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Abstract

This paper deals with a proposal for joint modeling and process optimization for split-
plot designs analyzed through mixed response surface models. It addresses the following
main issues: i) the building of a joint mixed response surface model for a multiple response
situation, by defining only one response through which specific coefficients are included
for studying the association among the responses; ii) the considering of fixed as well as
random effects within a joint modeling and optimization context; iii) the achievement of an
optimal solution by involving specific as well as common coefficients for the responses. We
illustrate our contribution through a case-study related to a split-plot design on electronic
components of printed circuit boards (PCBs); we obtain satisfactory results by confirming
the validity of this contribution, where the qualitative factor PCB is also studied and
optimized.

Keywords: experimental design, mixed response surface model, robust design approach.

1. Introduction

Since 1990s, split-plot design has received great attention as a valid plan in the technological
field for a robust design approach (Box and Jones 1992). Interesting literature has recently
been published on this experimental design and related topics in process optimization. Un-
doubtedly, the particular structure of split-plot design, e.g. bi-randomization, helps to solve
some problems, such as the well-known differentiation among hard-to-change factors and easy-
to change factors (Logothetis and Wynn 1989) in a Response Surface Methodology (RSM)
setting (Myers and Montgomery 2002). In connection with these issues, split-plot design is
one of the fundamental designs when noises and/or random factors are present. Therefore,
the latest developments on split-plot design in a robust design framework are attributable,
inter alia, to Robinson, Pintar, Anderson-Cook, and Hamada (2012) and Tan and Wu (2013),
where two Bayesian approaches are introduced in order to apply the split-plot in a robust
design context and also evaluate non-normally distributed response variables. Nevertheless, a
further challenge is the consideration of the multiple response case starting from the seminal
papers of Derringer and Suich (1980) and Khuri and Conlon (1981). In this direction, many
authors have contributed towards improving this relevant topic in order to solve the problem
of finding an unique solution which could be an optimal compromise following process issues,
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noises, weighting and computational aspects (Vining and Myers 1990; Lin and Tu 1995; Tang
and Xu 2002; Del Castillo 2007). Recently, further studies have attempted to solve this prob-
lem by considering both data analysis and external or subjective decisions (Lee, Kim, and
Köksalan 2012); or by defining a Bayesian model-averaging approach based on building of a
loss function (Ng 2010).

Robust parameter design in a multiresponse context is also studied through the noise setting,
such as in Bingham and Nair (2012) and Del Castillo, Colosimo, and Alshraideh (2012), where
the proposal relates to the optimization of functional response profiles in a dynamic response
setting.

When considering all the issues and features raised here, e.g. a split-plot design in a robust
design context and a multiresponse process optimization, it becomes relevant to introduce
a mixed model analysis (Khuri 1996, 2006; Khuri and Mukhopadhyay 2010), in which ran-
dom as well as fixed variables and effects are estimated (Krueger and Montgomery 2014).
With this line of reasoning, some developments have been introduced to solve the problem
of ordinal responses (Goos and Gilmour 2012). Furthermore, in a mixed model approach
for a split-plot design, Ordinary Least Squares (OLS) and Generalized Least Squares (GLS)
estimates of fixed effects are equivalent when specific conditions are met (Vining, Kowalski,
and Montgomery 2005). Further developments in this direction are related to the building of
optimal split-plot designs by also evaluating the relevance of variance components and the Re-
stricted Maximum Likelihoood (REML) estimation method (Mylona, Goos, and Jones 2014;
Jones and Goos 2012). In this direction, research developments are introduced for improving
statistical inference through split-plot or multi-stratum designs (Trinca and Gilmour 2017),
or for detecting the Pure Error (and Lack-of-Fit test) in the presence of blocked variables or
multi-stratum designs (Goos and Gilmour 2017).

This way, Lin (2018) defined an optimal (and robust) split-plot design in order to overcome
problems of model misspecification due to the presence of aliasing effects and/or when po-
tential model terms are missing. Furthermore, Berni (2012) applied a joint mixed response
surface model and optimization for a split-plot design in the multiple response case; Ivanova,
Molenberghs, and Verbeke (2019) illustrated a similar proposal, although by considering dif-
ferent contexts and aims.

The most recent developments are related to the use of experimental design, e.g. split-plot
designs and non-linear mixed models, in a reliability context (Medlin, Freeman, Kensler, and
Vining 2019).

In this paper, the main purpose is to propose a joint model for a split-plot design where
several responses are studied through the building of only one response variable, which also
allows for detecting the relation among them. In particular, the joint model is built within the
mixed Response Surface (RS) context in order to study a robust process optimization. The
defined joint multiresponse split-plot model allows us to solve the following four main issues:
i) starting from a multiple response case, only one response variable is built, and then only
one joint statistical model is estimated; ii) specific coefficients in the joint statistical model
are explicitly defined in order to analyse the contribution of each response variable within
the joint statistical model; iii) variance and covariance parameters are jointly evaluated by
considering the specific sources of variability involved in the split-plot design, also conditioned
to each response variable; iv) the robust process optimization is carried out through the joint
estimated statistical model, and by also considering fixed as well as random effects. The
latter allows us to significantly improve the optimization analytical procedure. Moreover, by
involving all the responses, the joint modeling not only allows us to study specific estimates
and effects for each response, but also to consider common estimated coefficients for analyzing
peculiar characterizations among responses.

It must be noted that we estimate only one model regardless of the number of responses, and
this improvement allows for a single optimization procedure. Furthermore, the subsequently
simultaneous optimization step involves just one objective function in which each estimated
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response surface is considered through the defined joint model. The objective function is
implemented by also considering the different contributions of the fixed and random effects.
We illustrate the suggested theory through a split-plot case-study in the microelectronics field,
where the analysis of the soldering performance of electronic components on printed circuit
boards is carried out according to the specific materials used.

The paper is organized as follows: in Section 2 the theory related to the definition of the
mixed split-plot model and joint modeling is outlined; in particular, the proposal is advanced
for joint modeling and optimization of several response variables. Section 3 reports the case-
study, related to the description of the split-plot design in the multiple response case, aimed
at illustrating the theory; the final remarks follow in Section 4.

2. Outlined theory and the joint mixed split-plot modeling proposal

This section illustrates the proposal for a joint mixed RS modeling and optimization. The
linear mixed-effect model is illustrated in Section 2.1, while the general split-plot model and
the mixed split-plot model are described in Sections 2.2 and 2.3 respectively; the proposal for
the joint mixed split-plot modeling and the optimization procedure are presented in Sections
2.4 and 2.5 respectively; lastly, a summary of the full suggested procedure is reported in
Section 2.6.

2.1. The linear mixed-effect model

The starting point is the consideration of a general linear mixed-effect model (Searle, Casella,
and McCulloch 1992), as in formula (1), which is an extension of the general linear model that
allows a more flexible structure for the specification of the covariance matrix of the random
error. In other words, it allows for both correlation and heterogeneous variances, although
normality is always assumed.

y = Xβ +Zγ + ε (1)

Formula (1) refers to a general response variable y of dimension [N × 1]; X is the matrix for
fixed effects with dimension [N×p]; β is the column vector of the unknown coefficients for the
fixed effects and it has dimension [p× 1]. The matrix Z and the column vector γ are related
to random effects, and they have dimensions [N × h] and [h× 1] respectively; finally ε is the
column vector [N × 1] for the random error. It must be noted that the main difference with
respect to the general linear model is the addition of the known design matrix Z, and the
vector of unknown random-effect parameters, γ. In general, the matrix Z can contain either
continuous or dummy variables, just like the array X. The name mixed model derives from
the fact that the model contains both fixed-effect coefficients β, and random-effect coefficients
γ.

In this context, the variance of the response variable y is modelled through the random-effect
design matrix Z and by specifying the covariance structures of two matrices: i) the matrix
G related to the estimates of variance-covariance for random effects; and ii) the matrix R of
variance-covariance estimates for the random error. Thus, the matrix V of variance-covariance
for y has the following structure:

V = ZGZ ′ +R (2)

where V is decomposed into two terms: a first term ZGZ ′ relating to the random effects and
a second term, the matrix R, relating to the variance-covariances of the error estimates.

Variance and covariances for random effects (G and R arrays) are estimated through the
Restricted Maximum Likelihood-REML method. To this end, the log-likelihood function
logL(G,R) for the REML equation is defined as follows:

logL(G,R) = −1

2
log |V | − 1

2
log |X ′

V −1X| − 1

2
(y −Xβ̂)

′
V −1(y −Xβ̂) (3)
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where the term (y −Xβ̂)
′
V −1(y −Xβ̂) is the expression to perform the Generalized Least

Squares (GLS) estimation for the fixed effects, for further details see Searle et al. (1992).

2.2. The split-plot model

A split-plot design is characterized by a peculiar structure, based on the distinction of the
experimental factors in two sets: the Whole-Plot (WP) and the Sub-Plot (SP) factors. A
bi-randomization framework characterizes this distinction between WP and SP factors, and
it implies the generation of two types of experimental units, e.g. WP units and SP units,
with two corresponding error terms (Logothetis and Wynn 1989; Vining et al. 2005). More
precisely, firstly the WP factors are randomly assigned to the WP experimental units, by gen-
erating the whole-plot error term; subsequently the SP factors are randomly assigned within
each WP unit, by generating the SP error term. The split-plot design became fundamental,
starting from the seminal contribution of Box and Jones (1992), in industrial experimentation
and for the robust design approach. In fact, the peculiar structure of the split-plot design is
particularly suitable in the technological field when considering specific issues both related
to the product and/or the process to be improved, and the conduction of the experimental
trials.

In general, let us define the set Z = {Z1, .., ZI} of WP factors, and the set X = {X1, .., XJ} of
SP factors that define the entire experimental region χ. For each replicate bk, k = 1, ..,K, and
for the balanced case, we have n runs, and therefore, the total number of trials is N = n×K;
buk is the u-th value of the replicate vector bk = (b1k, .., bnk). Furthermore, for each k − th
replicate, we define zi = (zi1, .., ziu, .., zin) as the generic column vector, related to the i-th
whole-plot factor, (i = 1, .., I); while xj = (xj1, .., xju, .., xjn) is the general column vector for
the j-th sub-plot factor.

In addition, we consider the case of a split-plot model as a 2nd order model in a mixed RS
setting (Khuri 1996). The mixed split-plot RS model, defined for I whole-plot variables, J
sub-plot variables, a single replicate (K = 1), a single response variable y, and for a single
observation u, (u = 1, .., n), can be written as:

yu(Z,X) = β0 +
I∑
i=1

γiziu +
I−1∑

i=1;i<i′

I∑
i′=i+1

γii′ziuzi′u +
I∑
i=1

γiiziuziu + (4)

J∑
j=1

βjxju +
J−1∑

j=1;j<j′

J∑
j′=j+1

βjj′xjuxj′u +
J∑
j=1

βjjxjuxju +

I∑
i=1

J∑
j=1

δijziuxju + ψu + εu

Note that γi, γii′ and γii are the random coefficients related to the WP variables, main effects,
first order interactions and quadratic effects; β0 and βj are the coefficients of the intercept and
the fixed main-effects for the SP variables; while βjj′ and βjj are coefficients for the first order
interactions and quadratic terms respectively. The random parameters δij are the interaction
effects between WP and SP factors, and they are specifically defined for evaluating the robust
modeling approach.

The error terms are represented by ψu (whole-plot error) and εu (sub-plot error). In gen-
eral, ψu and εu are supposedly independent and identically normally distributed, e.g. ψ ∼
i.i.d. N(0, σ2ψ) and ε ∼ i.i.d. N(0, σ2ε ). In this initial step, we maintain this assumption; in
what follows, we also consider different situations, even though the normality assumption still
remains valid. It must be noted that when considering K replicates (K ≥ 2), the replicate
effect is included in the model and estimated through the matrix R, as illustrated in details
in the case-study.

In what follows, the split-plot model in a mixed RS model setting is reported in details.
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2.3. The mixed split-plot model

When considering the multiple response case and the general split-plot model (4), the mixed
linear model (1) for a single t-th response variable yt (t = 1, .., T ) may be also formulated as
in the following:

yt(Z,X) = Xtβt +Ztγt + ∆tδt + εt (5)

= Xtβt + Żtγ̇t + εt (6)

where the set of experimental variables, e.g. WP and SP factors involved in the split-plot
design, are related to random and fixed effects for the robust design setting respectively.
Therefore, in a general situation, we consider that the matrix Xt and the vector βt are
related to the fixed effects for the SP variables. Furthermore, the matrix Ż is formed by the
horizontal concatenation of the following two matrices:

• the matrix Zt related to the random effects for the WP factors (formula (5)) (e.g.
related to the main effects γi, the first order interactions γii′ and the quadratics effects
γii, formula (4));

• the matrix ∆t related to the interactions among WP and SP variables (formula (5))
(e.g. the crossed terms ziuxju, formula (4)).

Similarly, the vector γ̇t in formula (6) is formed by:

• the vector γt that includes the random effects for the WP factors (formula (5));

• the vector δt related to the random coefficients for the crossed terms among the WP
and SP variables (formula (5)), these model terms play a relevant role for the robust
design approach.

It must also be noted that in formulas (5) and (6) we consider a general structure of the
split-plot model, in which the WP factors are considered as random effects. In the case-study
the WP factors are treated accordingly to the empirical issues, as afterwards outlined (Section
3).

Moreover, by considering a single response variable y in a mixed RS model approach, the
two error components ψu and εu of a general split-plot model (4) are estimated through the
G and R matrices, formula (2); the WP error ψu (model (4)) is then absorbed within the
random structure of the model and it is not so irrelevant to consider the specific variance-
covariance structures to be defined for the two errors in a real context. In general, a diagonal
structure could be assumed for the two matrices G and R, that refers to a situation in which
all the covariances are null. Nevertheless, when considering the split-plot design, the diagonal
structure for both the G and R matrices is often misleading given that a covariance is present
among the observations within the same WP unit.

In what follows, the joint split-plot model is explained (Section 2.4), and further considerations
on the structure of the G and R matrices are detailed in the case-study (Section 3.1).

2.4. The joint mixed split-plot model

The fitting of only one statistical model for several T responses is based on the definition of
a new response variable Y , built through the (vertical) concatenation of T column vectors
(related to the responses): Y ≡ [y1 : .... : yT ]. The new statistical model allows for a
joint evaluation of variance and covariance parameters by considering the specific sources of
variability: WP factors, SP factors, also conditioned by responses. All of these issues are
a further improvement for the suggested optimization procedure. Therefore, the split-plot
mixed RS model for a joint response Y ≡ [y1 : .... : yT ] is defined as follows:

Y = Ẋβ̇ + Żγ̇ + ε (7)
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where:

1. Ẋ is a model matrix consisting of the horizontal concatenation of four algebraic ele-
ments:

• the unit column vector 1TN (length T ×N), used for estimating the intercept;

• a column vector v (length T ×N) defined to study the contribution of each specific
response variable within the joint statistical model. In general, v is a column vector
of length TN ; for example, if we assume that there are two responses (T = 2), v
is a binary column vector with length 2N ;

• a matrix X̃ containing the set of column vectors for the estimates of ‘common’
fixed effects (without considering the specific differentiation by yt);

• a matrix X(v) in which each column vector is defined for the estimation of a main
effect or a first order interaction term conditioned by each response variable. It
must be noted that this term corresponds to the matrix Xt defined in formulas (5)
and (6).

Therefore, the structure of Ẋ is the following:

Ẋ ≡ [1 : v : X̃ : X(v)] (8)

The matrix Ẋ has a general dimension: [TN × p] where p = [1 + T + no.col(X̃) +
no.col(X(v))];

2. β̇ is the global column vector relating to the unknown coefficients for the fixed part
of the model corresponding to the matrix Ẋ; thus, β̇ is formed through the vertical
concatenation of four column vectors and has the following structure:

β̇ ≡ [β0 : βv : β̃ : β(v)] (9)

where β0 involves the unknown parameters for the intercepts, βv is the vector of coeffi-
cients for measuring the differences in responses, β̃ is the column vector containing the
unknown parameters for matrix X̃, β(v) involves the unknown parameters correspond-
ing to the effects defined through the matrix X(v); thus, β̇ has a general dimension
equal to [p× 1];

3. Ż is a matrix consisting of all the column vectors relating to the random effects, also
including the random effects useful for measuring the robust design setting. Therefore,
Ż is the extension of Żt (formulas (5) and (6)) and it is formed by the horizontal
concatenation of (at least) three matrices:

• Z̃ which contains vectors of random effects for the WP factors, including interac-
tions and quadratic effects, and the random effect of replicates;

• Z(v) which includes the random effects conditioned by the response variables;

• ∆ is a matrix formed by the first order interaction terms related to noises and
process variables.

Therefore, Ż has the following structure:

Ż ≡ [Z̃ : Z(v) : ∆] (10)

The general dimension for the matrix Ż is equal to: [TN × h], where h = [no.col(Z̃) +
no.col(Z(v)) + no.col(∆)];
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4. γ̇ is the global column vector defined as the vector of unknown parameters for Ż; more
specifically, γ̇ includes the set of unknown random parameters for the WP structure
(γ̃), the random effects estimated conditioned by each response variable (γ(v)); and the
column vector of unknown parameters δ related to the estimated coefficients for the
robust design approach; thus, we obtain:

γ̇ ≡ [γ̃ : γ(v) : δ] (11)

where γ̇ has a general dimension [h× 1].

It must be noted that the β(v) and the γ(v) are vectors of coefficients conditioned to each
response variable and defined in order to detect the relation among the T response variables
in both the estimation and optimization steps.

As regards the variance-covariance structures, the matrix G represents the variance-covarian-
ce matrix for random effects involved in model (7) through Ż; in general, for a split-plot
design G could have a specific structure, such as variance components, compound symmetry
or unstructured, relating to specific assumptions on correlations among random effects (WP
factors). The matrix R is formed by the estimates of variance-covariance effects for the
residual error ε, estimated for each replicate k (k = 1, ..,K) within each response variable
(γk(v)), and it could analogously assume a specific structure like matrixG. For our case-study,
we assume a compound symmetry structure for the matrix G, and a diagonal structure for
the matrix R.

2.5. The optimization step

As also described in the introductive Section, one of the innovative contribution of this study
is the joint optimization (in a multiple response case) by using an -only one- joint split-plot
estimated model. When speaking about robust process optimization, we should consider the
recent developments in this field starting from the Taguchi’s two-step procedure (Nair 1992),
and the seminal paper on the dual response approach by Vining and Myers (1990), where the
expected value of the response (process variable) is optimized with respect to the objective
value, also called the target (τ), and by simultaneously minimizing the process variability.
Together with the dual response approach, the robust design concept was introduced by
Taguchi in order to make insensitive a product (or a process) with respect to environmental
noises and/or other internal or external sources of variability, see Nair (1992) for a detailed
discussion of the Taguchi’ method. Moreover, the achievement of a robust design is performed
by setting the control factor levels to be insensitive to noise variables, often involved in the
studies as random effects.

More recently, the robust design concept has been expounded involving the optimization step,
in which noises and/or random effects are also evaluated (Berni and Burbui 2014; Berni and
Bertocci 2018).

To this end, in this study, the joint estimated split-plot model is used to define the objective
function to be optimized, by considering:

• the estimated fixed coefficients specifically related to each response (β(v)), where each
input variable, e.g. xi is crossed with v;

• the estimated fixed ’common’ coefficients (β̃);

• the estimated coefficients that measure the relation among the responses, in general
defined by the vector βv.

In addition the random effects are involved in the process optimization by including the
estimated confidence interval for each random coefficient.
Therefore, and in order to evaluate all these model terms within the objective function, we
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consider to start from the estimation of the joint general mixed RS model (7) considering the
T dependent variables.

The simultaneous optimization is carried out by involving these T estimated surfaces through
the joint model (7). Furthermore we define Ft for each yt, t = 1, ..., T (formula (12)), computed
as the difference (quadratic distance) between the estimated surface Ŷt through the joint
model (formula (7)) and the target value τt a-priori specified for each response; therefore, the
objective function is articulated as follows:

Ft(Z,X) = (Ŷt(Z,X)− τt)2; ∀t (12)

and

min
(Z,X)∈χ

∑
t

Ft(Z,X) (13)

It must be noted that formula (12) takes each response variable into account; then, by means of
the second formula (13), the joint minimization is carried out within the coded experimental
region χ. All the random effects, estimated through the joint modeling (formula (7)), are
also included, even though through the estimated confidence limits only. Moreover, through
formula (12) we can perform the dual response approach (Vining and Myers 1990), in which
the adjustment to the target value and the minimization of process variability are performed
simultaneously.

By summarizing, the joint optimization is carried out by considering: i) fixed effects, e.g. the
estimated coefficients of the global column vector β̇ defined in formula (9); ii) random effects
through the estimated coefficients of the column vector γ̇, formula (11), and the estimated
confidence intervals. Moreover, constraints are included in order to keep the analytical op-
timization within the coded experimental region χ, and avoid searching for optimum values
without any accurate diagnostic checks.

2.6. The full procedure for joint modeling and optimization

Although the full procedure is implemented for several response variables, it is important
to also perform a preliminary analysis for each response variable. Generally, in this pre-
liminary analysis, for each yt, (t = 1, .., T ), the distribution assumptions should be checked,
and the experimental data, even though expressed with the same unit of measure, must be
standardized.

By considering the modeling step (Section 2.4) and the subsequent optimization step (Section
2.5), the full procedure for a joint modeling and optimization may be summarized as follows:

1. Creation of the response variable Y as a vector of length equal to NT = N × T ;
creation of a column vector v opportunely coded to account for coefficient estimates for
each response within the joint model. If we assume that there are T = 2 responses, then
v reduces to a binary vector.

2. Estimation of the best fitted joint model, based on formula (7), by including the WP
and/or SP variable effects crossed with v in order to evaluate the individual contribution
of each response.

3. Definition of the objective function, as defined in formulas (12) and (13), and based on
the estimated model (7). Each Ft(Z,X),∀t, can be defined as the part of the objective
function specifically related to the corresponding yt, by including common and specific
fixed coefficients, and random effects. Each estimated random coefficient must be in-
volved in the optimization step by including the corresponding confidence limits. Then,
the objective function must be minimized (formula (13), Section 2.5).

We now verify the full procedure of a joint modeling and optimization by showing an empirical
example involving experimental data planned through a split-plot design (Section 3).
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3. A split-plot case-study on printed circuit boards

The application relates to the microelectronics field in order to study the soldering perfor-
mance of electronic components on printed circuit boards according to the specific materials
used (Berni, Scarano, Bertocci, and Catelani 2013). More precisely, we study a split-plot
design involving two quantitative response variables: i) pull-force level [N ], ii) electrical resis-
tance [Ω]. There are no specific targets for the two response variables yt, (T = 2); we desire
maximization for the pull-force level (y1) and a minimization for the electrical resistance (y2).
Nevertheless, by considering the effective process and the targets effectively desirable and
jointly achieved, a maximum coded value of τ1 greater than 1.008 and a minimum coded
value of τ2 lower than 0.128 could be considered as a satisfactory result. Table 1 contains a
summarized description of responses.

Table 1: Description of the response variables

Variables Symbol Target τt (coded)

Pull-force level y1 1.008

Electrical resistance y2 0.128

Table 2: Description of the experimental factors and variables

Variables Symbol Coded Levels

Printed Circuit Board-PCB (WP) zpcb,l l = 1, 2, 3, 4

Time [h] (SP) x1 [-1, 1]

Pin Grid Array-PGA [pin size] (SP) x2 [-1, 1]

We consider four different motherboards, e.g. printed circuit boards - PCBs, each one char-
acterized by a different surface finish and a specific soldering alloy. Each PCB is studied
with respect to two internal components. Two integrated circuits (IC) are considered in each
PCB; each IC is connected to the PCB by a different sized Pin Grid Array (PGA), also
simply referred to as pin. In this study, two pin components are considered, and reported
with coded levels for privacy reasons (Table 2). In addition, the time variable is studied at
two levels in order to verify the soldering performance over time. Therefore, in this split-plot
design, three variables are involved: four PCBs, two electronic components (characterized by
a different sized pin) and time. In general the discrimination between WP and SP factors can
be performed considering the process framework and/or the nature of experimental variables,
especially when block or noises are present. In this case the discrimination has been done by
considering that the PCB factor is primarily involved in the process, and it is the physical
base for the electronic components, e.g. the PGA. Therefore, the PCB is considered as a
WP factor at four levels (zpcb,1), while time (x1) and components (pin size, x2) are included
in the experimental design as SP factors. Table 2 contains a description of the WP and SP
experimental variables. Six replicates (blocks) are carried out, i.e. K = 6. Thus, the final
split-plot design has one WP factor (i.e. I = 1) and two SP factors (i.e. J = 2); each replicate
bk, k = 1, .., 6, is formed by n = 41×22 = 16 runs and the full design involves N = n×K = 96
observations, given by six replicates. It must be noted that both response variables are nor-
malized according to the pin size of the components in order to estimate a joint statistical
model but also to consider the different cumulate power due to the different pin size. The
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statistical analysis is carried out by applying the MIXED and NLP procedures of the SAS
software (version 9.2, Windows Platform).

3.1. Model and optimization results

By following our proposal (Section 2.4) and in order to estimate the joint model, a single
vector (Y = (y1, ...yu, ...y192)) is built for the T = 2 standardized response variables and a
binary vector (v) is included in the model. Given the specific nature of the experimental
data, we estimate a mixed RS model where the one WP factor, e.g. PCBs, is included in the
model as a fixed as well as a random effect. More specifically the PCB factor is considered as
fixed main effect at four level (Table 3); moreover in order to evaluate the relevance of PCBs
with respect to each response, we include a random coefficient γpcb(v),l for each type of PCB
by response (Table 4).

Table 3: GLS estimates for fixed effects of model (14)

Coeff.(effect) estimate st.err. p-value

β0 0.8992 0.0385 0.0002

βv(response) -0.0366 0.0593 0.5810

βv(−) 0 - -

β̃11(zpcb,1) 0.0837 0.0263 0.0501

β̃12(zpcb,1) -0.0207 0.0263 0.4897

β̃13(zpcb,1) -0.0065 0.0263 0.8198

β̃14(zpcb,1) 0 - -

β̃2(x1) 0.1934 0.0189 0.0020

β̃3(x2) -0.010 0.0052 0.0518

β41(x1v) -0.0235 0.0582 0.6895

β42(x1v) 0 - -

β51(x2v) 0.0216 0.0582 0.7114

β52(x2v) 0 - -
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Table 4: Estimates for random effects of model (14)

Coeff.(effect) estimate st.err. p-value

γ̃12 -0.1585 0.0052 0.0001

γ̃1 -0.1534 0.0216 0.0001

γ̃2 -0.1579 0.0195 0.0001

γ̃3 -0.1547 0.0196 0.0001

γ̃4 -0.1532 0.0196 0.0001

γ̃5 -0.1572 0.0202 0.0001

γ̃6 -0.1654 0.0201 0.0001

γpcb(1),1 -0.1588 0.0227 0.0001

γpcb(1),2 -0.1561 0.0227 0.0001

γpcb(1),3 -0.1564 0.0227 0.0001

γpcb(1),4 -0.1566 0.0227 0.0001

γpcb(2),1 -0.1552 0.0227 0.0001

γpcb(2),2 -0.1578 0.0227 0.0001

γpcb(2),3 -0.1576 0.0227 0.0001

γpcb(2),4 -0.1573 0.0227 0.0001

δ1pcb,1 -0.1295 0.0197 0.0001

δ1pcb,2 -0.1734 0.0197 0.0001

δ1pcb,3 -0.1662 0.0197 0.0001

δ1pcb,4 -0.1587 0.0197 0.0001
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Table 5: Estimated variance-covariance effects and Wald Z-test

Effect REML estimate s.e. p-value

σ2 2.47e-4 1.99e-4 0.1069

σ2
CS 0.0249 0.0356 0.4843

γ1(1) 0.3116 0.1110 0.0025

γ2(1) 0.3251 0.1155 0.0024

γ3(1) 0.3251 0.1154 0.0024

γ4(1) 0.3241 0.1151 0.0024

γ5(1) 0.3251 0.1154 0.0024

γ6(1) 0.3241 0.1151 0.0024

γ1(2) 0.0143 0.0052 0.0033

γ2(2) 1.168e-3 6.55e-4 0.0051

γ3(2) 1.884e-3 7.86e-4 0.0083

γ4(2) 1.884e-3 8.20e-4 0.0108

γ5(2) 3.543e-3 1.41e-3 0.0060

γ6(2) 3.272e-3 1.276e-3 0.0052

According to formula (7), the split-plot model, expressed for the u-th trial and applied to the
experimental data, is the following:

yu(Z,X) = β0 + βvvu +

L−1∑
l=1

β̃1,lzpcbu,l + β̃2x1u + β̃3x2u + (14)

2∑
s=1

β4,sx1uvu +
2∑
s=1

β5,sx2uvu + γ̃12x1ux2u +

K=6∑
k=1

γ̃kbuk +
L−1∑
l=1

γpcb(1),lzpcbu,l +

L−1∑
l=1

γpcb(2),lzpcbu,l +

x1u

L−1∑
l=1

δ1pcb,lzpcbu,l +

K=6∑
k=1

γk(1)buk +

K=6∑
k=1

γk(2)buk

In formula (14), l = 1, .., 4 denotes the levels for the WP factor (e.g. the PCBs) estimated as
fixed effect, and as the random effect conditioned by responses (γpcb(v),l), given the specific
relevance of this process qualitative variable; s = 1, 2 is the number of coefficients to be
estimated when considering the time and pin effects conditioned by each response variable.
Therefore, the two terms x1uvu and x2uvu in model (14) are not first order interaction effects
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strictu sensu, instead they measure the SP variable effects of time (x1) and pin (x2) due
to each response variable involved in the model estimation, e.g. the X(v) and βv terms of
formulas (8) and (9) respectively.

The matrix G of variance-covariance for random effects has a compound symmetry structure.
Thus, by denoting the matrix [1

′
h × 1h] with J (h = 19), the matrix G for the estimated

model (14) is as follows:

G = σ2Ih×h + σ2CSJh×h = 2.47e-4Ih×h + 0.0249Jh×h.

The variance-covariance effects for the residual errors are estimated for each replicate, within
each response variable; each diagonal block matrix Rkt ; k = 1, .., 6; t = 1, 2 has dimension
[16× 16]. In Table (5) we show the variance and covariance estimates for the random effects
(G and R estimates) estimated through the REML method (Section 2.1).

Furthermore, R is a diagonal matrix formed by twelve Rkt blocks; each variance component
is the diagonal element of the corresponding k block k = 1, .., 6;nk = 16 ∀k, conditioned by
each response variable. The assumed diagonal structure for the matrix R provides the best
model fit for the data in our case-study. Following is the matrix R for the estimated model
(14):

R =


σ21(1)In16 0 . . . 0

0 σ22(1)In16 . . . 0
...

...
. . .

...
0 0 . . . σ26(2)In16



=


0.3116In16 0 . . . 0

0 0.3251In16 . . . 0
...

...
. . .

...
0 0 . . . 3.272e-3In16


We do not report the correlation matrix of the estimates: the maximum absolute value is
0.2956; the minimum is 1.6e-4. Moreover, the likelihood ratio test statistic is equal to 187.60
(df=13) with a highly significant p-value (p < 0.0001).

In Table 3 we show the GLS estimates for model (14). By observing Table 3, we note that
the WP factor, e.g. PCBs, is not significant in two out of the three coefficients estimated
with respect to the fourth PCB type (reference level estimation). Nevertheless, it is relevant
to include this factor also as a fixed effect to evaluate the performance of each PCB in
the following optimization step. Moreover, the estimated coefficient related to the response
variables (βv) is not significant; while the two SP factors, e.g. pin and time, are significant
(time is highly significant) as linear effects, they are not significant when considering the
differences by the responses. The estimated coefficients, e.g. β41 β42 β51 and β52, are included
in the model in order to evaluate the specific contribution of each SP variable (x1, x2) to each
response, and in relation to the other one. In fact, these two interaction terms are calculated
by crossing each SP variable with the vector v, defined in Section 2.4.

The replicate effects are involved in model (14) as random effects (γ̃k; k = 1, ..6) and through
the estimation of the corresponding variance-covariances effects by response variables (Table
5), as explained previously. Furthermore, two other random effects are considered: i) the first
order interaction for the two SP variables, pin and time (γ̃12); ii) the first order interaction
between the SP variable time and the WP factor PCBs, estimated through the coefficient
δ1pcb,l, l = 1, .., 4.

Table 4 illustrates the estimates for random effects involved in model (14). It must be noted
that we apply v = 1, 2 to differentiate the estimates by response in model (14) and in Tables
4 and 5.
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When observing Table (4), the estimated standard errors for the γ̂pcb(s),l and δ̂pcb,l coefficients
are equal; this issue can be explained by considering the specific definition of the errors in a
compound symmetry structure and a split-plot balanced situation (Littell, Pendergast, and
Natarajan 2000).

When considering Section 2.4 and the statistical model (7), we have the following algebraic
structures:

1.

Ẋ ≡ [1 : v : X̃ : X(v)]

with specific dimension: [TN×p]=[2(96)×13] and p = [1+T+no.col(X̃)+no.col(X(v))]=[1+
2 + 6 + 4]

2.

β̇ ≡ [β0 : βv : β̃ : β(v)]

with specific dimension β̇ = [p× 1] = [13× 1], p = 13;

3.

Ż ≡ [Z̃ : Z(v) : ∆]

with specific dimension [TN × h] = [2(96) × 19]; it must be noted that the number of
columns for Z(v) are eight in this example; moreover, Z̃ has seven columns (six columns
for the replicate effects and one column for the interaction between pin and time); ∆
has four columns, due to the first order interaction between time and PCBs;

4.

γ̇ ≡ [γ̃ : γ(v) : δ]

γ̇ includes h = 19 estimated coefficients related to all the random effects: seven belong
to the γ̃ column vector, eight coefficients are contained in the γ(v) vector and four are
included in vector δ;

5. the matrix G of variance and covariance for random effects has a dimension of [19×19];

6. the matrix V for the joint response Y has the following framework:

V = ZGZ ′ +R

and dimension:

V = [N ×N ] = [N × h]× [h× h]× [h×N ] + [N ×N ]

= [192× 192] = [192× 19]× [19× 19]× [19× 192] + [192× 192].

When considering formula (13) and the optimization step, the estimated model reported in
formula (14) is split into two functions (T = 2), according to the estimated coefficients for the
fixed and random effects reported in Tables 3, 4 and 5. The estimates of variance-covariances
for error and random effects (Tables 4 and 5) are included in the subsequent optimization step
in order to evaluate the variability linked to the full process and planning, and also for the
robust design situation. All the random coefficients are involved in formula (12) by imposing
the corresponding confidence limits, while for the fixed effects the [min,max] range on χ is
considered.
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Table 6: Optimization results by PCB; formula (13)

Results PCB1

Targets τ̂1 = 1.006; τ̂2 = 4.4e− 4

Variables x1 = 1; x2 = −0.44

Diagnostics

of; |H| 0.9815;>1.85e-10

Results PCB2

Targets τ̂1 = 1.006; τ̂2 = 4.4e− 4

Variables x1 = 1; x2 = 0.36

Diagnostics

of; |H| 1.335; 4.7e− 15

Results PCB3

Targets τ̂1 = 1.006; τ̂2 = 4.4e− 4

Variables x1 = 1; x2 = 0.36

Diagnostics

of; |H| 1.271;> 1.11e− 15

Results PCB4

Targets τ̂1 = 1.006; τ̂2 = 4.4e− 4

Variables x1 = 1; x2 = 0.50

Diagnostics

of; |H| 1.216;> 1.0e− 10

Target values are recalculated on standardized data, so that the desired target values are
greater than the lower value τ1 = 1.008 for the pull-force level and lower than the upper value
τ2 = 0.128 for electrical resistance (Table 1). Therefore the optimal solution, e.g. the best
factor values combination, is identified according to the fixed target values, although anything
greater for the pull-force level and lower for the electrical resistance would be even better.
Furthermore, when considering the time variable, we assume that an optimal time solution is
obtained when the time is greater than 0.1870, corresponding to 2500 cycles.

The optimization results are reported in Table 6. It must be noted that the optimization is
carried out for each type of PCB separately, although it is performed for the two response
variables jointly. For all the four optimizations per PCB type, we achieve convergency and
good diagnostics for the objective function value (of), the absolute maximum gradient value
(‖x‖∞), and the determinant of the Hessian matrix (|H|). Target values are always achieved,
especially for the second response variable, the electrical resistance, which always obtains the
very small value of 0.00044.
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Nevertheless, together with the achievement of the target values, it is relevant to control for
the time threshold: for all the PCBs, time achieves the upper coded limit equal to 1. When
considering the PGA variable, a different setting is achieved for each PCB. For privacy reasons,
we report the coded results by PCB: the minimum pin size is −0.44 pin for PCBno.1, while
the highest is achieved for PCBno.4 with pin size equal to 0.50. An equivalent behaviour in
optimization is obtained for PCBno.2 and PCBno.3, where the pin size is fixed at 0.36 pin.

4. Final remarks

This paper attempts to improve the analysis of a split-plot design in a multiresponse situ-
ation by considering the mixed RS models and the robust design theory. These results are
satisfactory when considering: i) the joint modeling of several responses; ii) the optimization
carried out through a single measure which may also be differentiated by the responses; iii)
the inclusion of random effects and errors in the optimization step.

Furthermore, it is worth mentioning the characteristics of the response variables involved in
the joint modeling step. Nevertheless, the building of the joint model should take into account
the presence of any correlation among responses, if it exists; even though the estimation of
conditioned coefficients gives a measurement of the relation among the response variables.
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