
Abstract
Senegalese agriculture is threatened by climate change effects,

affecting rainfall variability both at interannual and interdecadal
timescales. Using FAO’s AquaCrop crop-growth model, we tested
the efficiency of an in-situ water harvesting technique - tied ridges
- for maize cropping in the Fatick region in Senegal in response to
changes in temperature and precipitation with different fertility
levels and different soils. Results showed that tied ridges did not
significantly impact maize yields considering the current climate
and soil fertility. The rainfall amount was enough for maize pro-
duction and to avoid water stress during the cropping season.
Under perturbed climates and, especially in years with low aver-
age rainfall amounts, high losses in yield were registered under
optimal fertility conditions (up to 80%). The most substantial
effect was obtained when tied ridges were simulated on clay soil,

enhancing yields by 5.6% and 13% at actual and optimal fertility
conditions, respectively. Our results highlighted how the current
maize production in the Fatick region in Senegal is not significantly
water constrained in the current climate scenario, while it could be
potentially impacted by climate change in the near future. In a pes-
simistic climate change scenario, in situ water harvesting can
potentially avoid excessive crop losses.

Introduction
Due to combined threats, African food production will face

great challenges in the near future. The highly vulnerable small-
holder farmers will be the most impacted since food security is
disproportionally undermined where inequalities are greater
(FAO, 2020). Climate change is expected in many regions to
increase temperature, alter rainfall patterns, and escalate extreme
events, such as floods and droughts (Arias et al., 2021). Another
significant challenge is represented by the demographic growth of
most African countries that will continue in the following decades
(Samir and Lutz, 2017). The combined impacts of climate change
and population growth suggest an alarming increase in water
scarcity in sub-Saharan Africa (Cooper et al., 2008). Currently, it
is estimated that 50 million people in cropland and pastureland are
exposed to water shortages, representing a real threat to their food
security and nutrition (FAO, 2020). By 2050, increasing tempera-
tures, more frequent extreme weather, and climate events will
have pronounced effects on the agricultural sector of Africa. Heat
waves, droughts, pest damages, and floods will affect agricultural
production systems with regional and crop variability, and under
the Representative Concentration Pathway 8.5 scenario, a general
reduction in yield of 13% is expected in West and Central Africa
(WMO, 2020).

Senegal is a West African country that will likely be affected
by severe climate change effects. From the climatic point of view,
it is characterised by three climate bands from North to South: the
warm desert, warm semi-arid, and tropical savanna climates (Peel
et al., 2007). The national agriculture economy accounts for
approximately one-sixth of the national Gross Domestic
Production, the production has increased by 70%, and the popula-
tion has quadrupled, reaching 16.3 million people over the past 30
years (D’Alessandro et al., 2015), inevitably increasing the stress
on limited natural resources. Smallholder farmers characterise the
agricultural economy; the most cultivated subsistence crops are
millet, sorghum, maize, and rice, while the main cash crops are
groundnut and cotton (FAO/GIEWS Country Cereal Balance
sheet, 2020). Senegal counts less than 5% of irrigated land, and
the national agriculture strictly depends on the rainy season lasting
from mid-June to mid-October (CIAT and BFS/USAID, 2016).
The significant variability of rainfall, both on interannual and
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interdecadal timescales, represents the critical risk in agriculture,
with more than 40% of the variation in national crop yields that can
be ascribed to the rainfall variation (D’Alessandro et al., 2015).
Climate projections agree on the future increase in temperature in
West Africa, while the magnitude and direction of change are less
clear for precipitation and other correlated variables such as aridi-
ty, drought, and extreme events (Arias et al., 2021; Roudier et al.,
2011). This uncertainty range is also reported in the Senegal cli-
mate change country profile by McSweeney et al. (2008), which
indicates decreasing mean annual and wet season rainfall, but with
a range of change within -41 to +48% by the 2090s. The decreas-
ing trend in annual precipitation with reductions of 10-20% by the
end of the century is also reported in the analysis of Sarr and Sultan
(2022). Given these uncertain climate projections, yield changes in
West Africa also show a large dispersion from -50% to +90%, with
a median negative impact of -18% predicted for the Sudano-
Sahelian countries (Roudier et al., 2011). As changes in rainfall
patterns occur, as well as extreme events such as dry (wet) spells,
which are episodes when precipitation is abnormally low (high)
compared to the usual climatology (Fall et al., 2021), the small-
holder farmers get more vulnerable and the need to make agricul-
tural systems more resilient has become clear.

Water harvesting (WH) is described as the process of collect-
ing runoff and storing it for productive purposes (Oweis and
Hachum, 2006). It is an adaptation strategy that can help increase
rural communities’ resilience in the context of climate change. WH
plays a vital role in improving small-scale rainfed productions, sta-
bilising the yields, and increasing productivity (Rockström and
Falkenmark, 2000; Wallace, 2000). Since the 1980s, WH practices
have been strongly promoted in many African regions by non-gov-
ernmental and development organisations (Rockström and
Falkenmark, 2000). Nevertheless, there is significant potential to
increase WH application throughout the world. Piemontese et al.
(2020) identified social-ecological regions worldwide covering
19% of current global croplands in which the adoption of WH can
increase yields up to 60-100% in countries such as Uganda,
Burundi, Tanzania, and India. Although the importance of water
conservation practices is recognised worldwide, further efforts
must be applied to include these practices in investment strategies
and development policies (Rockström and Falkenmark, 2015). 

The WH soil and water conservation practices can be broadly
categorised into macro-catchment and micro-catchment WH
(Oweis and Hachum, 2006). Tied ridging is among the most
promising micro-catchment WH techniques, also referred to as in
situ WH (Biazin and Stroosnijder, 2012). Tied ridges (TR) are
designed to trap water runoff from small areas (10-500 m2) with a
wide range of land slopes. The structure consists of furrows dug in
the soil to hold water, facilitating infiltration and storage in the root
zones (Biazin and Stroosnijder, 2012). Brhane et al. (2006)
showed the effectiveness of TR in reducing surface runoff, improv-
ing soil water content, delaying water depletion, and increasing
yields. Hunink et al. (2010) analysed different green water credit
management practices through the SWAT model in Kenya. They
underlined the contribution of TR on maize in preventing sediment
losses, reducing it by 32%, and in implementing reservoir inflow,
increasing it up to 27% compared to standard management.
Madalcho et al. (2015) found that TR significantly influenced the
sorghum biomass in Ethiopia in both fertilized and non-fertilised
conditions and minimised fertiliser loss. Similarly, Sibhatu et al.
(2017) report an increase in yields when TR was dug and optimal
results in terms of biomass when coupling this WH technique with
the addition of fertilizers. Biazin and Stroosnijer (2012) examined

the potential benefits of rainwater harvesting using TR through
field experimentation and FAO’s AquaCrop model and reported
changes in the effectiveness at different water regimes and fertility
conditions.

Generally, the effectiveness of micro-catchment WH tech-
niques like TR is based on farmers’ experience. Compared to other
adaptation practices, such as supplemental irrigation, the applica-
tion of numerical models to study these techniques is still underde-
veloped. 

The use of models could help promote these practices and opti-
mally locate the regions in which they would be more successful.
Nowadays, many crop models are being used for various purposes,
including identifying adaptation strategies to reduce climate
change impacts on future crop production (Kephe et al., 2021).
Among the various models used, Aquacrop is one of the most
applied to study adaptation strategies and climate change impacts.
For example, Bird et al. (2016) investigated the effect of climate
change on rainfed wheat in Italy and irrigated tomato production in
Tunisia and possible adaptation strategies. Alvar-Beltrán et al.
(2021) assessed the impacts of two climate change scenarios on
soil evaporation and transpiration rates, crop water productivity,
and yield of wheat and sugarcane under different irrigation sched-
ules along the Indus River Basin, Pakistan. Alvar-Beltrán et al.
(2023) also evaluated the impact of two climate change scenarios
on millet, sorghum, and cowpea in two agroclimatological regions
in the Republic of Niger. Regarding WH modelling, Biazin and
Stroosnijer (2012) applied the Aquacrop model to simulate TR in
Ethiopia. In the same country, Wolka et al. (2021) modelled the
effects of soil bunds on surface runoff and maize yield, while
Villani et al. (2018) performed a water productivity analysis of
maize in a sand dam irrigation scheme. Lastly, Renzi et al. (2023)
simulated the hydro-agrological effect of Marab water harvesting
technology on barley production in Jordan.

Climate change is primarily included in General Circulation
Models simulation studies, usually statistically or dynamically
downscaled with Regional Climate Models. Even if these models
are widely used in research, they present significant uncertainties
and biases (Christensen et al., 2008; Laux et al., 2021). An inter-
esting alternative methodology to study adaptation strategies in
different plausible climates without using climate models is repre-
sented by adaptation response surface (ARS) methodology (Ruiz-
Ramos et al., 2018). ARS methodology builds on previous
research on impact response surfaces (IRS) (Pirttioja et al., 2015),
which are created by perturbing historical weather time series by
changing temperature and precipitation within plausible ranges,
hence evaluating the sensitivity of crop yield to systematic changes
of climate variables. 

Due to the lack of literature on the role of WH in many areas
of the African continent, particularly in Senegal, the present study
focused on determining how the runoff collection with TR can
effectively reduce water stress, thus increasing yields. For this
scope, we simulated the maize crop cycle in the Fatick region in
Senegal with and without TR. The effectiveness of TR in terms of
increased yields was studied with the historical climate and apply-
ing the ARS methodology, and considering different soil types and
management scenarios. This study also further demonstrates the
potential of numerical models to understand the processes of
micro-catchment WH better. These models can be conveniently
applied to perform exploratory analysis, even if the role of field
experiments remains crucial.
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Materials and Methods
Study area

Fatick region is located in the Sudan Sahelian climatic zone of
Senegal and covers an area of 6,685 km² (Figure 1). It is part of the
groundnut basin, an area of 46,367 km² well known for the rainfed
groundnut production for staple and cash purposes (Faye and Du,
2021). The rural population represents 85% (ANSD, 2014). The
region is characterised by a dry season lasting seven months and a
wet season of five months, from June to October (Figure 2). The
annual mean minimum temperature is 20°C while the mean maxi-
mum temperature reaches nearly 37°C. Annual rainfall ranges
between 500 and 900 mm based on the historical period 1980-2013
(D’Alessandro et al., 2015). Fatick is one of Senegal’s most rainy
regions with millions of cubic metres of water lost due to a lack of

water retention structures (Department of Agriculture and Rural
Development Central West Region, 2003). Four different soil types
constitute the pedologic picture, which is associated with four eco-
logical zones: tropical ferruginous soils, hydro soils, halo morphic
soils, and the soils of mangroves (ANSD, 2014). In agriculture, the
crop rotation is characterised by the two most cultivated crops,
millet and groundnut (36.5% and 26.9% of parcels, respectively).
Other major crops representing an interesting source of diversifi-
cation for subsistence agriculture are maize, cowpea, and rice
(DAPSA, 2020). In the last decades, the Senegalese government
promoted large-scale actions to increase the productivity of maize
and rice, which are considered fundamental for food security
(Diakhate, 2014; Gueye, 2021). The two crops require more inputs,
such as fertilisers, and are more vulnerable to drought than ground-
nut and pearl millet (Okuyama et al., 2017).

                             Article

Figure 1. Map of the Fatick region in Senegal and the location of Loul Séssène. Data of the mean annual precipitation retrieved on the
World Association for Public Opinion Research portal for the period 2009-2019.

Figure 2. Monthly mean rainfall and temperature in the Fatick region. The data source is the World Association for Public Opinion
Research portal, and the period considered is 2009-2019. 
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The AquaCrop model
The AquaCrop water productivity model, developed by FAO

(Hsiao et al., 2009), was used to simulate maize yield variation in
relation to climate change and the adoption of water harvesting.
The model has been validated for many crops in different locations
and was declared non-cultivar specific and applicable to a wide
range of conditions (Hsiao et al., 2009). This study focuses on
maize crop because AquaCrop’s performance in simulating maize
growth and yield is considered good in comparison with other
crops, as it has been tested in stress and non-limiting water condi-
tions and with good geographical coverage (Raes et al., 2018b).
The AquaCrop model is considered robust; it can be used with lim-
ited data availability and as a management tool to develop strate-
gies to maximise water productivity through crop and management
practices such as WH (Raes, 2017). The model simulates, with a
daily time step, soil water balance, crop development, soil evapo-
ration and crop transpiration, aboveground biomass, and biomass
partitioning into yields (Raes, 2017). Key equations used by
AquaCrop are: 

                                                               
(1)

                                                                                                 
Y = B × HI                                                                                 (2)

where B is the total biomass (g m–2), WP* is the water productivity
(g m–2 mm–1) normalised for atmospheric evaporative demand and
CO2 concentration (Raes, 2017), Tri is the daily amount of water
transpired (mm day–1), and ET0i is the reference evapotranspira-
tion for that day. Y is the final yield (g m–2), and HI is the actual
harvest index (%), obtained by adjusting the reference harvest
index with an adjustment factor for water and temperature stress
effects (Raes, 2017). Regarding the AquaCrop crop parameters, it
is essential to differentiate between conservative and non-conser-
vative ones. The former does not change with time and cultivating
conditions, while the latter must be modified based on the selected
cultivar or environmental conditions (Raes, 2017).

To simulate the effect of TR on runoff, the curve number (CN)
is modified. CN is the parameter that describes the interaction
between rainwater and soil, it is dimensionless, and it is influenced
by hydrologic soil group, soil cover type, land use, hydrologic con-
dition, and antecedent moisture condition. The CN is used to deter-
mine the total amount of runoff from a rainfall event in a specific
area through the CN method with Eq. 3 (Raes et al., 2022). It ranges
from 0 to 100, and the higher the value, the higher the runoff; there-
fore, the lower is water infiltration. Eq. 4 expresses the potential
maximum retention after runoff begins, needed in the CN equation.

                                                                
(3)

                                                                
(4)

where Q is the total amount of runoff in mm, P is the total rainfall
in mm considered in the time frame, and S is the potential maxi-
mum retention after runoff begins and multiplied by the value γ
(0.20) gives the initial abstraction of the soil. AquaCrop assigns a
CN value on the basis of the saturated hydraulic conductivity of the
soil top horizon; the values refer to averages of the hydrologic soil

groups for small grains soil cover complex with good hydrologic
conditions given by the United States Department of Agriculture
(Raes et al., 2022). Furthermore, since the type of crop and the soil
management can affect the CN, AquaCrop allows further adjust-
ment of the CN based on the selected crop (if different from small
grain) or soil management. 

AquaCrop does not simulate the nutrient cycles and balances
but considers the effect of soil fertility stress on the canopy cover
and biomass production expressed as a percentage. Limited soil
fertility results in a biomass water productivity (WP) decrease and
a smaller canopy cover during the growing cycle (Raes, 2017). The
weed competition is expressed by the relative cover of weeds,
which is the ratio between the ground area covered by leaves of
weeds and the total canopy cover of weeds and crops.

Climate data
The climate input data required to run AquaCrop are the daily

maximum and minimum temperature, the daily rainfall, the daily
reference evapotranspiration, and the mean annual CO2 concentra-
tion in the atmosphere. To calculate daily reference evapotranspi-
ration, several methods are available. Since we did not dispose of
air humidity, wind speed, and solar radiation data, ET0 was manu-
ally calculated through the Hargreaves method, as described in
Allen et al. (1998). 

Baseline climate data
The observed values of the CO2 atmospheric concentration mea-

sured by Mauna Loa Observatory Hawaii, available as default in
AquaCrop, were used for the baseline climate data collection.
Rainfall data for the Loul Séssène area (14°18’00’- 16°36’00’)
obtained from the Climate Hazards Group Infrared Precipitation
with Stations dataset (Funk et al., 2015) were downloaded through
the FAO WaPOR portal. Values of the maximum, minimum, and
average daily temperatures were retrieved from the National
Oceanic and Atmospheric Administration climate dataset, a quality-
controlled dataset providing daily data recorded worldwide. In our
case, the reference station of Kaolack was selected because of its
nearness to the study area. Due to the limited climate data availabil-
ity, ET0 was calculated following the Hargreaves method with Eq. 5: 

ETo = 0.0023 × (Tmean + 17.8) × (Tmax-Tmin)2 × Ra                (5)

where Tmean, Tmin, and Tmax are the daily mean, minimum and max-
imum temperatures (°C), and Ra is the daily extra-terrestrial radi-
ation (MJ m–2 day–1). Ra was determined for the geographic loca-
tion following the procedure described by Allen et al. (1998). The
daily ET0 results have been compared with an 11-year data series
retrieved on the WaPOR portal to evaluate its consistency.

Perturbed climate data
The synthetic climate scenarios were created following Ruiz-

Ramos et al. (2018) by perturbing the baseline climate data. The
intervals of change were based on projections of annual precipita-
tion and temperature for Senegal up to 2090s provided by
McSweeney et al. (2008). The mean annual temperature is project-
ed to increase by 1.7 to 4.9°C, with a faster warming rate in the inte-
rior regions than in coastal areas. Annual rainfall is projected to
decrease, particularly in the wet season, with the change ranging
between -41 to +48%. The perturbation involved only precipitation
(P) and temperature (T), while CO2 concentration was not varied
since we aimed to evaluate the effect of TR only on P and T vari-
ables and exclude any yield variations caused by CO2 concentration
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change. The variation deltas were defined from 0 to 5°C at 1°C
intervals for T and from 0 to -50% at 10% intervals for P (Table 1).
The increase in rainfall percentages was not considered to restrict
the study to contexts of water scarcity in which WH techniques can
better express their function. As a result of the process, 36 different
climate series with perturbed T and P were generated.

Soil and crop management data
The’ Soil Grids’ database was used to retrieve the soil texture

and the chemical properties of two representative soils of the Fatick
region (Poggio et al., 2021). Soil Grids is a high-resolution soil-
mapping system providing soil properties data of the globe, with a
spatial resolution of up to 250 m, already used in crop-growth
model application studies in Senegal (Jha et al., 2021). Sandy soil
prevails in the Fatick region, and a sample was selected in the Loul
Séssène area (14.3030 N, –16.6036 E). We also selected clay soil in
the Ndofene area (14.2475 N, –16.3492 E) to investigate the impact
of tied ridges with different textures. In this case, the chosen sam-
ple, also from SoilGrids, was based on observed data from the
WoSIS database, explaining the different thicknesses of layers. The
texture classes of the two representative soils for all the layers were
imported into the software ‘Soil Water Characteristic’ (Saxton and
Willey, 2006). This software is a hydraulic properties calculator
developed by the US Department of Agriculture and Washington
State University. It calculates hydraulic properties based on soil tex-
ture, organic matter, gravel content, salinity, and compaction using
the pedo-transfer functions of Saxton and Rawls (2006) as in Raes
et al. (2021). The outputs are presented in Table 2.

In AquaCrop, soil fertility is not simulated based on the nutrient
balance, but it is estimated based on the effects it has on canopy
development and biomass production. For instance, poor soil fertility
results in a smaller canopy cover and a decrease in biomass WP dur-
ing the growing cycle (Raes, 2017). AquaCrop considers the optimal

fertility status as the condition found on a well-watered field with no
soil fertility stresses, in which the crop can express its maximum
canopy cover development and water productivity; meanwhile, due
to the lack of canopy cover data, the actual fertility conditions of the
soil under scope were estimated on the base of literature information
about the soil condition of the area. Land degradation in the Fatick
region was estimated from ‘light’ to ‘strong’ in the analysis of
Sonneveld et al. (2016), and other studies reported limited fertility
conditions (Gueye, 2021; Laminou et al., 2020). The 2020 Rapport
de l’Enquet̂e Agricole Annuelle of Disease Activity in PSoriatic
Arthritis (DAPSA) highlighted how many constraints strongly limit
agricultural production, and the most frequent in agriculture of
Senegal is the loss of soil fertility, which involves 35% of the plots
concerned by the analysis. In addition the gap between actual and
potential yield at the national level is also explained by poor manage-
ment practices, and the doses of NPK fertilizers applied on the field
recorded by the DAPSA are below the recommended by the compe-
tent organism. In addition the data collection across the West Central
region of Senegal conducted by Hernández et al. (2021) was taken as
a reference to define the fertility status of the area. The study
observed a low quantity of total carbon content across the whole
region, reporting a mean value of 0.30% between all the 825 samples
collected. Finally, we assigned ‘poor’ soil fertility conditions, and so
the soil fertility stress on the crop development was set at 62% by the
model as in Raes et al. (2021). The soil fertility reduction is consistent
also with the study of Jha et al. (2021). The weed management was
also assumed to be ‘poor’ considering that weeding is largely per-
formed with animal traction and hand hoes in small-scale farms
(Okuyama et al., 2017). Hence, the weed relative cover was set at
45% by the model. Furthermore, the first soil CN assigned by the
model was 61 for the sandy soil and 72 for the clay soil, and it was
increased to 73 and 86, respectively, after specifying the adoption of
row crop management. To simulate the TR effect of slowing down or

                             Article

Table 1. Simulations performed in the study considering different climate scenarios, including the range of change, tied ridges (TR, No-
TR), the soil fertility level, and texture.

Climate                   Range of change (climate)                        Tied ridges                         Fertility level                                      Soil

Baseline                                                -                                                      No-TR, TR                                     PF, OF                                            Sandy, clay
Perturbed                                  0% to -50% (P)                                          No-TR, TR                                     PF, OF                                            Sandy, clay
                                                    0° to 5°C (T)
P, precipitation; T, temperature; TR, tied ridges; No-TR, without tied ridges; PF, poor fertility; OF, optimum fertility.

Table 2. The two soils considered in the study, with the hydraulic properties for the whole soil profile.

Layer             Thickness                   Texture                         TAW                     PWP                   FC                         SAT                   Ksat
                             (m)                                                             (mm/m)                 (vol %)             (vol %)                   (vol %)            (mm/day)

Sandy soil

1st                               0.3                           Sandy loam                             85                             12.6                       21.1                             43.3                       622.6
2nd                              0.6                       Sandy clay loam                         92                             14.9                       24.4                             43.2                       390.5
3rd                              0.6                       Sandy clay loam                         94                             15.5                        25                                43                          347

Clay soil

1st                               0.4                            Clay loam                             130                              24                          37                              47.2                        64.8
2nd                             0.12                      Sandy clay loam                        116                            20.4                        32                              44.6                       117.1
3rd                             0.12                                Clay                                  119                            30.9                       42.8                             49.6                         18
4th                             0.4                           Sandy loam                             79                              9.8                        17.7                             44.1                       1041
The hydraulic properties are total available water (TAW, mm/m), permanent wilting point (PWP, vol%), field capacity (FC, vol %), saturation (SAT, vol%), saturated hydraulic conductivity
(Ksat, mm/day). Source: https://soilgrids.org 
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stopping the runoff, the CN value was zeroed as recommended by
Raes et al. (2018a). For this study, crop parametrisation was defined
based on information from local experts and literature (Table 3). The
maize variety chosen for the study is a medium-cycle length variety
(Diakhate, 2014). Plant density was set to 30.000 plants/ha to simu-
late a common value adopted in semi-arid areas by smallholder farm-
ers. Biazin and Stroosnijder (2012) also describe crop densities
adopted in semi-arid areas as usually less or equal to 3 plants/m2.
Based on the local information regarding the maize phenological
phases provided by the International Rain Water Harvesting Alliance
technicians, the 2nd of July was selected as the common sowing date
for every simulation year.

Model calibration and validation
Due to data constraints, a simplified calibration process was

applied based on the Fatick yield data recorded by the DAPSA in
2018. Calibration was performed through trials and errors by
changing AquaCrop non-conservative parameters, specifically
maximum canopy cover and harvest index, so that the model out-
put corresponded to the observed value. The validation was con-
ducted utilising regional yield data for 2015, 2016, 2017, and
2019. To compare the simulated yields with the recorded data, we
applied the Normalized Root Mean Square Error (NRMSE) calcu-
lated with Eq. 6: 

                          
(6)

where P and O are simulated and observed values expressed in
kg/ha, and n is the number of observations.

NRMSE is used to measure the error of a model in predicting
quantitative data and gives information on the differences in per-
centage between the observed and the simulated values. It was
considered a good performance of the model if NRMSE was lower
than 15% and highly performant if lower than 5% (Raes et al.,
2018a). Furthermore, the mean absolute difference (AD), calculat-
ed by averaging the differences between yields obtained with and
without TR, indicated the impact of TR.

Simulations
To assess the impact of TR on the baseline climate, the model

was run from 2009 to 2019 for both soil types, firstly considering
the standard CN and afterwards equal to zero. Also, each round of
simulations was run under optimal (OF) and poor (PF) fertility
conditions.

In the present study, the ARS method was used (Ruiz-Ramos
et al., 2018) to evaluate the maize yield response under the per-
turbed climate variables and, in these conditions, to understand
how TRs act as an adaptation measure. The 36 perturbed climate
files were uploaded on the AquaCrop model and tested with the
different CN values, soil types, and fertilization levels. The yields
were simulated for each year, and each variable combination con-
sidering the biomass developed at the simulated conditions and the
calibrated HI value. The IRS were constructed by plotting the aver-
age final yield of the 11 years as contour lines along the axes of P
and T. IRS are surface plots that represent the response of an
impact variable to changes in two independent variables (Pirttioja
et al., 2015; Ruiz-Ramos et al., 2018), in our case represented by
the maize yields and the two variables T and P. 

Unadapted and Adapted IRS were generated by plotting the
simulated yields without and applying TR, respectively. To verify
if TR had any influence on yields, the difference between the
yields obtained, at the same climate conditions, with and without
TR, was calculated and plotted in a new contour plot, the ARS, as
represented in Eq. 7. In this case, the isolines are expressed in per-
centage of yield change. 

Adapted IRS – Unadapted IRS = ARS                                        (7)

To better identify the simulations for each climate scenario, in
Table 1, the combinations and relative codes are reported. 

Results

Calibration and validation of the model
The fine-tuning of the crop parameters resulted in a maximum

effective rooting depth of 0.8 m and the HI at 34%, similar to the
one reported by Raes et al. (2021) for maize in Gambia. The mean
regional yield taken as a reference is 1326 kg/ha, and simulated
grain yields of 1323 kg/ha and 1340 kg/ha were obtained after the
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Table 3. The AquaCrop crop user-specific parameters used in the study.

User-specific parameters (calibrated)                                           Value                                                            Units/meaning

Harvest index                                                                                                      34                                                                                    %
Maximum effective rooting depth                                                                     0.8                                                                                   m
Effect of canopy cover in late season                                                                50                                                          (%) CC effect on soil evaporation
Number of plants per hectare                                                                          30000                                                                              Ha–1

Canopy decline coefficient                                                                               0.932                                                               per day % CC decrease
Time from sowing to emergence                                                                        6                                                                           Calendar days
Time from sowing to maximum rooting depth                                                108                                                                         Calendar days
Time from sowing to start senescence                                                              107                                                                         Calendar days
Time from sowing to maturity                                                                          132                                                                         Calendar days
Time from sowing to flowering                                                                         66                                                                          Calendar days
Length of the flowering stage                                                                            13                                                                          Calendar days
Building up of harvest index                                                                              61                                                                   From flowering (days)
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calibration of the model for sandy and clay soil, respectively. The
validation assessed the accuracy of the model in simulating maize
grain yield; the recorded average of the regional yields from 2016
to 2019 was taken as a reference, and the model simulated the final
yields for each soil type with good relative errors between simulat-
ed and observed yields (Table 4).

The mean relative difference between simulated and observed
yield data was 7.0% for the sandy soil and 6.0% for the clay soil,
while the mean AD resulted in 80.5 kg/ha and 76 kg/ha for the
sandy and clay soil, respectively. The total relative magnitude of
the differences, expressed by NMRSE, was 9.99%; thus, being the
value lower than 15%, it was considered a good result in terms of
model performance (Raes et al., 2018a). Overall, the model simu-
lated the mean regional yield well and the results were considered
satisfactory.

Simulations

Tied ridges impact simulation under the baseline conditions
As shown in Table 5, the comparison between yields under cur-

rent climate conditions showed no significant changes when simu-
lating the implementation of TR for sandy and clay soils. At PF
condition, using TR, the average yield on both sandy and clay soils
did not vary. Regarding the simulations conducted at OF condition,
the mean yield did not show any significant changes; values
ranged from 2894 to 2902 kg/ha for sandy and 3009 to 3036 kg/ha
for clay soil. Also, no differences exceeding 27 kg/ha of mean AD
were observed. The standard deviation (Stdev) was calculated for
the yield values of the 9-year series, and minor differences at PF
condition for both soils after TR application were found. On the
other hand, at OF condition, the Stdev resulted much higher; the
use of TR did not significatively influence the values in the case of
sandy soil, while for clay soil it was observed a decrease from 518
to 346 kg/ha, thus indicating TR application may reduce the inter-
annual yield variability in clay soils.

Tied ridges impact simulation using adaptation response
surface methodology

The analysis of IRS consisted in interpreting the IRS contour
plots for PF and OF conditions for sandy (Figure 3) and clay soils
(Figure 4). The two independent variables, T and P, are displayed
on the X and Y axes, respectively, and the contour lines represent
the yield response to T and P joint changes.

The mean yield reported by IRSs at PF condition for sandy soil
(Figure 3, PF) ranges from 1019 and 1350 kg/ha for the non-adapt-
ed scenarios and from 1029 to 1351 kg/ha for the adapted. Contour
lines tend to be horizontal, meaning that yields are stable when
increasing T and decrease in function of P changes. This behaviour
expresses the main limiting effect that rainfall has on yield varia-
tion. The major impact is identified at high T and reduced P on the
right-down corner of the graph. Furthermore, in both adapted and
not adapted scenarios, relevant decreases in yields were recorded
only in years with rainfall below the average value of 526 mm
(2011, 2014, 2016, 2017, 2018, 2019), and the maximum observed
loss was -50%. At OF condition, IRS plots (Figure 3, OF) showed
a similar contour lines behaviour of the IRSs-PF. Differences were
found in the magnitude of the impact; more specifically, the influ-
ence of T increase and P reduction generated higher yield losses
with an observed peak of 70%. Differently from the PF condition
scenario, the yield reduction in OF condition was more diffuse
over the years and not limited to the below-average rainy seasons. 

Regarding the clay soil simulation (Figure 4), IRS shows the
same contour lines behaviour observed for the sandy soil, and it
confirmed the higher limitation effect that P exercises on maize
yields compared to the T variable. Clay soil increased the sensitiv-
ity to precipitation changes; the highest losses are observed primar-
ily in years with rainfall under the average value, and the maxi-
mum observed reduction peak is 80%.

The ARS plots (Figure 5) represent the adaptation response
from using TR, expressed in % of yield change, and consider soil
type and fertility condition. At PF condition, on sandy soil (Figure
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Table 4. Comparison analysis of observed and simulated yields in the model validation. 

                             D (%)                                AD (kg/ha)                                         RMSE (kg/ha)                                  NRMSE (%)

Sandy                          7.00                                              80.5                                                               134.1                                                          9.99
Clay                            6.00                                               76                                                                 131.4                                                          9.82
Performances are indicated for the mean relative difference (D), mean absolute difference (AD), root mean square error (RMSE), and normalized root mean square error (NRMSE).

Table 5. Simulated yields (kg/ha) under the baseline without tied ridges and with tied ridges for two soil types and at two different soil
fertility levels, poor fertility level and optimum fertility level.

                                                                     PF No-TR / TR                                                                    OF No-TR / TR
                                                                                                                                                                                 

Sandy soil                                                                                                                                                                                        
      Mean                                                                    1350 / 1351                                                                                       2894 / 2902
      Stdev                                                                        13 / 13                                                                                              432 / 429
      AD                                                                               0.7                                                                                                      7.5
Clay soil                                                                                                                                                                                          
      Mean                                                                    1344 / 1329                                                                                       3009 / 3036
      Stdev                                                                         14 /10                                                                                              518 / 346
      AD                                                                               -15                                                                                                      27
Results are reported considering the average yield (Mean), standard deviation (Stdev), and mean absolute difference (AD) between tied ridges (TR) and without tied ridges (No-TR). PF,
poor fertility; OF, optimum fertility.

                                                             [Journal of Agricultural Engineering 2023; LIV:1524]                                          [page 297]

Non
-co

mmerc
ial

 us
e o

nly



                             Article

Figure 3. Impact response surface plots for sandy soil, considering two soil fertility levels, namely poor fertility (PF) and optimum fertility
(OF), with tied ridges (TR) and without tied ridges (No-TR).

Figure 4. Impact response surface plots for clay soil, considering two soil fertility levels, namely poor fertility (PF) and optimum fertility
(OF), with tied ridges (TR) and without tied ridges (No-TR).
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5, Sandy-PF), the yield increase generated by the adoption of TR
is +3.1%; it occurred at low changes in T (0°C to +1°C) and at high
P reductions (-40% to -50%). At the same soil fertility condition,
the adaptation response was higher for clay soil (Figure 5, Clay-
PF), generating a +5.6% of yield at high changes in T (+4°C to
+5°C) and P (-40% to -50%). Furthermore, for clay soil, the adap-
tation effect on yields is higher along the whole graph; contour
lines adopted a more regular behaviour and appeared parallel with-
in each other and with horizontal tendency, identifying P as the
major influencing variable. 

By improving the fertility status of the soil, the adaptation
effect of TR further increased; ARS showed a maximum average
value of gained yield equal to 3.8% for sandy soil at strong reduc-
tions in P (-40% to -50%) and low increases in T (+1 to +2°C).
Meanwhile, in the same condition on clay soil, TR generated the
highest maximum value obtained from the ARS analysis; the adap-
tation strategy generated a 13% gained yield produced in condition
of high reduction in P (-40 and -50%) and T (+4 to +5°C). 

Overall, the TR adaptation response was accentuated by fertil-
ization which increased the maximum gained yield value of 0.7%
for sandy soil and 7.4% for clay soil. The clay soil showed a higher
response for both fertility conditions than the sandy soil, increasing
the maximum value of gained yield obtained on sandy soil by 2.5%
at the PF condition and by 9.2% at OF condition. The clay soil
plots showed contour lines with a more regular behaviour com-
pared to the sandy soil, identifying P as the major factor influenc-
ing the TR adaptation effect, while the T variable showed to slight-
ly affect the TR performance since low increases of yield were
recorded at the same P amount.

Discussion
Numerical modelling, and in particular the use of the

AquaCrop model, is a useful tool to study the effectiveness of TR
under different climates, management, and soil textures. Crop cal-
ibration and validation were based on a few years of maize yield
data available for the Fatick region. Indeed, a higher number of
yield data and field-measured crop parameters would have been
useful to conduct a more precise calibration and validation.
Despite these limitations, the simulated yield matched well with
the observed ones, and we consider the model validated for the
exploratory analysis performed. Simulated yields were slightly
higher compared to those reported by Raes et al. (2021) for maize
in Gambia, on the border of the Fatick region of Senegal. Other
studies in Senegal reported lower (Diouf et al., 2020; Gueye, 2021;
Okuyama et al., 2017) and similar (Jha et al., 2021) maize yields.
Instead, in the field experiment by Laminou et al. (2020) in the
Thies region, maize yield in the control treatment was higher (1.8
tons/ha). In the same experiment, maize with optimal fertilisation
reached more than 3 tons/ha with a maximum of 4.1 tons/ha, com-
parable to our results at optimal fertility. The ARS analysis proved
useful since it allowed us to evaluate the effectiveness of TR with-
out considering the uncertainty in future projections as predicted
by climate models. However, in our analysis, the projected
increase in radiative forcing was not considered, and the concen-
tration of CO2 was considered constant. Increased CO2 concentra-
tion in the atmosphere tends to increase the photosynthesis rate
and, consequently, the yields. Therefore, if CO2 concentration
increases were included in the perturbed climate files, we would
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Figure 5. Adaptation response surface plots for clay and sandy soil types at two fertility conditions, poor fertility (PF) and optimum fer-
tility (OP).
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have expected higher yields and, possibly, lower losses due to the
combined effect of T and P variation and higher CO2. Another
aspect related to ARS methodology is that the joint variation of T
and P has no physical basis; thus, the consistency between climate
variables such as temperature and precipitation is not preserved
since they are modified without considering feedback as climate
models do (Roudier et al., 2011). However, it does not affect the
reliability of the results and so the response of the model to differ-
ent combinations of T and P. Also, for the ET0 estimation, it was
not considered important climate variables such as solar radiation,
wind speed, and relative humidity. 

The ARS analysis also showed how TR effectiveness was
affected by rainfall since they generated higher water beneficial
use in water scarcity conditions and years with rainfall amount
under the average value. Soil texture also influenced the results,
and TR performed better on clay soil than sandy soil at both fertil-
ity conditions. Due to the higher water holding capacity of clay
soil, the retained water decreased the water stress experienced by
the crop, increasing transpiration, and so the final yield. Similar
evidence was found by Wiyo et al. (2000), who used the capacity-
based water balance model TIWBM to assess the impact of TR on
the soil water balance of maize in Malawi. The model was tested
for 5 soils and 12 rainfall regimes, and the results highlighted that
TR benefited maize on fined textured soils (clay texture) and not
on coarse-textured soils (sandy texture). 

The impact of TR did not show significant changes in maize
yields during the simulated years for the historical scenario since
the rainfall amount was sufficient to satisfy crop water require-
ments. TR increased the infiltration of water that would runoff by
adopting standard soil management; however, most of it was
drained, and the additional water collected by WH was not benefi-
cially used. This trend is more accentuated for sandy soils but is
also valid for clay soils with the current rainfall. This is consistent
with the study of Diakhate (2014) that in the neighbour Kaolack
region estimated no yield reductions caused by water stress.
Similar results are reported by Wolka et al. (2021), who evaluated
soil bunds’ effect on surface runoff and maize yield in Ethiopia
with AquaCrop. The study did not find significant differences
between plots with and without WH; water availability was enough
or even in excess for maize cropping. In a field-based study, Araya
and Stroosnijder (2010) found that TR increased the grain yield of
barley in Ethiopia by 44% during below-average rainfall years
(600 mm); meanwhile, during equal or above-average rainfall
years, no differences were found with the control plots. Other
field-based studies also observed a negative effect during above-
average rainfall years. For example, Jensen et al. (2003) tested TR
in a combination with mineral N and P fertilizer on maize in
Tanzania; they identified positive effects of tied ridges on yield for
the near-optimal rainfall years (500-600 mm), whereas an adverse
effect for the years with annual rainfall above 700-900 mm. The
limitation of the TR effect due to wet years with rainfall above 900
mm was also observed by Wiyo et al. (2000), especially on fine-
textured soils, where waterlogging generated aerations stress on
maize. Our study focused on contexts of water scarcity in which
WH techniques can better express their function, so only the reduc-
tion in rainfall was considered for the simulations. Further studies
could include rainfall increases to evaluate TR drawbacks such as
waterlogging.

Impact assessments should be as integrated as possible by con-
sidering socioeconomic aspects and should not be limited to the
direct effect on crop yield (e.g., Diouf et al., 2020). TR also
impacted other biophysical aspects, such as the reduction of soil
erosion and degradation. For example, Tamagnone et al. (2020)

tested different rainwater harvesting techniques against meteoro-
logical extremes affecting the Sahelian areas; the results underline
the effectiveness of WH indigenous techniques in retaining runoff
up to 87% and increasing the infiltration. They showed that the
crop water stress diminished and eventually allowed an extension
of the crop cycle up to 20 days. Therefore, assessing the impacts of
TR considering the social and economic aspects and other bio-
physical impacts are recommended in further research.

The present study also showed a higher impact of TR when the
adaptation measure was implemented in conditions of optimum
soil fertility both for clay and sandy soils. This trend is frequently
reported in the literature. Rockström et al. (2002) found that, in
drought-prone environments, the simultaneous implementation of
water management and fertilization is more effective in increasing
yields than implementing a single practice. Biazin and Stroosnijer
(2012) found that, in Ethiopia, TR enhanced maize yields from
6.1-6.5 ton/ha to 6.8-7.3 ton/ha and with optimum fertilisation up
to 11.0-12.9 ton/ha during the above-average rainfall seasons (280-
300 mm). Also, for sorghum and millet in Ethiopia, Nigeria, and
China, through a meta-analysis of related literature, Mak-Mensah
et al. (2021) found that yield increases by 32% by applying TR
compared to the standard flat planting, and it further increases by
17% when it is combined with fertilisation. The usefulness of com-
bining fertilisation and tied ridging also emerges in simulated
future climate scenarios. Muluneh (2020) found that under project-
ed climate change (2021-2050 and 2066-2095 periods) maize yield
decreased by 9%; meanwhile, the combined effect of TR and fer-
tilisation increased yield by 90% in the period 2021-2050 climate
period due to the decreased evapotranspiration (3%) and runoff,
increase in transpiration (14%), soil fertility and carbon dioxide
effect. Applying numerical models to evaluate the benefits of adap-
tation strategies is promising. In our study, we focused on the
effect of TR on maize, but several other crops could be studied in
further research. Also, the approach to simulate TR by zeroing the
CN is simple and effective, but it is clearly a simplification. Using
the outputs of GCMs and RCMs when simulating future conditions
is an option that should be considered in further research to assess
the effect of TR on crop yield. Furthermore, we modified historical
precipitation and temperature in our study, considering interannual
variability and not intra-annual one. As climate variability is going
to change the frequency and intensity of extreme events, our study
provides an overview of the adaptation response of TR in relation
to climate changes that could be different in the future.
Reproducing rainfall patterns with rainfall synthetic models is an
alternative solution to perform simulations with multiple plausible
precipitation patterns to test the performance of TR. 

Conclusions
The novelty of this study lies in assessing the potential benefit

TRs have in Western Africa as an adaptation strategy in the context
of climate change. Furthermore, the ARS represents a simple
methodology to simulate the adaptive capacity of TR under
changes in R and T. To our knowledge, TRs were never modelled
in Western Africa with AquaCrop.

The AquaCrop simulations showed that TR limited the runoff
but did not significantly impact the maize yields for sandy and clay
soil since rainfall was enough for maize production and to avoid
high water stresses along the cropping season. Hence, TR potential
is not expressed in the current conditions of Fatick.

Under the perturbed climate scenarios, rainfall reduction was
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the most impacting variable, as it contributed to increasing water
stress and reducing biomass and yields. The worse climate condi-
tion (-50% and +5°C) generated a maximum peak of yield reduc-
tion of 80% compared to the standard condition in years with rain-
fall under average rainfall seasons. ARS allowed us to evaluate the
potential of adaptation strategies in plotted surfaces; TR limited the
losses of yield by increasing yields by 3.1% and 3.8% at PF and
OF conditions on sandy soil. The adaptation effect was higher
when TR was simulated on clay soil, increasing the yield by 5.6%
and 13% at PF and OF conditions, respectively. 

Integrating TR and fertilisation represents a better strategy to
cope with climate change impact rather than adopting a single
adaptation measure. Furthermore, by improving the water infiltra-
tion and nutrient availability, TR represents a good strategy that
can reduce the losses of yield and the probability of crop failure in
case of future rainfall reduction. 
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