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A B S T R A C T

Pre-admission testing clinics are care units serving outpatients prior to surgical operation and performing
procedure-specific tests to prepare them. Patients may need multiple tests, each performed by a specialized
operator and delivered in any order. Exam rooms act as renewable resources: rooms are limited, tests are
administered to patients inside the rooms, individually, and patients occupy the room until all the required
tests are completed.

Careful scheduling of patient appointments is essential in clinic management for both the patient and
the provider: on the one hand, minimizing patient waiting time improves service quality, on the other hand,
minimizing completion time (makespan) improves system efficiency.

In this paper, we propose offline policies for the daily scheduling of pre-admission test appointments. As a
benchmark, we consider two online scheduling policies widely used in common practice. Each of these offers
a different compromise between complexity and resource exploitation.

The proposed optimization-based offline booking policy is identified as a new problem in the machine
scheduling literature, for which we propose a network-flow model representation. A family of matheuristics
based on different variable fixing criteria is provided to circumvent the high computational effort required
to solve the mathematical model to optimality on real-size instances. The performance, advantages and
disadvantages of each of the online and offline policies are compared in a variety of scenarios based on
realistic data.

Through this work, decision-makers have a new set of tools they can choose from according to their
priorities.
1. Introduction

Surgical outpatients undergo standardized medical tests shortly be-
fore their procedure to assess eligibility. Pre-Admission Testing (PAT)
clinics devoted to this purpose have been in practice for the last
20 years and proved to be effective in minimizing surgery date cancel-
lations [1,2], reducing post-operative length of hospital stay, or even
avoiding it [3].

In practice, PAT can be implemented in two different manners,
either distributed or centralized. In the former, service delivery is
fragmented: patients move individually across different hospital depart-
ments, each providing a different kind of test, and patients queue for
service at each facility [4]. In the latter, the service is centralized at a
single facility, typically an outpatient clinic, where different operators
gather to provide the needed services in a seamless manner [5]. The
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advantages of this approach are many: patients waste no time in mov-
ing around different locations; patient data are centrally managed and
duplicate queries are avoided; different providers can interact and have
a holistic view of patients. In this paper, we address a patient-oriented
variant of the second option.

This study was inspired by a real PAT clinic in a hospital, the details
of which are given in Appendix A. We summarize important features of
the problem hereafter. Patients may take multiple tests, each performed
by an operator with a specialized skill. Tests can be administered in
any order. At the clinic, there are a limited number of exam rooms.
Once patients are taken to a room, one at a time, they remain inside it
until all the required tests are completed. Color-coded flags above the
door of each busy exam room show in real time which tests are still to
be performed on the patient currently inside, enabling a free operator
vailable online 7 November 2023
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to know in which rooms their service is needed. Thus, a patient may
have to wait in the exam room for an operator to perform a specific
test, or an operator may have to wait if the patient is undergoing a
test performed by a different operator. Test duration may vary but
depends on the test rather than on the patient. Some operators can be
multiskilled (cross-trained).

In this paper, we address a simplified though realistic variant of the
above, which we call PAT Appointment Scheduling (PAT-AS) problem.
Specifically, PAT-AS consists of scheduling a working session at a
PAT clinic with single-skilled operators, where (i) requested service
is known at booking time; (ii) test variety is limited and much lower
than the number of patients attended during one working session; (iii)
tests are standardized and test duration is deterministic; (iv) a patient
undergoes multiple tests (a test package) in a single session, in any
order; (v) each patient is served by a skilled operator at a time and
vice versa; (vi) each operator can perform only one kind of test; (vii)
each working session can be scheduled independently since patients are
not expected to ask for a second appointment within the same health
pathway; (viii) once a room has been assigned to a patient, it will be
released only after the patient has undergone the whole test package
(the room constraint). For a given resource configuration, namely, a
ixed number of rooms and operators, PAT-AS consists of (a) assigning
atients to rooms, (b) scheduling patients assigned to the same room,
c) sequencing each patient’s tests, and (d) planning the sequence of
ests performed by each operator, accordingly. Solution performance
ndicators considered in this study are the makespan, defined as the
otal time required by the system to process all requests, and the total
ime patients spend inside a room waiting for an operator. Despite the
implifications, in particular with regard to operator skills, we claim
hat understanding PAT-AS is an unavoidable step towards the solution
f more general versions and argue that PAT-AS is a problem of interest
n its own.

The main contribution of this paper is to assess the pros and
ons of introducing the room constraint into a scheduling problem
ith three different booking policies, namely, walk-in, slot-based, and
ffline optimization-based (OPT) ones. The OPT policy identifies a new
roblem in the machine scheduling literature. We highlight the impact
f rooms as shared resources and show why greedy algorithms from
he literature may not perform as expected when solving PAT-AS. A
etwork-flow-based mathematical model is presented to support the
PT policy, where the bottleneck operator scheduling is recognized as

he core decision. Based on that, three effective and efficient variants of
matheuristic algorithm are proposed. Extensive computational results
n generalized real-size instances prove that one of them achieves near-
ptimal solutions in limited computational times, even when relaxing
ome features of the original problem.

The paper is organized as follows: Section 2 provides a formal prob-
em description. Related papers are reviewed in Section 3 to support the
laim that we are dealing with a new problem. Section 4 presents online
nd offline policies, the mathematical model supporting the OPT policy,
nd the matheuristics. These are tested against different scenarios in
ection 5, where results are reported and discussed. The managerial
nsights obtained from this study are presented in Section 6, followed
y final conclusions reported in Section 7.

. Problem features

We first formalize the primary features of PAT-AS. Table 1 provides
he main symbols and parameters of the mathematical notation.

We assume the following: (1) Both human and material resources
re fixed (no resource sizing or sharing) and decisions only concern
he schedule. (2) All patients in the patient’s set 𝑃 have equal priority.

(3) 𝑃 is partitioned into classes where class 𝑃𝑐 ⊆ 𝑃 corresponds to
test package 𝑐; patients in the same class are identical but patients
in different classes ask for different packages. (4) Tests in set 𝑇 can
be taken in any order. (5) The duration 𝑑 of each test 𝑡 ∈ 𝑇 is
2

𝑡 t
Table 1
Main symbols and parameters. For any patient 𝑝 ∈ 𝑃𝑐 , 𝛿𝑝 is equal to 𝜎𝑐 : the most
uitable notation will be used, depending on the context.
𝐻 Planning horizon length
𝑃 Set of 𝑛𝑃 patients
𝑇 Set of 𝑛𝑇 tests
𝑑𝑡 Duration of test 𝑡 ∈ 𝑇
𝑇 𝑝 ⊆ 𝑇 Patient 𝑝’s package
𝛿𝑝 =

∑

𝑡∈𝑇 𝑝 𝑑𝑡 Service time for patient 𝑝
𝑃 (𝑡) = {𝑝 ∈ 𝑃 | 𝑡 ∈ 𝑇 𝑝} Set of patients with test 𝑡 in their package
𝛥 = max𝑝∈𝑃 {𝛿𝑝} Duration of the longest test package taken

by the patients in a given set 𝑃
𝐶 = {𝑐 ⊆ 𝑇 |∃ 𝑝 ∶ 𝑐 = 𝑇 𝑝} Set of all packages
𝑃𝑐 = {𝑝 ∈ 𝑃 | 𝑇 𝑝 = 𝑐} Patients with the same package 𝑐
𝜎𝑐 =

∑

𝑡∈𝑐 𝑑𝑡 Service time of test package 𝑐
𝑜𝑡 The one operator qualified to deliver test 𝑡
𝑂 = {𝑜𝑡| 𝑡 ∈ 𝑇 } Set of 𝑛𝑂 = 𝑛𝑇 operators
𝑅 Set of 𝑛𝑅 rooms

deterministic and does not depend on the patient. (6) Planning horizon
spans one working shift of duration 𝐻 minutes. Service policy is to
serve everybody within 𝐻 in the offline policy, anyone arrived either
within 𝐻 or within 𝐻 − 𝛥 in the two online policies, where 𝛥 is the
duration of the longest test package a patient in 𝑃 may take. (7) There
is one qualified operator 𝑜𝑡 for each test 𝑡 and each operator is qualified
for a single test (no cross-training, one-to-one correspondence between
tests and operators). (8) A fixed number 𝑛𝑅 of identical exam rooms are
available and this is equal to the number of different tests (𝑛𝑇 = 𝑛𝑅).
Rooms are available during the whole planning horizon. (9) Scheduled
patients always turn up and arrive on time to scheduled appointments.
The assumptions listed so far result in the following set of constraints:
(a) One patient per room at a time. (b) No room pre-emption (according
to the room constraint, patients release the room only after all their
tests have been completed). (c) Each operator must serve one patient
at a time and each patient cannot be visited by more than one operator
at a time; tests must be completed without interruption. (d) According
to assumption (4), the order of a patient’s tests is immaterial.

The peculiar features of this problem are (a) and (b), given (4) and
(5). Constraint (a) imposes a maximum parallelism, i.e., at any time
there are at most as many patients being served (active operators) as
the number of rooms. Due to constraint (b), when a patient is idle
inside a room, waiting to be served by a busy operator, patients waiting
outside the room to be served cannot be served by idle operators due
to a lack of free rooms. This phenomenon is called non-work conserving
service discipline in queuing literature. This inefficiency, that we call a
temporary deadlock, would be avoided if rooms were released after each
test (room preemption). In such a case, rooms would simply impose a
maximum parallelism on the number of operators active at the same
time, which is not binding in the 𝑛𝑅 = 𝑛𝑂 case. On the other hand, the
room constraint is stronger than a bare maximum parallelism among
operators, and it is tight even for 𝑛𝑅 = 𝑛𝑂. For a given schedule, let
us introduce 𝑝𝑠𝑝(𝑝) as the patient service period of patient 𝑝, i.e., the
smallest time interval in which 𝑝 receives the required test package.
Now, the room constraint sets 𝑛𝑅 as an upper bound on the number of
psps with mutual intersection, as the next example shows.

Consider the case of (i) 𝑛𝑅 = 𝑛𝑂 = 𝑛𝑇 = 2, (ii) 3 patients 𝑝1, 𝑝2, 𝑝3
requiring both tests each, (iii) service times 𝑑1 and 𝑑2 such that 𝑑1 >
𝑑2 > 𝑑1∕2. Clearly, 3𝑑1 is a lower bound for the makespan. First,
suppose the room constraint is enforced. Then, the optimal makespan
is 2(𝑑1 + 𝑑2) > 3𝑑1 and patients can be served with no waiting time
s follows; first, 𝑜1 serves 𝑝1 in room one while 𝑜2 serves 𝑝3 in the
ther room, starting at time 𝑑1 − 𝑑2. At time 𝑑1 the operators switch
oom: 𝑜1 serves 𝑝3 in room two while 𝑜2 serves 𝑝1 and then 𝑝2 in room
ne. Finally, at time 𝑑1 + 2𝑑2, 𝑜1 is back to the first room to serve 𝑝2
nd the process ends at time 2(𝑑1 + 𝑑2). At most two psps have mutual
ntersection. This solution is depicted in Fig. 1, on top, where 𝑡1 is

he blue test and 𝑡2 the yellow one, with 𝑑1 = 5 and 𝑑2 = 3. Now,
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Fig. 1. A solution complying (top) and not complying (bottom) with the room constraint. (For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)
let us allow room preemption, i.e., the room is released after each
operation and a patient may take different tests in different rooms.
Indeed, 𝑜1 could serve 𝑝1, 𝑝2, 𝑝3 in the first room in this order, while
𝑜2 could serve 𝑝2, 𝑝3 and 𝑝1 in this other order in the other room. The
resulting makespan is 3𝑑1. However, now the psps of the three patients
are mutually intersecting, such as at time 𝑡 = 𝑑1 + 𝑑2, even though at
most two patients are being served at a time. This solution is depicted
at the bottom of Fig. 1.

The room constraint may further affect a schedule’s performance. In
particular, optimal schedules may not be dense (in a dense schedule, an
operator is idle if and only if there is no idle patient still in need of that
service). In fact, for 𝑛𝑇 = 𝑛𝑅, whenever a patient is idle inside a room,
one operator is idle at the same time; likewise, any other patient not
yet admitted to a room and in demand for that same operator is stuck
even though that operator is available. This temporary deadlock would
not take place without the room constraint. All these considerations
bring to the forefront the centrality of scheduling policies in the PAT-AS
framework.

3. Literature

Literature on Outpatient Appointment Scheduling (OAS) is briefly
revised to point out the peculiar features of PAT-AS (Section 3.1). Then,
the main results in the machine scheduling literature are presented and
PAT-AS is restated in that framework, to support the claim of its novelty
(Section 3.2).

3.1. Outpatient appointment scheduling

PAT appointment scheduling is part of the larger family of Out-
patient Appointment Scheduling (OAS) but differs from most of them
because of its own specificities.

Papers in this field can be classified according to:

1. Source of variability in the input parameters. The most common
one concerns demand. Variability may concern service time,
patient punctuality, no-shows, and walk-ins, the first one being
the most addressed one; similar sources of uncertainty may arise
on the resource side, regarding service providers’ punctuality.

2. Single-stage or multi-stage service. Demand consists either of a
single service request (single-stage) or of a bundle of requests
(multi-stage), each one delivered by one (or more) specific ser-
vice provider(s). In the latter case, the sequence in which stages
are delivered (patient flow) may be fixed or not. As far as the
time horizon is concerned, service may have to be delivered dur-
ing a single visit, i.e., on the same day, or during recurring visits
(with potential time constraints between appointment dates).
Many of the studies address single-server, single-stage processes.
3

3. Solution quality criteria (what the authors wish to pursue),
potentially conflicting. One measure of service quality is patient
waiting time. This may refer to (i) indirect waiting time, the
time between the day the request is made and the appointment
date, (ii) direct waiting time, the waiting time in the clinic before
the patient is served, or (iii) the time spent waiting between
successive services, as we see in this study. A second measure
concerns system efficiency in terms of resource utilization, typi-
cally minimizing operators’ idle time and overtime, or makespan
(alternatively maximizing patient throughput). Indeed, an in-
creasingly patient-centered perspective means that the focus
shifts to quality of care rather than cost of the service. However,
inefficiencies such as operators’ idle time can lead to operational
losses. Therefore, a balance between service quality and system
efficiency is usually sought.

4. The kind of schedule to be produced as well as the process
that leads to that schedule. When the schedule is determined
by sequencing and appointment rules in an online oriented
perspective, the performance is typically assessed by simula-
tion. Conversely, the schedule may consist of a timetable where
each patient has a different appointment time that is computed
offline, by solving an optimization problem.

The study in [6] considered two main classes within the online ori-
ented policies. The first class of policies focuses on sequencing, where
the aim is to give individual patients a specific appointment time by
exploiting all kinds of information available to characterize the single
patient. In the second class, efforts are devoted towards the definition of
the appointment rule: the working period is partitioned in slots, whose
duration and number of patients per slot (block size) depend on the
appointment rule. Indeed, [6] compared the performance (in terms of
idle time, waiting time, and overtime) of 314 appointment rules in a
variety of settings by way of Data Envelopment Analysis, in the case
of single server and i.i.d. service time. The study confirms the validity
of the classic Bailey rule in case of limited service time variability
and when there is little emphasis on waiting time. Other individual
rules (1 patient per slot) perform just as well, while the block rules
(multiple patients per slot) perform poorly. The dome-shaped form for
slot duration was able to edge against dynamic environments.

The slot idea goes back to the pioneering works in [7] (from which
the Bailey’s rule), followed by [8,9], that first proposed to dimension
the slot duration as the expected service time. Regarding sequencing
rules, the basic one books the earliest vacancy in a FIFO order, while
other rules assign early or late slots based on patients classification.
In particular, [10] adjusted the patient sequencing rule to take into
account the features of different patient classes (such as the new versus
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returning dichotomy) and test it in different environments regarding
service time variability, patients unpunctuality, no-show, and walk-in
rates, while [11] exploited patient classification for shaping both the
sequencing rule as well as the appointment rule, adjusting appointment
intervals to match the consultation time characteristics of different pa-
tient classes. Walk-in patients and appointment patients are considered
jointly also in [12] which addressed the case of a public hospital in
Shanghai.

Other studies devise the schedule by way of optimization algo-
rithms. One such approach is proposed in [13], which considered
stochastic service time and unpunctuality. The schedule is obtained by
a local search which exploits the capability of computing the solution
quality of a certain schedule by assuming the knowledge of patient
classification which, in turn, is related to service time. Similarly, [14]
adopted a local search to optimize the weighted average of expected
waiting times of patients, idle time of the doctor, and overtime, assum-
ing that service times are independent and exponentially distributed,
and patients arrive on time, but no-shows may arise. The method
starts from a feasible schedule and exploits the multimodularity of the
objective function to assess optimality. It builds on the findings in [15]
that derived upper and lower bounds for the optimal schedule based
on submodularity. More recently, [16] encompassed many sources of
variability and determined the block size that optimizes a weighted
sum of waiting time and idle time for a variable-sized multiblock
appointment system with random service duration and time-varying
no-shows, by heuristically solving a stochastic integer programming.
Other optimization-based approaches, just to mention a few, are [17]
which solved a two-stage stochastic linear programming problem, [18]
that also considered a stochastic linear program and developed a fast
heuristic for finding dome-shaped inter-arrival times, [19], whose ap-
proach is based on dynamic programming, and [20] which proposed
a branch-and-bound method to find the optimal schedule although it
does not scale well on large instances. More recently, [4] heuristically
solved the problem of redesigning the centralized appointment system
of a University Hospital. The target is to optimize patients’ check-up
pathway to reduce the percentage of hospitalized patients on behalf
of outpatients. To this aim, the tasks of each patient are scheduled as
close in time as possible, considering that (i) examinations of different
categories may be delivered at distant departments, (ii) precedence
constraints between tests may arise, and (iii) test duration is patient
dependent.

Optimization and simulation were jointly used in [21] to solve a
static, single server problem, where appointments are made in advance.
Solution quality is evaluated by simulation, while a heuristic search
(based on scatter search and tabú search) determines new input values
for the simulation to run. Simulation optimization-based approaches
are not affected by the limitations that some optimization-based ap-
proaches may suffer regarding distribution laws that model stochastic
parameters or weak scaling capabilities regarding number of patients
or number of stages. A simulation–optimization approach was used also
in [22], where a single stage service is split into a multi-stage one by
adding a mid-level service provider who attends the patient before the
clinician, yielding a fixed patient flow. This introduces patient waiting
time between the two stages which adds to the time spent waiting
for the first stage. The paper discusses how to adjust single-stage
scheduling policies to a multi-stage environment. Simulation was also
used to compare fixed-length block scheduling policies commonly used
in outpatient clinics, with neural network-based allocation methods, in
which service time is predicted when patients call for an appointment
and slot length is determined accordingly [23].

When patients need complex services, such as a mix of diagnostic
tests and consultations delivered by different providers during indepen-
dent sessions, or such as brachytherapy, which requires considering the
decay of the radioactive source between consecutive treatments [24],
the issue of indirect waiting time arises [25,26], beside possibly con-
4

centrating different appointments on the same day to reduce hospital
access [27]. Actually, for specific classes of patients following a given
care pathway spanning a medium-term horizon, the main issue is how
to schedule multi appointments so as to respect the required time gaps
between successive appointments, when resources are limited [28,29].

A broader perspective on OAS can be found in extensive literature
reviews such as [30,31], covering OAS for primary and specialty care,
and addressing multi-appointment services [32].

The quality of service from the patient’s point of view has been
addressed in several studies. For example, walk-in clinics operating on a
fee-for-service basis and providing one-stage, one-server visits are dealt
with in [33], which discusses whether revenue maximization pursued
through increasing the number of patients seen can lead to a reduction
in the duration of visits and whether minimum standards need to be
enforced. The issue is controversial since longer visits tend to increase
waiting times in the waiting room. The authors compare different
service models and develop threshold values under which regulation is
advocated. Ferreira et al. [34] measured patients’ satisfaction according
to Multicriteria Satisfaction Analysis (MUSA) in secondary health care-
based medical appointment services provided by the NHS in Portugal
and discuss applicable strategies to improve the performance of each
criterion.

OAS problems that involve resource seizing can be found in out-
patient chemotherapy departments [35], where an oncologist, a nurse,
and an infusion chair are needed at the same time to treat the patient,
in addition to pre- and post-procedure rooms. However, this problem
differs from ours in that the sequence of the operations is fixed and the
duration of treatment, which is the bottleneck operation, highly varies
with the patient.

A similar but more articulated service configuration was described
in [36] regarding an Integrated Practice Unit (IPU), where a multidis-
ciplinary team (made of 5 different provider types) delivers treatment
for joint pain during a single patient visit. IPUs share with our problem
the room constraint feature. The patient flow is almost fixed, while
patient dependent stage duration is a source of uncertainty. A MILP
model for the deterministic case is proposed, which differs from the one
we introduce in Section 4.2 but for the room constraint representation.
As the model can be solved just for a few patients, the authors tackle
a relaxation obtained by removing the room related constraints as well
as the first step of the pathway (the nurse practitioner). The resulting
problem is a hybrid flow shop, with 4 machines and one machine
per operation. The simplified deterministic model is solved for a set
of scenarios using expected service times to set the block size of a
slot-based policy for a real case with 7 rooms.

With regard to existing PAT clinics, we mention three papers that
put forward the potential as well as the organizational challenges
posed by the process: [5] considers patient workflow at the Anesthesia
Preoperative Clinic of the University Hospital of San Antonio, Texas.
Improvements in patient care, cost savings due to better operating room
utilization, and decreased unnecessary patient testing are achievable
when shifting from a traditional system to an integrated PAT clinic.
Results have been assessed by extensive simulation. In addition, [37,38]
address resource management in an established PAT center processing
up to 17 000 patients a year. The studies aim at simulating the system
to identify criticalities. The findings identified the exam rooms as the
most critical resource.

The study in [39] addresses the effect of coupling appointment rules
with capacity allocation, intended as the number of exam rooms at
an orthopedic outpatient clinic where two possible patient flows are
considered, according to the outcome of the first consultation. The two
flows differ in the presence of the X-ray exam that precedes entry into
the exam room where the patient is seen first by the nurse and then
by the physician. Simulation shows that physician idle time decreases
at a decreasing rate as more exam rooms are available, from one to
three rooms where the value gets almost stable. Additional exam rooms
over three, reduce patient waiting time outside the room but increase

waiting time in the exam room.
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Appropriate patient-physician matching is becoming increasingly
popular in specialty care as a means of improving care effectiveness.
Recently, matching and appointment scheduling problems have been
addressed simultaneously in a stochastic environment in [40].

The many sources of variability examined so far are not present
in the problem addressed in this study. We assume that service time
does not depend on the patient and no show and unpunctuality are
almost negligible. In fact, a PAT session is very close in time to
the surgery date and this time gap is correlated with non-compliant
behaviors [41]. Nevertheless, despite a deterministic environment, the
problem does not necessarily boil down to an easy task. We will show
that in the presence of multi-stage service and tight constraints on
human and material resources, the resulting scheduling problem may
be challenging. Under very strong assumptions the problem can be
easy to solve. In particular, in [42] polynomial time algorithms are
given for two special cases, provided that, for each test, the number of
identically skilled operators is such that the ratio of operation service
time over the number of operators is the same for all operations. The
result is weakened by the very strong hypothesis that all patients take
the full set of tests, assumed also in [43]. On the contrary, we deal with
several classes of patients, each characterized by a subset of tests and a
specific service time. Therefore, despite many common points, none of
the works that we are aware of in OAS addresses the same problem we
are tackling. Even though multistage problems have been addressed,
they usually involve fixed patient flow and/or the room constraint is
not addressed. In the following, we will show that even in the machine
scheduling framework our problem has not been studied before.

3.2. Related works in the machine scheduling literature

PAT-AS can be restated as a machine scheduling problem by taking
patients as jobs, tests as job’s operations (tasks), and operators as
machines. These terms will be used interchangeably in the rest of the
paper. In addition, we stress that the terms task, test, and operation will
all mean the same in the following. Rooms act as renewable resources.
While the room-constrained variant has mostly been disregarded in
health care appointment scheduling, the issue of renewable resources
has been around for a long time in the machine scheduling community
(see Section 8.4 in [44]).

We focus on papers addressing makespan minimization (denoted as
𝐶𝑚𝑎𝑥 in the machine scheduling jargon). Based on the features discussed
in Section 2, PAT-AS belongs to the class of non-preemptive Open
Shop Problems (OSPs) [45,46]. Recall the standard 3 fields classification
(𝛼, 𝛽, 𝛾) introduced in [47], where 𝛼 represents the machine environ-
ment, 𝛽 the job characteristics, and 𝛾 the optimality criterion. Given 𝑛 as
the number of jobs and 𝑚 as the number of machines, one per operation,
in PAT-AS we have 𝛼 = 𝑂𝑚 (an OSP with 𝑚 machines) with 𝑚 = 𝑛𝑇
(due to the one-operator-per-test feature), 𝛽 = (𝑜𝑝 ≤ 𝑚), meaning that
the number of operations in a job may be lower than 𝑚 due to different
test packages, and 𝛾 = 𝐶𝑚𝑎𝑥. Multiple classes, i.e., some patients do not
take all tests, is known as the missing operations case [48].

OSP is a well-studied problem. It admits polynomial time algorithms
for the 2-machine 𝐶𝑚𝑎𝑥 case (𝑂2||𝐶𝑚𝑎𝑥) but turns NP-Hard for 3 ma-
chines unless a machine is dominant, i.e., the processing time of the
shortest task on the dominant machine is no shorter than the one of
the longest tasks on any other machine. In such a case, a polynomial
time algorithm is provided in [49]. In addition, when the ratio of 𝛱𝑚𝑎𝑥
(the load of the bottleneck machine, that is the one with maximum
load) over the longest task processing time is sufficiently large, then
the problem admits a polynomial time solution algorithm yielding a
makespan equal to 𝛱𝑚𝑎𝑥 [50]. In [51] the 3-machine case is proved
polynomial for such a ratio larger than 7.

PAT-AS has tight links to a particular OSP, the (machine) Proportion-
ate OSP (m-POSP), which is denoted by (𝑚 − 𝑝𝑟𝑝𝑡) in the second field
𝛽 [52]. In m-POSP, processing times are only machine-dependent, so
5

that all jobs entail the same amount of processing time on the same
machine, as for PAT-AS. However, m-POSP assumes 𝑜𝑝 = 𝑚, i.e., each
job is made of as many tasks as machines and jobs are then all identical,
that is a PAT-AS in which all patients take the same test package.
If 𝑛 ≥ 𝑚 m-POSP is optimally solved in polynomial time by the so-
called Rotation Scheduling algorithm (𝑅𝑜𝑡𝑆) [53], while it is NP-Hard
for 𝑛 ≥ 3 jobs and 𝑚 > 𝑛. In [54] a procedure similar to RotS is proposed
(basically, it uses the reverse order in the cyclic sequence) which is
optimal for 𝑛 > 𝑚 and guarantees a worst-case performance ratio of
(2 − 1

𝑛 ) otherwise. Finally, in the case of multiple operators equally
skilled for the same test, the reference problem is the multi-processor
m-POSP variant (MPOSP), which is dealt with in [55].

We now take a detailed look at how RotS works. First, it orders
tasks and machines based on longest processing time, that is, task 1 is
the one with the longest processing time, task 2 the second longest,
and so on; likewise, machine 𝑚1 is the one performing task 1, 𝑚2
the one performing task 2, and so on. Note that 𝑚1 is the bottleneck
machine as well as the dominant one since all jobs are made of 𝑚
tasks. Then, jobs are sequenced on the machines. Let us denote the 𝑛
jobs as 𝑗1,.., 𝑗𝑛. According to 𝑅𝑜𝑡𝑆, machine 𝑚1 executes 𝑗1, followed
y the other jobs in lexicographical order (i.e., 𝑗2, 𝑗3,… , 𝑗𝑛). On each

other machine 𝑚𝑖, jobs are scheduled starting from 𝑗𝑖, followed by
𝑗𝑖+1 and so on, with 𝑗1 following 𝑗𝑛. It is easy to show that all jobs
can be completed within 𝛱𝑚𝑎𝑥, that is the workload of the bottleneck
machine 𝑚1. Indeed, while 𝑚1 is processing 𝑗ℎ, machine 𝑚𝑖 can process
the (1+((𝑖+ℎ−2)𝑚𝑜𝑑(𝑛)))th job, since, trivially, task 𝑖 lasts no longer than
task 1, whatever the jobs. To focus on jobs, now consider a generic job
𝑗ℎ: (i) if 𝑚 ≤ ℎ ≤ 𝑛, then 𝑗ℎ starts its execution on the last machine, in
(ℎ−𝑚+1)th position, and then it proceeds on the other machines, from
𝑚𝑚−1 to 𝑚1, following a shortest-task-first criterion; (ii) if ℎ < 𝑚, then 𝑗ℎ
starts its execution on machine 𝑚ℎ, as its first job, then it proceeds on
machines 𝑚ℎ−1, 𝑚ℎ−2,… , 𝑚1, processing tasks of increasing duration up
to the longest one, then followed by machines 𝑚𝑚, 𝑚𝑚−1,… , 𝑚ℎ+1 that
process the remaining tasks in this order, from the shortest one onward.
This ordering guarantees that when the bottleneck machine ends at
time 𝛱𝑚𝑎𝑥, all the other machines have completed their operations too.
The reader may refer to Fig. 4 for the sketch of a RotS solution for 𝑚
= 3, 𝑛 = 4.

We now discuss the room constraint. A free room represents an
additional resource (besides machines) needed to perform an operation.
If binding (𝑛𝑅 < 𝑛), it affects previous complexity results [56] and may
question the performance of the above-mentioned heuristics, which
motivates our study. In flexible manufacturing environments, this role
is often played either by human operators who supervise the machines,
or by tools shared by several machines, or pallets [57,58]. We speak of
renewable resources as these are released after usage to become available
to the next user. In the most general case, each job may need a specific
number of resources, and this requirement may further vary from task
to task within the same job. In any case, limited resource availability
imposes a maximum degree of parallelism, bounding the maximum
number of machines active at the same time. In PAT-AS each job
requires one resource unit, and the resource is sized by the job until
its last operation has been completed. According to the three fields
classification scheme, the renewable resource feature is denoted in the
second field 𝛽 as a triple res(𝜆, 𝜎, 𝜌), where 𝜆 is the number of resource
types (1 in our case), 𝜎 the resource size (number of rooms 𝑛𝑅), and
𝜌 the maximum resource requirement a task may present, i.e., 𝜌 = 1
in PAT-AS. With 𝑛𝑅 and 𝑛𝑇 denoting the number of rooms and the
number of tests, respectively, and assuming one operator per test, our
problem can be labeled as (𝑂𝑛𝑇 |𝑟𝑒𝑠(1, 𝑛𝑅, 1), 𝑚-𝑝𝑟𝑝𝑡, 𝑜𝑝 ≤ 𝑛𝑇 |𝐶𝑚𝑎𝑥) in
the machine scheduling classification, where 𝑚-𝑝𝑟𝑝𝑡 points to the pro-
portionate property referred to machines. To our knowledge, this case
has never been studied. Being the core problem of the deterministic
offline scheduling process in a PAT clinic adds further motivation for its

investigation and sets the stage for the study of further generalizations.
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4. Solution approaches

In this section, we present two types of scheduling policies referred
to as online and offline, and compare them in terms of makespan and
patient waiting time. Patient waiting time is an important determinant
of the perceived service quality [59]. At the same time, minimizing
the makespan required to serve a given set of patients improves the
utilization of staff and facilities. It also minimizes operator idle time
when operators have to be available for the entire period covered by
the makespan.

The online policies (Section 4.1) are implemented using a discrete-
event simulation model (coded using Rockwell Arena and Visual Basic
for Application) that processes patients on a first-come-first-served basis
to mimic the real functioning of a PAT clinic. The start time of each
test, for each patient, is not determined ex-ante. Online policies have
been implemented to provide a realistic benchmark for offline ones. We
consider two online policies First-come-first-served Random Arrivals
(FRA) and First-come-first-served Slot Arrivals (FSA). FRA and FSA
policies differ in the way patient arrivals are managed: the former
belongs to the class of walk-in policies, while the latter is slot-based.

The offline policy (Section 4.2) solves a Mixed Integer Linear Pro-
gramming (MILP) model that determines for each patient the arrival
time at the PAT clinic and the start time of each test. The opti-
mization model’s objective function is hierarchical: Makespan 𝐶𝑚𝑎𝑥 is
minimized, subject to 𝐶𝑚𝑎𝑥 ≤ 𝐻 as a hard constraint, yielding 𝐶∗

𝑚𝑎𝑥
hen feasible. Then, total patient waiting time is minimized over all

easible schedules that serve all patients within 𝐶∗
𝑚𝑎𝑥. Even smoothed

y the room constraint, makespan is trivially expected to improve when
ooking ahead of schedule, as the offline booking takes advantage of
erfect information. Nevertheless, the offline policy may not be a viable
ption since solving the mathematical model for real-size instances
ay heavily degrade system performance as computing time could

verly increase. In search for a trade-off between solution quality and
omputational burden, a (math-) heuristic approach has been explored
see Section 4.3), based on heuristically fixing some ordering decisions
mong those present in the model while complying with the room
onstraint.

.1. Online schedulers

As pointed out in the introduction, FRA and FSA online policies
anage patients’ arrivals differently, while they process patients the

ame way once arrived. With both online policies (FRA, FSA), for each
nstance, the number of patients to be processed and their class are
nown ex-ante (and are the same as those used in offline policies)
ut the order in which patients arrive at the PAT is randomized, in
ach simulation run, by sampling without replacement from the set of
atients to be processed. The two policies, however, differ in the way
he patients’ arrival time is determined.

FRA requires patients to arrive at the PAT clinic within 𝛥 minutes
efore the clinic’s closing time, where 𝛥 is the duration of the longest
est package. This is to prevent the arrival of patients too close to the
losing time from resulting in too large values of operators’ overtime.
he arrival time is thus determined, for each patient, by multiplying
−𝛥 by rnd() where rnd() is a function returning a real random number

n the range [0, 1). That way, arrivals are spread randomly over the time
indow [0,𝐻 − 𝛥].

In the FSA policy, patients are supposed to arrive in batches of size
qual to the number of rooms 𝑛𝑅. The batches’ inter-arrival time is
qual to the average service time 𝛿. The value of 𝛿 can be determined
rom empirical data as ∑𝑐∈𝐶 𝜎𝑐𝑓𝑐 where 𝑓𝑐 is the percentage of patients
rocessed for each class 𝑐 and 𝜎𝑐 is the total length of the tests
ssociated with each class 𝑐. FRA and FSA allow us to compare two
ealistic situations. The first one assumes that patients are not given an
ppointment and arrive at the PAT clinic whenever they prefer, within
6

−𝛥. The second one is based on the premise that the PAT clinic cannot d
rocess more than 𝑛𝑅 patients at a time and that executing all the tests
equired by a patient requires, on average, 𝛿 minutes. Consequently,

FSA allows the arrival of 𝑛𝑅 patients every 𝛿 minutes.
With both the online policies, for a given instance, every simu-

lation run is thus characterized by different patients’ arrival times
and sequencing (for FSA the possible arrival times for the batches of
patients are fixed but patients are randomly assigned to batches), and
consequently different performance in terms of makespan and patient
waiting time. In contrast to offline policies, with the online ones,
patients can also wait outside the exam room if there are no empty
rooms when they arrive. Also, with online policies, the makespan may
exceed 𝐻 , thus resulting in overtime.

Both with FRA and FSA policies, a patient upon arrival either seizes
an available exam room or joins the queue of the patients waiting for
an exam room. As soon as a room becomes available, the first patient in
the queue seizes the room and releases it at the end of the last test. In
case more than one room is available, the room to seize is randomly
determined. Once in the room, the patient randomly seizes, among
the available operators, one able to perform one of the tests needed.
If no operator is available, the customer waits inside the exam room.
Once a test is over, the operator who delivered the test is released,
and is seized by the patient needing their skills, if any, who has been
waiting for the longest in the exam room. We made this assumption to
obtain a benchmark where patients are processed in the most equitable
way possible. However, in real settings, the operator may not know
who is waiting for the longest – unless there is a timer indicating how
much time has passed since the previous operator left the room – and,
consequently, will select patients randomly. If none of the patients in
the exam rooms need the skills of the released operator, the operator
remains idle. Both FRA and FSA, assume that the duration of each test is
deterministic, that empirical data on the patient mix are known, that all
patients arrive at the PAT before the closing time, and that all patients
are processed, resorting to overtime when needed.

4.2. A MILP model for the offline approach

The offline booking option – denoted as OPT in the following – is
the most restrictive one in terms of booking freedom as patients are
all scheduled in advance. They are expected to arrive according to
their given starting service time, and thus experience no waiting time
outside the room. In practice, requests are collected offline and once
a certain amount of service demand has been reached, expressed in
terms of a given percentage (see Section 5) of the planning horizon
duration 𝐻 times 𝑛𝑅, a mathematical model is solved, which yields the
appointment time of each patient. As any offline approach, OPT takes
full advantage of the perfect knowledge of the demand to optimize
resource exploitation and patient time as well. Moreover, the optimal
solutions provide a benchmark for evaluating the schedules obtained
by FRA and FSA.

Next, we introduce a network flow-inspired MILP formulation that
exploits the problem structure. Note that the proposed model is valid
for any resource setting different from the one analyzed in this study,
i.e., it is valid for any value of 𝑛𝑅 and 𝑛𝑇 provided that 𝑛𝑂 = 𝑛𝑇 and

ould require very minor changes otherwise. Three decision layers are
resent, mutually intertwined: (i) the patient set is partitioned into
𝑅 subsets (one per room) and totally ordered within each subset; (ii)
or each patient, the patient’s tests are totally ordered; (iii) for each
perator, the set of tests to be delivered is sequenced. Patients and their
ests are modeled as nodes of the respective directed graph. Graph arcs,
hen selected, denote immediate precedence between two activities,

hus defining the ordering decisions in the three above-mentioned
ayers.

Figs. 2 and 3 provide a pictorial representation of a solution for
case with 5 patients, 2 rooms, and 3 tests, color-coded as Orange

O), Blue (B) and Green (G). In detail, Fig. 2 on the left depicts two
𝑃
irect cycles through node 0 on the patients graph 𝐺 , where there is
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Fig. 2. On the left, a solution for the patients sequencing problem. Each tour through dummy node 0 describes the set of patients admitted into one room and their access order.
Depicted arcs correspond to 𝑥 variables with value 1. On the right, a feasible solution for the test sequencing problem, for each patient. Depicted arcs correspond to 𝑦 variables
with value 1. For example, patients 𝑝4 and 𝑝5 belong to the same class, requiring the Orange (O), the Blue (B) and the Green (G) test. While 𝑝4 takes O first, then B, and finally
G, patient 𝑝5 follows the G, O, B sequence. In each test graph, the patient node 𝑝 acts as the dummy node at which the cycle is closed. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)
Fig. 3. On the left, a solution on the Precedence Graph for the operators sequencing problem. Depicted arcs correspond to 𝑧 variables with value 1. On the right, a global picture
is obtained by merging the solution of each decision layer. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)
a node for each patient plus a dummy node 0. Each cycle refers to a
room, i.e., patients 𝑝1, 𝑝3, 𝑝2 access one room in this order while 𝑝5 is
served after 𝑝4 in the other room. Fig. 2 on the right shows the test
sequence for each patient 𝑝 on graph 𝐺𝑇 𝑝 , whose nodes are the patient
node 𝑝 and one for each test in 𝑇 𝑝. Consider for example patient 𝑝4
who takes all three tests: the figure shows a hamiltonian cycle through
node 𝑝4, traversing nodes O, B, and G in this order. Tests can be done
in a different order for patients with the same set of tests (𝑝4 and 𝑝5
in the picture). Fig. 3 on the left depicts the operators’ activity as a
hamiltonian cycle for each operator 𝑜𝑡 on graph 𝐺𝑡 through the dummy
node 0 covering the operator’s tests. The node set in 𝐺𝑡 is made of node
0 plus the node of test 𝑡 for each patient 𝑝 such that 𝑡 ∈ 𝑇 𝑝. Finally,
Fig. 3 on the right provides a global picture of the solution: as usual, to
be feasible, no direct cycles must arise in the subgraphs induced by the
selected arcs (apart from those through dummy nodes). The makespan
is the length of the critical path.

Table 2 summarizes decision variables: arc flow variables 𝑥, 𝑦, and 𝑧
for each decision layer, and time variables 𝜏 and 𝛼 for their interactions.
Arcs denote immediate precedence, that is, if a generic arc (𝑖, 𝑗) is
selected in the solution it means that activity 𝑗 is scheduled right after
activity 𝑖. For each set of entities, the model searches for cycles through
a dummy node on each precedence graph. This differs from the more
popular disjunctive models, where arcs and variables describe a general
(not necessarily immediate) precedence relation. In this respect, we
argue that: (i) regarding patients, this option allows modeling rooms
7

Table 2
Decision variables of the MILP model.
𝑥𝑝𝑞 ∈ {0, 1} Binary variables modeling immediate precedence

between patients in the same room: if 𝑥𝑝𝑞 = 1 then
𝑞 is the next patient to enter the room once 𝑝 has left.

𝑦𝑝𝑡𝑠 ∈ {0, 1} Binary variables modeling the test sequence of a patient
such that if 𝑦𝑝𝑡𝑠 = 1 then test 𝑠 is delivered right after 𝑡.

𝑧𝑡𝑝𝑞 ∈ {0, 1} Binary variables modeling operator activity such that if
𝑧𝑡𝑝𝑞 = 1 then operator 𝑜𝑡 attends patient 𝑞 right after 𝑝.

𝜏 𝑖𝑛𝑝 , 𝜏𝑜𝑢𝑡𝑝 ∈ 𝑅+ Check in and check out time for patient 𝑝.
𝛼𝑝
𝑡 ∈ 𝑅+ Start time of test 𝑡 for patient 𝑝.

𝐶𝑚𝑎𝑥 ∈ 𝑅+ Makespan, where 𝐶∗
𝑚𝑎𝑥 denotes the minimum one.

𝑤𝑝 ∈ 𝑅+ Waiting time in room for patient 𝑝.

without introducing them explicitly, thus avoiding a potential source
of symmetry; (ii) concerning a patient’s tests, their number is so small
that the impact of the modeling option is negligible; (iii) in reference
to the tests of the same operator, the current modeling choice paves the
way for a further generalization regarding multiple operators skilled for
the same test.

Model (1)–(25) provides a mathematical representation of the prob-
lem.

In particular, the patient sequencing problem is modeled as an 𝑛𝑅-
𝑇𝑆𝑃 on the patients graph 𝐺𝑃 , where 𝑛𝑅 flow units (variables 𝑥𝑝𝑞)
leave dummy node 0 (constraint (6)) while each other node is traversed
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by a flow unit (7)–(8). In detail, 𝑥𝑝𝑞 = 1 if either patient 𝑝 is scheduled
mmediately before patient 𝑞 in the same room, or (case 𝑝 = 0) 𝑞 is
he first patient, or (case 𝑞 = 0) 𝑝 is the last patient. Constraints (9) are
he well-known Miller-Tucker-Zemlin inequalities (MTZ). In addition to
nsuring subtour elimination, MTZ set the value of check-in (𝜏 𝑖𝑛𝑝 ) and
heck-out time (𝜏𝑜𝑢𝑡𝑝 ) of each patient 𝑝, setting the time interval 𝑝𝑠𝑝(𝑝)
n which patient 𝑝 receives service (constraints (10)).

Binary variables 𝑦𝑝𝑡𝑠 and constraints (11)–(14) realize a total order
n the tests of each patient by searching for an hamiltonian cycle on
ach graph 𝐺𝑇 𝑝 (see Fig. 2 on the right). In detail, 𝑦𝑝𝑡𝑠 = 1 if patient 𝑝
ither takes test 𝑡 right before test 𝑠, or (case 𝑡 = 𝑝) 𝑠 is the first test, or
case 𝑠 = 𝑝) 𝑡 is the last test. The start time 𝛼𝑝𝑡 ∈ 𝑅+ of each test 𝑡 ∈ 𝑇 is
et according to the order described by 𝑦 variables (14). In particular,
ccording to (14), if 𝑡 immediately precedes 𝑠, i.e., 𝑦𝑝𝑡𝑠 = 1, then its
nd time 𝛼𝑝𝑡 + 𝑑𝑡 is no greater than 𝛼𝑝𝑠 , the start time of 𝑠. Moreover,
onstraints (15)–(16) ensure that the time interval

[

𝛼𝑝𝑡 , 𝛼
𝑝
𝑡 + 𝑑𝑡

]

devoted
o test 𝑡 in 𝑇 𝑝 lies within 𝑝𝑠𝑝(𝑝). Such period is further restricted to
(𝜏𝑖𝑛𝑝 +

∑

𝑠∈𝑇 𝑝 𝑦𝑝𝑠𝑡𝑑𝑠), (𝜏
𝑜𝑢𝑡
𝑝 −

∑

𝑠∈𝑇 𝑝 𝑦𝑝𝑡𝑠𝑑𝑠)
]

in case 𝑡 is neither the first test
delivered to 𝑝 nor the last one.

Finally, binary variables 𝑧𝑡𝑝𝑞 are introduced for each test 𝑡 and for
ach pair of patients 𝑝, 𝑞 such that 𝑡 ∈ 𝑇 𝑝 ∩ 𝑇 𝑞 , or 𝑝 = 0 and 𝑡 ∈ 𝑇 𝑞 ,
nd vice versa: they define the activity of the operator devoted to
est 𝑡 (17)–(19). In detail, 𝑧𝑡𝑝𝑞 = 1 if either 𝑜𝑡 serves 𝑝 right before
, or (case 𝑝 = 0) 𝑞 is the first patient, or (case 𝑞 = 0) 𝑝 is the last
atient in the operator’s schedule. Time variables 𝛼𝑝𝑡 must comply with
uch precedence constraints (20). Finally, constraints (21)–(25) define
ariables’ domain.

The parameters 𝑀𝑃 , 𝑀𝑇 𝑝 , and 𝑀 𝑡 in MTZ-like inequalities (9),
14) and (20) may take the default value 𝐻 or be tuned more tightly
epending on the instance.

The objective function (1) primarily minimizes system makespan.
ssuming 0 as the starting time, the makespan of a given schedule is

he maximum check out time (2) which, without loss of generality,
an be assumed an integer value; as all patients must be processed
ithin 𝐻 (3), then the minimum value of 𝐶𝑚𝑎𝑥 is no greater than

for any feasible instance, therefore constraint (4) is redundant.
evertheless, explicitly setting a bound on the variables usually speeds
p convergence, which motivates (4). The patient’s idle time 𝑤𝑝, given
y the time spent in the room minus service time 𝛿𝑝 (5), is the second
erm of the objective function and it is bounded from above by 𝐻𝑛𝑅 −
𝑝∈𝑃 𝛿𝑝. The weight parameter 𝑊 has to be large enough to guarantee
hierarchical objective function, such as 𝑊 = 𝐻𝑛𝑅 which is a bound

or ∑

𝑝∈𝑃 𝑤𝑝.

𝑖𝑛 𝑊 𝐶𝑚𝑎𝑥 +
∑

𝑝∈𝑃
𝑤𝑝 (1)

𝑚𝑎𝑥 ≥ 𝜏𝑜𝑢𝑡𝑝 ∀𝑝 ∈ 𝑃 (2)
𝑜𝑢𝑡
𝑝 ≤ 𝐻 ∀𝑝 ∈ 𝑃 (3)

𝑚𝑎𝑥 ≤ 𝐻 (4)

𝑝 = 𝜏𝑜𝑢𝑡𝑝 − 𝜏 𝑖𝑛𝑝 − 𝛿𝑝 ∀𝑝 ∈ 𝑃 (5)
∑

𝑞∈𝑃
𝑥0𝑞 = 𝑛𝑅 (6)

∑

𝑝∈𝑃∪{0},
𝑝≠𝑞

𝑥𝑝𝑞 = 1 ∀𝑞 ∈ 𝑃 (7)

∑

𝑞∈𝑃∪{0},
𝑞≠𝑝

𝑥𝑝𝑞 =
∑

𝑟∈𝑃∪{0},
𝑟≠𝑝

𝑥𝑟𝑝 ∀𝑝 ∈ 𝑃 (8)

𝜏𝑜𝑢𝑡𝑝 ≤ 𝜏 𝑖𝑛𝑞 + (1 − 𝑥𝑝𝑞)𝑀𝑃 ∀𝑝, 𝑞 ∈ 𝑃 (9)

𝜏𝑜𝑢𝑡𝑝 ≥ 𝜏 𝑖𝑛𝑝 + 𝛿𝑝 ∀𝑝 ∈ 𝑃 (10)
∑

𝑦𝑝𝑝𝑡 = 1 ∀𝑝 ∈ 𝑃 (11)
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𝑡∈𝑇 𝑝 t
∑

𝑠∈𝑇 𝑝∪{𝑝}
𝑦𝑝𝑡𝑠 = 1 ∀𝑡 ∈ 𝑇 𝑝,∀𝑝 ∈ 𝑃 (12)

∑

𝑠∈𝑇 𝑝∪{𝑝}
𝑦𝑝𝑠𝑡 = 1 ∀𝑡 ∈ 𝑇 𝑝,∀𝑝 ∈ 𝑃 (13)

𝛼𝑝𝑡 + 𝑑𝑡 ≤ 𝛼𝑝𝑠 + (1 − 𝑦𝑝𝑡𝑠)𝑀
𝑇 𝑝

∀𝑡, 𝑠 ∈ 𝑇 𝑝,∀𝑝 ∈ 𝑃 (14)
𝑝
𝑡 ≥ 𝜏 𝑖𝑛𝑝 +

∑

𝑠∈𝑇 𝑝
𝑦𝑝𝑠𝑡𝑑𝑠 ∀𝑡 ∈ 𝑇 𝑝,∀𝑝 ∈ 𝑃 (15)

𝑝
𝑡 + 𝑑𝑡 +

∑

𝑠∈𝑇 𝑝
𝑦𝑝𝑡𝑠𝑑𝑠 ≤ 𝜏𝑜𝑢𝑡𝑝 ∀𝑡 ∈ 𝑇 𝑝,∀𝑝 ∈ 𝑃 (16)

∑

𝑝∈𝑃 (𝑡)
𝑧𝑡0𝑝 = 1 ∀𝑡 ∈ 𝑇 (17)

∑

𝑞∈𝑃 (𝑡)∪{0},
𝑞≠𝑝

𝑧𝑡𝑝𝑞 = 1 ∀𝑝 ∈ 𝑃 , 𝑡 ∈ 𝑇 𝑝 (18)

∑

𝑞∈𝑃 (𝑡)∪{0},
𝑞≠𝑝

𝑧𝑡𝑞𝑝 = 1 ∀𝑝 ∈ 𝑃 , 𝑡 ∈ 𝑇 𝑝 (19)

𝑝
𝑡 + 𝑑𝑡 ≤ 𝛼𝑞𝑡 + (1 − 𝑧𝑡𝑝𝑞)𝑀

𝑡 ∀𝑡 ∈ 𝑇 ,∀𝑝, 𝑞 ∈ 𝑃 (𝑡) (20)

𝑝𝑞 ∈ {0, 1} ∀𝑝, 𝑞 ∈ 𝑃 ∪ {0}, 𝑝 ≠ 𝑞 (21)
𝑝
𝑡𝑠 ∈ {0, 1} ∀𝑡, 𝑠 ∈ 𝑇 𝑝 ∪ {𝑝}, 𝑡 ≠ 𝑠,∀𝑝 ∈ 𝑃 (22)
𝑡
𝑝𝑞 ∈ {0, 1} ∀𝑡 ∈ 𝑇 𝑝 ∩ 𝑇 𝑞 ,∀𝑝, 𝑞 ∈ 𝑃 (𝑡) ∪ {0}, 𝑝 ≠ 𝑞 (23)
𝑖𝑛
𝑝 , 𝜏𝑜𝑢𝑡𝑝 , 𝑤𝑝 ≥ 0 ∀𝑝 ∈ 𝑃 (24)
𝑝
𝑡 ≥ 0 ∀𝑡 ∈ 𝑇 𝑝,∀𝑝 ∈ 𝑃 (25)

This network-flow model allows an implicit representation of rooms.
n the contrary, explicit patient indexing introduces a level of sym-
etry in the model. Since all patients in the same class are identical,

quivalent solutions can be obtained by simply adopting a permutation
f the patient indexes within each class. This source of symmetry can
e removed by imposing a total order on identical patients, such as the
ne based on the value of the starting time, which yields the following
onstraints.
𝑖𝑛
𝑝 ≤ 𝜏 𝑖𝑛𝑝+1 ∀𝑝, 𝑝 + 1 ∈ 𝑃 𝑐 , ∀𝑐 ∈ 𝐶 (26)

.e., for each class, the first patient in the class is the one who enters a
oom first, i.e., before anyone else in the same class, and so on. Note
hat constraints (26) do not affect optimality, that is, any solution is
till possible.

A feasible solution sets the precedence among patients and among
asks in such a way that, for any non-null time interval 𝐼 in which
(𝐼) patients have been attended (their 𝑝𝑠𝑝 intersects 𝐼) and 𝑛(𝐼) >
𝑅, then at least 𝑛(𝐼) − 𝑛𝑅 patients end within 𝐼 . Moreover, by way
f a standard transformation of the graph that inserts dummy nodes
epresenting start and end of service (instead of a single dummy node),
he subgraph induced by the solution is acyclic. On that graph, the
akespan corresponds to the duration of the critical path (the longest

ne).
As experimentally proven in Section 5 and despite symmetry break-

ng, solving this model becomes computationally demanding once in-
tances reach real-life sizes. Therefore, we propose a matheuristic that
ixes some arc decision variables which are likely to be part of the
ritical path and let the solver build the rest of the solution around
his backbone, as presented below.

.3. A family of matheuristics for OPT

To further motivate our study, in this section, first, we claim that the
erformance of RotS may deteriorate because of the room constraint;
econd, we introduce a family of matheuristics inspired by the concepts
f core decisions and bottleneck operator. The rest of the section is
tructured to answer the three research questions — highlighted in
old, that led to the definition of the heuristics.
Does the room constraint affect the performance of RotS? Note
hat POSP is solved exactly by procedure RotS, achieving 𝐶𝑚𝑎𝑥 = 𝛱𝑚𝑎𝑥,
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Fig. 4. One of the schedules yielded by RotS. Horizontal dark gray dotted lines are the patient timelines, colored dotted lines represent the sequence of each operator’s activities.
The time interval

[

0, 𝐶𝑚𝑎𝑥
]

is partitioned into 4 sub-intervals, depicted as gray rectangles, during which each operator delivers one test. Many other schedules with the same
operator and patient ordering and such that 𝐶𝑚𝑎𝑥 = 𝛱𝑚𝑎𝑥 can be built in order to reduce patient waiting time. However, even infringing the one-test-per-sub-interval property, total
patient waiting time between tests remains significant. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
when jobs outnumber machines. Therefore, the first question concerns
whether the room constraint may affect the performance of RotS. In
this respect, we show that 𝐶𝑚𝑎𝑥 = 𝛱𝑚𝑎𝑥 may no longer be guaranteed.

Lemma 4.1. If the rotation algorithm RotS must comply with the room
constraint, the makespan of the provided schedule can be greater than the
workload of the bottleneck operator 𝛱𝑚𝑎𝑥 = max𝑡∈𝑇 {|𝑃 (𝑡)|𝑑𝑡} if 𝑛 > 𝑚 and
𝑚 = 𝑛𝑅 (i.e., 𝑛𝑃 > 𝑛𝑇 and 𝑛𝑇 = 𝑛𝑂 = 𝑛𝑅).

Proof. Let 𝑗𝑖 denote the 𝑖th job. Note that RotS would schedule
operation 𝑖 of 𝑗𝑖 as the first one to be processed on machine 𝑖, for
each 𝑖 = 1,… , 𝑚. In our setting (𝑛𝑅 = 𝑚) each such event requires the
occupation of one free room. Therefore, when 𝑗𝑚 is started on machine
𝑚, the last room available is occupied. Therefore, 𝑗𝑚+1 can be started
only once at least one job among {𝑗1,… , 𝑗𝑚} has finished. Since 𝑗𝑖
∀𝑖 ∈ 1,… , 𝑚−1 is the last job to be processed on machine 𝑖+1, any such
job cannot finish before all the other jobs have started. On the other
hand, all predecessors of 𝑗𝑚 on any machine belong to {𝑗1,… , 𝑗𝑚−1},
i.e., jobs that have an assigned room and can be processed. Therefore,
𝑗𝑚 is the first job in {𝑗1,… , 𝑗𝑚} to release a room, and 𝑗𝑚+1 will occupy
it. From there on, the maximum parallelism allowed is 1 (meaning that
all but one job are on hold), until operation 𝑚 of job 𝑛 is processed, thus
triggering operation 𝑚 of job 1. It follows that 𝑚1 may have idle times
and, therefore, the duration of the critical path is larger than 𝛱𝑚𝑎𝑥. □

Next, we provide a toy example that materializes the previous
demonstration by showing that any schedule complying with the or-
dering provided by RotS and completing all jobs within the lower
bound 𝛱𝑚𝑎𝑥, cannot comply with the room constraint in case of 𝑛𝑇
rooms for 𝑛𝑇 < 𝑛𝑃 . Consider the following: 𝑛𝑃 = 4 patients, 𝑛𝑇 = 3
tests, namely 𝑡1, 𝑡2, 𝑡3 whose duration is 𝑑1 = 5, 𝑑2 = 3, 𝑑3 = 1,
respectively, so that 𝛱𝑚𝑎𝑥 = 𝑛𝑃 𝑑1 = 20. According to RotS, operator 𝑜1

would serve 𝑝1, 𝑝2, 𝑝3, 𝑝4, 𝑜2 would serve 𝑝2, 𝑝3, 𝑝4, 𝑝1, and 𝑜3 would serve
𝑝3, 𝑝4, 𝑝1, 𝑝2, each in that order, respectively. A graphical representation
of a schedule complying with this ordering is provided in Fig. 4, with
the following color coding: 𝑡1 is depicted in blu, 𝑡2 yellow, and 𝑡3 green.
Starting times of bottleneck operation 𝑡1 are set to achieve 𝐶𝑚𝑎𝑥 = 𝛱𝑚𝑎𝑥,
i.e., they take value in the set {𝑘𝑑1, 𝑘 = 0,… , 𝑛𝑃 −1}. This partitions the
time interval

[

0, 𝐶𝑚𝑎𝑥
]

into 𝑛𝑃 sub-intervals, each one corresponding to
the execution of test 𝑡1 for one patient.

Actually, RotS yields a family of solutions in which the job that is
executed as the ℎth on a machine other than the bottleneck one, can be
processed any time within the time interval

[

(ℎ − 1)𝑑𝑚𝑎𝑥, ℎ𝑑𝑚𝑎𝑥
]

, where
𝑑𝑚𝑎𝑥 is the duration of the bottleneck operation (𝑑1 in our example).
For example, the solution in Fig. 4 schedules the tasks associated with
9

tests 𝑡2 and 𝑡3 right in the middle of such intervals, but many other
choices are possible. While the sequence of operations on the bottleneck
machine has no idle times – it corresponds to the critical path whose
length is the makespan – there is some degree of freedom concerning
the tasks on the other paths, which can be shifted backward or forward
to compact some of them (such as all the tests of the same patient)
within a shorter interval. As long as the orderings resulting from RotS
are respected, all these solutions provide schedules that end at 𝛱𝑚𝑎𝑥
and are optimal as well.

In any schedule complying with RotS, 𝑡1 is the first test delivered
to 𝑝1 and the last one delivered to 𝑝4. Now, let us try to fit the
ordering yielded by RotS (depicted as dotted lines in Fig. 4) into an
environment characterized by 3 rooms (at least two patients use the
same room) and discuss if the room constraint can be satisfied while
keeping 𝐶𝑚𝑎𝑥 = 𝛱𝑚𝑎𝑥. We will show that there is no feasible schedule
for any such option, namely, a schedule which complies with the
previous requirements, and such that the last operation of the first
patient in a room precedes the first of the second patient in the same
room. In particular, (i) either a pair, say 𝑝𝑖 and 𝑝𝑗 , that is served by 𝑜1 in
this order, is served by another operator in the opposite order, meaning
that the patient service periods of the two patients would intersect, and
they cannot be feasibly served in the same room, or (ii) the makespan
would increase. This can be verified in Fig. 4. Let us consider the pairs
that operator 𝑜1 (blue) serves in sequence: for the pair (𝑝1, 𝑝2), note that
𝑜2 (yellow) serves 𝑝2 as first and 𝑝1 as last; for the pair (𝑝2, 𝑝3), operator
𝑜3 (green) serves 𝑝3 as first and 𝑝2 as last; moreover, 𝑝2 could not use the
same room of 𝑝1 since 𝑝2 receives test 𝑡2 while 𝑝1 is receiving test 𝑡1. It
follows that 𝑝1, 𝑝2 and 𝑝3 need one room each. Therefore, 𝑝4 must use
a room that was previously occupied by another patient. Recall that
𝑝4 must receive 𝑡1 at time 15 and the ordering of the tests is 𝑡3, 𝑡2, 𝑡1.
Therefore, 𝑝4 cannot use 𝑝3’s room. However, 𝑝4 cannot use either 𝑝1’s
room or 𝑝2’s room in a feasible way, since 𝑜3 serves 𝑝4 before 𝑝1 as well
as before 𝑝2.

Fig. 5 provides a pictorial representation of a solution fulfilling the
ordering of RotS and attaining 𝐶𝑚𝑎𝑥 = 𝛱𝑚𝑎𝑥, where 𝑝1 and 𝑝4 are both
served in room 1, and the starting times of 𝑡2 and 𝑡3 have been adjusted
so that the total patient waiting time is minimum. Specifically, psp(𝑝1)
= (0,14), psp(𝑝2) = (2,11), psp(𝑝3) = (4,15), and psp(𝑝4) = (6,20). As
graphically depicted, psp(𝑝1) and psp(𝑝4) are not disjoint.

Do makespan and workload of bottleneck operator coincide
when the room constraint is imposed? To show that it does not,
suppose that the longest test does not belong to all the patient packages.
It is easy to build instances where the optimal makespan 𝐶𝑚𝑎𝑥 is strictly
greater than the workload 𝛱𝑚𝑎𝑥 of the bottleneck operator, i.e., the
busiest one. As an example, consider the case where 𝑛 = 6 patients,
𝑃
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Fig. 5. No schedule complying with RotS and the room constraint may attain 𝐶𝑚𝑎𝑥 = 𝛱𝑚𝑎𝑥 in a 𝑛𝑇 rooms environment if 𝑛𝑇 < 𝑛.
Fig. 6. No schedule with 𝐶𝑚𝑎𝑥 = 𝛱𝑚𝑎𝑥 does exist.
𝑛𝑇 = 3 tests, namely 𝑡1, 𝑡2, 𝑡3 whose duration is 𝑑1 = 10, 𝑑2 = 9,
𝑑3 = 6, respectively. In addition, suppose that 3 patients must undergo
a package consisting of tests 𝑡1 and 𝑡3, while the other 3 patients must
undergo only test 𝑡2. The bottleneck operator is the operator in charge
of test 𝑡1 and 𝛱𝑚𝑎𝑥 = 30. The optimal makespan for this instance is 32,
strictly greater than 𝛱𝑚𝑎𝑥 = 30, as Fig. 6 shows.

Is bottleneck operator still crucial when the room constraint is
imposed? Now it is clear that RotS cannot solve our problem because
of the room constraint. Nevertheless, RotS may inspire the search for
a restricted set of precedence relations to be fixed that provide an
efficient trade-off between the computational effort needed for solving
the remaining subproblem and the solution quality degradation.

The procedure is made of the following steps:

• let us define the bottleneck operator as the operator with the
highest workload. More formally,

𝑏𝑜 = argmax
𝑡∈𝑇

{|𝑃 (𝑡)| ⋅ 𝑑𝑡}

As observed, scheduling decisions regarding the bottleneck oper-
ator identify core decisions.

• Patients requiring the test associated with 𝑏𝑜 are ordered accord-
ing to some criterion.

• Scheduling variables 𝑧𝑏𝑜𝑝,𝑝+1 are fixed to one, where 𝑝 is each of
the patients requesting service from 𝑏𝑜 and 𝑝+1 is the next in the
order, if any.

• Model (1)–(26) is run.

Three ordering criteria have been proposed, all based on the class a
patient belongs to. Only the classes containing the test performed by the
bottleneck operator are considered in the ordering. Note that patients
have been given a lexicographical order within each class to break
symmetry. According to the first criterion, denoted as SPT (Shortest
Processing Time), the bottleneck operator 𝑏𝑜 serves all patients within
the same class according to the lexicographical order. Then, classes
are ordered according to non-decreasing service time 𝜎𝑐 and the last
patient in one class is served by 𝑏𝑜 before the first one in the next
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class. The second criterion, denoted as LPT (Longest Processing Time),
adopts the opposite ordering of the classes, starting from the one
with the longest service time. Within each class, again, 𝑏𝑜 operates
according to lexicographical order. Finally, the third criterion orders
classes by lexicographical order, which is unrelated to 𝜎𝑐 . In the first
round, 𝑏𝑜 serves the first patient (in lexicographical order) in class one,
followed by the first one (in lexicographical order) in class two, and
so on until the last (in lexicographical order) class. In the next round,
the procedure repeats involving the second patient (in lexicographical
order) of each class, and so on until all patients that must undergo
the test of 𝑏𝑜 have been processed. This last criterion is denoted as RR
(Round Robin).

Note that nothing has been said about how tests are sequenced
within each set 𝑇 𝑝, nor on the side of the other operators. Nevertheless,
as we report next, the subproblem that is obtained by adding the
ordering decisions can be quickly solved. As the result is not provably
optimum these approaches are matheuristics.

5. Experimental results

In this section, we present and discuss the computational results
obtained by the abovementioned approaches on a plurality of scenarios.
Specifically, Section 5.1 describes the real instances and the seven
scenarios which are used to assess the applicability of the proposed ap-
proaches to the real case as well as to more general settings. Section 5.2
describes the computing environment and the KPIs used to evaluate
solution quality and computational efficiency. Then, Section 5.3 reports
the results obtained on the first three scenarios which are related
respectively (1) to the real case, (2) to the implications of splitting the
working day in two sessions, and (3) to some extensions concerning
the relationships between test duration. Section 5.4 further explores
the latter issue: we extend the analysis to another four scenarios and
drop the assumption that each package includes the longest test. This
aims to generalize the results to different settings and to support the
claim that findings do not depend on the real case particular structure.
A further step in the generalization of the results is taken in the
direction identified by the counterexample shown in Section 4.3 in
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Table 3
Experimental study in brief. Instances are characterized by: 𝑛𝑅 = 4 rooms, 𝑛𝑇 = 4 tests, 𝑛𝑂 = 4 not-cross trained operators, one for each test; |𝐶| = 4 patient classes, with
𝐶 = {𝐶1 , 𝐶2 , 𝐶3 , 𝐶4}; opening time 𝐻 = 4 or 8 h; 𝑇 = {𝑡1 , 𝑡2 , 𝑡3 , 𝑡4}, with 𝑑𝑖 duration of test 𝑡𝑖; 𝑡1 is the longest test. Patient class 𝐶𝑖 is defined in terms of tests 𝑡𝑗 : if patients in class
𝑖 need 𝑡𝑗 , an 1 is reported in columns Patient classes, 0 otherwise. 𝜎𝑐 is the total processing time for patients in class 𝑐, i.e., the sum of needed test times for a patient class.

Scenario Assumption Objective of the study H (in min) Test duration Patient classes Number of instances

d1 d2 d3 d4 Class t1 t2 t3 t4 𝜎𝑐

S1 Longest test is in Impact of patient mix on 480 28 9 6 7 𝐶1 1 1 0 0 37 Generated exhaustively all possible patient
every patient class computational results 𝐶2 1 1 1 0 43 mixes, with (i) at least one patient in each
𝑑1 > (𝑑2 + 𝑑3 + 𝑑4) 𝐶3 1 1 0 1 44 class, (ii) service time of at least 40% of

𝐶4 1 1 1 1 50 total available time 𝐻 ⋅ 𝑛𝑅, (iii) workload
of bottleneck operator not exceeding 𝐻 .
Instances considered = 98

S2 Same as above Impact of having two 240 Same as above Same as above Same as above
4 h session. Instances considered = 69

S3 Longest test is in Impact of altering test 240 14 9 6 7 𝐶1 Same as above 23 Same as above
every patient class durations. 𝐶2 29 instances considered = 1742
𝑑1 ≤ (𝑑2 + 𝑑3 + 𝑑4) Halve d1 𝐶3 30

C4 36

S4 Remove t1 from Impact of altering 240 14 9 6 7 𝐶1 0 1 0 0 9 Generated exhaustively all possible patient
patient class 1 class structure 𝐶2 1 1 1 0 29 mixes, with (i) at least one patient in each

𝐶3 1 1 0 1 30 class, (ii) service time of at least 45% of
𝐶4 1 1 1 1 36 𝐻 ⋅ 𝑛𝑅, (iii) workload of bottleneck

operator not exceeding 75% of 𝐻 .
Randomly selected 100 instances.

S5 Remove t1 from Impact of altering 240 14 9 6 7 𝐶1 1 1 0 0 23 Randomly selected 100 instances.
patient class 2 class structure 𝐶2 0 1 1 0 15

𝐶3 1 1 0 1 30
𝐶4 1 1 1 1 36

S6 Remove t1 from Impact of altering 240 14 9 6 7 𝐶1 1 1 0 0 23 Randomly selected 100 instances.
patient class 3 class structure 𝐶2 1 1 1 0 29

𝐶3 0 1 0 1 16
𝐶4 1 1 1 1 36

S7 Remove t1 from Impact of altering 240 14 9 6 7 𝐶1 1 1 0 0 23 Randomly selected 100 instances.
patient class 4 class structure 𝐶2 1 1 1 0 29

𝐶3 1 1 0 1 30
𝐶4 0 1 1 1 24
which the bottleneck operator is not present in all test packages. We
then generated an additional set of instances with these characteristics
whose results are evaluated in Section 5.5. In this set of instances, we
also show the effect of using a different objective function that takes
into account the idle time of the operators. Finally, Section 5.6 takes
a global view of the results to provide a comparison among scenarios
and suggest possible takeaways.

5.1. Instance and scenario description

An instance is characterized by the following input variables: num-
ber of rooms 𝑛𝑅, number of tests 𝑛𝑇 , number of operators 𝑛𝑂, test
duration, time horizon 𝐻 , patient classes, patient mix. Real instances
re characterized by: (𝑖) 4 rooms (𝑛𝑅 = 4), (𝑖𝑖) 4 tests (𝑛𝑇 = 4), (𝑖𝑖𝑖) 4
perators (𝑛𝑂 = 4), (𝑖𝑣) 4 patient classes (|𝐶| = 4), (𝑣) an opening time

of 8 h (𝐻 = 480). In this study, we assume that each operator masters
a different skill.

Patients’ mix, i.e., the percentage of patients in each class can be
retrieved from the analysis of the empirical data at the clinic. Based
on these data, the probability that a patient belongs to a certain class,
considering classes ordered on ascending service time, i.e., 𝜎𝑐 < 𝜎𝑐+1,
s the following: 31% for class 𝐶1, 14% for class 𝐶2, 16% for class 𝐶3,
nd 39% for class 𝐶4. More details on the real case study that inspired
his work are given in Appendix A.

The real scenario is referred to as S1. Further generalizations are
btained by varying the opening time 𝐻 (scenario S2), the length 𝑑1
f the longest test (scenario S3), and the structure of the test classes
scenario S4–S7). Specifically, Table 3 reports the assumptions charac-
erizing each scenario, the objective of the study, 𝐻 , test duration, the

composition of classes in terms of tests, service time of patient classes,
11

number of instances considered, and criteria used to generate them.
Table 4
KPIs: names and description.

KPI name KPI description

MKS Makespan
%BO Percentage difference between makespan and workload of

the bottleneck operator
WTI Total waiting time inside exam room
%GAP percentage gap
Time Computational time

5.2. KPIs, policies and computing environment

Key Performance Indicators (KPIs) refer to solution quality and
efficiency. With respect to the quality of the solution, we consider:
(i) makespan, (ii) the percentage difference between makespan and
workload of the bottleneck operator, and (iii) total patient waiting time
inside the exam room. With respect to the computational efficiency
of the offline approaches, we consider (i) solution time, and (ii) the
percentage gap between the best solution found and the best lower
bound returned by the solver. The name and description of KPIs are
listed in Table 4 and they will be used hereafter.

Both online and offline policies are tested and compared in terms
of the KPIs described above. Specifically, we test 4 offline approaches
(OPT and the three variants of the matheuristic: SPT, LPT, and RR)
and 2 online ones (FSA and FRA). Not all policies have been used in all
scenarios and not all KPIs are applicable to all policies: in the following
sections, scenario by scenario we detail the computational tests done.

The numerical analysis has been performed on a PC equipped with
an AMD® Ryzen 9 3950x 16-core processor x32 and 32 Gb of RAM. The
optimization model and the matheuristics have been coded in C++ and
solved using the IBM ILOG Cplex 12.10 solver imposing a time limit
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Fig. 7. Scenario S1, 𝐻 = 480, 𝑑1 = 28: Makespan (in minutes).
Fig. 8. Scenario S1, 𝐻 = 480, 𝑑1 = 28: percentage gap between the workload of the bottleneck operator and makespan.
equal to 3600 s and a memory limit for the branch and bound tree
equal to 8 Gb.

5.3. Computational results for scenarios S1–S3

In scenario S1, characterized by 𝑑1 = 28 and 𝐻 = 480, the
exhaustive generation of all possible patient mixes, with at least one
patient in each class, a service time at least 40% of the total available
time, and the workload of the bottleneck operator not exceeding 𝐻 ,
resulted in 98 instances. While OPT fails on all instances, being unable
in all cases to find a feasible solution to model (1)–(26) within the given
time and memory limits, all matheuristics SPT, LPT, and RR provide for
each instance the optimal makespan and a very low waiting time inside
the exam room (below 33 min for all instances).

Figs. 7 and 8 show, for each instance (x-axis) and for all approaches,
the makespan MKS and the percentage difference between the load of
the bottleneck operator and the makespan (%BO), respectively. For FRA
and FSA the plot shows the 95% confidence intervals for the mean
obtained with 30 simulation runs. The figures clearly show that: (i)
instances are challenging being the makespan very close to opening
time 𝐻 , (ii) the matheuristics always return an optimal solution with
respect to the makespan; in fact, the makespan is the same as the load
of the bottleneck operator, (iii) for FRA and FSA, makespan always
exceeds the opening time and overtime can be very high, especially
for FRA, (iv) across instances, FRA performs significantly worse than
FSA.
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Fig. 9 reports the total waiting time, i.e., the sum (over all patients
processed) of WTI for SPT, LPT and RR and the 95% confidence
intervals for the mean for FRA and FSA. We can observe that: (i) all
the matheuristics return, on average, significantly better results than
the online approaches. In the worst case scenario, the maximum WTI
for the offline approaches is equal to 47 min while for the online
approaches, the maximum WTI is equal to 1034.1 and 1049.8 min for
FRA and FSA, respectively (for the online approaches the max(WTI) is
calculated as the maximum of individual replications maxima), (ii) con-
trary to what happens for the overtime, FRA is significantly better than
FSA in terms of WTI, (iii) the average waiting time per patient inside
the exam room across all instances is 1.8, 1.9 and 1.9 min respectively
for SPT, LPT and RR, and to 40.48 and 57.9 min respectively for FRA
and FSA.

In terms of computational efficiency, all instances are solved to
optimality by all the matheuristics. For SPT, LPT and RR the mean
value of the computational time is equal to 139.6, 180.5, 158.4 s,
respectively, while the maximum value is 735.8, 1468.5 and 784.5 s,
respectively.

In scenario S2, characterized by 𝑑1 = 28 and 𝐻 = 240, the exhaus-
tive generation of all possible patient mixes resulted in 69 instances. In
this case, both OPT and the matheuristics can find a feasible solution
for all instances. Fig. 10 reports %BO (for FRA and FSA the plot
shows the 95% confidence intervals for the mean obtained with 30
simulation runs) and clearly shows that all of the offline approaches
are always able to provide the optimal makespan (%BO = 0). Analysis
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Fig. 9. Scenario S1, 𝐻 = 480, 𝑑1 = 28: Waiting time inside exam room (in minutes).
Fig. 10. Scenario S2, 𝐻 = 240, 𝑑1 = 28: percentage gap between the workload of the bottleneck operator and makespan.
of results allows the following findings: (i) the performance of OPT
and of the matheuristics are very similar, in fact (ii) both provide the
optimal makespan and a very low total waiting time. Like scenario
S1, (iii) offline approaches dominate online ones with respect to all
the solution quality KPIs, (iv) both FRA and FSA are characterized by
overtime (which is significantly higher for FRA than FSA), and by (v)
a substantial waiting time (which is significantly higher for FSA than
FRA). Specifically, the maximum WTI is 435.8 and 472 min for FRA
and FSA, respectively, 19 min for OPT and 22 min for SPT, LPT and
RR; the maximum %BO is equal to 33.6% and 6.5% for FRA and FSA
and 0 for the offline approaches; the average waiting times inside the
exam room per patient are 24.1 (FRA), 49 (FSA), 0.8 (OPT), 0.5 (SPT),
0.9 (LPT), and 0.7 (RR) minutes.

In terms of computational efficiency, all instances are solved to
optimality. For OPT, SPT, LPT, and RR the mean computational time
is 19.1, 5.2, 4.4, and 4.8 s, respectively, while the maximum computa-
tional time is 179.8, 18.7, 14.5, and 16.3 s, respectively.

In scenario S3, characterized by 𝑑1 = 14 and 𝐻 = 240, the
exhaustive generation of all possible patient mixes resulted in 1742
instances. A preliminary analysis of the results obtained has made it
possible to observe that, similarly to what happens in the S1 and S2
scenarios, offline approaches perform better than online ones in terms
of all the KPIs used.

Computational results clearly show that, on the solved instances,
the 4 offline approaches are able to find the optimum or very close to
the optimum in terms of makespan. For OPT, the average percentage
difference %BO computed on the solved instances, is 0.1%. Only in
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one instance, the %BO is as high as 12.1%. For the matheuristics, the
optimal makespan is achieved on 100% of the instances. We also report
that for FRA and FSA, the maximum %BO is equal to 33.4% and 6.5%
respectively.

Interestingly, also the average waiting time inside the exam room is
very small for the offline approaches: equal to 3.7 min for OPT and 1.1
for SPT, LPT and RR. For the online approaches, instead, the average
waiting time inside the exam room is 14.8 and 23.1 min for FRA and
FSA respectively. The maximum waiting time inside the exam room is
505.7, 500.5, 295, 23, 30, 23 min for FRA, FSA, OPT, SPT, LPT, RR
respectively. Figs. B.17 and B.18 in Appendix B provide further details.

In terms of computational efficiency, OPT finds a feasible solution
for 43.2% of the instances and finds an optimal solution 4.9% of
the time. The average Gap for the instances that are not solved to
optimality is very small (0.1%). SPT, RR and LPT are able to find
optimal solutions for all the instances.

5.4. Computational results for scenarios S4–S7

For each scenario S4–S7, we generated all the patient mixes that
satisfy the following two conditions: (𝑖) the total service time is at least
45% of the total available time (𝐻 ⋅𝑁𝑅), and (𝑖𝑖) the workload of the
bottleneck operator does not exceed 75% of the regular time 𝐻 . 𝐻 is
fixed to 240 and 𝑑1 = 14. Even with these assumptions, the number
of instances resulting in each scenario can be high, thus we randomly
selected 100 instances for each scenario, summing up to 400 additional
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Fig. 11. Scenarios S4–S7, 𝐻 = 240: distribution of computational time (in seconds).
Table 5
Scenarios S4-S7: an overview of solution quality. In regard to waiting time, expressed
in minutes (m), the average waiting time per patient (AvgInd) and the average total
waiting time (AvgTot) are reported together with the maximum total waiting time
(MaxTot) computed across scenarios. In regard to the bottleneck operator, expressed
in percentage (%), average and maximum values (across scenarios) of %BO are given.
Average values are computed across the scenarios.

Model Waiting time %BO

AvgInd (m) AvgTot (m) MaxTot (m) Avg (%) Max (%)

OPT 3.83 67.90 186.00 2.14 12.04
SPT 3.15 57.89 145.00 5.51 15.58
LPT 3.34 61.61 160.00 5.32 11.93
RR 1.67 30.32 91.00 0.16 3.51

instances. Note that in these scenarios, the bottleneck operator is no
longer the operator administering test 𝑡1, since the maximum operator
workload depends on the test duration and on the number of patients
requiring that service. In the following, we present computational
results relevant to the comparison among offline policies, namely, OPT
and the three variants of the matheuristic, i.e., SPT, LPT and RR.

With respect to solution quality, interestingly, for most of the sce-
narios, there is at least one policy providing an optimal solution in
terms of makespan. Scenarios S4–S7 seem to be progressively more
challenging, with S4 representing the easiest instances in the test set
while S7 is the most difficult. Figs. B.19–B.21 in Appendix B provide
further details. An overview of KPIs relevant to solution quality is given
in Table 5 where for each approach (row) summary information is
given. Specifically, in regard to waiting time, the average waiting time
per patient and the average total waiting time are reported together
with the maximum total waiting time computed across scenarios. For
what concerns the bottleneck operator, average and maximum values
(across scenarios) of the percentage difference between the workload
of the bottleneck operator and the makespan are given. Average values
are computed across the scenarios. Overall, RR stands out as the best
offline policy, while SPT and LPT seem to be quite equivalent.

Interestingly, the ranking (in terms of objective function value)
among the approaches presented in Table 6 reveals that across sce-
narios, on average, RR ranks first or second in 91% of the instances,
thus proving to be the most effective approach. The other three ap-
proaches, namely, OPT, SPT and LPT rank (on average) first or second
respectively in 28%, 43%, and 43% of the cases. So, SPT and LPT seem
candidates to be the second-best approach.

Finally, with respect to efficiency, Table 6 reports for each scenario
and for each approach, the percentage of instances for which a feasible
solution has been found (%sol), the percentage of instances for which
an optimal solution has been found (%opt), the average computational
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time, the average gap and the maximum gap across the solved in-
stances. Across the scenarios, the average gaps for the four approaches
OPT, SPT, LPT and RR are respectively 2.18, 5.53, 5.34, and 0.17, thus
confirming that RR is the best option not only in terms of solution
quality but also in terms of efficiency.

Table 6 also shows, separately for each scenario (rows) and for each
policy (columns), the gap distribution, i.e., the percentage of instances
for which the optimality gap is within a given range (less than 1%, less
than 5%, less than 10%, over 10%). RR proves to be a very effective tool
since, even for the worst performing scenario (S7), in 88% of cases it
finds solutions with an optimality gap lower than 1% and never returns
a gap higher than 10%.

As a further analysis of the results in terms of efficiency, Fig. 11
shows that for each scenario and for each approach there is a meaning-
ful number of instances for which the time limit (3600 s) is reached.
Remarkably, a further set of computational tests run with a shorter
time limit (600 s) shows that almost the same solution quality can be
obtained with the worst deterioration of the gap equal to 24.63% and
on average 1.84%.

5.5. The longest test is not in every patient class: further computational
results

The results presented in the previous sections showed that the opti-
mal makespan coincides with the workload of the bottleneck operator,
but the counterexample provided in Section 4.3 shows that instances
can be constructed for which this is no longer true. In this section,
we want to further investigate this behavior experimentally. For this
purpose, we generated an additional set of instances with the structure
of the counterexample.

The purpose of the section is twofold: (i) to show the impact of the
absence of the longest test on efficiency and solution quality; (ii) to
show the effect of a different hierarchical objective function that first
minimizes the makespan and second minimizes the idle time of the op-
erators instead of patient waiting time. In the real case that inspired this
study, operators are always available for the entire workday and their
idle time is therefore given by the difference between the clinic’s open-
ing time and the workload resulting from the patients they must serve.
Therefore, in this case, minimizing idle time loses its original meaning
whereas targeting the minimum makespan indirectly reduces their idle
time. Moreover, [39] reveals that, in real practice, practitioners do not
see idle time as a problem since it is used for substitute tasks, such as e-
consulting. Nevertheless, there may be different organizational models
in which operators’ shifts start when they serve their first patient and
end once their last one has been served: in such a case, minimizing
operators’ idle time becomes crucial, potentially to the detriment of
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Table 6
For each scenario and each model, columns Ranking report the approach ranking in terms of the objective function value. Then, efficiency information is reported: the percentage
of instances for which a feasible (%sol) or optimal (%opt) solution is found, the average computational time (Mean Time), the average gap (Mean %Gap) and the maximum gap
(Max %Gap) across the solved instances. Finally, information on gap distribution is given, i.e., the percentage of instances for which the optimality gap is within a given range.

Sc NInst Model Ranking %sol %opt Mean Mean Max GapDistribution

1st 2nd 3rd 4th time %Gap %Gap <1% <5% <10% ≥10%

S4 100 OPT 4 29 2 44 79 1 3598 1.3 7.6 63.3 93.7 100.0 0.0
SPT 15 28 40 16 99 30 3382 4.4 13.6 52.5 52.5 92.9 7.1
LPT 16 24 44 16 100 33 3375 4.3 9.6 52.0 52.0 100.0 0.0
RR 75 18 6 1 100 46 3145 0.0 0.6 100.0 100.0 100.0 0.0

S5 100 OPT 1 19 1 28 49 0 3600 1.9 18.6 59.2 89.8 95.9 4.1
SPT 13 32 48 7 100 14 3475 5.5 14.7 41.0 45.0 68.0 32.0
LPT 16 34 37 13 100 15 3454 5.2 11.9 46.0 49.0 70.0 30.0
RR 75 16 9 0 100 36 3171 0.2 3.5 94.0 100.0 100.0 0.0

S6 100 OPT 1 22 3 29 55 0 3600 2.6 9.5 36.4 80.0 100.0 0.0
SPT 13 35 47 4 99 14 3512 5.8 17.8 38.4 46.5 71.7 28.3
LPT 16 29 36 19 100 15 3478 5.6 11.9 37.0 45.0 74.0 26.0
RR 76 10 11 2 99 33 3211 0.1 4.5 94.9 100.0 100.0 0.0

S7 100 OPT 1 36 2 22 61 0 3600 2.9 12.5 39.3 78.7 93.4 6.6
SPT 6 31 47 16 100 5 3588 6.4 16.2 26.0 42.0 64.0 36.0
LPT 14 22 41 23 100 5 3570 6.3 14.5 30.0 45.0 65.0 35.0
RR 79 13 8 0 100 13 3479 0.4 5.5 88.0 99.0 100.0 0.0
patients’ waiting time. As an example, think of those contexts in which
operators carry out activities both for the clinic and outside the clinic,
and their coordination can therefore enable greater system efficiency.
Defining an objective function in these contexts can be a difficult task
since it may be crucial to make sure that idle time is compacted as
much as possible, rather than broken up into short fragments of time
that cannot be used for other activities, and this is not captured by just
the shift duration; moreover, there may be different priorities among
operators depending on the tests they perform; in addition, fairness
issues may arise when, compacting an operator’s shift over a short
period of time can spread the activities of another operator over a much
larger period. Defining such objective functions is beyond the scope
of this paper, which is instead focused on patient satisfaction, so the
objective function used to obtain the results in this section is simply the
sum of the idle times of the operators, each computed as the difference
between the shift duration and the total service time.

The additional set of instances used for these experiments are
characterized by the following input variables: 𝑛𝑅 = 𝑛𝑇 = 𝑛𝑂 = 3;
n opening time of 4 h (𝐻 = 240); test durations 𝑑1 = 10, 𝑑2 = 9,
nd 𝑑3 = 6; 2 patient classes (|𝐶| = 2) with 𝐶1 = {𝑡1, 𝑡3} and
2 = {𝑡2}. As for the previous scenarios, we exhaustively generated all
ossible patient mixes, with at least one patient in each class, a service
ime of at least 40% of the total available time, and the workload of
he bottleneck operator not exceeding 𝐻 , resulting in 169 instances.
bserve that, according to the number of patients generated in each
lass, the bottleneck operator can be either the one in charge of 𝑡1 or the
ne in charge of 𝑡3. In any case, the bottleneck operator is responsible
or only one class of patients, and consequently, the three matheuristics
erform the same. For this reason, computational results concern only
ne of the threes, SPT without loss of generality.

Figs. 12 and 13 show, for each instance (x-axis) and for the two
ffline approaches, namely OPT and SPT, respectively the percent-
ge difference between the load of the bottleneck operator and the
akespan (%BO) and the total patient waiting time inside the exam

oom (WTI). As done in previous sections, an overview of KPIs relevant
o solution quality is given in Table 7 where for each approach (rows),
or what concerns patient waiting time, average value per patient as
ell as average and maximum total values are given. For what concerns
BO, the average and the maximum values over the solved instances

re given.
As for the other scenarios, we observe that the matheuristic per-

orms better than the OPT approach in terms of solution quality. Unlike
n previous scenarios, however, in these instances, the gap between
akespan and bottleneck operator load can be significant.
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Table 7
Scenario S8: an overview of solution quality. In regard to waiting time, expressed
in minutes (m), the average waiting time per patient (AvgInd) and the average total
waiting time (AvgTot) are reported together with the maximum total waiting time
(MaxTot) computed across scenarios. In regard to the bottleneck operator, expressed
in percentage (%), average and maximum values (across scenarios) of %BO are given.
Average values are computed across the scenarios.

Model Waiting time %BO

AvgInd (m) AvgTot (m) MaxTot (m) Avg (%) Max (%)

OPT 2.32 92.59 246.00 16.50 45.00
SPT 0.74 31.82 128.00 7.12 35.67

An overview of the results in terms of efficiency is given in Table 8
where for each of the two offline approaches (rows) we report the num-
ber of times each approach outperforms the other (columns Ranking),
the percentage of instances for which a feasible solution has been found
(%sol), the percentage of instances for which an optimal solution has
been found (%opt), the average computational time, the average gap
and the maximum gap across the solved instances, as well as the gap
distribution. The number of times an approach ranks first includes the
cases where both the approaches get the same result, which amounts
to 4 in this experiment. We observe that even if SPT performs much
better than OPT in terms of number of instances solved to optimality
and number of instances for which a feasible solution is provided, there
are 15 instances that it is not able to solve and for a significant number
of instances (about 30%) the optimality gap is greater than 10%. The
set of instances used in these additional experiments, even if made by
only two classes of disjoint tests seems thus to be challenging to solve.

We conclude the section by reporting some computational results on
the comparison between two alternative objective functions used in the
offline approaches on the 169 instances of this scenario. Specifically,
we compare OPT and SPT when run with a hierarchical objective
function that first minimizes makespan and second minimizes patient
waiting time in one case and operator idle time in the other. When
operator idle time drives the second term of the objective function,
OPT is not able to get a feasible solution for any of the instances,
while SPT solves 71 instances with an average computational time
equal to 3538 s and an average optimality gap equal to 0.8. Instead,
when the second term of the objective function is guided by patient
waiting time, the same figures for SPT are: for 154 instances a feasible
solution is found, with an average computational time equal to 3193 s
and an average optimality gap equal to 7.1. In terms of efficiency,
controlling operator idle time seems to make the problem more difficult

to solve with respect to controlling patient waiting time. There are 49



Omega 123 (2024) 102994S. Agnihothri et al.
Fig. 12. Scenario S8, 𝐻 = 240, 𝑑1 = 10, 𝑑2 = 9, 𝑑3 = 6: percentage gap between the workload of the bottleneck operator and makespan.
Fig. 13. Scenario S8, 𝐻 = 240, 𝑑1 = 10, 𝑑2 = 9, 𝑑3 = 6: Total waiting time inside exam rooms (in minutes).
Table 8
For each model, columns Ranking report the approach ranking in terms of objective function value and the number of instances for which the
time limit is reached without providing any feasible solution (NotSolved). Then, efficiency information is reported: the percentage of instances
for which a feasible (%sol) or optimal (%opt) solution is found, the average computational time (Mean Time), the average gap (Mean %Gap)
and the maximum gap (Max %Gap) across the solved instances. Finally, information on gap distribution is given, i.e., the percentage of instances
for which the optimality gap is within a given range.

Sc NInst Model Ranking %sol %opt Mean Mean Max GapDistribution

1st 2nd NotSolved time %Gap %Gap <1% <5% <10% ≥10%

S8 169 OPT 7 37 125 26 1 3600 16.5 45.0 9.1 22.7 31.8 68.2
SPT 152 2 15 91 38 3193 7.1 35.6 46.1 57.1 70.8 29.2
instances in which the two objective functions provide the same value
for the makespan. For each of these instances (x-axis), Fig. 14 reports
on the 𝑦-axis the variation of patient waiting time (blue dots) and
operator idle time (green dots) when the different objective functions
are used. Interestingly, we can observe that the deterioration of patient
waiting time when the second component of the objective function is
guided by operator idle time is much smaller than the deterioration of
operator idle time when the second component of the objective function
is guided by patient waiting time. More detailed information on such
deterioration is given in Table 9 where the mean value, the standard
deviation, minimum and maximum values of the variation are given
both for patient waiting time (WTI) in the first four columns and for
operator idle time (OIT) in the last four columns. These results seem
thus to reveal that considering the two criteria jointly could identify
an interesting line of future research.
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Table 9
Scenario S8: descriptive statistics (mean, standard deviation, minimum and maximum)
of the variation of patient waiting time inside exam room (WTI) and operator idle
time (OIT) in minutes, when different criteria drive the second term of the objective
function — patient waiting time vs. operator idle time.

Variation of WTI Variation of OIT

mean sd min max mean sd min max

37.71 13.12 12.00 78.00 −117.84 53.06 −268.00 −8.00

5.6. Summary results

Table 10 summarizes, in the first column, the main characteristics
of the scenarios (scenario, duration and presence of the longest test
𝑡1, planning horizon length), in the second column, the number of
instances in each scenario (NInst), for columns OPT, SPT, LPT and
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Fig. 14. Scenario S8, 𝐻 = 240, 𝑑1 = 10, 𝑑2 = 9, 𝑑3 = 6: for instances characterized by the same makespan, the variation of patient waiting time inside exam rooms (WTI) and
operator idle time (OIT) (in minutes) when different criteria drive the second term of the objective function — patient waiting time vs. operator idle time. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of this article.)
Table 10
Summary of experiments and results: number of instances for each scenario (NInst) and
percentage of instances for which each model (OPT, LPT, SPT, RR) found a feasible
solution, percentage of simulation runs for which the online approaches (FSA, FRA)
led to overtime.

Scenario NInst OPT SPT LPT RR FSA FRA

S1 - 𝑑1 = 28,𝐻 = 480 98 0.0 100 100 100 70.0 99.7
S2 - 𝑑1 = 28,𝐻 = 240 69 100.0 100 100 100 2.2 71.7
S3 - 𝑑1 = 14,𝐻 = 240 1742 43.2 100 100 100 23.2 90.1
S4 - 𝑑1 = 14, 𝑡1 ∉ 𝐶1 ,𝐻 = 240 100 79.0 99 100 100 0.0 41.0
S5 - 𝑑1 = 14, 𝑡1 ∉ 𝐶2 ,𝐻 = 240 100 49.0 100 100 100 0.0 37.0
S6 - 𝑑1 = 14, 𝑡1 ∉ 𝐶3 ,𝐻 = 240 100 55.0 99 100 99 0.0 37.0
S7 - 𝑑1 = 14, 𝑡1 ∉ 𝐶4 ,𝐻 = 240 100 61.0 100 100 100 0.0 38.0

RR, the percentage of instances for which each model found a feasible
solution, while, for the online approaches FSA and FRA, the table shows
the percentage of simulation runs for which the last patient left the PAT
clinic after the scheduled closing time (overtime).

Fig. 15 summarizes the results obtained on the seven scenarios S1–
S7 (𝑥-axis) in terms of optimality gap, average percentage difference
between makespan and workload of the bottleneck operator, average
makespan, as well as average total waiting time inside the exam room.

We conclude the section by summarizing the main findings sup-
ported by the experiments. For scenarios S1–S3, the three matheuristics
are always able to determine the optimal solution in terms of makespan.
For scenarios S4–S7, the three matheuristics determine the optimal
makespan in the majority of the cases and there is at least one of-
fline approach that provides the optimal makespan. Offline approaches
provide very small waiting times. Among the four offline policies, RR
ranks first or second in 91% of the cases, while SPT and LPT rank
first or second in 43% of the cases for scenarios S4–S7. Hence, we
conclude that RR performs best, while SPT and LPT seem to be quite
equivalent. All three matheuristics are computationally efficient. A
possible explanation for the soundness of the policy RR is that it is the
one policy that, at any given time, maintains the greatest diversity of
the mix of patients currently served. In this way, all operators tend to be
active at the same time and can work in parallel. In contrast, each of the
other policies tends to serve patients of the same class at the same time.
If patients of the class with the smallest test subset were numerous, in a
given time interval only a sub-set of operators could be active, creating
the conditions for many temporary deadlock situations to occur. We
also observe that the presence of the longest test in each patient class
and the minimization of patient waiting time as a secondary objective
seem to have a positive impact on the ability of offline approaches
to find feasible solutions. For the online policies, makespan always
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exceeds the opening time and the overtime can be high for FRA. FSA
performs significantly better than FRA in terms of makespan. On the
contrary, FRA is significantly better than FSA in terms of waiting time
inside the exam room.

Now, we have all the elements to argue that the particular as-
sumption we made on the number of rooms, i.e., 𝑛𝑅 = 𝑛𝑂, is well
substantiated and based on sound motivations. About the other settings,
the following are some considerations. Regarding the 𝑛𝑅 > 𝑛𝑂 option,
on the one hand, at each instant either some rooms are empty or at
least 𝑛𝑅 − 𝑛𝑂 patients are occupying a room while receiving no service,
potentially shifting patient waiting time from outside the room to
inside the room [39]. On the other hand, this option makes temporary
deadlocks less likely to occur since the room constraint becomes less
binding. Therefore, human resources could be better exploited [39] and
makespan could improve. On the contrary, in the 𝑛𝑅 < 𝑛𝑂 setting,
human resources (operators) would be underutilized whatever the
schedule, since at least 𝑛𝑂 − 𝑛𝑅 operators would be idle anytime. As a
counter effect, WTI could decrease and service quality could increase,
to the potential detriment of throughput since now, at most 𝑛𝑅 < 𝑛𝑂
patients can be attended in parallel. As computational results showed
that the proposed scheduling policies can keep WTI at bay in the 𝑛𝑂 =
𝑛𝑅 case, we suggest that the 𝑛𝑅 = 𝑛𝑂 option should be preferable with
respect to the 𝑛𝑅 < 𝑛𝑂 one. Although it is up to the PAT clinic manager
to establish the right balance in the provision of resources, we believe
that setting 𝑛𝑅 = 𝑛𝑂 captures a very significant case worth studying it.

6. Managerial insights

A key feature of this study is to consider the room constraint in an
outpatient PAT clinic, that is, a service model in which a patient occu-
pies the room until all the required tests are completed and tests are
administered by different operators inside the rooms sequentially, in
any order. Note that patients stay inside an exam room while operators
move between rooms. The service model based on the room constraint
has recently gained momentum as an alternative to the traditional
service organization where each ambulatory room is assigned to an
operator and patients are the ones who move between rooms.

It is well documented that having multidisciplinary operators at-
tending the patient in the same PAT clinic improves provider satisfac-
tion [60]. This service model is spreading to other medical specialties as
well. However, very few centers implement the room constraint feature,
whose advantages and disadvantages are discussed hereafter, from the
perspective of both patient and operator.
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Fig. 15. An overview of results: S1–S7 scenarios.
• Patient’s perspective. There is no doubt that concentrating all of a
patient’s tests in a single room has obvious advantages, especially
for frail patients, as this saves the patient from having to move
and to dress/undress each time they enter a new ambulatory.
Nevertheless, the time spent in the common waiting room to-
gether with other patients requiring similar services may foster
socialization [61] and improve patient’s satisfaction compared to
waiting alone in the exam room for the next operator to arrive.
Overall, on the patient side, designing a centralized and leaner
service that concentrates all tests in one room seems to offer
more advantages than disadvantages. A recent study [62] reports
interesting results from patient shadowing at a primary care clinic
to identify both best practices and opportunities for improvement,
and to foster patient engagement and activation. Among the key
findings, two are also valuable in the PAT clinic setting. First,
the study reports that even for returning patients it is highly
beneficial to know in advance the sequence of tests they have
to undergo and how long the entire process will take, since this
allows to properly orient the patient to the process, relieving
anxiety or confusion. This comes in favor of offline scheduling
policies. Second, the patient is more likely to get disoriented when
having to move between different exam rooms, which supports
the one-room practice characterizing a PAT clinic. Finally, thanks
to the room constraint, patients avoid multiple queues, one at
each ambulatory room. In brief, we may say that the the room
constraint improves patient’s satisfaction.

• Operator’s perspective. Compared to a traditional service organi-
zation, the room constraint may cause operator some discomfort
related to repeatedly moving across rooms, which may be slightly
mitigated by scheduling as the first test the one the previous
patient in the same room took as last. Note that the room con-
straint (i) provides opportunities for information-sharing among
operators on a same patient, which is particularly crucial when
treating patients with specific needs as paediatric patients [63]
and (ii) patients need not be shepherded to the another room
after each test since they stay in the same room; (iii) finally,
room constraint limits the gridlock in hallways and operators’
frustration of finding patients in areas where they should not be.

The presence of room constraint has important implications on
system performance. Specifically, it impacts on system throughput
(number of patients served per unit time). When the number of rooms
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equals the number of operators, the number of busy operators does not
necessarily coincide with the number of occupied rooms: the latter is
greater than the former anytime a roomed patient is waiting for an
operator who is busy in another room (the room deadlock introduced
in Section 2). Consequently, an operator may be idle even if there
are unattended patients in need of their services but no free rooms.
Thus, rooms become bottleneck resources whose utilization needs to
be optimized to increase system throughput and reduce patient waiting
time.

The room constraint may also cause a fragmentation of operator idle
time. In our study, operators are available for the entire period covered
by the makespan, therefore makespan minimization also reduces their
idle time. Operator idle time and patient waiting time are potentially
conflicting: without the room constraint, the former could be kept to
zero to the detriment of the latter, while with the room constraint,
when minimizing the makespan, a trade-off between the two can be
reached.

The room constraint in a PAT clinic makes patient scheduling more
difficult. Scheduling problems with the room constraint were quan-
titatively evaluated only either in presence of simple online booking
policies [37] or when patient workflow is almost fixed [36] and thus
test sequencing is not an issue. In a traditional organization a rotation
schedule would return an optimal schedule whose makespan equals
the load of the bottleneck operator, but patients may experience long
waiting times between tests (as in Fig. 4).

The room constraint is also challenging from a modeling perspec-
tive. We proposed a MILP model whose solution is computationally
demanding when instances reach real-life sizes. We also proposed three
effective and efficient heuristics based on bottleneck operator schedul-
ing. Among them, the Round Robin heuristic outperformed the other
two. Therefore, a room constraint based PAT clinic can be efficiently
managed provided that solution tools as the ones discussed here are
adopted. They help deliver patient-centered service (with all the above
listed patient advantages) whose makespan often equals the one yielded
by the Rotation Scheduling algorithm, along with low patient waiting
time, providing an excellent tradeoff between throughput and service
quality.

Finally, as the quantitative impact of the room constraint cannot
be evaluated a priori for a given instance but only a posteriori, the
exhaustive generation of instances for a variety of realistic settings

provided in this paper allows the service provider to evaluate the KPIs
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obtainable depending on the realization of the patient mix (what-if
analysis).

We conclude by saying that, from a managerial point of view, the
room constraint seems to offer numerous advantages for both patients
and operators, provided that ad hoc solution approaches are used to
solve the resulting challenging scheduling problem. This is the price to
be paid if aiming at high service quality and high system throughput.

7. Conclusions

This paper identifies a new machine scheduling problem as the core
of the offline appointment scheduling process for PAT with the room
constraint, i.e., a Proportionate Open Shop Problem with renewable re-
sources and missing operations. A network-flow-based MILP model has
been proposed, which paves the way for further generalizations, such
as multi-skilled operators. The patient-wise and the system-wise per-
formance of the offline approach has been compared with two classical
online procedures. However, none were able to provide a satisfactory
compromise between computational complexity and solution quality.
A core set of decisions has been identified in the mathematical model,
which characterize optimal or suboptimal solutions, and which, once
taken, define a much simpler MILP subproblem that experimentally
proved to be quickly solvable for realistic instances. Such decisions
involve the sequence of activities of the bottleneck operator. Three
matheuristics have been proposed which take such decisions guided by
as many different greedy criteria, while the remaining decisions are
left to the solver. Since one feature of our problem is that some jobs
involve just subsets of operations, these matheuristics have been tested
on different scenarios where the bottleneck operator is not present in all
the jobs. All matheuristics proved robust with respect to these variants.
One stands out as the best-performing one, thus proving its viability for
tackling realistic instances.

This work is not without limitations. While we find that the litera-
ture supports the hypothesis of considering test durations independent
of patients, when analyzing the distributions of service times that
characterize the case study that inspired us, we note non-negligible
standard deviation values. A finer patient stratification that makes
the duration of service dependent on certain patient characteristics
(e.g. age, comorbidity, frailty) could be a useful tool to make the classes
of patients more homogeneous. Another cause of inhomogeneity of
service times could be the presence of operator-dependent (i.e., more
or less experienced) test delivery times. Operator-dependent duration
could be managed in our approach by simply varying the test duration
parameters according to which operator will deliver the test. The MILP
model proposed here supports this generalization.

We believe that the efficient solution approaches presented here,
which have been developed to target our case, may well provide the
building blocks of more elaborate approaches needed to tackle more
general settings, such as 𝑛𝑂 > 𝑛𝑇 and multiple, cross-trained operators,
as well as a robust version of the problem.
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Table A.11
Empirical distribution of service times. Mean service time 𝜇 and standard deviation 𝜎
are expressed in minutes. NP stands for Nurse Practitioner.

Test name 𝜇 𝜎 Best fitting service time distribution
with scale and shape parameters

Nurse 27.79 10.26 Gamma (6.73, 4.14)
NP 8.83 5.10 Lognormal (2.02, 0.56)
Lab 5.98 3.11 Lognormal (1.82, 0.45)
X-ray 7.00 2.51 Lognormal (1.61, 0.56)
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Appendix A. A case study

This appendix provides additional details about the hospital pre-
admission testing clinic (PATC) that inspired this study. The way test
administration and patient flow are managed in a centralized PATC
has already been described in the introduction (Section 1). Here, more
information about the patient arrival process, test duration, and hu-
man and non-human resources are provided. All data were collected
manually during an observation period of approximately three months.

Patient arrivals. The PATC accepts both scheduled and walk-in
patients. It was observed that scheduled patients (about 60% of the
total) may arrive either before or after the scheduled time. The remain-
ing patients (about 40%) are not scheduled and arrive randomly. The
resulting arrival process, both scheduled and unscheduled, is observed
to follow a non-homogeneous Poisson process. Hourly arrival rates
during peak period vary between 4 to 5.5 patients.

Patients flow. Patients visiting the clinic will see anywhere be-
tween three and six skilled operators depending on the patient’s needs
and their surgeon’s recommendation regarding the procedure. Before
being taken to an exam room, every patient sees the pharmacist first,
to provide information about their allergies and medications they are
taking. Tests that may need to be performed in the exam room include
blood collection (Lab), X-rays, EKG, meeting with a nurse practitioner
(NP) if undergoing anesthesia, and meeting with a registered nurse
(Nurse) who collects medical history and informs patients what to
expect on the surgery date. Fig. A.16 depicts the patient flow process
at the PATC.

Human and non-human resources. Human resources include dif-
ferent types of nurses and technicians. Non-human resources include
the exam rooms and medical equipment such as EKG and X-ray ma-
chines. The PAT clinic staff is made of five registered nurses, one
nurse practitioner, two X-ray technicians and two Lab technicians. Lab
and X-ray technicians are cross trained. The former draw blood, the
latter operate the X-ray machine, and all of them may operate the EKG
machine. There is only one X-ray room; if a patient needs an X-ray,
an X-ray technician must retrieve the patient from their exam room
and take them to the X-ray room. There is only one EKG machine
as well. However, it may be shared by other offices in the building.
Whenever a patient needs an EKG test, if the EKG machine is available,
the technician doing the test retrieves it and brings it to the exam room
where the test is carried out. If the EKG machine is being used, either
in another exam room or out of the PATC, the technician must wait for
the machine to become available and then retrieve it before delivering
the test.
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Fig. A.16. Patient flow chart at the PAT clinic. The yellow dotted line encapsulates the core of the scheduling process that inspired this paper.
Fig. B.17. Scenario S3, 𝐻 = 240, 𝑑1 = 14: percentage gap between the workload of the bottleneck operator and makespan.
The Tests. In our study, visiting the pharmacist happens outside the
exam room. Since the objective of the study is to investigate the extent
the exam rooms, intended as renewable resources (see Section 3), affect
the scheduling, we are focusing on the activities performed only inside
exam rooms. Therefore, the interview with the pharmacist has not
been considered. Moreover, the recorded processing times for EKG test
include the actual time to perform the test and any waiting time needed
to retrieve the machine. Therefore, the recorded time may not be a good
proxy for the EKG test duration. Hence, the EKG test was not included
in our analysis.

Regarding all the other tests, the data have been grouped based on
the test, disregarding which operator delivered the test, in case multiple
operators are entitled to perform it.
20
Thus, we considered four tests (Nurse test, Nurse Practitioner test,
Lab test, and Xray test). For each of the four tests, the empirical
distribution of the service times has been fitted. Details are provided
in Table A.11. The duration of the tests provided in Table 3 (scenario
S1) were obtained by rounding the mean service time 𝜇 in Table A.11
to the nearest integer.

To maintain the same structure as in the real case, where the
number of tests coincides with the number of exam rooms, in this
paper we assume that there are 4 exam rooms. Consequently, the daily
opening time has been reduced from 10 to 8 h.

Appendix B. Further computational results

This appendix contains figures concerning solution quality for sce-
narios S3–S7. Specifically, considering scenario S3, Fig. B.17 shows the
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Fig. B.18. Scenario S3, 𝐻 = 240, 𝑑1 = 14: Total waiting time inside exam rooms (in minutes).
Fig. B.19. Scenarios S4–S7, 𝐻 = 240: Makespan (in minutes).
percentage difference between the workload of the bottleneck operator
and the makespan, while Fig. B.18 reports the waiting time inside
the exam room (for FRA and FSA the plot shows the 95% confidence
intervals for the mean obtained with 30 simulation runs).

Further results are reported for scenarios S4–S7. As expected, offline
approaches outperform online ones in terms of all the KPIs used. For
21
this reason, the following figures focus on the comparison between the
offline policies only, i.e., OPT, SPT, LPT and RR. Figs. B.19, B.20, and
B.21 report separately for each scenario and for each instance, respec-
tively the makespan, the percentage difference between makespan and
workload of the bottleneck operator, and waiting time inside the exam
room.
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Fig. B.20. Scenarios S4–S7, 𝐻 = 240: percentage gap between the workload of the bottleneck operator and makespan.
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Fig. B.21. Scenarios S4–S7, 𝐻 = 240: Average patient waiting time inside exam room (in minutes).
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