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Abstract

In epigenetic analysis, identifying differentially methylated regions (DMRs) typically involves detecting
groups of consecutive CpGs that show significant changes in their average methylation levels. However,
the methylation state of a genomic region can also be characterized by a mixture of patterns (epialle-
les) with variable frequencies, and the relative proportions of such patterns can provide insights into its
mechanisms of formation.

Traditional methods based on bisulfite conversion and NGS, due to the read size (150 bp), allow epiallele
frequency analysis only in high-CpG-density regions, limiting differential methylation studies to just 50%
of the human methylome. Nanopore sequencing, with its long reads, enables the analysis of epiallele
frequency across both high- and low-CpG-density regions.

We introduce a novel computational approach, PoreMeth2, an R library that integrates epiallelic diver-
sity and methylation frequency changes from Nanopore data to identify DMRs, assess their formation
mechanisms, and annotate them to genic and regulatory elements. We applied PoreMeth2 to cancer and
glial cell datasets, demonstrating its ability to distinguish epigenomic changes with a strong effect on
gene expression from those with a weaker impact on transcriptional activity.

PoreMeth?2 is publicly available at https://github.com/Lab-CoMBINE/PoreMeth2.

Background

In epigenetic analysis, a consolidated approach to detect methylation alterations between two samples con-
sists in searching for groups of consecutive CpGs that concordantly show an increase (hyper-methylation)
or a decrease (hypo-methylation) in their average methylation level (DMRs).

Currently used assays to determine CpGs methylation state are based on bisulfite conversion of methy-
lated cytosines to uracil followed by SGS - RRBS and WGBS - which only allow characterisation of high
CpG density regions (> 2 — 3 CpG/100 bp, representing 50% of the genome at best).

However, the last decade has seen the emergence of third-generation sequencing technologies, based on
Nanopore sequencing [1], which allow to produce sequences in the order of tens to hundreds of kilobases
(kb) and to directly recognize base modifications, such as 5mC, thus allowing concomitant analyses of
genomic and epigenomic changes [2, 3, 4].

Using Nanopore and a novel computational method we recently reported that it is possible to infer the



methylation state of 99% of all the CpG sites of the human genome ( 28.3 millions), with an average
CpG density of 1 CpG/100bp, thus obtaining an unprecedented resolution for the identification of dif-
ferentially methylated regions (DMRs) in low CpG density regions [5]. Most notably, application of this
new technology to a chemoresistant leukemia dataset, allowed the identification of thousands of DMRs
for each sample pair, with around 50% of them falling within low CpG density regions (< 2 CpG/100
bp), which are not detected by classical bisulphite-based methods [6].

Results of our analyses were highly informative for the mechanisms of drug-resistance in AMLs, but also
confirmed previous studies [7] showing that a significant proportion of differentially-methylated genes
were not differentially-expressed. Such results suggest that a large fraction of the DMRs observed in our
samples may be merely passenger events that accompany cancer evolution with weak or no effect on gene
expression [8].

The methylation state of a given genomic region (a group of adjacent CpG sites) in a cell population
is defined not just by its average methylation level but by a mixture of patterns (epialleles) with vari-
able frequencies. The relative proportion of such patterns can provide information on DMRs’ origin:
an increase in the frequency of a specific epiallele suggests a selective formation, as opposed to multiple
stochastic changes in the frequencies of many epialleles which are associated with random formation.
To date, WGBS, RRBS and methylation arrays have been used to study DMRs and epiallele compo-
sition. However, around 42% of 3-CpGs (58% of 4- and 70% of 5-CpGs) epialleles are larger than 150
bp, allowing the analysis of epiallele frequencies only in high-density CpG regions (CpG Islands, CGIs),
strongly limiting their use in low-density CpG regions (< 3 CpG/100 bp) where short reads (150 bp)
can overlap no more than two CpG sites. Long reads generated by Nanopore sequencing however reach
lengths in the order of tens of Kb and are thus suitable to calculate epiallele frequency in both high- and
low-density CpG regions, revolutionizing our capability to study methylome alterations.

In this work we introduce a novel computational approach that, combining epiallelic diversity changes
with methylation frequency changes from Nanopore data, is capable of identifying DMRs and evaluate
their mechanism of formation. The new approach was packaged in an R library, PoreMeth2, that also
allows automatic annotation of DMRs with a new and efficient annotation scheme and generate useful
graphical representations of the results.

We applied PoreMeth2 to a cancer dataset and a dataset of human peripheral glial cells (HPGC) treated
with a G protein-coupled receptor agonist and we showed that our approach is capable to discriminate
epigenomic alterations originated from selection of epialleles that have a stronger effect on gene expres-
sion from those generated by random rearrangement of epialleles with weaker effect on transcriptional
activity.

Results
DMRs detection

To estimate the impact of read length on the analysis of epiallele diversity, we simulated reads of various
sizes (100bp to 10 kb) and we evaluated their coverage across the human reference genome’s CpG dinu-
cleotide map (hgl9, see Methods). As depicted in Figure S1 of Supplemental Material, reads exceeding
5 kb enabled epiallele diversity assessment in at least 99% of the epigenome.

Long reads generated by Nanopore sequencing reach lengths in the order of tens of Kb, thus, are capable
to study epiallele frequencies in both high- and low-density CpG regions revolutionizing our capability
to study methylome alterations.

At present, the methylation state of a CpG site is studied by using the methylation frequency 8 (calcu-
lated as the ratio between the total number of CpG sites predicted as methylated and the total number
of reads aligned to that CpG) and differential methylation between Test (T) and Control (C) samples by
using A = fr — Be. AP takes values in the range [-1,1], where AS > 0 or < 0 indicates, respectively,
hyper- or hypo-methylation of the Test vs. Control samples.

Recently, we developed a novel tool (PoreMeth) based on a heterogeneous form of the shifting level model
(SLM) that is capable of identifying DMRs by segmenting methylation frequency differences (AfS) in-
ferred from Nanopore data [5].

In this work we expand the PoreMeth tool to include epiallelic diversity changes. The diversity of DNA
methylation patterns in a cell population can be measured by using the Shannon entropy [9]:
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where e is entropy for code bit, b is the number of CpG sites, n; is the occurrence of methylation
pattern ¢ and N is the total number of reads overlapping the b CpG sites. For each genomic feature, S
was calculated by using b = 3 and averaged across all the CpG sites within the feature.
DNA-methylation entropy takes values in the range [0,1] and is 0 when all cells share same DNA-
methylation patterns, and 1 when instead all possible patterns are equally represented (Figure 1.a).
Studying the differential entropy of a DMR, (AS) can thus allow to distinguish between the selection of
a specific epiallele (AS < 0) from the stochastic changes of multiple epialleles (AS > 0).
In particular, by combining AS and Af we can observe six different possible epiallelic diversity changes
between test and control samples (Figure 1.a): stochastic change with hyper-methylation (AS > 0 and
AB > 0, Figure 1.a.1) and hypo-methylation (AS > 0 and AS < 0, Figure 1.a.6), selective change with
hyper-methylation (AS < 0 or AS ~ 0 and AS > 0, Figure 1.a.3 and Figure 1.a.5) and selective change
with hypo-methylation (< 0 or AS ~ 0 and AS < 0, Figure 1.a.2 and a.4).
In order to identify selective or stochastic epiallelic changes, we developed a bi-variate version of the
SLM algorithm (BiSLM) that is capable to simultaneously analyze and segment AS and Af values (see
Methods). In summary, our method processes the AS and Ap values of consecutive CpG dinucleotides
to identify genomic regions exhibiting increased or decreased methylation and entropy levels between two
samples (Figure 1.b).
In order to evaluate the ability of our algorithm to identify DMRs of different size and with different
epiallelic changes we applied BiSLM on simulated synthetic methylation profiles and we found that it
is capable to detect DMRs as small as five consecutive CpGs with sequencing coverage greater than or
equal to 20x (see Supplemental Material and Figure S8 of Supplemental Material).

DMRs annotation

A number of studies have shown that methylation of promoters in CGIs leads to the expression down-
regulation of tumor suppressor genes, thus representing a critical mechanism in cancer development [10].
Recently we demonstrated that hyper-methylated genes at sparse CpGs in the gene body are signifi-
cantly enriched in transcription factors (TFs) that deregulate large gene regulatory networks inducing
drug resistance in AML patients [5]. Furthermore, other studies demonstrated that DNA methylation
at transcription factor binding sites (TFBS) can influence gene expression by regulating the ability of
transcription factors to bind to their target DNA sequences [11].

These results demonstrate the fundamental importance of studying the overlap between genic elements
(promoters, introns, exons) and regulatory features (CGIs, TFBS, enhancers) affected by DMRs in order
to elucidate their impact on gene expression and phenotypes.

At present, few tools have been developed for annotating genomic intervals to genic and regulatory ele-
ments, among which GoldMine [12], annotatePeaks.pl from Homer tool [13], GenomicDistributions [14]
and the R package annotatr [15]. These tools can annotate genomic intervals by following one of two dif-
ferent strategies: i) reporting a single genic feature by using feature priority (using gene models with the
priority order promoter > 3 end > exon > intron > intergenic) or ii) reporting each genic and regulatory
feature overlapping the interval as a row (long format).

The feature priority annotation scheme allows to obtain only partial information on the functional im-
pact that a DMR may generate, especially when the epigenomic alterations are large and affect multiple
genes and multiple regulatory features, while the ’all feature’ scheme is very complex to be summarized.
Moreover, none of these methods allow to study the reciprocal overlap between gene model elements and
regulatory feature, thus limiting the interpretation of functional effect of a DMR.

For these reasons, we implemented a novel annotation scheme that reports all the genic elements (Pro-
moter, First Exon, internal introns and exons and 3’'UTR) overlapping a DMR, and for each of these
elements, it calculates, when present, the overlap with regulatory features such as CGI, Enhancers, TFBS,
and DNase I hypersensitive sites (DHS) (see Figure 1.c).

This annotation scheme not only identifies each genic element affected by a DMRs, but it also allows to
evaluate its functional interaction with regulatory features. Moreover, each overlap is quantified in terms
of percentage allowing to discriminate genomic elements where few bases are affected by a DMR from
those where the DMRs have a greater overlap, permitting a more precise interpretation of its functional



impact.

The BiSLM algorithm and the novel annotation scheme were integrated in a R package named PoreMeth2
that allows to automatically identify and annotate DMRs by comparing the Nanopore methylation data
of a pair of test and matched normal samples (see Methods). PoreMeth2 also allows a gene-based an-
notation using feature priority scheme, in which each gene affected by a DMR is classified as either 5’
regulatory regions (5’'Reg, if the DMR overlaps with the promoter, 5’UTR, or the first exon), 3’ untrans-
lated regions (3’UTR, if the DMR overlaps with the last exon but not with 5'Reg elements) or gene
bodies (GB, if the DMR overlaps with internal introns or exons but not with 5’Reg or 3’UTR elements).
The feature priority scheme maintains the regulatory elements overlap, and can be very useful to study
the correlation of DMRs with other omic layers such as gene expression. The Annotation functions of
PoreMeth2 are powered by fortran libraries that allow to annotate tens of thousands of DMRs in parallel
in minutes (Figure 1.c and Methods).

AML data analyses

To test the power of PoreMeth2 we analysed methylation data from AML sample pairs that we previously
analyzed in [5], in which we demonstrated that in relapsed AML hyper-methylated genes at sparse CpGs
in the gene body, were significantly enriched in cancer genes (Oncogenes and Tumor Suppressor) and
cancer-related pathways. The dataset consists of sample pairs at diagnosis (T) and relapse (R) from
three AML patients (UD5, UD10 and AML2) who received standard chemotherapy and relapsed with
chemoresistant disease (see methods). The six samples were sequenced with ONT sequencer obtaining,
for each sample, a sequencing coverage of 20-30x (see Methods and Supplemental Material).

As a first step we calculated methylation frequency (3) and entropy (S) for each sample, we applied
BiSLM to each pair of AML samples (see Methods) and we classified DMRs in six different categories
reflecting AS (hyper-Methylation, A8 > 0.2 and hypo-Methylation, A < —0.2) and AS (hyper-entropic,
AS > 0.1, iso-entropic, —0.1 < AS < 0.1, and hypo-entropic, AS < —0.1) variations. Due to the read
size obtained by our Nanopore runs, we were able to calculate epiallelic diversity measures (S) for 80-90%
of epialleles with at least 5 reads (Figure S9 of Supplemental Material).

Our algorithm identified 3102 DMRs for UD5 (3.18 Mb of genomic regions), 2825 for UD10 (3.07 Mb) and
2874 for AML2 (3.18 Mb), with a significantly larger fraction of hyper-methylated vs. hypo-methylated
DMRs, both in terms of numbers (1999 vs 1103 for UD5, 2292 vs 533 for UD10 and 2575 vs 299 for
AML2, Figure 2.a) and total size (1930 kb vs 1250 kb for UD5, 2570 kb vs 500 kb for UD10 and 2860 kb
vs 320 kb for AML2, Figure S10 Supplemental Material). Moreover, both hyper and hypo-methylated
DMRs were equally distributed among the three epiallelic change categories in terms of number (Figure
2.a) and size (Figure S10 of Supplemental Material).

Average size of DMRs was 700-800bp for all three AML pairs, with a distribution ranging from hundreds
bp to tens kb and no significant differences between the six DMR categories (Figure S11 of Supplemental
Material). Remarkably, ~ 70% of DMRs identified by our method showed a CpG density < 3 CpG/100bp
(e.g. the resolution limit of standard NGS reads) demonstrating that long-read sequencing coupled to
our novel computational method allows the identification of epiallelic changes between test and control
samples at unprecedented resolution, extending analyses of high density CpG regions (CpG islands or
CGlIs), as achieved until now, to sparse CpGs (Figure 2.b).

To evaluate the functional impact of the epiallelic changes identified by our segmentation strategy, we
used the annotation module of PoreMeth2 and we studied the distribution of DMRs across genic and
regulatory elements. Most DMRs mapped within annotated protein coding genes (62, 67 and 66% for
UD5, UD10 and AML2, respectively), around 10% in non-coding genes (Non-coding RNAs, pseudogenes
and processed transcripts) and 30% in intergenic regions (non overlapping GenCode elements). Moreover,
the great majority of DMRs overlapped DHSs (90, 92 and 93%) and TFBS (90, 92 and 93%), with a
small fraction also overlapping enhancers (13, 12 and 13%) (Figure 2.a). As expected from CpG density
distribution, 18, 44 and 29% DMRs (for UD5, UD10 and AML2 respectively) overlapped CGIs, while the
remaining were located in low density CpG regions (Figure 2.a).

As a further step, we used the annotation module of PoreMeth2 to classify protein coding genes in three
main functional categories: 5’ regulatory regions (5'Reg, if the DMR overlaps with promoter, 5’UTR or
first exon), 3’untranslated regions (3’UTR, if the DMR overlaps with the last exon but not with Reg
elements) and gene-bodies (GB, if the DMR overlaps with internal introns or exons but not with Reg or
3'UTR elements). The number of protein coding genes affected by DMRs (differentially-methylated genes,



DMGs) were ~ 1,700 per patient (1779, 1655 and 1873 for UD5, UD10 and AML2 respectively, Figure
2.c), most of which hyper-methylated (~ 70, ~ 85 and ~ 93% in UD5, UD10 and AML2, respectively,
Figure 2.c). 25-40% showed DMRs at 5'Reg, 60-80% at GB and ~ 5% at 3’'UTR (Figure 2.c).

DMGs with hyper-methylated DMRs in 5’Reg mainly involved CGIs (~ 82% across the three samples:
71, 86 and 81% for UD5, UD10 and AML2), while DMG with hyper-methylated DMRs at gene-bodies
mostly overlapped sparse CpGs (~ 55% across the three samples). Hypo-methylated genes were almost
entirely associated with DMRs overlapping sparse CpGs (~ 90%), regardless of their position within genes
(Figure 2.d). Moreover, the great majority of DMGs showed hypo-entropic (AS < —0.1) or iso-entropic
(=0.1 < AS < 0.1) epiallelic changes (between 60 and 80% for both hyper- and hypo-methylation),
with the exception of DMGs with hyper-methylated DMRs in 5’ regulatory regions at CGIs (for which
hyper-entropic changes represents 60%, Figure 2.d).

To investigate the impact of DMRs on gene expression, we analysed the six AML samples with triplicate
RNA-sequencing experiments (RNAseq) and studied differential gene-expression between Relapse and
Diagnosis samples using DESeq2 [16] (see Methods). We identified 3,997, 4,677 and 1,759 differentially-
expressed genes (DEGs; Supplemental Data 2) in UD10, UD5 and AML2, respectively, with different
ratios of over- and under-expressed genes (2,044 and 1,953 in UD5; 2,890 and 1,787 in UD10, 495 and
1,264 in AML2) (Table 4 of Supplemental Material).

As shown in Figure S12 of Supplemental Material, among all the DMGs, the proportion of DEGs is similar
for genes hosting hyper-entropic (AS > 0.1) and hypo/iso-entropic (AS < 0.1) DMRs (10% for hyper-
methylated genes on CGIs and 30% for other categories). Surprisingly, considering only DM-DEGs, we
found that the great majority is affected by hypo/iso-entropic (AS < 0.1) epiallelic changes, suggesting
that epiallelic selection have stronger effect on gene transcription (Figure 3.a). We then analysed the
proportion of DMGs that were also DEGs (DM-DEGs) with respect to all DEGs considering separately
genes affected by DMRs at different genic elements, in CGIs or sparse CpGs, and we found that mainly
DMGs with DMRs at sparse CpGs in gene-body with AS < 0.1 (hypo- and iso-entropic) are significantly
enriched of DEGs across the three samples (Figure 3.b).

As a final step, in order to evaluate DMRs’ effect in terms of expression at each genomic feature, we
performed over-representation analyses (ORA) of DMGs pertaining to each subclass of DMRs, that were
also DE. ORA was performed on DM-DE genes against a collection of cancer related pathways (KEGG,
[17]), tumor suppressor genes (TSGs) and oncogenes (from COSMIC databes, [18]), transcription factors
(TFs, [19]) and drugs resistance-associated genes (GEAR, [20]). DM-DE genes with DMRs overlapping
CpG islands showed few significant over-representation of the tested datasets, regardless of methylation
status or expression (Figure 3.c). The same was observed for the DM-DEGs at sparse CpGs with hyper-
entropic epiallelic changes (AS > 0.1). hyper-methylated DM-genes with AS < 0.1 (hypo- or iso-
entropic) at sparse CpGs in gene bodies, instead, were enriched in TFs and cancer pathways in all three
patients (Figure 3.c).

Taken as a whole, these results demonstrate that hypo- or iso-entropic epiallelic changes (AS < 0.1)
have a stronger impact on gene expression than changes generated randomly, and that these genes are
enriched in cancer pathways.

Human Peripheral Glial Cells

To test our method on a different experimental setup, suited to the evaluation of methylation state evo-
lution, we applied the analysis to sequencing data obtained from HPGC cultures before (T0) and after
48 hours (T48) treatment with a G protein-coupled receptor (GPCR) agonist (See Methods and Supple-
mental Material).

Methylation frequency (8) and entropy (S) were calculated for TO and T48 samples and we then applied
BiSLM to classify DMRs in six different categories reflecting A8 and AS variations (as in previous sec-
tion). Given the high coverage and read size, we were able to calculate AS values for more than 99% of
epialleles with at least 5 reads (Figure S13 of Supplemental Material).

BiSLM identified 636 DMRs, most of which are hyper-methylated in terms of both number and length
(616 hyper-methylated vs 20 hypo-methylated, Figure 4.a). Additionally, 80-95% of the DMRs (80% for
the hyper- and 95% for the hypo-methylated) are iso- or hypo-entropic (Figure 4.a). Cumulative size and
size distribution for the six DMR categories are shown in Supplementary Figure 14 and Supplementary
Figure 15 respectively.



DMRs were then annotated with the annotation module of PoreMeth2 and we found that ~ 50% mapped
within annotated protein coding genes (332), ~ 8% in non-coding genes and ~ 40% in intergenic regions.
As in previous section, we found that the great majority of DMRs overlapped DHSs (88%) and TFBS
(86%), while only a small fraction with Enhancers (16%). As expected from DMRs’ CpG density distri-
bution, only ~ 34% mapped with CGIs, while the remaining ~ 66% overlapped low-density CpG regions
(Figure 4.a).

We then used the annotation module of PoreMeth2 to classify protein coding genes affected by DMRs
(DMGs) in three main functional categories: 5’ regulatory regions (5’Reg), 3’untranslated regions (3’'UTR)
and gene-bodies (GB). The total number of DMGs is 305, nearly all of which have a hyper-methylated
DMR in the 5'Reg or GB (86 in 5'Reg and 211 in GB, Figure 4.b). DMGs with hyper-methylated DMRs
in 5'Reg mainly involved CGIs (62 in CGI vs 24 in NoCGI), while DMG with hyper-methylated DMRs at
gene-bodies mostly overlapped sparse CpGs (131 in NoCGI vs 80 in CGIs). The vast majority of DMGs
exhibit hypo-entropic (AS < —0.1) or iso-entropic (—0.1 < AS < 0.1) changes, especially those with
DMRs in the GB within low-density CpG regions, where hypo-entropic DMRs account for nearly 80%
(Figure 4.c).

To study the impact of methylation on gene expression, we conducted quadruplicate RNA-seq experi-
ments for the TO and T48 samples using Nanopore sequencing and then analyzed differential expression
with DESeq2 (see Methods) and correlated with differential methylation. Only a small fraction of DMGs
are also DEGs, and these consist solely of DMGs with hyper-methylated DMRs (Figure S16 of Supple-
mental Material). Remarkably, almost all DM-DEGs showed hypo-entropic (AS < —0.1) or iso-entropic
(0.1 < AS < 0.1) epiallelic changes (Figure 4.d).

Finally, we analyzed the proportion of DM-DEGs with respect to all DEGs, and we found that only
DMGs with hypo- and iso-entropic DMRs (AS < 0.1, at 5’'Reg in CGI and at GB in low density CpG
regions) are significantly enriched in DEGs (Figure 4.e). These results further demonstrate that our new
computational approach, through the use of differential entropy, can distinguish between DMRs that have
a direct impact on gene expression and those that have a weak effect on transcriptional activity.

Discussion and Conclusion

In this work we present the first computational method for the identification of DMRs and simultane-
ous prediction of their mechanism of origin from read-level methylation calls obtained with Nanopore
sequencing of two samples - test and control. To this end we combined methylation frequency (AfS)
- to detect increases or decreases of methylation levels - with methylation entropy (AS) - to measure
variations in epiallelic composition.

Our computational strategy consists in jointly segmenting AS and AS signals by means of a bivariate
version of the SLM (BiSLM) algorithm to identify consecutive CpG dinucleotides that show increases or
decreases in their mean values. Synthetic analyses demonstrated that our approach requires sequencing
coverages larger than 20x to correctly identify DMRs with as few as five consecutive CpG and to predict
their epiallelic change.

The BiSLM algorithm has been packaged in an R library (PoreMeth2) that also includes functions for
DMRs annotation with respect to both genic and regulatory elements. The annotation function is capable
of annotating all the genic elements overlapping a DMR, and to calculate the overlap with regulatory
features for each genic element (such as CGI, Enhancers, TFBS and DHSs) thus allowing a better inter-
pretation of the functional effect of methylation alterations.

To demonstrate the power of the PoreMeth2 pipeline, we first applied it to the analysis of three AML
sample pairs at diagnosis (T) and relapse (R) that we previously analyzed in [5]. BiSLM identified around
3,000 DMRs for each pairs of samples with a significantly larger fraction of hyper-methylated vs. hypo-
methylated. In accordance with the results obtained in [5] approximately ~ 70% of DMRs showed a CpG
density of < 2 CpG/100bp, demonstrating that long-read sequencing coupled to our novel computational
method allows the identification of epiallelic changes at unprecedented resolution, extending analyses of
high density CpG regions (CpG islands or CGIs), as achieved until now, to sparse CpGs.

As in [5], annotation of DMRs showed that the involvement of sparse CpGs was predominant in genes
hyper-methylated at gene-bodies and that only DMGs with hyper-methylated DMRs at sparse CpGs in
gene-body have a statistically significant impact on gene expression across the three samples. Remark-
ably, DMRs with AS < 0.1 (hypo- and iso-entropic) have the highest impact on gene expression, while



hyper-entropic DMRs have marginal effect.

As a further step we used PoreMeth2 to analyze a Nanopore dataset of HPGC cells before and after treat-
ment with GPCR agonist. BiSLM between treated and non-treated cells identified 636 DMRs, mostly
hyper-methylated and with the majority being iso- or hypo-entropic.

About 50% of DMRs mapped to protein-coding genes, and most DMGs had hyper-methylated DMRs
in 5’ regulatory regions or gene bodies. Only a small fraction of DMGs were also DEGs, and almost all
DM-DEGs showed hypo-entropic ( AS < —0.1 ) or iso-entropic ( 0.1 < AS < 0.1) epiallelic changes,
demonstrating that selected epialleles exert a significant effect on gene expression.

These results demonstrate that our approach allows us to discriminate epigenomic alterations originated
from selection of epialleles that have a direct effect on gene expression from those generated by the
random rearrangement of epialleles with low impact on gene expression. In conclusion, PoreMeth2 is
the first computational pipeline that is capable of exploiting the intrinsic characteristics of long read
methylation data to study methylation at an unprecedented resolution. Moreover, the data generated by
ONT devices can also be applied to other DNA modifications, such as 5hmC and 6mA. At present, we
are testing PoreMeth2 in the analysis of 5bhmC profiles in liquid and solid cancers.

Methods

Bivariate SLM algorithm

SLM are a special class of Hidden Markov Models in which sequential observations = (21, ...,2;,...,ZnN)
are considered to be realizations of the sum of two independent stochastic processes x; = m; + ¢;, where
m; is the unobserved mean level and ¢; is normally distributed white noise.

In order to jointly segment AS and AfS values of consecutive GpG dinucleotide, we extended the classical
SLM model to a bi-variate version where z; = (AS;, AS;), m; = (m;1,my2) and ¢; is the vector of white
noises and it follows a bivariate normal distribution with mean pe = [0,0] and covariance matrix > _ (
€ ~ N(0,%,.)).

The mean level m; does not change for long intervals and its duration follows a geometric distribution:
the probability that m; takes a new value at any point ¢ is regulated by the parameter n and when it
changes, m; is incremented by the normal random variable §; (§; ~ N (0, O’Z), see Supplemental Material
for more details).

PoreMeth?2

PoreMeth2 is an R package for the identification of DMRs from Nanopore methylation data of paired
samples. It takes as input the methylation calls inferred by tools such as Nanopolish, Guppy or Do-
rado from a pair of test and matched normal samples and automatically identifies statistically significant
DMRs.

DMRs identification is performed by simultaneously segmenting A5 and AS values of each CpG dinu-
cleotides by using the BiSLM algorithm. DMRs can then be automatically annotated to genic (promoter,
introns, exons) and regulatory features (CGIs, Enhancers, TFBS and DHS) to evaluate their functional
impact.

The genic elements of PoreMeth2 were generated by parsing the GENCODE project annotation

data (release 46 for GRCh38 and release 19 for GRCh37, https://ftp.ebi.ac.uk/pub/databases/
gencode/). Consequently, PoreMeth2 contains the annotation of a large number of possible biotypes
that include protein coding genes, long non-coding RNAs, pseudogenes, and small RNAs.
For each gene/transcript, PoreMeth2 considers the longest transcript with the highest number of ex-
ons and the gene model annotations include Promoter (1kb upstream of the T'SS), first exons, internal
exons, internal introns and last exons. CpG islands, DHSs, TFBS genomic coordinates were down-
loaded from UCSC table browser (https://genome.ucsc.edu/cgi-bin/hgTables). Enhancers coordi-
nates were downloaded from https://fantom.gsc.riken.jp/5/.

PoreMeth2 also contains functions to evaluate the quality of methylation data generated by Nanopore
sequencing. Given the importance of coverage and data quality to obtain a high resolution in DMRs
detection - as previously discussed - we implemented two functions to help visualize statistics about the
input data.

The function PoreMeth2SingleExpQualityPlot returns four plots representing the distribution of 8 and



S values across CpGs genomic positions in a sample and the distribution of the number of reads used to
calculate them (Supplementary Figure 17).

The function PoreMeth2PairedExpQualityPlot returns two plots representing the distribution of the
number of reads used to calculate AS and AS for common CpGs between the two samples (Supplementary
Figure 18). PoreMeth2 is publicly available at https://github.com/Lab-CoMBINE/PoreMeth2.

AML samples sequencing and data preparation

DNA from each of three pairs of matched AMLs was sequenced and basecalled as in [5] and aligned
against the human reference genome (hgl9) with minimap2. 5mC were inferred with Nanopolish (v.
0.8.5) [21] by using log likelihood ratios (< —2 or > 2, as suggested in GitHub). RNA from each of three
pairs of matched AMLs was sequenced as in [5] with Illumina Novaseq 6000 platform. Transcripts counts
from paired-end reads were performed with Salmon v. 0.14.1 and the reference transcriptome GRCh37
from Ensembl. Normalization and statistical analysis were performed with DESeq2 (v. 1.30.1). DEGs
with adjusted p-value< 0.05 - scored by Benjamin-Hopkins formula - and absolute logs FFC' > 0.5 were
selected.

HPGC samples sequencing and data preparation

DNA libraries from T0 and T48 were sequenced with r9.4.1 ONT flowcells on the P2 Solo ONT instrument
with a 72 hours acquisition time for each sequencing run.

We used Guppy (v. 6.5.7) with super high accuracy model to obtain basecalls and modified-basecalls.
Alignment to the human reference genome (hgl9) has been performed by Guppy itself by means of the
integrated minimap2 version (2.24). After basecalling, read level 5mCG likelihoods were extracted using
Modkit (v. 0.2.2).

cDNA quadruplicates from RNA extraction were sequenced with r9.4.1 flowcells on the P2 Solo ONT
instrument with a 72 hours acquisition time. Basecalling and alignment were performed with Guppy
(v. 6.5.7). The featureCounts function from the Bioconductor package Rsubread (v 2.12.3) [22] was
used to calculate transcript count matrices, while normalization and differential expression analysis were
performed with DESeq2. DEGs with adjusted p-value< 0.05 and absolute loga F'C' > 0.5 were selected.

Over-representation analysis (ORA)

Pathways for ORA were selected by the network of ‘PATHWAYS IN CANCER’ of KEGG database and
the Oncogenic Signaling Pathways in The Cancer Genome Atlas (TCGA) 62. Gene lists of these pathways
were downloaded from https://www.kegg. jp/kegg/download/ (KEGG), COSMIC genes from https:
//cancer.sanger.ac.uk/cosmic/file_download, GEAR genes from http://gear.comp-sysbio.org,
TF from http://regnetworkweb.org/. ORA was performed by using fisher-exact test using the list of
all UCSC genes as background.

Data Availability

Nanopore sequencing data for AML samples have been deposited in FASTQ format in the NCBI Sequence
Read Archive under accession number PRIJNA879930. RNA-Seq data for AML samples in fastq format
have been deposited in the NCBI Sequence Read Archive under accession number PRJNAS79971.
Nanopore whole-genome sequencing (WGS) and RNA-Seq data for HPGC have been deposited have been
deposited in FASTQ format in the NCBI Sequence Read Archive under accession number PRJNA1160066.
RNA-Seq counts and methylation frequency and entropy data are available at Gene Expression Omnibus
under accession number GSE277456.
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Figure 1: Computational workflow of PoreMeth2. Panel (a) shows a schematic representation of the six possible
epiallelic changes between test and control samples: hyper-methylation with entropy increase (AS > 0.1 and
ApB > 0,al), hypo-methylation with entropy decrease (AS < 0 and A > 0, a2), hyper- and hypo-methylation
with no entropy change (AS ~ 0 and AB > 0,a3, AS ~ 0 and AS < 0,a4), hyper-methylation with entropy
decrease (AS < —0.1 and AB > 0,a5) and hypo-methylation with entropy increase (AS > 0 and AB < 0, a6).
PoreMeth2 takes as input the methylation calls from Nanopolish or Guppy and calculates methylation frequency
and entropy. Panel (b) shows AS (b.1) and AS (b.2) signals calculated for each CpG dinucleotide and ordered for
genomic position. The two signals show six DMRs that reflect the epiallelic diversity changes reported in panel
(a). In order to identify epiallelic composition changes the two signals z; are modeled with SLM as the sum of
two independent stochastic processes (z; = m; +¢;), where m; = (m;1,m;2) is the vector of the unobserved mean
level and ¢; is the vector of white noises. The white noise vector €; follows a bivariate normal distribution with
mean g = [0] and covariance matrix X.; z; are random variables taking the values in [0,1] with probabilities
n = Pr(z; = 1) (1 —n = Pr(z; = 0)); §; are random vectors that follow a bivariate normal distribution andy;
is the vector of the means (see methods). DMRs identified with the bivariate version of the SLM algorithm can
then be annotated with a scheme that reports all the gegnic elements overlapping a DMR, and for each of these
element it calculates the overlap with regulatory feature (CGI, Enhancers, TFBS, and DHS). Panel (c) shows the
gene model used for PoreMeth2 annotation and panel (d) the annotation results of the six DMRs.
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Figure 2: DMRs of the three pairs of AML samples. Panel (a) shows the number of DMRs detected by BiSLM in
the three AML pairs for all the six categories reflecting A (hyper-Methylation, A8 > 0.2 and hypo-Methylation,
ApB < —0.2) and AS (hyper-entropic, AS > 0.1, iso-entropic, —0.1 < ASj0.1, and hypo-entropic, AS < —0.1)
variations. Numbers are reported for DMRs overlapping protein coding genes (Coding), non coding genes (non-
coding), intergenic regions (Intergenic), CpG islands (CGI), Enhancers, DNase I hypersensitive sites (DHSs) and
transcription factor binding sites (TFBS). NoCGI, No-Enhancers, No-DHSs and No-TFBS represent the number
of DMRs that do not overlap with CGI, Enhancers, DHSs and TFBS respectively. The color intensity in each cell
reflects the proportion of DMRs of a category with respect to all DMRs for each sample according to colorbar.
Panel (b) shows CpG density distribution of the DMRs detected by BiSLM on the three pairs of AML samples
. Vertical continuous line indicates the resolution limit of WGBS (< 2 CpG/100 bp), while vertical dotted line
indicates ERRBS resolution limit (< 3 CpG/100 bp). Text on left (right) side of the the plot reports the to-
tal number (#) and percentage (%) of DMRs detected by PoreMeth with CpG density < 2 CpG/100 bp (< 3
CpG/100 bp). The table of (c) reports the total number of DM genes with DMRs at different genomic elements
(5’ regulatory region, Reg, internal introns and exons, GB, 3’'UTR ) inside CpG islands (CGI) and outside CpG
islands (NoCGI). The barplot of panel (d) reports the number of hyper-entropic (AS > 0.1), hypo-entropic
(AS < —0.1) and iso-entropic (—0.1 < AS < 0.1) epiallelic changes for hyper- and hypo-methylated genes with
DMRs overlapping different genic elements at CGI and sparse CpGs (NoCGI). Numbers above bars show the
percentage of hypo-entropic (AS < —0.1) or iso-entropi@ (—0.1 < AS < 0.1) DMGs. Horizontal brackets above
each group of three bars summarize average percentages of the three samples.
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Figure 3: DMRs and differential expression. Panel (a) shows the proportion of DM-DEGs with hyper-entropic
(AS > 0.1) and iso- or hypo-entropic (AS < 0.1) DMRs. Results are reported for hyper- (AS > 0.2) and hypo-
methylated (AS < —0.2) DMRs overlapping CpG islands (CGI) and outside CpG islands (NoCGI). Textured bars
show the number of DM-DEGs with iso- or hypo-entropic (AS < 0.1) DMRs. Panel (b) shows the results of ORA
for DM-DEGs. The analysis was performed separately for genes affected by DMRs at the 5 regulatory region
(5'Reg), the gene body (GB) and the 3’UTR and for DMRs overlapping CpG islands (CGI) and outside CpG
islands (NoCGI). The blocks of the corrplot reports the results of ORA for different classes of DMRs formation:
AB > 0.2 and AS < 0.1 (hyper-methylated and hypo- and Iso-entropic), A8 > 0.2 and AS > 0.1 (hyper-
methylated and hypo- and Iso-entropic), A3 < —0.2 and AS < 0.1 (hypo-methylated and hypo- and Iso-entropic),
AB < —0.2 and AS > 0.1 (hypo-methylated and hypo- and Iso-entropic). The color intensity in each cell reflects
statistical significance according to colorbar. For each category, Fisher exact tests were calculated comparing the
number of DM-DEGs, DMGs, DEGs and all genes tested in RNA-seq experiments. Panel (c) shows the results of
ORA for under-expressed DM-DEGs. The analysis was performed separately for genes affected by DMRs at the 5’
regulatory region (5’Reg), the gene body (GB) and the 3’UTR and for DMRs overlapping CpG islands (CGI) and
outside CpG islands (NoCGI). The blocks of the corrplot reports the results of ORA for different classes of DMRs
formation: A > 0.2 and AS < 0.1 (hyper-methylated and hypo- and Iso-entropic), A > 0.2 and AS > 0.1
(hyper-methylated and hypo- and Iso-entropic), A8 < —0.2 and AS < 0.1 (hypo-methylated and hypo- and
Iso-entropic), A3 < —0.2 and AS > 0.1 (hypo-methylated and hypo- and iso-entropic). The numbers in each cell
represent the total number of DM-DEGs for each category, while the color intensity reflects statistical significance
according to colorbar. Fisher exact test and number of genes were calculated for cancer-related pathways selected
from KEGG database, TFs, TSG and Oncogenes selected by COSMIC and GEAR genes.
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Figure 4: DMRs of the HPGC samples. Panel (a) shows the number of DMRs identified for each of the six
categories defined by AS and AS values. The plot reports the number of DMRs overlapping each genic (coding,
non coding and intergenic) and regulatory (CGI, Enhancer, DHS, TFBS) element class., while the color intensity
in each cell reflects the proportion of DMRs of a category with respect to all DMRs according to colorbar. Panel
(b) reports the number of DMGs affected by hyper-methylated (AS > 0.2 ) and hypo-methylated (AS < —0.2)
DMRs overlapping different genic features (5’'Reg, Gene Body and 3’UTR), outside and inside CpG Islands. The
barplot in (c) displays the number of DMGs reported in (b), further categorized in hyper-entropic (AS > 0.1),
iso-entropic (—0.1 < AS < 0.1) and hypo-entropic (AS < —0.1). Panel (d) shows the proportion of DM-DEGs
with hyper-entropic (AS > 0.1) and iso- or hypo-entropic (AS < 0.1) DMRs. Results are reported for hyper-
(AB > 0.2) and hypo-methylated (AS < —0.2) DMRs overlapping CpG islands (CGI) and outside CpG islands

(NoCGI).
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