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THE CAUCHY-DIRICHLET PROBLEM FOR THE

MOORE-GIBSON-THOMPSON EQUATION

FRANCESCA BUCCI AND MATTHIAS ELLER

Abstract. The Cauchy-Dirichlet problem for the Moore-Gibson-Thompson equation is
analyzed. With the focus on non-homogeneous boundary data, two approaches are offered:
one is based on the theory of hyperbolic equations, while the other one uses the theory
of operator semigroups. This is a mixed hyperbolic problem with a characteristic spatial
boundary. Hence, the regularity results exhibit some deficiencies when compared with the
non-characteristic case.

1. Introduction

The Moore-Gibson-Thompson (MGT) equation

wttt + αwtt − c2∆w − b∆wt = f (1.1)

is a hyperbolic partial differential equation with respect to the t variable, of order three
for all b > 0. This can be seen as follows: its principal symbol is −iξ30 + biξ0|ξ|2, and

hence, the equation is even strictly hyperbolic, since its characteristic roots 0,
√
b|ξ|,−

√
b|ξ|

are distinct for all ξ ∈ R
d \ {0}. The other terms are of lower order. Since the principal

part is strictly hyperbolic, hyperbolicity is preserved regardless of lower order terms; see [18,
Corollary 12.4.10]. In this article we discuss the Cauchy-Dirichlet problem for the equation
(1.1), that means the initial-boundary value problem (IBVP)

Mw = f in Q, w = g in Σ, w(0) = w0 , wt(0) = w1 , wtt(0) = w2 in Ω.

having set
Mw := wttt + αwtt − c2∆w − b∆wt , (1.2)

and where Ω is a (non-empty) bounded, open and connected subset of Rd with a smooth
boundary Γ. The set Q = (0, T ) × Ω is the time-space cylinder with lateral boundary Σ =
(0, T ) × Γ where T > 0. More specifically, we are interested in the well-posedness of this
Cauchy-Dirichlet problem in a suitable Sobolev space.

While general results for the well-posedness of hyperbolic initial-boundary value problems
are available, none of them can be just quoted here for an easy answer. The problem with
the MGT equation is that the spatial boundary Γ is characteristic. Note that this third
order equation does not contain a derivative of order three in normal direction, regardless
of the geometry of the boundary. Hence, the analysis by Sakamoto [48] cannot be used to
study the present IBVP. Only Hörmander’s discussion of the mixed hyperbolic problem [18,
Section 12.9] allows for characteristic boundaries. But his approach is limited to the constant
coefficient problem in the half space. A C∞-theory is presented, hence there are no estimates.

We explore two distinct approaches to the regularity analysis of the problem under consid-
eration. One uses the theory of hyperbolic equations – a proper perspective not embraced so
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2 FRANCESCA BUCCI AND MATTHIAS ELLER

far in the literature on the MGT equation – and makes necessary adjustments to Sakamoto’s
approach because of the characteristic boundary.

The other one takes instead the perspective of Pandolfi and the first named author which
relates the MGT equation to a suitable wave equation with memory [2]. The latter approach
then appeals to the hyperbolic regularity theory for linear wave equations with Dirichlet
boundary conditions which is largely a consequence of Sakamoto’s work on scalar strictly
hyperbolic equations [47, 48]. An approach via first order system was given in the book by
Chazarain and Piriou [8, Example 7.3.10]. A closer major reference for the present analysis
is the work by Lasiecka, Lions and Triggiani, where energy methods and semigroup theory
intertwine [28]. The relevance of the theory of cosine operators for the regularity analysis of
second-order equations proves its strength also in the study of the third-order equation under
examination.

The two approaches combine to bring about the final conclusion, in the form of the interior
and boundary regularity results stated as Theorem 1.1 below. It is interesting to note the
differences between the two approaches. The approach based on the theory of semigroups
requires a little more regularity of the Dirichlet boundary data to obtain optimal results
concerning interior regularity. On the other hand, the hyperbolic approach assumes less
regularity of the boundary data and produces less interior regularity. Both arguments lead
to a trace regularity result.

The structure of the paper is readily outlined. In the next subsection we present the full
statement of the main results. We leave a review of pertinent literature on the MGT equation
to Subsection 1.2, along with the a brief mention of the physical considerations which brought
about the (quasilinear) Jordan-Moore-Gibson-Thompson equation, and thus its linearization.
This subsection is intended to provide a context for the MGT equation, along with an updated
list of references. Its reading can be postponed, if one aims at focusing on the core of the
present study. Section 2 and Section 3 contain the distinct analyses, that eventually culminate
in the proof of our main result, in accordance with the aforesaid distinct approaches.

1.1. Main result. Consider the Cauchy-Dirichlet problem for the MGT equation, that we
rewrite here for the reader’s convenience:







wttt + αwtt − c2∆w − b∆wt = f(t, x) in Q

w(0, ·) = w0 , wt(0, ·) = w1 , wtt(0, ·) = w2 in Ω

w(t, x) = g(t, x) on Σ.

(1.3)

We briefly recall that the partial differential equation (PDE) referred to in the literature as the
Moore-Gibson-Thompson equation – in place of the longer Stokes-Moore-Gibson-Thompson-
Jordan equation, which gives credit to various contributions during the decades, from Stokes
[50] until Jordan [20, 21] – is the linearization of a mathematical model of ultrasonic wave
propagation, known as the Jordan-Moore-Gibson-Thompson equation; see the next subsection
for an overview in a bit more detail. The unknown w = w(t, x), (t, x) ∈ (0, T )×Ω, represents
the acoustic velocity potential or alternatively, the acoustic pressure (cf. [24] for a discussion
on this issue). The coefficients c, b, α are constant and positive; they represent the speed and
diffusivity of sound (c, b), and a viscosity parameter (α), respectively. A relaxation parameter
τ > 0 whose origin will appear clearer in Subsection 1.2 has been set equal to 1, for simplicity
of exposition. The value

γ = α− c2

b
(1.4)
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will occur throughout, even though its property of being a threshold for uniform stability
will not play any role here; see the former investigations of Kaltenbacher et al. [23] and
Marchand et al. [40] (the latter providing a clarifying spectral analysis), as well as Dell’Oro and
Pata [15] (driven by the perspective of viscoelasticity). Indeed, the first studies on (semigroup)
well-posedness of the Cauchy-Dirichlet and Cauchy-Neumann problems associated with the
MGT equation are carried out in [23] and [40], in the case of homogeneous boundary conditions
(i.e. with g ≡ 0). The key idea in both studies is the introduction of the auxiliary variable
z = wt + c2w/b and the equivalent coupled (PDE-ODE) system satisfied by (z, w), where z
solves a second-order wave equation.

In the present work, focus is more specifically on the boundary-to-interior and interior-to-
boundary regularity of the solutions, in a basic (and natural) functional setting. Accordingly,
the regularity of the map

{
w0, w1, w2, f, g

}
−→

{

w,wt, wtt,
∂w

∂ν
,
∂2w

∂ν2

}

(1.5)

which associates to all data the interior solution (position, velocity, acceleration) in Q, as
well as normal derivatives of order one and two on Σ, will be the object of our investigation.
Since the differential equation is of order three, the most natural setting from the viewpoint
of hyperbolic PDE is to look for solutions w ∈ H2

loc(Q) or w ∈ C([0, T ], H2(Q)).
Our main result concerning the third order PDE under investigation, stated below, is

similar to the interior and boundary regularity results that pertains to the Cauchy-Dirichlet
problem for second order wave equations; see [48], [28, Theorem 3.4, Theorem 2.1].

Theorem 1.1. (a) With reference to the IBVP (1.3) with 0 < T < +∞, assume that

w0 ∈ H2(Ω) , w1 ∈ H1(Ω) , w2 ∈ L2(Ω) , (1.6a)

f ∈ L2(Q) = L2(0, T ;L2(Ω)) , (1.6b)

g ∈ C([0, T ], H3/2(Γ)) ∩H2(0, T ;L2(Γ)) , (1.6c)

gt ∈ C([0, T ], H1/2(Γ)) , (1.6d)

along with the compatibility conditions

w0|Γ = g|t=0 ∈ H3/2(Γ) , w1|Γ = gt|t=0 ∈ H1/2(Γ) . (1.7)

Then the unique solution to (1.3) satisfies

(w,wt, wtt) ∈ C([0, T ], H2(Ω)×H1(Ω)× L2(Ω)) . (1.8)

If, in addition g ∈ H2(Σ), then we have the trace regularity result

∂2w

∂t ∂ν
∈ L2(Σ) . (1.9)

(b) Assume that g satisfies – in place of (1.6c)-(1.6d) – the weaker property

g ∈ H1(Σ) and gt ∈ H1(Σ) , (1.10)

with the regularity (1.6b) of the affine term and

w0 ∈ H1(Ω) , w1 ∈ H1(Ω) , w2 ∈ L2(Ω)

(together with the compatibility conditions (1.7)). Then, the unique solution to (1.3) satisfies

(w,wt, wtt) ∈ C([0, T ], H1(Ω)×H1(Ω)× L2(Ω)) ,
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and the following trace regularity result holds true:

∂w

∂ν
,
∂2w

∂t∂ν
∈ L2(Σ) . (1.11)

All quantities are continuous with respect to the data, consistently with the respective topolo-
gies.

Remarks 1.2 (Boundary regularity). (i) It is important to emphasize that – just like in the
case of wave equations or other hyperbolic-like PDE – the boundary regularity (1.9) cannot
be inferred on the only basis of the interior regularity (w,wt) ∈ C([0, T ], H2(Ω) × H1(Ω)).
Similarly, the regularity (1.11) does not follow directly from the interior regularity (w,wt) ∈
C([0, T ], H1(Ω)×H1(Ω)).
(ii) The MGT equation does not yield the full trace regularity ∂νw ∈ H1(Σ) and ∂2νw ∈ L2(Σ)
which would be expected from a third-order strictly hyperbolic PDE with non-characteristic
boundary [48]. This is exactly because the boundary Σ is characteristic.
(iii) While a trace regularity result for the second-order normal derivative cannot be obtained,
we wonder whether g ∈ H2(Σ) implies ∂w/∂ν ∈ H1(Σ).
(iv) Instrumental to the study of an inverse problem, the regularity of boundary trace (1.9) is
shown in [33] for the special case of homogeneous boundary data. The said result is contained
in our Proposition 2.3 which pertains to the general non-homogeneous case, and a fortiori in
Theorem 1.1, part (a). The respective proofs are distinct.

Remarks 1.3 (Interior regularity). In the case of homogeneous boundary data and affine
term, the interior regularity of solutions (1.8) (in Theorem 1.1, part (a)) is found already
in the well-posedness result of [40, Theorem 2.1], and also in the recent [2, Theorem 5.3].
Indeed, g ≡ 0 combined with the assumption (1.6a) and the compatibility conditions (1.7)
yields w0 ∈ H2(Ω) ∩ H1

0 (Ω) as well as w1 ∈ H1
0 (Ω), which gives (w0, w1, w2) ∈ [H2(Ω) ∩

H1
0 (Ω)] × H1

0 (Ω) × L2(Ω), where the latter functional space is nothing but the space U3 in
the statement of the said Theorem 2.1 of [40]. And besides, the result is contained in the
complex of regularity results summarized by the table 2 of [2, Theorem 5.3], if one takes in
particular λ = 2, µ = 1, ν = 0.

As for part (b) of Theorem 1.1, we note that in the case g ≡ 0 it asserts in particular
the well-posedness of the IBVP for the MGT equation (with trivial boundary data) in the
space H1

0 (Ω)×H1
0 (Ω)×L2(Ω). This result was originally proved in [23], with the significant

specification of the group property of the evolution. It is also contained in the aforesaid [2,
Theorem 5.3].

1.2. Background, literature review. The MGT equation arises in the context of a branch
of physics and acoustics known as nonlinear acoustics (NLA), where one deals more specif-
ically with sound waves of sufficiently large amplitudes. The reader is referred e.g. to the
monographs [46] and [16], offering a predominant either physical or mathematical treatment,
respectively. The review paper [22] provides an overview of established PDE models of non-
linear sound propagation, as well as of more recent developements, along with a very useful
collection of references.

Aiming to introduce a minimal mathematical background for the subject of the present
investigation, we record explicitly two classical PDE models of NLA, namely, the Westervelt
equation

utt − c2∆u − b∆ut =
βa
ρc2

(u2)tt in (0, T )× Ω
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(formulated in terms of the acoustic pressure u), and the Kuznetsov equation

ψtt − c2∆ψ − b∆ψt =
∂

∂t

(βa − 1

c2
ψ2
t + |∇ψ|2

)

in (0, T )× Ω

(formulated in terms of the acoustic velocity potential ψ); all constants that occurr in the
equations are positive: c, b are the speed and diffusivity of sound, ρ > 0 is the mass density,
βa > 1. The connections of the Westervelt and Kuznetsov (and Khokhlov-Zabolotskaya-
Kuznetsov) models with the Navier-Stokes and Euler compressible system is explored in the
recent [12].

A well-recognized issue which arises in the modeling of propagation of acoustic and thermal
waves is the paradox of heat conduction, namely, the incongruity between the infinite speed
of propagation of a thermal disturbance with the principle of classical mechanics known as
causality; see, e.g., [21] and its references. Aiming to overcome this issue, the use of the
(space-time) Maxwell-Cattaneo law ([6, 7])

τ q̇ + q = −κ∇θ

as constitutive relation for the heat flux q (in place of the Fourier law, that corresponds to
τ = 0, whilst above τ > 0) has been proposed; such a choice eventually leads to the third-order
PDE model

τψttt + ψtt − c2∆ψ − b∆ψt =
∂

∂t

( 1

c2
B

2A
ψ2
t + |∇ψ|2

)

(1.12)

(A,B are positive constants), known as the Jordan-Moore-Gibson-Thompson (JMGT) equa-
tion [20]. The reader is referred to [21] for details on the derivation of the equation (1.12);
see also [22].

Notice that all three aforementioned equations are quasilinear PDE. And yet, differently
from the Westervelt and Kuznetsov equations, the linearization of the JMGT equation – i.e.
the MGT equation – is a strictly hyperbolic equation, as enlightened clearly in the Introduc-
tion; its mathematical analysis raises nontrivial issues, despite its being linear. (Although
perhaps unnecessary, we recall that the linearization of the Westervelt and Kuznetsov equa-
tions – viz. the strongly damped wave equation utt − c2∆u− b∆ut = 0 – has a parabolic-like
behaviour, as its dynamics is governed by an analytic semigroup.)

We recall as first the study of well-posedness and long-time behaviour for the JMGT
equation (with time-dependent viscosity) carried out in [24]; see also the recent [44]. Former
contributions to the understanding of the analytical features of its linearization are found
in [23] and [40], where major focus is placed on well-posedness of IBVP with homogenous
(Dirichlet or Neumann) boundary data and on stability properties; in particular, [40] further
provides a detailed spectral analysis. While they establish well-posedness in more than one
functional setting and show that the dynamics is governed by a strongly continuous group,
these works disclose the crucial role of the parameters b and γ (defined by (1.4)) for well-
posedness and uniform stability, respectively. Indeed, in the case b = 0 the associated initial-
boundary value problems are ill-posed [23]. Given b > 0, then γ must be positive, if one
wants to ensure the property of uniform stability. These findings have been revisited in [15]
within the history framework.

Most relevant to the present work is the study of the Cauchy-Dirichlet and Cauchy-
Neumann problems with non-homogeneous boundary data performed in [2], where a novel
viewpoint and avenue of investigation is adopted. More precisely, the MGT equation is em-
bedded in a family of wave equations with memory depending on a vectorial parameter. This
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viewpoint enables the derivation of both interior and trace regularity results; see [2, Theo-
rem 5.3] and [2, Corollary 6.3]. The boundary data are assumed to be square integrable (in
time and space) and provide a unique solution in a weaker topology, compared to our result.

We recently learnt about the subsequent work [51] that proves results about the same
Cauchy-Dirichlet and Cauchy-Neumann problems, taking the original path of [23] and [40].
Trace regularity results for both problems are obtained therein, in the case of homogeneous
initial data and forcing term, under square integrable boundary data which are subject to a
continuity condition at t = 0.

Because high intensity focused ultrasound plays a central role in several medical proce-
dures as well as industrial applications, optimal control problems arise naturally in the con-
text of NLA. A thorough overview of the literature on optimization problems associated with
nonlinear PDE models for acoustic wave propagation is beyond the present work’s scopes;
cf. [22] and its references. We limit ourselves to studies on the (MGT and) JMGT model. A
functional-analytical framework and a solution to a minimization problem associated with the
MGT equation is provided in [3], combining variational arguments with operator-theoretic
techniques. Specifically for the JMGT equation, we recall that [41] deals with shape opti-
mization; a sensitivity analysis with respect to the (relaxation) parameter τ > 0 has been
carried out in [25, 26].

We finally list a number of research works on the JMGT or the MGT equation, with
a wealth of diverse focuses and goals. These contributions concern: the case γ < 0, with
an insight into the chaotic behaviour of the dynamics [10], inverse problems ([37, 38], [33]),
long-time behaviour and attractors [4, 5], explicit decay rates ([42], [43]), null controllability
for both the JMGT and MGT equations [39], semilinear variants of the linear model and
blow-ups [9]. A variation of the original PDE model that displays an additional memory term
has been studied first in [31, 32]. Questions that are explored and responded regard primarily
well-posedness, the effect of the dissipation brought about by the memory term, decay rates.
Most recent articles include [1], [36], and [13, 14].

2. An approach exploiting the connection to wave equations with memory

In this section we prove part (a) of Theorem 1.1. Besides the interior regularity result
we show a first boundary regularity result (both stated therein); the latter is highlighted
as Proposition 2.3. A sought-after improvement of the regularity of the boundary traces is
briefly discussed in Remark 2.4.

The basis of our proofs is the connection between the MGT equation and a suitable integro-
differential equation devised in [2]. The theory of Volterra equations (of the second kind) and
the regularity theory for second-order wave equations provide the tools. Accordingly, for the
reader’s convenience we begin by considering the Cauchy-Dirichlet problem for second order
wave equations: we recall the basic mathematical tools and notation, and the representation
formula for its solutions that involves the cosine (and sine) operator, along with a few relevant
regularity results. The intermediate Proposition 2.1 establishes and details the connection
between the MGT equation with the said Volterra equation, and constitutes an essential
prerequisite for the understanding of the subsequent analysis. See also Remark 2.2.



THE CAUCHY-DIRICHLET PROBLEM FOR THE MGT EQUATION 7

2.1. Second order wave equations. Preliminaries. Consider the following IBVP for a
second order (linear) wave equation in the unknown z = z(t, x):







ztt = ∆z + f in Q

z(0, ·) = z0 , zt(0, ·) = z1 in Ω

z|Σ = g .

(2.1)

Let A be the realization of the Laplace operator in L2(Ω), with Dirichlet boundary conditions
(BC); namely,

Az := ∆z , D(A) = H2(Ω) ∩H1
0 (Ω) . (2.2)

It is well-known that the operator A, originally defined as in (2.2), can be extended as
A : L2(Ω) → [D(A∗)]′. Moreover, the fractional powers of −A are well defined; cf. [30, Vol. II,
§ 10.5.4] (paying attention to the fact that the present A is denoted by −A therein, whereas
here A is a different operator). The Dirichlet (Green) map D is defined as usual by

D : L2(Γ) ∋ ϕ 7−→ Dϕ =: ψ ⇐⇒
{

∆ψ = 0 in Ω

ψ = ϕ on Γ ,
(2.3)

namely, ψ = Dϕ is the harmonic extension of ϕ from the boundary of Ω into its interior.
Thus, the IBVP (2.1) corresponds to the abstract Cauchy problem

{

y′ = Ay + Bg in [D(A∗)]′

y(0) = y0
(2.4)

where we set y(t) = (z(t), zt(t)), y0 := (z0, z1) and the linear operators (A, B) have the
following explicit representation (in terms of A and D), respectively:

A =

(

0 I

A 0

)

, B =

(

0

−AD

)

;

in particular then, B : L2(Γ) −→ [D(A∗)]′. The operator A is the infinitesimal generator
of a C0-semigroup eAt, t ≥ 0, e.g. on Y = D((−A)1/2) × L2(Ω). The abstract differential
formulation (2.4) brings about the following integral representation of the solution y(t):

y(t) = eAty0 +

∫ t

0

eA(t−s)
Bg(s) ds , (2.5)

which a priori makes sense at least on [D(A∗)]′.
For cosine and sine operators we follow the notation adopted already in [2, Section 2].

Introduce the operator A and the families of operators R+(·), R−(·) defined as follows:

A = i(−A)1/2 , R+(t) =
eAt + e−At

2
, R−(t) =

eAt − e−At

2
. (2.6)

R+(t) is the strongly continuous cosine operator generated by −A in L2(Ω) ([49], [17]). (See
also [30, Vol. II, § 10.5.4], paying attention to the distinct notations: indeed, even though the
cosine operatorR+(t) coincides with C(t) therein, the operator denoted by S(t) is actually the
present A−1R−(t).) We note that A is the infinitesimal generator of a C0-group of operators
in L2(Ω). It is by now well-known that the semigroup eAt admits the explicit representation

eAt =

(

R+(t) A−1R−(t)

−AR−(t) R+(t)

)

,
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in terms of the cosine and sine operators, and that the solution to the IBVP (2.1) is given by

z(t) = R+(t)z0 +A−1R−(t)z1 +A−1

∫ t

0

R−(t− s)f(s) ds

−A
∫ t

0

R−(t− s)Dg(s) ds ;

(2.7)

see, e.g., [30, Vol. II, § 10.5.4].
Since the regularity pertaining to the cosine and sine operators, specifically when acting

either on elements of the Banach space L2(Ω) or (on elements) of the domain of the generator
will be used repeatedly, we record here first of all that

R+(·)x , R−(·)z ∈ C([0, T ], L2(Ω)) with x, z ∈ L2(Ω),

R+(·)x , R−(·)z ∈ C([0, T ],D(A)) with x, z ∈ D(A) .
(2.8)

Furthermore, a rewriting (in abstract form) of the nontrivial result

{

(z0, z1) ∈ L2(Ω)×H−1(Ω) , f ≡ 0

g ∈ L2(Σ) = L2(0, T ;L2(Γ))
=⇒ (z, zt, ztt) ∈ C([0, T ], L2(Ω)×H−1(Ω))×H−2(Ω))

gives in particular

g ∈ L2(Σ) =⇒
(

A
∫ ·

0 R−(· − s)Dg(s) ds

A2
∫ ·

0 R+(· − s)Dg(s) ds

)

∈ C([0, T ], L2(Ω)×H−1(Ω)) , (2.9)

(for z0 = z1 ≡ 0), which in turn tells us

g ∈ L2(Σ) =⇒
(

A
∫ ·

0
R−(· − s)Dg(s) ds

A
∫ ·

0
R+(· − s)Dg(s) ds

)

∈ C([0, T ], L2(Ω)× L2(Ω)) , (2.10)

since H−1(Ω) ≡ [D(A)]′. The boundary-to-interior regularity results expressed by (2.10) will
be used quite often in the computations. (We note that the result mentioned as first, below
(2.8), has been shown to follow from a (sharp) boundary regularity estimate for the solution
to a dual problem. Both aforesaid results are recorded in [30] as Theorem 10.5.3.2 and
Theorem 10.5.3.1, respectively. Definitive proofs of these results are originally devised in the
contemporary [34] and [29]; a roadmap for the subject can be found in [30, Section 10.5] and
in the relative Notes [30, p. 1060]. We recall explicitly [47] and [35] as the former contributions
to the regularity analysis of the IBVP (2.1).)

It is useful to introduce the symbol K to denote the linear operator defined by

K : f −→ (Kf)(t) := A−1

∫ t

0

R−(t− s)f(s) ds . (2.11)

Specifically when f(·) = Dg(·), one has

(KDg(·))(t) := A−1

∫ t

0

R−(t− s)Dg(s) ds = A−2
[

A
∫ t

0

R−(t− s)Dg(s) ds
]

,

which tells us – in view of (2.10) – that KDg ∈ D(A2) ≡ D(A), if g ∈ L2(Σ).
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2.2. Proof of Theorem 1.1, part (a), and a first trace regularity result. The starting
point of the present analysis is the connection between the MGT equation and a wave equation
with memory (and affine term depending also on initial data) first, and a suitable Volterra
equation of the second kind next, to which problem (1.3) can be reduced to, as shown in [2].
The Proposition below embodies the statement of Proposition 3.6 in [2], without neglecting
the nontrivial forcing term f in the original IBVP (1.3), and removing the translation of the
differential operator ∆ to ∆− I, which is here unnecessary. The symbol ∗ below denotes the
usual convolution operation.

Proposition 2.1. Any solution w to the initial/boundary value problem (1.3) is such that

v = e
γ
2
tw solves the following Volterra equation of the second kind:

v(t) +

∫ t

0

L(t− s)v(s) ds = H(t) in Q (2.12)

where L(·) is the strongly continuous kernel defined by

L(t)v = − β√
b
A−1R−(

√
bt)v − 1√

b
A−1

∫ t

0

R−(
√
b(t− s))K(s)v ds , (2.13)

and the affine term H(·) is given – in terms of the initial and boundary data – by

H(t) =
[

R+(
√
bt) +

γ

2
√
b
A−1R−(

√
bt)
]

w0 +
1√
b
A−1R−(

√
bt)w1+

+
1√
b
A−1

∫ t

0

R−(
√
b(t− s))

[
h0(t)w0 + h1(t)w1 + h2(t)(w2 −∆w0)

]
ds−

+
1√
b
A−1

∫ t

0

R−(
√
b(t− s))f̃(s) ds−

√
bA
∫ t

0

R−(
√
b(t− s))Dg̃(s) ds .

(2.14)

In the above formulas g̃ = e
γ
2
tg, while the constant β and the functions K(·), hi(·), i = 0, 1, 2,

f̃(·) read explicitly as follow:

β = −γ
(3

4
γ − α

)

, K(t) = −γ(γ − α)2e(
3

2
γ−α)t ,

h0(t) = −γ(γ − α)e(
3

2
γ−α)t , h1(t) = −γe( 3

2
γ−α)t , h2(t) = e(

3

2
γ−α)t ;

f̃(t) = e
γ
2
t
(

λ(t) + γ
(
e−

c2

b
· ∗ λ

)
(t)
)

, λ(t) :=

∫ t

0

e−α(t−s)f(s) ds .

(2.15)

In particular then, the initial and boundary data for v are related to those of w as follows:

v|t=0 =: v0 ≡ w0 , vt|t=0 =: v1 =
γ

2
w0 + w1 ;

v|Σ = g̃ := e
γ
2
tg .

(2.16)

Proof. It suffices to follow the perspective of [2], and more specifically the arguments in
Section 3.1, which eventually result in Proposition 3.6 therein. With slight modifications and
a straightforward computation, one arrives here at the following (equivalent) IBVP for an
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integro-differential equation satisfied by v = e
γ
2
tw:







vtt = b∆v +

∫ t

0

K(t− s)v(s) ds + βv+

+
[
h0(t)w0 + h1(t)w1 + h2(t)(w2 − b∆w0)

]
+ f̃(t) in Q

v(0, ·) = w0 , vt(0, ·) = γ
2w0 + w1 in Ω

v = g̃ on Σ

(2.17)

(with all functions defined in (2.15) and g̃ = e
γ
2
tg). Thus, mutatis mutandis, the representa-

tion formula (2.7) provides the tool. �

Before starting the proof of our main result, a few considerations on the regularity of
solutions to Volterra equations are in order; partly were given already in [2], partly are new.
Consider a general Volterra equation of the second kind, that is v + L ∗ v = h with

(L ∗ v)(t) =
∫ t

0

L(t− s)v(s) ds =

∫ t

0

L(s)v(t− s) ds .

It is known that if L is a strongly continuous function of time, with values in L(H) (H is a
Hilbert space) and h(·) is an integrable H-valued function, then the corresponding solution
has the explicit representation

v = h+

∞∑

k=1

(−1)kL(∗k) ∗ h , (2.18)

where L(∗n) indicate the iterated convolutions, recursively defined as follow:

L(∗1) = L , L(∗(n+1)) ∗ h = L ∗
(
L(∗n) ∗ h

)
, n ≥ 1 ;

the uniform convergence of the series can be easily proved (cf. e.g. [11, Chapter 5]). From
formula (2.18) we see that the regularity in time and space of v is determined by the one of
h, as well as of the said iterated convolutions. In the present case, with L given by (2.13)
(and h eventually replaced by H), the first iteration reads as

(L ∗ h)(t) = − β√
b
A−1

∫ t

0

R−(
√
b(t− s))h(s) ds

− 1√
b
A−1

∫ t

0

[ ∫ t−s

0

R−(
√
b(t− s− r))K(r) dr

]

h(s) ds .

Thus, in the regularity analysis of this convolution the properties of the first summand will
prevail. Since the said term is (neglecting the constant in front) nothing but (K h)(·), with
the operator K defined in (2.11), the regularity properties of K such as e.g.

K ∈ L(L1(0, T ;L2(Ω)), C([0, T ], H1
0 (Ω))) (2.19)

will imply that e.g.,

h ∈ L1(0, T ;L2(Ω)) =⇒ L ∗ h ∈ C([0, T ], H1
0 (Ω)) ,

continuously with respect to the topologies under consideration. The same consideration
is valid, a fortiori, to the next iterated convolution, and so on. In conclusion, since K is
smoothing both in time and space, it will suffice to pinpoint the regularity of the affine term
h, which determines the regularity of v.
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Remark 2.2. To summarize the above considerations: the representation (2.18), combined
with the specific structure (2.13) of the kernel L in the Volterra equation v + L ∗ v = h,
guarantees v ∈ C([0, T ], X) on the basis of h ∈ C([0, T ], X) also in the case X is a Sobolev
space Hk(Ω); namely, also in the case X is not the domain of a fractional power of the
operator −A, as are the spaces Xα in the statement of Lemma 4.1 in [2].

Proof of Theorem 1.1, part (a). In order to establish the interior regularity of solutions
to the Cauchy-Dirichlet problem (1.3) as specified by (1.8), in view of Proposition 2.1 we turn
our attention to the Volterra equation (2.12), that is v + L ∗ v = H (in short), with L and
H defined by (2.13) and (2.14), respectively. Because specifically v ∈ C([0, T ], H2(Ω)) will
be guaranteed by H ∈ C([0, T ], H2(Ω)) (cf. Remark 2.2), the optimal regularity (in time and
space) of the affine term H(t) must be pinpointed.

1. In order to render the computations more readable, we initially set

F(t) := h0(t)w0 + h1(t)w1 + h2(t)
(
w2 −∆w0

)
; (2.20)

one needs to remember that F depends on initial data. Owing to the assumption (1.6c),
which yields as well g̃ ∈ H2(0, T ;L2(Γ)) for g̃ = e

γ
2
tg, we are allowed to integrate by parts

(in time) twice in (2.14), thereby obtaining (after setting b = 1 for the sake of simplicity and
the readers’ convenience) first

H(t) =
[

R+(t) +
γ

2
A−1R−(t)

]

w0 +A−1R−(t)w1 +R+(t− s)Dg̃(s)
∣
∣
∣

s=t

s=0

−
∫ t

0

R+(t− s)Dg̃t(s) ds +A−1

∫ t

0

R−(t− s)
(
F(s) + f̃(s)

)
ds

= R+(t)
(
w0 −Dg̃(0)

)
+A−1R−(t)

[γ

2
w0 + w1

]

+Dg̃(t)

−
∫ t

0

R+(t− s)Dg̃t(s) ds +A−1

∫ t

0

R−(t− s)
(
F(s) + f̃(s)

)
ds ,

(2.21)

and next

H(t) = R+(t)
[
w0 −Dg(0)

]
+A−1R−(t)

[γ

2
w0 + w1

]

+Dg̃(t) +A−1Dg̃t(t)

−A−1R−(t)Dg̃t(0)−A−1

∫ t

0

R−(t− s)Dg̃tt(s) ds

+A−1

∫ t

0

R−(t− s)
(
F(s) + f̃(s)

)
ds

= R+(t)
[
w0 −Dg(0)

]
+A−1R−(t)

[γ

2
w0 + w1 −D

(γ

2
g(0) + gt(0)

)]

+Dg̃(t) +A−1Dg̃t(t)−A−1

∫ t

0

R−(t− s)Dg̃tt(s) ds

+A−1

∫ t

0

R−(t− s)
[
h0(s)w0 + h1(s)w1 + h2(s)

(
w2 −∆w0

)
+ f̃(s)

]
ds

=:

9∑

i=1

Ti .

(2.22)
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Let us examine either summand Ti, i = 1, 2, . . . , 9 in (2.22). Recall the assumptions w0 ∈
H2(Ω), w1 ∈ H1(Ω), along with the definition (2.3) of the Dirichlet map D; it will be used
that

D ∈ L(Hs(Γ), Hs+1/2(Ω)) ∀s . (2.23)

Then, with g(0) ∈ C([0, T ], H3/2(Γ)) and gt(0) ∈ C([0, T ], H1/2(Γ)), we see that w0−Dg(0) ∈
H2(Ω) and w1 −Dgt(0) ∈ H1(Ω), respectively; in addition, on account of the compatibility
conditions (1.7), we also know that

[
w0 −Dg(0)

]∣
∣
Γ
= 0 ,

[
w1 −Dgt(0)

]∣
∣
Γ
= 0 .

The above means in particular w0 −Dg(0) ∈ D(A), so that the action of the cosine operator
R+(t) generated by A ensures that T1 := R+(·)

[
w0 − Dg(0)

]
∈ C([0, T ],D(A)) as well.

Similarly, we have

T2 := A−1R−(·)
[γ

2

(
w0 −Dg(0)

)
+
(
w1 −Dgt(0)

)]

∈ C([0, T ],D(A))

and conclude that

Ti ∈ C([0, T ],D(A)) ⊂ C([0, T ], H2(Ω)) , i = 1, 2 . (2.24)

In view of the regularity assumptions (1.6c)-(1.6d) on the boundary datum, and taking into
account once again (2.23), one finds

T3 + T4 := Dg̃ +A−1Dg̃t ∈ C([0, T ], H2(Ω)) . (2.25)

As for T5, readily

T5 = −A−1

∫ t

0

R−(t− s)Dg̃tt(s) ds = A−2
{

−A
∫ t

0

R−(t− s)Dg̃tt(s) ds
}

∈ C([0, T ],D(A))

(2.26)
as a consequence of the regularity result (2.10), which holds true since g̃tt ∈ L2(Σ) (the role
of g is played by g̃tt, here).

Of the three summands T6 =
(
K(h0(·)w0

)
(t) and T7 =

(
K(h1(·)w1

)
(t) and

T8 = A−1

∫ t

0

R−(t− s)h2(s)
(
w2 −∆w0

)
ds =

(
K(h2(·)

(
w2 −∆w0)

)
(t) ,

it is sufficient to analyze the latter. We simply have w2−∆w0 ∈ L2(Ω) by Assumption (1.6a),
and (2.19) does not suffice to obtain the needed space regularity. Then, we use the fact that
h2 ∈ C∞, integrate by parts (in time), and establish

T8 = −A−2R+(t− s)h2(s)
(
w2 −∆w0

)
∣
∣
∣

s=t

s=0
+A−2

∫ t

0

R+(t− s)h′2(s)
(
w2 −∆w0

)
ds

= −A−2
{

h2(t)
(
w2 −∆w0

)
−R+(t)h2(0)

(
w2 −∆w0

)

−
∫ t

0

h′2(t− s)R+(s)
(
w2 −∆w0

)
ds
}

∈ C([0, T ],D(A)) .

(2.27)

That

T6 , T7 ∈ C([0, T ],D(A)) (2.28)

follows similarly (neglecting the better regularity in space, as it is here unnecessary).
To analyze the term

T9 := −A−1

∫ t

0

R−(t− s)f̃(s) ds
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that is T9 =
(
Kf̃(·)

)
(t), we observe preliminarly that the regularity of f̃(t) is determined by

the one of λ(t), which in turn is the same of
(
e−α· ∗ f

)
(t). Since by assumption f ∈ L2(Q),

then λ ∈ H1(0, T ;L2(Ω)), with

λ′(t) =
d

dt

∫ t

0

e−α(t−s)f(s) ds = f(t)− αλ(t) .

Therefore, we find

A−1

∫ t

0

R−(t− s)λ(s) ds = −A−2
{

R+(t− s)λ(s)
∣
∣
∣

s=t

s=0
−
∫ t

0

R+(t− s)
(
f(s)− αλ(s)

)
ds
}

= −A−2
{

λ(t) −
∫ t

0

R+(t− s)
(
f(s)− αλ(s)

)
ds
}

= −A−2
{

λ(t) −
∫ t

0

R+(t− s)
(
f(s)− αλ(s)

)
ds
}

∈ C([0, T ],D(A)) ,

which gives

T9 ∈ C([0, T ],D(A)) ⊂ C([0, T ], H2(Ω)) (2.29)

as well. In conclusion, combining (2.29) with (2.27), (2.28), (2.26), (2.25) and (2.24) we find

H ∈ C([0, T ], H2(Ω)) ,

which implies v ∈ C([0, T ], H2(Ω)); consequently, we attained w ∈ C([0, T ], H2(Ω)), that is
the regularity statement for the ‘position’ in (1.8).

2. We need to show now that regularity pertaining to wt and wtt in (1.8) holds true, namely,
that (wt, wtt) ∈ C([0, T ], H1(Ω) × L2(Ω)) holds. We proceed similarly as in the proof of [2,
Theorem 4.2]: the said regularity will be inherited by the regularity of the derivatives vt and
vtt of the solution v to the Volterra equation (2.12), which is in turn determined by the one
of the respective right hand sides of the Volterra equations satisfied by vt and vtt. Rewrite
(2.12) as

v(t) +

∫ t

0

L(s)v(t− s) ds = H(t)

to deduce that vt satisfies

vt(t) +

∫ t

0

L(t− s)vt(s) ds = Ht(t)− L(t)v0 , (2.30)

where – given the expression (2.13) of the kernel L – we know that

L(t)v0 = L(t)w0 ∈ C([0, T ],D(A)) ⊂ C([0, T ], H1(Ω)) .

Therefore, aiming at showing the regularity statement for the ‘velocity’ wt in (1.8), and given
the right hand side in the Volterra equation (2.30), the regularity Ht ∈ C([0, T ], H1(Ω)) is
what we need to prove. Restart from (2.21), to find – after an integration by parts (in time)
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in two summands –

Ht(t) = AR−(t)
[
w0 −Dg(0)

]
+R+(t)

[γ

2
w0 + w1

]

−A
∫ t

0

R−(t− s)Dg̃t(s) ds +

∫ t

0

R+(t− s)
[
F(s) + f̃(s)

]
ds

= AR−(t)
[
w0 −Dg(0)

]
+R+(t)

[γ

2
w0 + w1

]

+R+(t− s)Dg̃t(s)
∣
∣
∣

s=t

s=0

−
∫ t

0

R+(t− s)Dg̃tt(s) ds−A−1R−(t− s)
[
F(s) + f̃(s)

]
∣
∣
∣

s=t

s=0

+A−1

∫ t

0

R−(t− s)
[
F ′(s) + f̃ ′(s)

]
ds

= AR−(t)
[
w0 −Dg(0)

]
+R+(t)

[γ

2
w0 + w1

]

+Dg̃t(t)−R+(t)Dg̃t(0)

−
∫ t

0

R+(t− s)Dg̃tt(s) ds+A−1R−(t)F(0)

+A−1

∫ t

0

R−(t− s)
[
F ′(s) + f̃ ′(s)

]
ds ,

where it has been used that f̃(0) = 0 and once again that R−(0) = 0 (the term Dg̃t(t) and
its opposite are canceled at the outset). Substituting g̃t(0) = γ

2 g(0) + gt(0) in the latter
espression, we arrive at the following clean representation of Ht(t):

Ht(t) = AR−(t)
[
w0 −Dg(0)

]
+R+(t)

[γ

2

(
w0 −Dg(0)

)
+
(
w1 −Dgt(0)

)]

+Dg̃t(t)

−
∫ t

0

R+(t− s)Dg̃tt(s) ds+A−1R−(t)F(0)

+A−1

∫ t

0

R−(t− s)
[
F ′(s) + f̃ ′(s)

]
ds .

(2.31)

We examine now each summand in the right hand side of (2.31) to find, in succession,

AR−(·)
[
w0 −Dg(0)

]
∈ C([0, T ],D(A)) ⊂ C([0, T ], H1(Ω)) ,

R+(·)
[γ

2

(
w0 −Dg(0)

)
+
(
w1 −Dgt(0)

)]

∈ C([0, T ],D(A)) ,

Dg̃t ∈ C([0, T ], H1(Ω)) , in view of g̃t ∈ C([0, T ], H1/2(Γ)) ,

∫ t

0

R+(t− s)Dg̃tt(s) ds ∈ C([0, T ],D(A)) , in view of (2.10)

A−1R−(·)F(0) ∈ C([0, T ],D(A)) because of R−(·)F(0) ∈ C([0, T ], L2(Ω)) ,

A−1

∫ ·

0

R−(· − s)
[
F ′(s) + f̃ ′(s)

]
ds ∈ C([0, T ],D(A)) ,

that confirms the membership

Ht ∈ C([0, T ], H1(Ω)) .
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Consequently, the above establishes vt ∈ C([0, T ], H1(Ω)), so that wt ∈ C([0, T ], H1(Ω)), as
required by (1.8). It remains to prove wtt ∈ C([0, T ], L2(Ω)), which is accomplished in the
next step.

3. From (2.30) it follows that vtt solves the Volterra equation

vtt +

∫ t

0

L(t− s)vtt(s) ds = Htt(t)−
d

dt

[

L(t)v0

]

− L(t)v1 , (2.32)

where it is immediately seen that

d

dt

[

L(t)v0

]

− L(t)v1 = −βR+(t)v0 −
∫ t

0

R+(t− s)K(s)v0 ds− L(t)v1 ∈ C([0, T ], L2(Ω)) .

(2.33)
To establish the optimal regularity of the right hand side in (2.32), we pinpoint the one of
Htt. We resume then (2.31), derive one more time with respect to t, thus obtaining

Htt(t) = A2R+(t)
[
w0 −Dg(0)

]
+AR−(t)

[γ

2

(
w0 −Dg(0)

)
+
(
w1 −Dgt(0)

)]

−A
∫ t

0

R−(t− s)Dg̃tt(s) ds+R+(t)F(0)

+

∫ t

0

R+(t− s)
[
F ′(s) + f̃ ′(s)

]
ds ,

where all summands readily belong to C([0, T ], L2(Ω)). (Again, the term Dg̃tt(t) and its
opposite produce a cancellation.) The obtained regularity Htt ∈ C([0, T ], L2(Ω)) combined
with (2.33) implies the same membership for the right hand side of (2.32) and hence for vtt
and wtt. �

Boundary regularity results. To pinpoint the regularity of the normal traces, assume the
stronger hypothesis g ∈ H2(Σ). We resume the IBVP (2.17) satisfied by v = eγt/2w, where
F(t) denotes the function in (2.20) that depends on initial data (w0, w1, w2); the present
initial and boundary data (v0, v1, g̃) are defined in terms of (w0, w1, g) as in (2.16). Thus,

denote by f̂(·) the sum

f̂(t) = βv(t) +

∫ t

0

K(t− s)v(s)ds

︸ ︷︷ ︸

f0(t)

+ h0(t)w0 + h1(t)w1
︸ ︷︷ ︸

f1(t)

+ h2(t)
(
w2 −∆w0

)

︸ ︷︷ ︸

f2(t)

+f̃(t) ,

that we will consider as an affine term in (2.17). We then have v(t) = z(t)+ v2(t), having set

z(t) := R+(t)v0 +A−1R−(t)v1 +A−1

∫ t

0

R−(t− s)
[
f0(s) + f1(s)

]
ds

−A
∫ t

0

R−(t− s)Dg̃(s) ds ,

v2(t) := A−1

∫ t

0

R−(t− s)
[
f2(s) + f̃(s)

]
ds =:

[
K
(
f2(·) + f̃(·)

)]
(t) .

(2.34)

The analysis of the (sharp) boundary regularity of the summand z is straightforward: indeed,
in view of the regularity assumed on (w0, w1, g) we know that v0 ∈ H2(Ω), v1 ∈ H1(Ω),
g̃ ∈ H2(Σ) (with all meaningful compatibility conditions), while it is easily seen that f0 + f1
belongs to C∞([0, T ], H1(Ω)) ⊂ L2(0, T ;H1(Ω)). (To ascertain the latter claim, observe that
f0(·) possesses the interior regularity of v(·), i.e. v ∈ C([0, T ], H2(Ω)) – in view of part (a)
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of the proof –, which is even stronger than required, whilst f1 ∈ C∞([0, T ], H1(Ω)) because
w1, w0 ∈ H1(Ω) and hi ∈ C∞, i = 0, 1.) Consequently, the trace result

∂z

∂ν
∈ H1(Σ) = L2(0, T ;H1(Ω)) ∩H1(0, T ;L2(Γ)) (2.35)

is valid ([48], [28, Theorem 2.2]); in particular,

∂2z

∂t ∂ν
∈ L2(Σ) . (2.36)

Let us prove that ∂v2
∂ν ∈ H1(0, T ;L2(Γ)), as well. Rewrite v2 = v21 + v22, and examine the

first summand

v21(t) :=
(
Kf2

)
(t) = A−1

∫ t

0

h2(t− s)R−(s)(w2 −∆w0) ds .

Since h2 ∈ C1, then

v21t(t) =
∂

∂t
v21(t) = A−1h2(0)R−(t)(w2 −∆w0) +A−1

∫ t

0

h′2(t− s)R−(s)(w2 −∆w0) ds

= A−1R−(t)h2(0)(w2 −∆w0) +A−1

∫ t

0

R−(t− s)h′2(s)(w2 −∆w0) ds ,

which shows that v21t(t) is the solution to an IBVP for a second-order linear wave equation
such as (2.1), with specifically

z0 = 0 , z1 = h2(0)
(
w2 −∆w0

)
∈ L2(Ω) ,

f(t) = h′2(s)
(
w2 −∆w0

)
∈ C∞([0, T ], L2(Ω)) , g ≡ 0 .

The regularity of initial and boundary data, along with the compatibility condition z0|Γ =
g|t=0 = 0 ensure then

∂v21t
∂ν

∈ L2(Σ)

(cf. [48], [28]). A similar computation performed for the second component v22(t) =
(
Kf̃
)
(t)

– where it is utilized that f̃ ∈ H1(0, T ;L2(Ω)) – allows to confirm the same regularity of its
normal trace on Γ. Consequently,

∂2v2
∂t ∂ν

∈ L2(Σ) (2.37)

as well.

Recalling that w = e−γt/2v and v = z + v2, in view of the boundary regularity results
(2.36) and (2.37) established for either summand, the very same regularity is valid for w.
The trace regularity result is stated explicitly in the following Proposition.

Proposition 2.3. Under the hypotheses of Theorem 1.1, part (a) with the stronger assump-
tion g ∈ H2(Σ) on the Dirichlet data, the following boundary regularity result holds true:

∂2w

∂t ∂ν
∈ L2(Σ) .

Return now to v = z+ v2 and recall that the first summand z satisfies the full trace result
(2.35) anyhow. We thus examine the summand v2 and observe that if f ∈ L1(0, T ;H1(Ω)),

we also have f̃ ∈ L1(0, T ;H1(Ω)) (the time regularity is better, actually) so that

∂

∂ν

(
Kf̃
)
∈ H1(Σ)



THE CAUCHY-DIRICHLET PROBLEM FOR THE MGT EQUATION 17

([48], [28, Theorem 2.2]). As for the component v21, the same arguments yield

∂v21
∂ν

=
∂

∂ν

[
K
(
h2(·)(w2 −∆w0

)]
∈ H1(Σ) ,

provided w2 −∆w0 ∈ H1(Ω).

Remark 2.4. One the basis of these last observations, it appears that the approach taken
in the present section enables us to achieve the full trace result ∂u/∂ν ∈ H1(Σ) under the
hypotheses of Theorem 1.1, part (a), provided that

g ∈ H2(Σ) , f ∈ L1(0, T ;H1(Ω)) , w2 − b∆w0 ∈ H1(Ω) ,

which is true e.g. in the case w0 = w2 = 0, still with f ∈ L1(0, T ;H1(Ω)).

3. An approach based on the theory of hyperbolic equations: Proof of
Theorem 1.1, part (b)

Even though the characteristic boundary will force us to make some adjustments to the
general theory of mixed problems for hyperbolic equations, the overall procedure will be the
same as described by Sakamoto [48, Chapter 3]. We start by deriving a resolvent estimate
for the operator M . A duality argument establishes then the existence and uniqueness of the
initial-boundary value problem with homogeneous initial data. In order to include inhomo-
geneous initial data one needs to extend the resolvent estimate to a semigroup estimate.

Throughout this section we will work with the infinite time interval and denote Q∞ = R×Ω
and Σ∞ = R× Γ. From the theory of hyperbolic equations, we know the estimate

β‖e−βtv‖21,β,Q∞

+ ‖e−βt∂νv‖2Σ∞

.
1

β
‖e−βt(∂2t − b∆)v‖2Q∞

+ ‖e−βtv‖21,β,Σ∞

for sufficiently large β and all v satisfying e−βtv ∈ H2(Q), see e.g. [19, formula (24.1.4)] Here
the norms are weighted Sobolev norms

‖u‖2k,β,Q∞

=
∑

|α|≤k

β2k−2|α|‖∂αu‖2L2(Q∞) and ‖u‖2k,β,Σ∞

=
∑

|α|≤k

β2k−2|α|‖∂αu‖2L2(Σ∞) ,

where the derivatives in the second norm are all tangential derivatives.
Choose w ∈ H3(Q) and set v = ∂tw. The estimate above appear then as

β‖e−βtwt‖21,β,Q∞

+ ‖∂νwt‖2Σ∞

.
1

β
‖e−βt(∂2t − b∆)wt‖2Q∞

+ ‖e−βtwt‖21,β,Σ∞

,

which is already an estimate for the principal part of the MGT operator. However, we
estimate only time-derivatives. Hence, we add to this estimate the original estimate of the
wave operator with v = w, multiplied with β2 and obtain

β3‖e−βtw‖21,β,Q∞

+ β‖e−βtwt‖21,β,Q∞

+ β2‖e−βt∂νw‖2Σ∞

+ ‖e−βt∂νwt‖2Σ∞

.
1

β
‖e−βt(∂2t − b∆)wt‖2Q∞

+ β‖e−βt(∂2t −∆)w‖Q∞
+ ‖e−βtwt‖21,β,Σ∞

+ β2‖e−βtw‖21,β,Σ∞

.

Using now the fact that ∂t is a hyperbolic operator we estimate

β‖e−βt(∂2t − b∆)w‖2Q∞

.
1

β
‖e−βt(∂2t − b∆)wt‖2Q∞

(3.1)
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which improves the estimate above to

β‖e−βt(βw,wt)‖21,β,Q∞

+ ‖e−βt(β∂νw, ∂νwt)‖2Σ∞

.
1

β
‖e−βt(∂3t − b∆∂t)w‖2Q∞

+ ‖e−βt(βw,wt)‖21,β,Σ∞

. (3.2)

Next we will show that in the last estimate we can replace the operator of third order ∂3t −b∆∂t
which is the principal part of the MGT equation, by the operator M . This is not a triviality
here since our estimate does not have all derivatives of second-order on the left hand side.
From (3.4) and the triangle inequality we infer that

β‖e−βt∆w‖2Q∞

. β‖e−βt(∂2t − b∆)w‖2Q∞

+ β‖e−βt∂2tw‖2Q∞

,

which tells us that we can include the Laplacian of w on the left-hand side in (3.2), that is

β‖e−βt∆w‖2Q∞

+ β‖e−βt(βw,wt)‖21,β,Q∞

+ ‖e−βt(β∂νw, ∂νwt)‖2Σ∞

.
1

β
‖e−βt(∂3t − b∆∂t)w‖2Q∞

+ ‖e−βt(βw,wt)‖21,β,Σ∞

.

Since the lower order term of the MGT equation is combination of the Laplacian and a
second-order time derivative, this last estimate – in connection with the triangle inequality –
provides our basic estimate of the MGT operator M , that is,

β‖e−βt(βw,wt)‖21,β,Q∞

+ ‖e−βt(β∂νw, ∂νwt)‖2Σ∞

.
1

β
‖e−βtMw‖2Q∞

+ ‖e−βt(βw,wt)‖21,β,Σ∞

.

(3.3)
It may be worthwhile to compare the estimate (3.3) with the standard resolvent estimates
for hyperbolic boundary problems in the non-characteristic case [48, Section 3.3]. While we
do not manage to estimate neither the H2(Q∞) norm of w nor the H1(Σ∞) of the exterior
normal derivative on the boundary, our estimate does not require the H2(Σ∞) norm w on
the right-hand side. Furthermore, the L2-norm of ∂2νw cannot occur in the left-hand side,
since the operator ∂3t −∆∂t does not involve any normal derivative of order 3. What is more
surprising is that the H1-norm of the normal derivative (of order one) does not occur on the
left-hand side in (3.3). On the other hand, even the boundary term on the right-hand side is
different than in the non-characteristic case.

We also wish to point out that we can obtain estimate (3.3) by using micro-local analysis, as
in [48, Section 3.3]. The Dirichlet boundary operator satisfies the Kreiss-Sakamoto condition
(uniform Lopatinskii condition) with respect to the operator M . However, we feel that our
approach is more direct, also since the initial estimate for the wave operator can be established
by energy integrals [19, Section 24.1].

Furthermore, estimates similar to (3.3) can be derived. For example, one can use elliptic
estimates to include second-order space derivatives which will force us to include the norm in
L2(R, H3/2(Γ)) of w in the right-hand side. This way we could provide an alternative proof
to Theorem 1.1, part (a) and we would gain complete flexibility with respect to lower-order
terms. While the notation of a finite energy solution is clearly defined in the non-characteristic
case, it seems that in the characteristic case several avenues can be pursued.

At this point in time we do not know whether the more complete estimate (with respect
to the traces)

‖e−βtw‖22,β,Q∞

+ ‖e−βt∂νw‖21,β,Σ∞

.
1

β
‖e−βtMw‖2Q∞

+ ‖e−βtw‖22,β,Σ∞

holds.
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Now we will discuss, how the apriori estimate (3.3) can be used to obtain and existence-and-
uniqueness statement for our initial-boundary-value problem. Note at first that, by setting
u = e−βtw, we have

β‖(βu, ut)‖21,β,Q∞

+ ‖(β∂νu, ∂νut)‖2Σ∞

.
1

β
‖Mβu‖2Q∞

+ ‖(βu, ut)‖21,β,Σ∞

, (3.4)

where

e−βtMw = (∂t + β)3u− b∆(∂t + β)u + α(∂t + β)2u− c2∆u =Mβu .

Since we will need to scale our basic estimate (3.3) to different tangential Sobolev levels, it
will be convenient to introduce semigeodesic local coordinates. Localizing the function, we
may assume that Ω∞ = {xd > 0} and Σ∞ = {xd = 0}. The spatially tangential variables are
denoted by y = (x1, ..., xd−1) and we define a family of tangential operators

Λsw =
1

(2π)d

∫

Rd

ei[τt+〈y,η〉](τ2 + β2 + |η|2)s/2ŵ(τ, η, xd) dτdη , for s ∈ R,

where ŵ denotes the Fourier transform in the tangential variables (t, y). This estimate can
be scaled to other Sobolev norms with respect to the tangential variables. Replacing u by
Λsu, we have

β‖Λs(βu, ut)‖21,β,Q∞

+‖Λs(β∂du, ∂dut)‖21,β,Σ∞

.
1

β
‖ΛsMβu‖2Q∞

+‖Λs(βu, ut)‖21,β,Σ∞

. (3.5)

for any s ∈ R and u ∈ H(3,s)(Q∞) [48, Lemma 3.3.7] and sufficiently large β. The anisotropic
Sobolev space H(m,s)(Q∞) has been introduced in [19, Appendix B2].

In semi-geodesic coordinates, the Laplacian will transfer to the Riemann Laplacian

∆a =
1

√

det a(x)

d∑

j=1

∂j
√

det a(x)ajk(x)∂k ,

where ajd = δjd, a
jk = akj for j, k = 1, ..., d are smooth functions. Hence, the changes in the

operator M are such that the Laplacian ∆ is replaced by the Riemann Laplacian ∆a. The
estimates (3.4) and (3.5) are then established at first locally and then combined by means of
a partition of unity.

For future reference we point out that the Riemann Laplacian can be written as

∆a =
1√
det a

∂d
√
det a∂d +∆′

a (3.6)

where ∆′
a is the Laplace-Beltrami operator on the surfaces {xd = c} for small positive c.

From the estimate (3.5) we can derive an existence statement for the boundary problem

Mβu = e−βtf in Q∞, u
∣
∣
Q∞

= e−βtg in Σ∞ (3.7)

by means of duality. For u, z ∈ H3(Q∞) one obtains using integration by parts the identity

(Mβu, z)Q∞
= (u,M∗

βz)Q∞
+ 〈u, c2∂νz − b∂νzt〉Σ∞

+ 〈c2∂νu+ b∂νwt, z〉Σ∞
.

Here (·, ·)Q∞
is the scalar product in L2(Q∞) and 〈·, ·〉Σ∞

denotes the scalar product in
L2(Σ∞).

The resolvent estimate for the adjoint operator is

β‖(βz, zt)‖21,β,Q∞

+ ‖(β∂νz, ∂νzt)‖2Σ∞

.
1

β
‖M∗

βz‖2Q∞

+ ‖(βz, zt)‖22,β,Σ∞

.

for all z ∈ H3(Q∞) and β ≥ β1 > 0. This estimate is established in a similar fashion as
(3.3) since the two operators M∗

β and −M−β have the same principal part. As the estimate
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for the primal problem, this one can be also scaled to other Sobolev norms in the tangential
variables. For s ∈ R and z ∈ H(3,s)(Q∞), we have, for β sufficiently large,

β‖Λs(βz, zt)‖21,β,Q∞

+ ‖Λs(β∂νz, ∂νzt)‖2Σ∞

.
1

β
‖ΛsM∗

βz‖2Q∞

+ ‖Λs(βz, zt)‖21,β,Σ∞

. (3.8)

This estimate is crucial when proving the existence of solutions to the boundary problem
(3.7), [48, Theorem 3.4(b)].

Proposition 3.1. Let s be a non-negative integer and suppose that β is sufficiently large that
the two estimates (3.5) and (3.8) hold. For e−βtf ∈ Hs(Q∞) and e−βt(g, gt) ∈ Hs+1(Σ∞),
the boundary value problem (3.7) has a unique weak solution u ∈ H1+s(Q∞). This solution
is the strong limit of functions which are smooth. It has the additional regularity properties
ut ∈ Hs+1(Q∞) and ∂νu, ∂νut ∈ Hs(Σ∞), and the estimate

β‖(βu, ut)‖21+s,β,Q∞

+ ‖(β∂νu, ∂νut)‖2s,β,Σ∞

.
1

β
‖e−βtf‖2s,β,Q∞

+ ‖e−βt(βg, gt)‖21+s,β,Σ∞

holds.

Proof. In the first step we prove the existence of a weak solution using a duality argument.
For that we define

Y =

{

z ∈ H(3,−s−1)(Q∞) : z
∣
∣
∣
Σ∞

= 0

}

and Z = {M∗
βz : z ∈ Y }. Note that Z is a subspace of H(0,−s−1)(Q∞). Consider the linear

functional defined by

l(z) = (z, e−βtf)Q∞
− c2〈∂dz, e−βtg〉Σ∞

+ b〈∂dzt, e−βtg〉Σ∞
.

This linear functional is bounded on Z since

|l(z)| . ‖e−βtf‖s,β,Q∞
‖Λ−sz‖Q∞

+ ‖e−βtg‖s+1,β,Σ∞
‖
[
‖Λ−s−1∂dzt‖+ ‖Λ−s−1∂dz‖

]

.
[
‖e−βtf‖2s,β,Q∞

+ ‖e−βtg‖s+1,β,Σ∞

]
‖Λ−s−1Mβz‖ ,

where we applied formula (3.8) with s replaced by −s− 1. Applying the Theorems by Hahn-
Banach and by Riesz, there exists an element u ∈ H(0,s+1)(Q∞) such that l(z) = (Mβz, u)Q∞

,
that is

(Mβz, u)Q∞
= (z, e−βtf)Q∞

− c2〈∂dz, e−βtg〉Σ∞
+ b〈∂dzt, e−βtg〉Σ∞

for all z ∈ Y . Hence, u is a weak solution to the boundary value problem.
In the second step, the regularity in the direction normal to the boundary is established.

From equation Mβu = e−βtf and the Laplacian in local coordinates (3.6) we know that

c2 + βb√
det a

∂d(
√
det a∂du) +

b√
det a

∂d(
√
det a∂dut)

= (∂t + β)3u+ α(∂t + β)2u− (c2 − bβ)∆′
au− b∆′

aut − e−βtf . (3.9)

This equation can be considered as a ordinary differential equation for the unknown ∂d(
√
det g∂d)u

with respect to t. In the following we abbreviate the right-hand side in this equation by h
and note that h ∈ H(0,s−2)(R

d+1
+ ). Integrating in time gives

1√
det a

∂d(
√
det a∂du)(t, x) =

1

b

∫ t

−∞

e−(c2/b+β)(t−s)h(s, x) ds
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and hence ∂d(
√
det a∂du) ∈ H(0,s−1)(R

d+1
+ ) since h has time derivatives of order three but

space derivatives of order two. Now note that the identity

1

(det a)1/4
∂2d

[

(det a)1/4u
]

=
1√
det a

∂d

[√
det a∂du

]

+ u
∂2d(det a)

1/4

(det a)1/4

implies (det a)1/4u ∈ H(2,s−1)(R
d+1
+ ) and thus u ∈ H(2,s−1)(R

d+1
+ ), because of the smoothness

of det a.
This process can be repeated and results in u ∈ Hs+1(Q∞). Furthermore, derivatives in

normal direction can be estimated in terms of tangential derivatives and the forcing term.
These facts can be combined into an improvement of the estimate (3.5). For u ∈ Hs+3(Q∞)
we have

β‖(βu, ut)‖21+s,β,Q∞

+ ‖(β∂νu, ∂νut‖21+s,β,Σ∞ .
1

β
‖Mβu‖2s,β,Q∞

+ ‖(βu, ut)‖21+s,β,Σ∞

(3.10)

Finally, we prove that the solution u ∈ Hs+1(Q∞) satisfies ut ∈ Hs+1(Q∞), ∂νu, ∂νut ∈
Hs(Σ∞), and the estimate stated in the proposition. Approximating the forcing term and
the boundary data by functions in Hs+1(Q∞) and H3+s(Σ) we obtain a sequence of solutions
in u(n) ⊂ H2+s(Q∞). Using estimate (3.10) on u(n)−u(m) shows that this sequence u(n) and

u
(n)
t are Cauchy in Hs+1(Q∞), the sequence is Cauchy and that the sequences ∂νu

(n) and

∂νu
(n)
t are Cauchy in Hs(Σ). The limit function u ∈ H1+s(Q∞) is then the strong solution

and satisfies the estimate. �

Returning to the original variable w we have solved the boundary problem Mw = f in
Q∞, u = g in Σ∞ whose solution satisfies the estimate

β‖e−βt(βw,wt)‖21+s,β,Q∞

+‖e−βt(β∂νw, ∂νwt)‖2Σ∞

.
1

β
‖e−βtf‖2s,Q∞

+‖e−βt(βg, gt)‖21+s,β,Σ∞ .

This estimate can be used to solve the initial-boundary value problem with homogeneous
initial data. If f and g both vanish for t < 0, then w has to vanish for t < 0 as well, see [48,
Lemma 3.4.4].

Now we discuss non-homogeneous initial data. For s, a non-negative integer, and w ∈
H3+s(Q) one has the semigroup estimate

‖e−βTw(T )‖21+s,Ω + ‖e−βTwt(T )‖21+s,Ω + ‖e−βTwtt(T )‖2s,Ω
+ ‖e−βt(w,wt)‖21+s,β,Q + ‖e−βt(∂νw, ∂νwt)‖2s,Σ

. ‖e−βtMw‖2s,Q + ‖e−βt(w,wt)‖21+s,Σ + ‖w(0)‖21+s,Ω + ‖wt(0)‖21+s,Ω + ‖wtt(0)‖2s,Ω . (3.11)

This semigroup estimate is proved as in Sakamoto’s book [48, Section 3.5]. The only difference
is that our starting point is not the energy integral

ℜ
∫

Q

e−2βtMw(2∂2t − b∆)w dtdx but rather ℜ
∫

Q

e−2βtMw(2∂2t + β2b)w dtdx .

This is due to the fact that our resolvent estimate does not have second-order space derivatives
on the left-hand side. The semigroup estimate plays a crucial role in the proof of the following
result which includes part (b) of Theorem 1.1 in the case s = 0. In order to talk about
solutions to the initial-boundary value problem (1.3) of higher regularity, we need to discuss
compatibility conditions.

If f ∈ Hs(Q), s ≥ 1 then the differential equation Mw = f can be used to recover the

initial values of higher-order time derivatives ∂l+2
t w(0), l = 1, 2, ..., s. If ∂ltg(0) = ∂ltw(0) on
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Γ for l = 0, 1, ..., s+ 2, then the data f , g, w0, w1, w2 satisfy the compatibility condition of
order s. The compatibility conditions of order s = 0 are the ones stated in Theorem 1.1.

Proposition 3.2. Let s be a non-negative integer. Consider the initial-boundary value prob-
lem (1.3) with f ∈ Hs(Q), g, gt ∈ Hs+1(Σ), and w0, w1 ∈ Hs+1(Ω), w2 ∈ Hs(Ω) sat-
isfying the compatibility conditions of order s. There exists a unique solution (w,wt) ∈
C([0, T ], Hs+1(Ω) × Hs+1(Ω)) with additional trace regularity ∂νw, ∂νwt ∈ Hs(Σ) and the
estimate

‖(w(T ), wt(T ))‖21+s,Ω + ‖wtt(T )‖2s,Ω + ‖(w,wt)‖21+s,Q + ‖(∂νw, ∂νwt)‖21+s,Σ

. ‖f‖2s,Q + ‖(g, gt)‖21+s,Σ + ‖(w0, w1)‖21+s,Ω + ‖w2‖2s,Ω ,
holds.

Proof. The forcing term f , the Dirichlet data g and the initial data w0, w1, w2 can be all

approximated by sequences of functions f (n) ∈ Hs+2(Q), g(n) ∈ Hs+4(Σ), w
(n)
0 ∈ Hs+9/2,

w
(n)
1 ∈ Hs+7/2(Ω), w

(n)
2 ∈ Hs+5/2(Ω) and satisfy the compatibility conditions of order s+ 2

[45, Lemma 3.3]. By the trace theorem in Sobolev spaces, there exists a sequence w
(n)
II ∈

Hs+5(Q) such that

∂jtw
(n)
II (0) = w

(n)
j (0) for j = 0, 1, 2.

Let w
(n)
I be the solution to the initial-boudary value problem

Mw = f (n) −Mw
(n)
II in Q , w = g(n) − w

(n)
II in Σ , w(0) = wt(0) = wtt(0) = 0 .

According to Proposition 3.1 and the discussion right after its proof, this problem has a

unique solution w
(n)
I ∈ Hs+3(Q). Consequently, the function w(n) := w

(n)
I +w

(n)
II satisfies the

initial-boundary value problem

Mw = f (n) in Q, w = g(n) in Σ, w(0) = w
(n)
0 , wt(0) = w

(n)
1 , wtt(0) = w

(n)
2 in Ω

Using the semigroup estimate (3.11), the difference w(n) − w(m) is shown to be Cauchy in
Hs+1(Q). Its limit w ∈ Hs+1(Q) is then the solution to the initial-boundary value problem
(1.3) and the estimate and the additional regularity statements follow from (3.11) applied to
w(n) and taking the limit. �

Remark 3.3. Once we consider a finite interval the exponential term e−βt as well as the
Sobolev norms with the parameter β become unnecessary. Hence, we decided to formulate
the estimate in the last Proposition without them. In the infinite time interval is considered,
one has to use weighted norms and the exponential term.
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plicazioni (GNAMPA) of the Istituto Nazionale di Alta Matematica, within the programme
“Professori visitatori”, as well as from the “Internazionalizzazione” plan of UniFI, which both
authors gratefully acknowledge. Matthias Eller wishes to thank the Dipartimento di Matem-
atica e Informatica, UniFI, for its hospitality. Francesca Bucci is a member of the GNAMPA
and participant to the 2019 GNAMPA Project “Controllability of PDEs in physics models
and applied sciences”, whose partial support is also acknowledged.

Finally, we wish to thank the anonymous referee who made important suggestions and
comments which helped us to improve the manuscript.



THE CAUCHY-DIRICHLET PROBLEM FOR THE MGT EQUATION 23

References

[1] M.O. Alves, A.H. Caixeta, M.A. Jorge Silva, J.H. Rodrigues, Moore-Gibson-Thompson equation
with memory in a history framework: a semigroup approach, Z. Angew. Math. Phys. 69 (2018), no. 4,
Art. 106, 19 pp. https://doi/org/10.1007/s00033-018-0999-5

[2] F. Bucci, L. Pandolfi, On the regularity of solutions to the Moore-Gibson-Thompson equation: a
perspective via wave equations with memory, J. Evol. Equ. 20 (2020), 837-867 (published online: 19
Nov. 2019). https://doi.org/10.1007/s00028-019-00549-x

[3] F. Bucci, I. Lasiecka, Feedback control of the acoustic pressure in ultrasonic wave
propagation, Optimization 68 (2019), no. 10, 1811-1854 (published online: 19 Aug 2018).
https://doi.org/10.1080/02331934.2018.1504051

[4] A.E. Caixeta, I. Lasiecka, V.N. Domingos Cavalcanti, On long time behavior of Moore-Gibson-
Thompson equation with molecular relaxation, Evol. Equ. Control Theory 5 (2016), no. 4, 661-676.

[5] A.E. Caixeta, I. Lasiecka, V.N. Domingos Cavalcanti, Global attractors for a third order in time
nonlinear dynamics, J. Differential Equations 261 (2016), no. 1, 113-147.

[6] C. Cattaneo, Sulla conduzione del calore, Atti Del Seminar. Mat. Fis. Univ. Modena 3 (1948).
[7] C. Cattaneo, A form of heat conduction equation which eliminates the paradox of instantaneous prop-

agation, Compt. Rend. Acad. Sci. 247 (1958), 431-433.
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(French) [Introduction to the theory of linear partial differential equations], Gauthier-Villars, Paris,
1981. vii+466 pp.

[9] W. Chen, A. Palmieri, Nonexistence of global solutions for the semilinear Moore-Gibson-Thompson
equation in the conservative case, Discrete Contin. Dyn. Syst. 40 (2020), no. 9, 5513-5540.

[10] J.A. Conejero, C. Lizama, F. Rodenas, Chaotic behaviour of the solutions of the Moore-Gibson-
Thompson equation, Appl. Math. Inf. Sci. 9 (2015), no. 5, 2233-2238.

[11] C. Corduneanu, Integral Equations and Applications, Cambridge University Press, 2010.
[12] A. Dekkers, A. Rozanova-Pierrat, Models of nonlinear acoustics viewed as an approximation of the

Navier-Stokes and Euler compressible isentropic systems, Commun. Math. Sci. 18 (2020), no. 8, 2075-
2119.

[13] F. Dell’Oro, I. Lasiecka, V. Pata, The Moore-Gibson-Thompson equation with memory in the critical
case, J. Differential Equations 261 (2016), no. 7, 4188-4222.

[14] F. Dell’Oro, I. Lasiecka, V. Pata, A note on the Moore-Gibson-Thompson equation with memory of
type II, J. Evol. Equ. 20 (2020), no. 4, 1251-1268.

[15] F. Dell’Oro, V. Pata, On the Moore-Gibson-Thompson equation and its relation to linear viscoelastic-
ity, Appl. Math. Optim. 76 (2017), no. 3, 641-655.

[16] B.O. Enflo, C.M. Hedberg, Theory of Nonlinear Acoustics in Fluids, Fluid Mechanics and Its Appli-

cations, Springer Netherlands, 2006.
[17] H.O. Fattorini, Second order linear differential equations in Banach spaces, North-Holland Publishing

Co., Amsterdam, 1985.
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[43] M. Pellicer, J. Solá-Morales, Optimal scalar products in the Moore-Gibson-Thompson equation,
Evol. Equ. Control Theory 8 (2019), n. 1, 203-220.

[44] R. Racke, B. Said-Houari, Global well-posedness of the Cauchy problem for the 3D Jordan-Moore-
Gibson-Thompson equation, Commun. Contemp. Math., https://doi.org/10.1142/S0219199720500698

[45] J. Rauch, F. Massey, Differentiability of solutions to hyperbolic initial-boundary value problems, Trans.
Amer. Math. Soc. 189 (1974), 303-318.

[46] O.V. Rudenko, S.I. Soluyan, Theoretical Foundations of Nonlinear Acoustics, (Plenum, New York,
1977), Translated from the Russian by Robert T. Beyer. Studies in Soviet Science. Consultants Bureau,
New York-London, 1977. vii+274 pp.

[47] R. Sakamoto, Mixed problems for hyperbolic equations, I and II, J. Math. Kyoto Univ. 10 (1970),
349-373, 403-417.

[48] R. Sakamoto, Hyperbolic boundary value problems, Translated from the Japanese by Katsumi Miyahara,
Cambridge University Press, Cambridge-New York, 1982. ix+210 pp.

[49] M. Sova, Cosine operator functions, Rozprawy Mat. 49 (1966), 47 pp.

http://arxiv.org/abs/2001.07673


THE CAUCHY-DIRICHLET PROBLEM FOR THE MGT EQUATION 25

[50] (Professor) Stokes, An examination of the possible effect of the radiation of heat
on the propagation of sound, Philos. Magazine Series 4 1 (1851), no. 4, 305-317.
https://www.tandfonline.com/doi/abs/10.1080/14786445108646736

[51] R. Triggiani, Sharp Interior and Boundary Regularity of the SMGTJ-equation with Dirichlet or Neu-
mann boundary control, in: Semigroups of Operators – Theory and Applications, Banasiak, J., Bo-
browski, A., Lachowicz, M., Tomilov, Y. (Eds.), Springer Proceedings in Mathematics & Statistics,
vol. 325, Springer, Cham. (2020). https://doi.org/10.1007/978-3-030-46079-2
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