 1

2 ,

a
N−1

2 +m(1 − a)
N+1

2 −m � a
N+1

2 −m(1 − a)
N−1

2 +m, (A21)

with equality only at a = 1
2 , meaning that sufficiently close to a = 1

2 , the second sum in
equation (A19) dominates. Note too that conty2(m) > conty2(1 − m) (with a finite difference
between conty2(m) and conty2(1 − m) that does not depend on a), and hence dy

da > 0 for a
sufficiently close to 1

2 .
Let us now find an expression for dz

da . Recall that z is given by

z =

N−1
2∑

s=smin

s∑
m=−s

a
N
2 +m(1 − a)

N
2 −mN!

2
(

N−1
2 − s

)
!
(

N+1
2 + s

)
!(2s + 1)

×
[(

N + 1
2

− s

)−1

(s2 − m2) + 2

(
N + 1

2
− s

)− 1
2
(

N + 3
2

+ s

)− 1
2

× (s2 + m2 + s) +

(
N + 3

2
+ s

)−1

((s + 1)2 − m2)

]

−
N+1

2∑
m=− N+1

2

a
N
2 +m(1 − a)

N
2 −m

(
N+1

2 + m
) (

N+1
2 − m

)
2N(N + 1)

, (A22)

and define contz1(s, m) and contz2(m) such that

z =

N−1
2∑

s=smin

s∑
m=−s

a
N
2 +m(1 − a)

N
2 −m contz1(s, m)

+

N+1
2∑

m=− N+1
2

a
N
2 +m(1 − a)

N
2 −m contz2(m). (A23)

Differentiating, we get

dz
da

=
N(1 − 2a)
2a(1 − a)

z +

N−1
2∑

s=smin

s∑
m=−s

a
N
2 +m(1 − a)

N
2 −m m

a(1 − a)
contz1(s, m)

+

N+1
2∑

m=− N+1
2

a
N
2 +m(1 − a)

N
2 −m m

a(1 − a)
contz2(m). (A24)

Note that contz1(s, m) = contz1(s,−m) and contz2(s, m) = contz2(s,−m). Hence, we can write
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dz
da

=
N(1 − 2a)
2a(1 − a)

z +

N−1
2∑

s=smin

s∑
m={1, 3

2}

(
a

N
2 +m(1 − a)

N
2 −m

− a
N
2 −m(1 − a)

N
2 +m
) m

a(1 − a)
contz1(s, m)

+

N+1
2∑

m={1, 3
2}

(
a

N
2 +m(1 − a)

N
2 −m − a

N
2 −m(1 − a)

N
2 +m
)

× m
a(1 − a)

contz2(s, m). (A25)

Note that this approaches 0 as a approaches 1
2 , hence there exists some finite, positive ε such

that for all 1
2 � a � 1

2 + ε, we have

dy
da

+
(p0 − 2y) dy

da + (
√

1 − p0 − 2z) dz
da√

(p0 − 2y)2 + (
√

1 − p0 − 2z)2
> 0. (A26)

It now suffices to show that daknown

dp0
diverges as a tends to 1

2 from above. We write

daknown

dp0
=

(
dp0

daknown

)−1

=
d

da
(1 − 2(x − y)) = −2

d
da

(x − y). (A27)

Using the symmetry of the PBT protocol, we can see that x[a] = 1
2 − y[1 − a]. We can

therefore write

dp0

daknown
= 2

d
da

(y[a] + y[1 − a]) . (A28)

The differential dy[a]
da is given in equation (A19), and we can similarly write

dy[1 − a]
da

=
N(1 − 2a)
2a(1 − a)

y[1 − a] +

N−1
2∑

s=smin

s∑
m={1, 3

2}

(
a

N−1
2 +m(1 − a)

N+1
2 −m

− a
N+1

2 −m(1 − a)
N−1

2 +m
) 2m − 1

2a(1 − a)
conty

1(s, m)

+

N+1
2∑

m={1, 3
2}

(
a

N−1
2 +m(1 − a)

N+1
2 −m conty2(1 − m)

− a
N+1

2 −m(1 − a)
N−1

2 +m conty2(m)
) 2m − 1

2a(1 − a)
. (A29)

The expression y[a] + y[1 − a] is symmetric around a = 1
2 and both dy[a]

da and dy[1−a]
da are finite

at this point, so a = 1
2 is either a maximum or a minimum of this expression.

Suppose that it is a minimum. Numerically, we find a clear trend indicating that this is the
case for all N, with the second differential tending toward 1 from below (from a value of 0
at N = 2) as N increases. Then, daknown

dp0
diverges to positive infinity as a approaches 1

2 from
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above. Consequently, dD2
�

dp0
diverges to negative infinity. Hence, there exists some finite positive

ε such that the gradient of the diamond norm for the Choi resource, assessed at p0 = ξN
2 + δ is

less negative than the gradient of the diamond norm for the alternate resource, assessed at the
same point, for all positive δ < ε. Consequently, the diamond norm for the Choi resource at
the known point is less than the diamond norm for the alternate resource for all ξN

2 < p0 � ε.

Suppose instead that it is a maximum. Then, daknown

dp0
diverges to negative infinity as a

approaches 1
2 from above, and dD2

�
dp0

diverges to positive infinity. However, in this case, increas-

ing a by a small amount from 1
2 decreases p0, since dp0

daknown is negative. Consequently, there

exists some finite positive ε such that D2
� assessed at p0 = ξN

2 − δ is lower than D1
� assessed at

p0 = ξN
2 + δ for all positive δ < ε. In this case, an AD channel applied to the output of the PBT

channel, with the damping probability p′ chosen such that total channel simulates an AD chan-
nel with p0 = ξN

2 + δ would result in D2
� < D1

�. This is equivalent to using the tensor-product
resource composed of N copies of

R′
new(a) =

⎛
⎜⎜⎝

a(1 − p′) 0 0 0
0 a −

√
a(1 − a)(1 − p′) 0

0 −
√

a(1 − a)(1 − p′) (1 − a)(1 − p′) 0
0 0 0 0

⎞
⎟⎟⎠ , (A30)

which is still distinct from any state of the form in equation (80).
Hence, in either case and for any N, there exists some tensor-product resource that simulates

the AD channel better than the Choi resource, at either of its known points, for some range of
p0 values.
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