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a b s t r a c t 

We investigate the linear stability of unidirectional Poiseuille flow of blood modeling the fluid as a spatially 

inhomogeneous fluid in which viscosity depends on the red blood cell concentration (RBCs). We consider small 

vessels like arteries terminal branches, arterioles or venules, where the inhomo-geneity is due to the non uni- 

form distribution of RBCs on the vessel cross section. The stability analysis is performed applying the clas- 

sical normal-mode linear analysis which results in a fourth-order eigenvalue problem that is solved numer- 

ically. The results obtained indicates that the flow is unconditionally unstable. However, those patterns in 

which the RBCs concentration decreases towards the vessel walls show growth rates so small that the observ- 

ability of the instability requires a very large time. Conversely, the growth rates associated to the profiles in 

which the RBCs concentration increases toward the vessel walls are at least three order of magnitude larger 

than the previous case. We therefore believe that those distributions in which the RBCs are more concentrated 

around the vessel center are to be considered more “stable ” than those in which RBCs accumulate towards the 

vessel walls. 
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. Introduction 

A body is said inhomogeneous if the properties in the reference con-
guration are not uniform. The majority of bodies are inhomogeneous
ut when the inhomogeneity is bland they can be safely considered ho-
ogeneous. In Anand and Rajagopal (2005) the authors have shown
ow inhomogeneous fluids with properties that vary mildly about the
ean value may lead to differences in the response which can be larger

han one order of magnitude, proving that approximating a fluid as ho-
ogeneous with average properties may lead to significant errors in the

omputation of quantities associated with the flow. 
Blood is a paradigm of an inhomogeneous complex fluid. It can be

odelled as a suspension of Red Blood Cells (RBCs) in a liquid (plasma).
hen blood flows in “small ” vessels, the RBCs volume fraction (hema-

ocrit 𝜙) varies on the cross section ( Moyers-Gonzalez et al., 2008 ),
ecomb (2017) . The inhomogeneity is due to the non uniform distribu-
ion of RBCs in the cross section and it is known that in vessels with
iameter less than 300 μm the RBCs do not distribute uniformly on
ross section, but tend to accumulate along the axis forming a cell-free
ayer near the wall ( Haynes, 1960 ). This phenomenon has been linked
o the well known Fåhræus-Lindqvist effect, which describes how the
iscosity of blood changes with the diameter of the vessel (see Ascolese
t al., 2019; Chebbi, 2015; Copley, 1960; Fahraeus and Lindqvist, 1931;
ournier, 2012; Secomb, 2017; Secomb and Pries, 2013 and the numer-
us references therein reported). 
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Since the blood rheology depends on the hematocrit 𝜙, the rheo-
ogical properties are not uniform if 𝜙 is not spatially uniform and the
ow is inhomogeneous. Such an inhomogeneity does not affect blood
ensity 1 𝜌∗ (density changes due to hematocrit fluctuations are negli-
ible) but may have significant influence on the viscous stress. Conse-
uently, the inhomogeneity can modify the properties of the flow by
riggering instabilities, so that some patterns are stable while others
re not. 

In this study we investigate the linear stability of a unidirectional
ow in a channel of a fluid whose viscosity depends upon the hemat-
crit. In particular, we consider the following constitutive equation 

 

∗ = − 𝑝 ∗ 𝕀 + 2 𝜇∗ ( 𝜙) 𝔻 

∗ , (1)

here p ∗ and 𝔻 

∗ are the pressure and the shear rate, respectively, and
here the viscosity 𝜇∗ is a positive function of the hematocrit 𝜙. When
is uniform on the cross-section we recover the constitutive response

f a Newtonian fluid. Conversely, when the hematocrit is not uniform
n the vessel cross-section, the flow is inhomogeneous. 

The dynamics of the hematocrit is governed by a simple advection
quation in which any diffusive flux is ignored. In the framework of
on-colloidal suspensions (the characteristic diameter of a RBC is suffi-
iently large for Brownian effects to be negligible), the solid-fluid inter-
ction term depends on the Darcy’s number ( Drew and Passman, 1999;
ajagopal and Tao, 1995 ), which can become quite large being propor-

ional to the square of the ratio between the macroscopic length scale
nd the particles size. Hence, for low Reynolds number, the two phases
1 Starred quantities are dimensional. 
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(  
ave practically the same velocity and the suspension can be consid-
red as a single non-homogeneous fluid ( Anand and Rajagopal, 2005;
usi, 2018; Fusi et al., 2019; Massoudi and Vaidya, 2011 ). The dynam-
cs of such a fluid is governed by the linear momentum equation and the
ontinuity equation for the fluid and by the equation for 𝜙, which sim-
ly reduces to the material derivative. The steady state (when attained)
epends on both boundary and initial conditions. Therefore, when no
nformation on the initial conditions is available, the equilibrium dis-
ribution of the suspended RBCs is, in fact, arbitrary to some extent. In
ther words, any sufficiently regular hematocrit profile depending only
n the transversal coordinate generates a flow that satisfies the motion
quation (we shall resume this issue in Section 2 ). One therefore needs
 criterion, based on reasonable physical assumptions, to select the con-
entration profile of the suspended particles. Hence, in order to get some
nsights on the possible blood flow configurations at the level of micro-
irculation, a stability analysis is mandatory and this is the aim of this
aper. 

More specifically, the objective and novelty of this study is twofold.
irst, to investigate the stability properties of flows, at low Reynolds
umber, in which the hematocrit profile 𝜙 depends only on the transver-
al coordinate, i.e. stratified flows. In particular, we consider two classes
f profiles: 𝜙 monotonically increasing with the transversal coordi-
ate and 𝜙 monotonically decreasing. The second objective is to pro-
ide further insight into the role of 𝜇∗ ( 𝜙). We consider flows at low
eynolds number because our main focus is microcirculation: arteries

erminal branches, arterioles and venules, i.e. vessels whose diameter
s 0 . 1 − 0 . 6 𝑚𝑚, in which the RBCs do not distribute uniformly on cross
ection ( Chandran et al., 2007; Cooney, 1976 ). 

To date, relevant studies concerning stratified flows are the ones on
he so-called core annular flow, i.e., parallel flow of two or more flu-
ds with different viscosities (blood flow in a microvessel with regard
o the Fåhr æus-Lindqvist effect is considered exploiting a two layer
odel). Hickox (1971) has studied the stability of this axisymmetric
ow setting including the effects of gravity and capillary forces acting
n the interface between the two liquids. He has shown that the steady
oiseuille flow of two immiscible fluids with different viscosity is unsta-
le when the less viscous one is centrally located. Moreover, in Preziosi
t al. (1989) the authors have studied the linear stability of the same
ase flow more extensively by varying the viscosities, the volume ratios
f the two fluids, the Reynolds, etc. They have proved that the flow is
enerally unstable, except when the annular region is occupied by the
ess viscous fluid, it is sufficiently thin and the Reynolds number varies
ithin a limited range which depends on the fluid parameters. Addi-

ional references on the stability of stratified flows under more strin-
ent limitations of the parameters can be found in Joseph and Renardy
1993) , Kouris and Tsamopoulos (2001) and Kouris and Tsamopoulos
2002) . 

Concerning the constitutive model (1) , we recall that blood is a non-
ewtonian fluid. The deviation from the classical Newtonian behavior

s manifested in its yield limit, shear-thinning and stress relaxation prop-
rties ( Fasano and Sequeira, 2017; Fusi et al., 2014; Yeleswarapu et al.,
998 ). For instance, many experiments show that for laminar flow in
traight and uniform tubes, the velocity profile is blunted near the cen-
ral axis, with the non-Newtonian features being strictly related to the
essel size and to the flow regime, see Liepsch (1986) . Here we consider
egimes where the non-Newtonian effects can be neglected to a certain
xtent. 

The constitutive model for non-Brownian particles suspensions is
uch more complex than (1) . Considering, for instance, the single-phase

imit of the continuum model for incompressible fluid-saturated granu-
ar flows, we observe that the momentum equation has the additional
erm Γ∇ 𝜙⊗∇ 𝜙, where the parameter Γ is referred to as the configuration
tress coefficient, see Papalexandris (2004) , Varsakelis and Papalexan-
ris (2011) . Furthermore, also the particles deformability should be
aken into account when modeling blood. Indeed, for Stokes flow of sus-
ensions in tubes, the non-stiffness of the particles seems to affect greatly
he flow pattern, ( Goldsmith and Marlow, 1979 ). For instance, Moyers-
onzalez and Owens (2010) have described the steady Poiseuille flow
f blood in a small tube using a two-layer fluid consisting of an outer
nnulus filled with plasma and an inner core where the blood is treated
s a suspension of rouleaux of various sizes represented by deformable
umbbells, ( Moyers-Gonzalez et al., 2008 ). Accordingly, the total stress
s viscoelastic being composed of the small Newtonian-like contribution
orm the plasma and the elastic-like contribution from the RBCs. Such
n approach has been used in Dimakopoulos et al. (2015) for simulating
he blood flow in a stenotic vessel. 

In blood flow the RBC elastic properties play an important role in the
ollective dynamics resulting in a nonuniform cell density on the vessel
ross section ( Coupier et al., 2008; Doddi and Bagchi, 2009 ). However,
t is a well known phenomenon that, in certain flow regimes, the par-
icles distribution in rigid spheres suspensions is not uniform on the
ection ( Drew, 1986; Graham et al., 1991; Karnis et al., 1966 ). That was
xperimentally studied in the pioneering work by Segré and Sileberger
1962) and in the subsequent works by Nott and Brady (1994) . Indeed,
 general mechanistic understanding of the particles (rigid or non-rigid
ike RBCs) migration away from the walls has proved elusive. And also
ther phenomena, like the interaction between RBCs and the cells of the
essel endothelium ( Secomb et al., 2001a; 2001b ) and the viscoelastic
roperties of the plasma ( Brust et al., 2013 ), seem influence the forma-
ion of a RBCs depleteted layer close to the vessel walls. 

Concerning the evolution equation for 𝜙, many approaches are pos-
ible. For instance, some authors consider the blood as a monomodal
uspension of plasma and RBCs, in which a diffusive processes, driven
y the shear, may occur, see Mansour et al. (2010) and Chebbi (2018) .
ccording to such an approach, the net flux of particles consists of two
ontributions: a diffusive flux driven by the gradient of the shear rate
nd a diffusive flux due to the concentration gradient (with a diffusiv-
ty proportional to the local shear rate), ( Leighton and Acrivos, 1987;
hillips et al., 1992 ). This model has been used to predict the forma-
ion of a region close to the wall relatively poor in particles, which acts
s a lubricant layer accelerating the movement of the whole suspen-
ion. In the same spirit, using scaling arguments, Leighton and Acrivos
1987) and Pranay et al. (2012) , have showed that the net RBCs flux
s driven by a concentration gradient whose diffusivity is proportional
o the shear rate, to the local hematocrit and to the typical particle di-
ension. However, as pointed out in Phillips et al. (1992) , such a model
redicts that in a steady Couette, or Poiseuille, flow the particles volume
raction, i.e. 𝜙, attains a cusp at the centerline (never observed in exper-
ments performed on suspensions) where it takes its maximum admis-
ible value. Such a drawback is absent in particle-migration models in
hich the solid-volume fraction advection-diffusion equation contains
 driving term (e.g. proportional to the difference between the pressure
nd the integranular stress). Models of this kind have been recently de-
eloped by Monsorno et al. (2016) , Monsorno et al. (2017) , Lecampion
nd Garagash (2014) , Boyer et al. (2011) , and Ahnert et al. (2019) and
pplied to confined pressure-driven laminar flow of neutrally buoyant
on-Brownian suspensions. Essentially they treat the suspension as a
ixture getting mathematical problems that are characterized by con-

iderable difficulties due to the boundary conditions, ( Rajagopal and
ao, 1995 ). Indeed, one of the thorny issues occurring when it comes to
utting mixture theory in practice, is the inability to prescribe bound-
ry conditions for stress boundary value problems, since we do not know
ow to distribute the traction (or compression) among the various mix-
ure components. 

In conclusion, we can state that model (1) applies to flow regimes
n which the non-Newtonian effects and the RBCs deformability play a
inor role. Adopting such an approach, we are able to obtain explicit

xpressions for both steady velocity and pressure in a unidirectional
hannel flow. 

To keep our analysis as general as possible, we consider four em-
irical laws linking the blood viscosity to the hematocrit (see equations
15) –(19) ) and we find, for each of them, the basic velocity field cor-
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esponding to a given hematocrit transversal profile. In particular, we
onsider two cases that ideally represent the two main hematocrit pro-
les: 𝜙 increasing toward the vessel walls and 𝜙 decreasing toward the
essel walls. Then, following the classical modal analysis of infinitesi-
al perturbations, we add to the basic flow a “small ” perturbation and

nvestigate the linear stability. The employment of a classical normal-
ode analysis results in a fourth-order eigenvalue problem that is solved
umerically via a Chebyshev polynomial method. 

The paper develops as follows. In Section 2 we formulate the model
onsidering a flow between parallel plates driven by a known pressure
radient. We discard the cylindrical geometry, although physically more
ignificant, because more involved from the numerical point of view.
imilarly we do not considered a drag motion (Couette without pres-
ure gradient) because is less indicated in the case of blood flow. In
ection 3 we illustrate the linear stability analysis while Section 4 is
evoted to the numerical methodology employed to solve the result-
ng eigenvalue problem and to the discussion of the results. Finally, in
ection 5 we draw some final remarks. 

. The basic flow 

We consider a mechanically incompressible flow in a channel of
ength L ∗ and amplitude 2 H 

∗ , driven by a prescribed pressure gradient
 

∗ . We denote by 

 

∗ = 𝑢 ∗ 𝒆 𝑥 + 𝑣 ∗ 𝒆 𝑦 (2)

he velocity field and we introduce the viscosity 𝜇∗ ( 𝜙) = 𝜇∗ 
𝑝 
𝜇( 𝜙) , where

∗ 
𝑝 

is a reference viscosity and 𝜇( 𝜙) is dimensionless. When the Cauchy
tress is given by (1) , the mathematical formulation of the problem is 

𝜕𝜙

𝜕𝑡 ∗ 
+ 𝒗 

∗ ⋅ ∇ 

∗ 𝜙 = 0 , (3)

 

∗ ⋅ 𝒗 ∗ = 0 , (4)

∗ 
( 

𝜕 𝒗 ∗ 

𝜕𝑡 ∗ 
+ 

(
𝒗 
∗ ⋅ ∇ 

∗ )
𝒗 
∗ 
) 

= −∇ 

∗ 𝑝 ∗ + 𝜇∗ 
𝑝 
∇ 

∗ ⋅
(
2 𝜇( 𝜙) 𝔻 

∗ ), (5)

here 𝜌∗ is the constant and uniform fluid density.Eq. (3) is a simple
dvection equation since in the framework of non-colloidal suspensions
he solid-fluid interaction, which would introduce in the equation a dif-
usive term, depends on the inverse of Darcy’s number ( Boyer et al.,
011; Drew and Passman, 1999 ), which in our case is negligible. 

We rescale the problem with 

 = 

𝑥 ∗ 

𝐿 ∗ 
, 𝑦 = 

𝑦 ∗ 

𝐿 ∗ 
, 𝐻 = 

𝐻 

∗ 

𝐿 ∗ 
, 𝑢 = 

𝑢 ∗ 

𝑈 ∗ 
, 𝑣 = 

𝑣 ∗ 

𝑈 ∗ 
, 𝑝 = 

𝑝 ∗ 

𝜌∗ 𝑈 ∗ 2 
, 𝐺 = 

𝐺 

∗ 𝐿 ∗ 

𝜌∗ 𝑈 ∗ 2 
,

here U 

∗ is the characteristic velocity, still to be selected. The system
3) –(5) becomes 

 

 

 

 

 

 

 

𝜕𝜙

𝜕𝑡 
+ 𝒗 ⋅ ∇ 𝜙 = 0 , 

∇ ⋅ 𝒗 = 0 , 

𝖱𝖾 
(
𝜕 𝒗 

𝜕𝑡 
+ ( 𝒗 ⋅ ∇ ) 𝒗 

)
= − 𝖱𝖾 ∇ 𝑝 + ∇ ⋅ ( 2 𝜇( 𝜙) 𝔻 ) . 

(6) 

here 𝖱𝖾 = ( 𝜌∗ 𝐿 

∗ 𝑈 

∗ ∕ 𝜇∗ 
𝑝 
) is the Reynolds number. In particular, we take

𝖾 ≲  ( 1 ) , which is the typical order of magnitude for Blood flow in
rterioles or venules ( Fasano and Sequeira, 2017 ). We then look for a
asic flow of the type 

 = 𝑢 𝑏 ( 𝑦 ) , 𝑣 = 0 , 𝑝 = 𝑝 𝑏 ( 𝑥 ) , 𝜙 = 𝜙𝑏 ( 𝑦 ) , 

atisfying the boundary conditions 

 𝑏 ( 𝐻 ) = 0 , 
𝜕𝑢 𝑏 

𝜕𝑦 
( 0 ) = 0 , 𝑝 𝑏 ( 0 ) = 𝑝 𝑖𝑛 , 𝑝 𝑏 ( 1 ) = 𝑝 𝑖𝑛 − 𝐺, (7)

here p in is the dimensionless inlet pressure. 
We recall that the hematocrit 𝜙b varies locally, affecting the viscous

tress (but not the fluid density). In particular, since 𝜙 depends only
b 
n y and the basic velocity has no transversal component, Eq. (6) 1 is
utomatically fulfilled. This is indeed a stratified incompressible fluid
here the hematocrit is constant along each particle’s path. We there-

ore assume that 𝜙b ( y ) is a prescribed function, symmetric with respect
o 𝑦 = 0 . This is a critical assumption that allows one to treat the flow in
he channel – where new fluid is continuously supplied from the inlet –
sing an Eulerian framework ( Málek and Rajagopal, 2006 ). 

The basic flow in the upper part of the channel (in the lower part is
ymmetric) is the following 

 𝑏 ( 𝑦 ) = 𝖱𝖾 𝐺 ∫
𝐻 

𝑦 

𝜉

𝜇𝑏 ( 𝜉) 
𝑑𝜉, (8)

 𝑏 ≡ 0 , (9) 

 𝑏 ( 𝑥 ) = − 𝐺𝑥 + 𝑝 𝑖𝑛 , (10)

here we set 

𝑏 ( 𝑦 ) = 𝜇
(
𝜙𝑏 ( 𝑦 ) 

)
. (11) 

So far we have not specified the characteristic velocity U 

∗ . If we take

 

∗ = 

𝐺 

∗ 

𝜇∗ 
𝑝 
∫

𝐻 

∗ 

0 

𝜉∗ 

𝜇𝑏 ( 𝜉∗ ) 
𝑑𝜉∗ , (12) 

hen 

 = 𝖱𝖾 𝐺 ∫
𝐻 

0 

𝜉

𝜇𝑏 ( 𝜉) 
𝑑𝜉, (13)

nd so 

 𝑏 ( 𝑦 ) = 1 − 

∫ 𝑦 0 
𝜉

𝜇𝑏 ( 𝜉) 
𝑑𝜉

∫ 𝐻 

0 
𝜉

𝜇𝑏 ( 𝜉) 
𝑑𝜉
. (14)

hen 𝜇𝑏 = 1 (Newtonian case) we get the classical parabolic profile 

 𝑏 ( 𝑦 ) = 1 − 

(
𝑦 

𝐻 

)
2 . 

In the literature there are numerous empirical formulas relating the
iscosity to the hematocrit (see, for instance, Whitmore (1968) , Fournier
2012) and Bayliss (1952) Chapter 6 and the recent review ( Hund et al.,
017 )). All these formulas are characterized by the fact that 𝜇b is an in-
reasing function of 𝜙. We consider here a list of the most common ex-
ressions found in the literature ( Cokelet, 1963 ; Hatschek, 1920 ; Nubar,
967 ): 

( 𝜙) = 

1 
1 − 𝑔( 𝜙, 𝑇 ) 𝜙

(Charm and Kurland, [8]) (15) 

ith 

( 𝜙, 𝑇 ) = 𝑐 𝑜 exp 
{ 

𝑐 1 𝜙 + 

( 𝑐 2 
𝑇 

)
exp (− 𝑐 3 𝜙) 

} 

, (16)

( 𝜙) = 

1 
1 − ( 𝜙) 1∕3 

, (Hatschek, 1920), (17)

( 𝜙) = 

1 
(1 − 𝜙) 2 . 5 

, (Cokelet, 1963), (18)

( 𝜙) = 

0 . 75 
0 . 75 − 𝜙

, (Nubar, 1967). (19)

The plots in Fig. 1 show the viscosity as a function of the hematocrit
or the expressions (15) –(19) , while the plots in Fig. 2 show the cor-
esponding velocity profiles obtained from (14) when the hematocrit
istribution on the cross-section is 

( 𝑦 ) = 

𝜙𝑀 

𝜙𝑚 

(1 − 𝑦 2 ) 𝜙𝑚 + 𝑦 2 𝜙𝑀 

. (20)

In (20) 𝜙𝑚 = 0 . 2 , 𝜙𝑀 

= 0 . 7 are the minimum and maximum values
ttained by the hematocrit. Such a choice of 𝜙b ( y ) does not reflect any
eal situation but it provides a regular symmetric function bounded be-
ween two reasonable values of the hematocrit attaining the maximum
t 𝑦 = 0 . As one can notice, the basic velocities related to the various
mpirical expression of the viscosity are very similar. 
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Fig. 1. Examples of 𝜇( 𝜙). 

Fig. 2. Corresponding velocity profiles. 
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. Two dimensional perturbation 

To perform a linear stability analysis of the basic flow (14) , we con-
ider the following perturbed solution 

 ( 𝑥, 𝑦, 𝑡 ) = 𝑢 𝑏 ( 𝑦 ) + ̂𝑢 ( 𝑦 ) 𝑒 𝑖 ( 𝛼𝑥 − 𝜔𝑡 ) , (21) 

 ( 𝑥, 𝑦, 𝑡 ) = �̂� ( 𝑦 ) 𝑒 𝑖 ( 𝛼𝑥 − 𝜔𝑡 ) , (22) 

 ( 𝑥, 𝑦, 𝑡 ) = 𝑝 𝑏 ( 𝑥 ) + �̂� ( 𝑦 ) 𝑒 𝑖 ( 𝛼𝑥 − 𝜔𝑡 ) , (23) 

( 𝑥, 𝑦, 𝑡 ) = 𝜙𝑏 ( 𝑦 ) + �̂�( 𝑦 ) 𝑒 𝑖 ( 𝛼𝑥 − 𝜔𝑡 ) , (24) 

here | ⋅̂ |≪ 1 , 𝛼 ∈ ℝ is the wave number and 𝜔 ∈ ℂ is the frequency.
ntroducing 

 = 

𝜔 

𝛼
, with 𝑐 ∈ ℂ , (25)

he perturbation phase can be rewritten as 

 ( 𝛼𝑥 − 𝜔𝑡 ) = 𝑖𝛼( 𝑥 − 𝑐𝑡 ) . 

etting 

𝑑𝜇( 𝜙) 
𝑑𝜙

||||𝜙= 𝜙𝑏 ( 𝑦 ) = 

∙
𝜇
𝑏 ( 𝑦 ) , (26)

e consider an expansion of the viscosity function up to the linear term,
hat is 

( 𝜙( 𝑥, 𝑦, 𝑡 ) ) = 𝜇 ( 𝑦 ) + 

∙
𝜇 ( 𝑦 ) �̂�( 𝑦 ) 𝑒 𝑖 ( 𝛼𝑥 − 𝜔𝑡 ) , (27)
𝑏 𝑏 
Inserting (21) –(24) in (6) 1 and (6) 2 and disregarding nonlinear
erms we find 

 

(
𝛼𝑢 𝑏 − 𝜔 

)
�̂� + �̂� 𝜙′

𝑏 
= 0 , (28)

̂ ′ + 𝑖𝛼�̂� = 0 , (29)

here 

 ⋅ ) ′ = 

𝑑 ( ⋅ ) 
𝑑𝑦 

. 

nserting (21) –(24) and (27) in (6) 3 we obtain 

𝖱𝖾 
(
− 𝑖𝜔 ̂𝑢 + 𝑖𝛼𝑢 𝑏 ̂𝑢 + 𝑢 ′

𝑏 ̂
𝑣 
)
= − 𝑖𝛼𝖱𝖾 �̂� 

+ −2 𝛼2 𝜇𝑏 ̂𝑢 + 

𝑑 

𝑑𝑦 

[
𝜇𝑏 
(
�̂� ′ + 𝑖𝛼�̂� 

)
+ 

∙
𝜇
𝑏 �̂�𝑢 

′
𝑏 

]
(30) 

𝖱𝖾 
(
− 𝑖𝜔 ̂𝑣 + 𝑖𝛼𝑢 𝑏 ̂𝑣 

)
= − 𝖱𝖾 �̂� ′

+ 𝑖𝛼

(
𝜇𝑏 
(
�̂� ′ + 𝑖𝛼�̂� 

)
+ 

∙
𝜇
𝑏 �̂�𝑢 

′
𝑏 

)
+ 

𝑑 

𝑑𝑦 

[
2 𝜇𝑏 ̂𝑣 ′

]
(31) 

Exploiting (29) and introducing 

 ( 𝑦 ) = 𝜇𝑏 ( 𝑦 ) − 1 , 

 ( 𝑦 ) = 

∙
𝜇
𝑏 ( 𝑦 ) 𝜙′

𝑏 
( 𝑦 ) 𝑢 ′

𝑏 
( 𝑦 ) , 

qs. (30) and (31) can be rewritten as 

𝖱𝖾 
(
− 𝑖𝜔 ̂𝑢 + 𝑖𝛼𝑢 𝑏 ̂𝑢 + 𝑢 ′

𝑏 ̂
𝑣 
)
= − 𝑖𝛼𝖱𝖾 �̂� − 2 𝛼2 𝑄 ̂𝑢 

+ 

( 

𝑑 2 

𝑑𝑦 2 
− 𝛼2 

) 

�̂� + 

𝑑 

𝑑𝑦 

[ 

𝑄 

(
�̂� ′ + 𝑖𝛼�̂� 

)
+ 𝑃 

�̂�

𝜙′
𝑏 

] 

, (32) 

𝖱𝖾 
(
− 𝑖𝜔 ̂𝑣 + 𝑖𝛼𝑢 𝑏 ̂𝑣 

)
= − 𝖱𝖾 �̂� ′ + 

( 

𝑑 2 

𝑑𝑦 2 
− 𝛼2 

) 

�̂� 

+ 𝑖𝛼

[ 

𝑄 

(
�̂� ′ + 𝑖𝛼�̂� 

)
+ 𝑃 

�̂�

𝜙′
𝑏 

] 

+ 

𝑑 

𝑑𝑦 

[
2 𝑄 ̂𝑣 ′

]
(33) 

n eliminating the pressure between (32) and (33) and exploiting (29) ,
e get 

𝖱𝖾 
[
𝑖 
(
𝛼𝑢 𝑏 − 𝜔 

)(
�̂� ′ − 𝑖𝛼�̂� 

)
+ 𝑢 ′′

𝑏 
�̂� 
]
= 

( 

𝑑 2 

𝑑𝑦 2 
− 𝛼2 

) (
�̂� ′ − 𝑖𝛼�̂� 

)
+ 

( 

𝑑 2 

𝑑𝑦 2 
+ 𝛼2 

) 

[ 

𝑄 

(
�̂� ′ + 𝑖𝛼�̂� 

)
+ 𝑃 

�̂�

𝜙′
𝑏 

] 

− 2 𝑖𝛼 𝑑 
𝑑𝑦 

[
𝑄 

(
�̂� ′ − 𝑖𝛼�̂� 

)]
. (34) 

If we now introduce the new variable f ( y ) 

̂ = 𝜙′
𝑏 
𝑓, 

mplying that �̂� is symmetric with respect to 𝑦 = 0 , Eqs. (28) and (29) can
e rewritten as 

̂ = 𝑖𝛼
(
𝑐 − 𝑢 𝑏 

)
𝑓, �̂� = − 

𝑑 

𝑑𝑦 

[(
𝑐 − 𝑢 𝑏 

)
𝑓 
]
. 

n substituting the above into (34) we get the fourth order eigenvalue
roblem 

𝑖𝛼𝖱𝖾 
{ 

( 𝑢 𝑏 − 𝑐)( 𝖣 

2 − 𝛼2 ) − 𝑢 ′′
𝑏 

} [
( 𝑢 𝑏 − 𝑐) 𝑓 

]
= ( 𝖣 

2 − 𝛼2 ) 2 
[
( 𝑢 𝑏 − 𝑐) 𝑓 

]
+ ( 𝖣 

2 + 𝛼2 ) 
{ 

𝑄 ( 𝖣 

2 + 𝛼2 ) 
[
( 𝑢 𝑏 − 𝑐) 𝑓 

]
+ 𝑃 𝑓 

} 

− 4 𝛼2 𝖣 

{ 

𝑄 𝖣 

[
( 𝑢 𝑏 − 𝑐) 𝑓 

]} 

, 

(35) 

here 

 

𝑘 = 

𝑑 𝑘 

𝑑𝑦 𝑘 
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Fig. 3. 𝐴 = 0 . 5 , 𝐶 = 0 . 8 , 𝑑 = 10 −2 . 
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nd whose boundary conditions are 

𝑓 |± 𝐻 

= 0 , 𝑓 ′||± 𝐻 

= 0 . (36)

ystem (35) and (36) provides the eigenvalues 𝑐 ∈ ℂ , and the relative
igenfunctions f , that allows one to establish if the basic flow (8) –(10) ,
orresponding to the prescribed 𝜙b and to the selected 𝜇b ( 𝜙), is linearly
table or not. In particular, when Im ( c ) > 0 the system is unstable. 

emark 1. We observe that when 𝑄 = 𝑃 = 0 , i.e. when 𝜇 = 1 , setting
 = ( 𝑢 𝑏 − 𝑐) 𝑓 we recover the classical Orr-Sommerfeld equation 

𝛼𝖱𝖾 
{ 

( 𝑢 𝑏 − 𝑐)( 𝖣 

2 − 𝛼2 ) − 𝑢 ′′
𝑏 

} 

𝑔 = ( 𝖣 

2 − 𝛼2 ) 2 𝑔. 

Eq. (35) can be rewritten as 

 0 𝑓 + 𝑐 1 𝑓 + 𝑐 2  2 𝑓 = 0 , 

here  𝑗 are the differential operators 

 𝑗 = 

4 ∑
𝑘 =0 

𝐿 𝑗𝑘 ( 𝑦 ) 𝖣 

𝑘 . (37)

he coefficients L jk ( y ), which are reported in Appendix A , are evalu-
ted through the symbolic software MAXIMA, Maxima.sourceforge.net
2011) . Following Varsakelis and Papalexandris (2015) , we state that
he spectrum of (37) is purely discrete. The proof of this result can be
btained extending the proof of Lin (1961) , developed for the classical
rr-Sommerfeld equation. 

. Numerical solution 

This section is devoted to the numerical solution of the problem
35) and (36) . Our main goal is to determine the eigenvalue with the
argest imaginary part as a function of the wave number 𝛼 and for a
xed value of the Reynolds number 𝖱𝖾 . Therefore we set 

= max 
𝑐∈Σ

𝐼𝑚 ( 𝑐) , 

here Σ is the spectrum of system (35) and (36) . For fixed 𝖱𝖾 , we find
hat 𝜎 is a function of the wave number 𝛼, i.e. 𝜎 = 𝜎( 𝛼) . For simplicity
e assume that the length of the channel and the semi-amplitude of the

hannel are equal so that 𝐻 = 1 and the channel walls are 𝑦 = ±1 . 
Concerning the hematocrit profile 𝜙b ( y ), we select 

𝑏 ( 𝑦 ) = 𝐶𝑦 2 + 𝑑, (38)

here 𝑑 ∈ [0 , 1] and − 𝑑 ⩽ 𝐶 ⩽ 1 − 𝑑, so that 𝜙𝑏 ( 𝑦 ) ∈ [0 , 1] when 𝑦 ∈
−1 , 1] . In particular, we consider two cases: 

1. C > 0, the hematocrit is larger at the channel walls and so is the
viscosity (which is an increasing function of the hematocrit). 

2. C < 0, the RBCs concentration is larger in the middle of the channel
and so is viscosity. 

Of course other choices of 𝜙b ( y ) different from (38) are possible. Here
e make use of (38) because of its simple form (it is an even continu-
usly differentiable function) and because it allows, by simply changing
he sign of the constant C , to represent the two most important cases:
ncreasing/decreasing hematocrit with y . 

Eq. (35) is discretized approximating the differential operators via
 pseudo-spectral collocation method. The functions are evaluated us-
ng Chebyshev interpolation and the discretized generalized problem
s solved through a QR decomposition in which spurious, i.e. unphysi-
al, eigenvalues are ruled out by comparing results on grids of different
ize. The adopted procedure in implemented in Matlab® exploiting the
ell known CHEBYFUN package ( Driscoll et al., 2014; Weideman and
eddy, 2000 ). The robustness of the code has been tested by computing

he eigenvalues of the Orr-Sommerfeld equation. 
As a preliminary case we consider a simple linear model for 𝜇b 

( 𝜙) = 𝐴𝜙 + 1 , with 𝐴 > 0 , (39)
𝑏 
hich, combined with (38) , gives 

𝑏 ( 𝑦 ) = 𝐴𝐶𝑦 2 + ( 𝐴𝑑 + 1) . (40)

xploiting (13) we can compute the explicit expression of the velocity
rofile 

 𝑏 ( 𝑦 ) = 1 − 𝐾 ln 
(
𝜃𝑦 2 + 1 

)
, with 𝜃 = 

𝐴𝐶 

𝐴𝑑 + 1 
, and 𝐾 = 

1 

ln 
(
𝜃 + 1 

) . (41)

odel (39) and the corresponding basic flow is purely abstract and does
ot reflect any real situation. This notwithstanding, such a choice is
uite useful because it allows one to determine explicitly the basic pro-
le u b and it provides a good example for studying how 𝜎 depends on
he distribution of the RBCs within the channel. 

In the example showed in Fig. 3 we take 𝐴 = 0 . 5 , 𝐶 = 0 . 8 , 𝑑 = 10 −2 ,
hich generates a basic profile (41) not exhibiting any flex. In Fig. 4 we

hoose 𝐴 = 50 , 𝐶 = 0 . 8 , 𝑑 = 10 −2 , whose corresponding velocity profile
41) shows a flex. In both cases 𝖱𝖾 is 0.5 and C > 0, so that the RBCs dis-
ribution increases as y approaches the lateral walls. The quantity 𝜎 is
ositive for every value of 𝛼, showing that the perturbed flow is uncon-
itionally unstable but different order of magnitude of 𝜎 are obtained
epending on the value of A . In particular, we notice that for 𝐴 = 0 . 5 ,
≈ 10 −5 (corresponding to a wave number 𝛼 ≈1) so that the instabil-

ty develops very slowly. On the other hand, when 𝐴 = 50 , i.e. when
he viscosity is two order of magnitude larger than the previous case,
e get a maximum 𝜎 ≈ 10 −3 and the instability develops two orders
f magnitude faster. We observe that this result is in accordance with
hat found in Varsakelis and Papalexandris (2015) . We now look at the

econd case, i.e. C < 0, the RBCs distribution decreases as y approaches
he lateral walls (a pattern considered physically consistent according
o the classical literature ( Haynes, 1960; Secomb, 2017 ). In Fig. 5 we
ake 𝐴 = 0 . 5 , 𝐶 = −0 . 2 , 𝑑 = 0 . 5 , while in Fig. 6 we take 𝐴 = 50 , 𝐶 = −0 . 2 ,
 = 0 . 5 , and in both cases 𝖱𝖾 = 0 . 5 . Differently from the case in which
 > 0, now the basic velocity profiles do not exhibit any flex point. The
aximum 𝜎 is  (10 −5 ) for 𝐴 = 0 . 5 , while for 𝐴 = 50 the maximum is
 (10 −6 ) . This behavior seems to indicate that a large variation of the
iscosity has a stabilizing effect on the perturbed flow. Indeed, looking
t Fig. 6 we observe that when the basic viscosity 𝜇 ( y ) is increased of
b 
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Fig. 4. 𝐴 = 50 , 𝐶 = 0 . 8 , 𝑑 = 10 −2 . 

Fig. 5. 𝐴 = 0 . 5 , 𝐶 = −0 . 2 , 𝑑 = 0 . 5 . 
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Fig. 6. 𝐴 = 50 , 𝐶 = −0 . 2 , 𝑑 = 0 . 5 . 

Table 1 

Summary of results related to the flow (39) –(41) . 

C A 𝜎 C A 𝜎

0.5  (10 −5 ) 0.5  (10 −5 )
0.8 − 0.2 

50  (10 −3 ) 50  (10 −6 )
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wo order of magnitude, the maximum eigenvalue 𝜎 is reduced by one
rder of magnitude. The results obtained are reported in Table 1 . 

Such preliminary analysis indicates the following facts: 

i) The flow (39) –(41) is unconditionally unstable for “small ” values
of the Reynold number independently on the monotonicity of 𝜙b 

(increasing and decreasing). 
ii) The patterns in which the RBCs are concentrated in the central part

of the channel (case 2) are “less unstable ” than the ones in which
the RBCs are concentrated close to the walls (case 1). 
ii) Case 1 and case 2 show different responses for what concerns the
viscosity dependence on the hematocrit. In particular, in case 1 the
instability develops slowly when the viscosity depends “weakly ” on
𝜙. Indeed when 𝐴 = 0 . 5 we have 𝜎 ≈ 10 −5 , while for 𝐴 = 50 we get
𝜎 ≈ 10 −3 . Case 2 is characterized by a completely opposite behavior.

Let us now focus on the Charm and Kurland empirical relation
15) where the hematocrit 𝜙 and the plasma viscosity 𝜇 are linked by a
onlinear relation. We take 𝑇 = 310 𝑜 𝐾, 𝑐 𝑜 = 0 . 07 , 𝑐 1 = 2 . 49 , 𝑐 2 = 1107 𝑜 𝐾
nd 𝑐 3 = 1 . 49 (see Charm and Kurland (1974) ). The basic distribution

b ( y ) is still given by (38) . 
We plot 𝜎 as a function of 𝛼 and we plot the basic velocity profile, the

eynolds number being always equal to 0.5. In Fig. 7 we take 𝐶 = 0 . 4 ,
 = 10 −2 and the basic profile u b ( y ) does not show a flex point. In Fig. 8
e set 𝐶 = 0 . 75 , 𝑑 = 10 −2 and u b ( y ) shows a flex. The constant C is pos-

tive meaning that we are in case 1. The quantity 𝜎 is positive for every
alue of 𝛼 also in this case, so that the perturbed flow is unconditionally
nstable but different orders of magnitude of 𝜎 are obtained depending
n the value of C . In particular we notice that for 𝐶 = 0 . 4 the maxi-
um value of 𝜎 is 𝜎 ≈ 10 −5 , while for 𝐶 = 0 . 75 the maximum of 𝜎 is of

he order of 10 −3 , i.e. two orders of magnitude smaller. This means that
ith lower values of the hematocrit the system develops the instabil-

ty slower than for larger values of the hematocrit, in accordance with
he case in which the viscosity is given by (40) . We then focus on case
, taking C < 0 (larger hematocrit in the center of the channel). In the
lots displayed in Fig. 9 we take 𝐶 = −0 . 45 , 𝑑 = 0 . 5 , while in Fig. 10 we
ake 𝐶 = −0 . 01 , 𝑑 = 0 . 5 . Looking at Figs. 9 and 10 we notice an inter-
sting feature: a reduction of the steepness | C | of the RBCs distribution
esults in a reduction of the maximum growth rate 𝜎. In practice, the
maller is the gradient of the hematocrit, the “less unstable ” is the fluid.
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Fig. 7. 𝐶 = 0 . 4 , 𝑑 = 10 −2 . 

Fig. 8. 𝐶 = 0 . 75 , 𝑑 = 10 −2 . 
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Fig. 9. 𝐶 = −0 . 45 , 𝑑 = 0 . 5 . 

Fig. 10. 𝐶 = −0 . 01 , 𝑑 = 0 . 5 . 
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ndeed, for 𝐶 = −0 . 01 (which means an almost flat profile of 𝜙b ( y )) the
aximum rate 𝜎 is 𝑂(10 −6 ) , while for 𝐶 = −0 . 45 the maximum rate 𝜎 is
(10 −5 ) . 

When considering the empirical expressions for the viscosity (17) –
19) we obtain results very similar to the Charm-Kurland case. There-
ore, we do no show the plots of 𝜎( 𝛼), since they are essentially equal to
he ones Figs. 7–10 . 
. Conclusion 

In this study we investigate the stability of a unidirectional plane
oiseuille blood flow modeled as a inhomogeneous fluid whose viscosity
epends on the hematocrit. We consider two types of basic flow: one in
hich the hematocrit grows from the central axis to the wall of the vessel

case 1) and one in which the hematocrit has the opposite behavior (case
). For each case we consider four different empirical laws linking the
lood viscosity to the hematocrit. 



L. Fusi and A. Farina Applications in Engineering Science 1 (2020) 100002 

 

s  

A  

u  

i  

b  

c  

c  

f  

o
 

p  

e  

n  

i  

s  

“  

i  

l
 

s  

s  

e  

a  

s  

t  

s  

r  

t  

d  

w  

a  

b

A

𝐿

𝐿

𝐿

+

𝐿

𝐿

𝐿

𝐿

𝐿

𝐿

𝐿

𝐿

R

A  

A  

A  

 

B  

B  

B  

 

C  

C
C  

C  

C  

C  

C
C  

D  

 

D  

D  

D  

D  

F  

F
F
F  

F  

F  

G  

G  

 

H  

H  

H  

H  
By exploiting a classical normal-mode analysis, the stability of the
ystem is studied solving a numerical polynomial eigenvalue problem.
ccording to our simulations the flows of interest are unconditionally
nstable for 𝖱𝖾 ≲  ( 1 ) , both in case 1 and case 2 and for all the rheolog-
cal models considered. However, even though the flow is predicted to
e unconditionally unstable, the growth rates related to case 1 and 2 are
onsiderably different. We can indeed say, with some confidence, that
ase 1 is “more ” unstable than case 2, meaning that the time required
or the development of the instability in case 1 is at least a couple of
rders of magnitude smaller than the one of case 2. 

The laws expressing the blood viscosity in terms of the hematocrit
roduce different effects depending on which situation we are consid-
ring (case 1 and case 2). As for case 1, we remark that the more pro-
ounced is the dependence of the viscosity on 𝜙, the shorter is the time
n which the instability occurs. In case 2 the opposite behavior is ob-
erved: a strong dependence of the viscosity on the hematocrit causes a
stabilization ” of the flow, meaning that the perturbations growth rate
s shorter when the viscosity in the inner part is one order of magnitude
arger than the one of the marginal layer. 

The stability analysis carried out in this paper constitutes the first
tep towards understanding the role of the hematocrit distribution for
patially inhomogeneous blood flows occurring in microvessels. How-
ver, given the complex rheology of blood due to non-Newtonian effects
nd cells defomrability (phenomena disregarded in this study), the re-
ults here obtained are just physical insights towards a more complete
heory and therefore closer to the physiological phenomenon. As a con-
equence we note that a possible development of the present study is
epresented by the investigation of the density changes due to hema-
ocrit fluctuations where it is likely that a small fluid compressibility
ue RBCs concentration may result in a stabilizing effect. This, however,
ould entail the development of a constitutive model linking pressure
nd hematocrit, a problem that, in the authors’ knowledge, has not yet
een investigated. 

ppendix A. Appendix 

We provide here the coefficients introduced in (37) 

 00 ( 𝑦 ) = − 𝑄 

( 

𝑑 4 𝑢 𝑏 

𝑑 𝑦 4 

) 

− 

𝑑 4 𝑢 𝑏 

𝑑 𝑦 4 
− 2 

( 

𝑑𝑄 

𝑑𝑦 

) ( 

𝑑 3 𝑢 𝑏 

𝑑 𝑦 3 

) 

+ 2 𝑄 𝛼2 
( 

𝑑 2 𝑢 𝑏 

𝑑 𝑦 2 

) 

+ 2 𝛼2 
( 

𝑑 2 𝑢 𝑏 

𝑑 𝑦 2 

) 

− 

( 

𝑑 2 𝑄 

𝑑 𝑦 2 

) ( 

𝑑 2 𝑢 𝑏 

𝑑 𝑦 2 

) 

+ 2 
( 

𝑑𝑄 

𝑑𝑦 

) 

𝛼2 
( 

𝑑𝑢 𝑏 

𝑑𝑦 

) 

− 𝑖 𝖱𝖾 𝛼3 𝑢 𝑏 
2 

− 𝑄 𝛼4 𝑢 𝑏 − 𝛼4 𝑢 𝑏 − 

( 

𝑑 2 𝑄 

𝑑 𝑦 2 

) 

𝛼2 𝑢 𝑏 − 𝑃 𝛼2 − 

𝑑 2 𝑃 

𝑑 𝑦 2 
, 

 01 ( 𝑦 ) = −4 𝑄 

( 

𝑑 3 𝑢 𝑏 

𝑑 𝑦 3 

) 

− 4 
( 

𝑑 3 𝑢 𝑏 

𝑑 𝑦 3 
𝑢𝑏 

) 

− 6 
( 

𝑑𝑄 

𝑑𝑦 

) ( 

𝑑 2 𝑢 𝑏 

𝑑 𝑦 2 

) 

+ 2 𝑖 𝖱𝖾 𝛼 𝑢𝑏 
( 

𝑑𝑢 𝑏 

𝑑𝑦 

) 

+ 4 𝑄 𝛼2 
( 

𝑑𝑢 𝑏 

𝑑𝑦 

) 

+ 4 𝑎 2 
( 

𝑑𝑢 𝑏 

𝑑𝑦 

) 

− 2 
( 

𝑑 2 𝑄 

𝑑 𝑦 2 

) ( 

𝑑𝑢 𝑏 

𝑑𝑦 

) 

+ 2 
( 

𝑑𝑄 

𝑑𝑦 

) 

𝛼2 𝑢𝑏 − 2 
( 

𝑑𝑃 

𝑑𝑦 

) 

, 

 02 ( 𝑦 ) = −6 𝑄 

( 

𝑑 2 𝑢 𝑏 

𝑑 𝑦 2 

) 

− 6 
( 

𝑑 2 𝑢 𝑏 

𝑑 𝑦 2 

) 

− 6 
( 

𝑑𝑄 

𝑑𝑦 

) ( 

𝑑𝑢 𝑏 

𝑑𝑦 

) 

 𝑖 𝖱𝖾 𝛼 𝑢𝑏 2 + 2 𝑄 𝛼2 𝑢𝑏 + 2 𝛼2 𝑢𝑏 − 

( 

𝑑 2 𝑄 

𝑑 𝑦 2 

) 

𝑢𝑏 − 𝑃 , 

 03 ( 𝑦 ) = −4 𝑄 

( 

𝑑𝑢 𝑏 

𝑑𝑦 

) 

− 4 
( 

𝑑𝑢 𝑏 

𝑑𝑦 

) 

− 2 
( 

𝑑𝑄 

𝑑𝑦 

) 

𝑢𝑏 , 

 ( 𝑦 ) = −( 𝑄 + 1) 𝑢 . 
04 𝑏 
 10 ( 𝑦 ) = 2 𝑖 𝖱𝖾 𝛼3 𝑢𝑏 + 𝑄 𝛼4 + 𝛼4 + 

( 

𝑑 2 𝑄 

𝑑 𝑦 2 

) 

𝛼2 , 

 11 ( 𝑦 ) = −2 𝑖 𝖱𝖾 𝛼
( 

𝑑𝑢 𝑏 

𝑑𝑦 

) 

− 2 
( 

𝑑𝑄 

𝑑𝑦 

) 

𝑎 2 , 

 12 ( 𝑦 ) = −2 𝑖 𝖱𝖾 𝛼 𝑢𝑏 − 2 𝑄 𝛼2 − 2 𝛼2 + 

𝑑 2 𝑄 

𝑑 𝑦 2 
, 

 13 ( 𝑦 ) = 2 
( 

𝑑𝑄 

𝑑𝑦 

) 

, 

 14 ( 𝑦 ) = 𝑄 + 1 . 

 20 ( 𝑦 ) = − 𝑖 𝖱𝖾 𝛼3 , 𝐿 21 = 0 , 𝐿 22 = 𝑖 𝖱𝖾 𝛼, 𝐿 23 = 𝐿 24 = 0 . 
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