
water

Article

Hydraulic Efficiency of Green-Blue Flood Control Scenarios for
Vegetated Rivers: 1D and 2D Unsteady Simulations

Giuseppe Francesco Cesare Lama 1,2,* , Matteo Rillo Migliorini Giovannini 3, Alessandro Errico 3,
Sajjad Mirzaei 4, Roberta Padulano 5 , Giovanni Battista Chirico 1 and Federico Preti 3

����������
�������

Citation: Lama, G.F.C.; Rillo

Migliorini Giovannini, M.; Errico, A.;

Mirzaei, S.; Padulano, R.; Chirico,

G.B.; Preti, F. Hydraulic Efficiency of

Green-Blue Flood Control Scenarios

for Vegetated Rivers: 1D and 2D

Unsteady Simulations. Water 2021, 13,

2620. https://doi.org/10.3390/

w13192620

Academic Editors: Cristiana Di Cristo

and Michele Iervolino

Received: 4 August 2021

Accepted: 20 September 2021

Published: 23 September 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Agricultural Sciences, Water Resources Management and Biosystems Engineering Division,
University of Naples Federico II, 80055 Portici, Italy; giovannibattista.chirico@unina.it

2 Department of Civil, Architectural and Environmental Engineering (DICEA), University of Naples
Federico II, 80125 Napoli, Italy

3 Department of Agricultural, Food, Environmental and Forestry Sciences and Technologies, University of
Florence, 50144 Firenze, Italy; matteo.rillomigliorinigiovannini@unifi.it (M.R.M.G.);
alessandro.errico@unifi.it (A.E.); federico.preti@unifi.it (F.P.)

4 Faculty of Natural Resources and Marine Sciences, Tarbiat Modares University, 14115-111 Noor, Iran;
Sajjadmirzaei@modares.ac.ir

5 Impacts on Agriculture, Forests and Ecosystem Services (IAFES) Division, Fondazione Centro
Euro-Mediterraneo sui Cambiamenti Climatici, 01100 Viterbo, Italy; roberta.padulano@cmcc.it

* Correspondence: giuseppefrancescocesare.lama@unina.it; Tel.: +39-081-253-9423

Abstract: Flood hazard mitigation in urban areas crossed by vegetated flows can be achieved through
two distinct approaches, based on structural and eco-friendly solutions, referred to as grey and
green–blue engineering scenarios, respectively; this one is often based on best management practices
(BMP) and low-impact developments (LID). In this study, the hydraulic efficiency of two green–blue
scenarios in reducing flood hazards of an urban area crossed by a vegetated river located in Central
Tuscany (Italy), named Morra Creek, were evaluated for a return period of 200 years, by analyzing
the flooding outcomes of 1D and 2D unsteady hydraulic simulations. In the first scenario, the impact
of a diffuse effect of flood peak reduction along Morra Creek was assessed by considering an overall
real-scale growth of common reed beds. In the second scenario, riverine vegetation along Morra
Creek was preserved, while flood hazard was mitigated using a single vegetated flood control area.
This study demonstrates well the benefits of employing green–blue solutions for reducing flood
hazards in vegetated rivers intersecting agro-forestry and urban areas while preserving their riverine
ecosystems. It emerged that the first scenario is a valuable alternative to the more impacting second
scenario, given the presence of flood control areas.

Keywords: ecohydraulics; BMP; flood control; urban areas; vegetated flows; unsteady hydraulic
simulations; LID; green–blue scenarios

1. Introduction

The geo-hydrological and ecohydraulic challenges linked to current and future cli-
mate processes [1–6] highlight the growing need to protect water resources quantitatively
and qualitatively in an ever more decisive way, especially in sensitive areas within both
natural and urban territories [7,8]. In this context, the hydraulic conveyance of vege-
tated open channels intersecting anthropogenic settlements is dramatically affected by
the temporal evolution of riverine vegetation properties [9–11], mainly associated with
riverine plants’ growth, foliage, and density overall [12,13]. In fact, in the case of vegetated
flows, the morphometric and bio-physical changes over time in riverine vegetation canopy
features represent a source of hydraulic roughness, in addition to that due to the only
riverbanks and bed, to be meticulously considered in the field-scale analysis of global flow
resistance [14,15].
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Managing riverine vegetation biomass growth plays a key role in mitigating the
flooding risk associated with urban and agro-forestry areas crossed by vegetated water
bodies [16–19]. In the past, flood peak control has been essentially achieved by adopting
hydraulic engineering solutions based on so-called “grey engineering scenarios”, aiming at
reducing peak hydrological discharge and water levels [20,21] through traditional engi-
neering infrastructures that prevent any development of terrestrial or aquatic ecosystems
through the years [22,23]. Thus, grey scenarios do not deliver multiple environmental
benefits, also known as “Ecosystem Services”, apart from flood control or peak discharge
and water level reduction effects. On the other hand, based on the proposal of low-impact
developments (LID) and best management practices (BMP), which aim at balancing the
need for improved hydraulic efficiency and the need to mitigate the environmental impact
of the hydraulic infrastructures, green–blue scenarios constitute a very promising scientific
and practical advance in terms of flood control engineering solutions at low ecological
impacts [24–29].

To properly model and simulate the actual biomechanical and botanical traits of river-
ine vegetation stands at field scale, the analysis of the green volumes involved in their
phenological and morphometric evolution over time is essential [30–32]. As suggested
by previous ecohydraulic studies and reviews [33–35], riverine vegetation’s canopy mor-
phometric trends can be easily described by the well-known leaf area index (LAI). This
parameter must be properly considered in predictive and numerical modeling of vegetated
rivers in urban areas for taking rigorously into account the real-scale impacts of riverine
vegetation evolution on flow resistance in vegetated streams, to be then robustly validated
by vegetational and water flow measurements acquired during experimental ecohydraulic
field campaigns [36,37].

There still exists a need for the proposal of an accurate analytical methodology for
evaluating the role of riverine vegetation canopy growth on the effectiveness of green–blue
flood risk mitigation systems. To respond to this research question, dedicated hydraulic
simulations were carried out in this article to demonstrate the peak flood lamination
associated with both riverine vegetation (1D) and natural vegetated flood control areas
(2D), as practical examples of green–blue flood control solutions. In detail, the aim of this
study is the evaluation of the hydraulic performance (expressed in percentage, %) of two
green–blue flood control scenarios associated with peak water level and discharge values
for a return period (hereinafter referred to as T) of 200 years in an Italian vegetated river
named Morra Creek, colonized by riverine Phragmites australis (Cav.) Trin. Ex. Steudel.,
mostly known as common reed beds. In the first scenario, hereinafter indicated as green–
blue Scenario I, the effect of riverine canopy growth on the hydraulic conveyance of the
examined vegetated river was simulated by varying the values of Manning’s hydraulic
roughness coefficients (hereinafter indicated as n) from 0.05 m−1/3 s (very young plants)
to 0.40 m−1/3 s (mature plants) continuously. In the second case, hereinafter referred to
as green–blue scenario II, the impacts of the vegetated flood control areas were modeled
and simulated, while assuming the cover of the examined riverine vegetation stands along
Morra Creek unchanged.

The novel approach proposed in this study is embodied by the analysis of the hy-
draulic efficiency associated with green–blue flood control proposals, based on the hydro-
dynamic interaction between the specific riverine vegetation and water flow within a real
vegetated watercourse, representing an advance in flood risk mitigation planning applied
mainly to vegetated flows crossing agro-forestry and urban areas.

2. Materials and Methods
2.1. Study Site

Morra Basin mainly develops in the two Municipalities of Collesalvetti and Torretta
Vecchia (Province of Livorno—Central Tuscany, Northern Italy), from 457 to 18 m a.m.s.l.
The land use is mainly constituted by agricultural land, croplands in detail, with about 50%
of its surface used for this purpose, while forest and semi-natural environments occupy
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43%. The manmade territories cover only 7% but have more than tripled in the last 70 years,
affecting mostly floodplains located in the lower part of the Morra Basin watershed. Thus,
it is a matter of fact that all this uncontrolled urbanization process contributed importantly
to modify the natural hydraulic and ecological conditions of the vegetated stream examined
in the present study, which has been progressively forced into increasingly smaller or even
channeled both bed and riverbanks through the years.

Figure 1 shows in detail the Morra Creek’s length and location.
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Figure 1. Study area (Central Tuscany, Northern Italy) overview. The soft green line indicates Morra
Creek, while the blue arrow indicates the flow direction.

Morra Creek (43◦33′41” N–10◦28′47” E, at the vegetated stream’s mouth) is a vegetated
river belonging to the hydrographic network of Morra Basin. This vegetated watercourse
extends for approximately 7 km and the dominant riverine vegetation stands species
identified along its length is Phragmites australis (Cav.) Trin. Ex. Steudel., commonly known
as common reed beds.

In Figure 2, two hydraulic cross-sections of Morra Creek vegetated river are depicted,
characterized by the existence of two bridges hereinafter referred to as “Bridge A” (re-
inforced concrete road bridge) and “Bridge B” (masonry road and pedestrian bridge),
respectively.
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Figure 2. Morra Basin overview and locations of “Bridge A” and “Bridge B” cross-sections (yellow
and black filled circles) along Morra Creek (soft blue line). The blue arrow indicates the flow direction.

In the last 30 years of hydraulic and hydrological observations, the largest flood was
recorded in September 2017 when 250 mm of rain fell in three hours within the Morra Basin
watershed. The hydraulic risk is due to the restriction at “Bridge B” cross-section of Morra
Creek vegetated river.

Figure 3a shows the Morra Creek hydraulic conditions during September 2017 flood,
whilst Figure 3b,c report a view of “Bridge A” (43◦33′23” N–10◦28′41” E) and “Bridge B”
(43◦33′26” N–10◦28′44” E) structures and cross-sections, respectively.

2.2. 1D and 2D Hydraulic Simulations

In the present study, the hydraulic efficiency in reducing both peak discharge and
water level at “Bridge B” cross-section of Morra Creek was analyzed and discussed, based
on the proposal of two different green–blue flood control scenarios, here respectively
referred to as green–blue scenario I and green–blue scenario II. In the first scenario (green–
blue scenario I), a diffuse lamination effect was modeled and simulated within Morra
Creek, as an innovative proposal of environment-friendly management practice of the
riverine common reed beds. In the second case (green–blue scenario II), riverine vegetation
was modeled to be at its current phenological development stage and flood mitigation was
simulated by considering two vegetated flood control areas first and then just a deeper
single vegetated flood control area.

All the hydraulic simulations were conducted with HEC-RAS v5.0 freeware software
under unsteady flow conditions, aiming at evaluating the flooding lamination effects along
the entire vegetated river over time. In detail, for green–blue scenario I, only 1D geometric
and numerical schemes were adopted. In contrast, in the case of green–blue scenario II,
a 1D scheme was employed to simulate flow along Morra Creek, and 2D geometric and
numerical schemes were considered for simulating the vegetated flood control areas (e.g.,
customized meshes). The effects of the two Green-Blue flood mitigation scenarios proposed
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in the present study were quantitatively evaluated for an input flow based on ahydrological
hydrograph characterized by a return period T of 200 years.
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and (c) “Bridge B” (43◦33′26” N–10◦28′44” E) cross-sections and structures.

The dimensional features of “Bridge A” and “Bridge B” structures and cross-sections
were reproduced in the HEC-RAS v5.0 geometric model. In particular, the spans of the two
bridges were modeled to evaluate the effective flood peak reduction efficiencies for the
two green–blue flood control scenarios herein proposed, in terms of peak water level and
discharge values.

The “Bridge A” and “Bridge B” actual geometries are summarized in Tables 1 and 2.

Table 1. “Bridge A” geometry and dimensions: height from Morra Creek bed (m), span width (m),
and length (m).

Span Features Dimensions (m)

Height 4.40
Width 18.55
Length 10.38

Table 2. “Bridge B” geometry and dimensions: height from Morra Creek bed (m), span width (m),
and length (m).

Span Features Dimensions (m)

Height 4.50
Width 8.07
Length 5.23
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Figure 4a displays the HEC-RAS v5.0 geometry model of Morra Creek vegetated river,
adopted here for running the initial 1D hydraulic simulation. In the present numerical
study, “Bridge A” and “Bridge B” cross-sections are indicated as “3019.5” (white unfilled
circle) and “3015.3” (blue unfilled circle), respectively. As shown in Figure 4b,c, “Bridge A”
and “Bridge B” geometries and cross-sections were modeled and then simulated here to
assess the hydraulic efficiency of the two examined green–blue scenarios in reducing water
level and discharge flood peaks under unsteady flow conditions.
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Figure 4. (a) Morra Creek HEC-RAS v5.0 geometry model of the 1D unsteady hydraulic simulations
for Scenario I. The * in the figure is just due to the software output visualization. Scheme of (b) “Bridge
A” (white circle in Figure 4a) and (c) “Bridge B” (blue circle in Figure 4a) cross-sections adopted in
HEC-RAS v5.0 geometry model. The blue arrow indicates the flow direction.

Figure 5 shows the Morra Creek known hydrological hydrograph for a return period
T of 200 years, having a peak discharge of 155.15 m3 s−1.

To properly model and analyze the actual ecohydraulic conditions observed within
Morra Creek, upstream of “Bridge A” cross-section, values of Manning’s n hydraulic
roughness coefficients equal to 0.05 m−1/3 s (rocks and very low common reed plants) and
0.06 m−1/3 s (very low grassy shrubs) were employed here to simulate hydraulic roughness
at both riverbed and floodplain stages, respectively. Instead, downstream of “Bridge A”
cross-section, a value of Manning’s n equal to 0.033 m−1/3 s was adopted for Morra Creek
riverbed, where the whole bottom was cleaner and straighter and to 0.04 m−1/3 s at the
floodplains, where it was possible mostly observing short vegetation related to agricultural
cultivation.

As reported in the next section, the main morphometric and phenological features
of the riverine vegetation species identified along Morra Creek were rigorously analyzed
to define the most suitable values of Manning’s n hydraulic roughness coefficients to be
employed in the hydraulic simulations performed in the case of the green–blue Scenario I
for properly representing the evolutive trends of the riverine vegetation canopy analyzed
in the present study case.
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2.3. Green–blue Flood Control Scenario I
Riverine Vegetation Growth

The only riverine vegetation species recognized across the vegetated stream examined
in the present study is a weed species named Phragmites australis (Cav.) Trin. Ex. Steudel.,
most known as common reed beds.

As depicted in Figure 6, increasing values of Manning’s n coefficients were considered
for the green–blue scenario I to simulate the growth in biomass area of the examined
common reed beds (indicated by the green-yellow rectangles in Figure 6) along Morra
Creek, corresponding to an augmentation in leaf area index (LAI), precisely defined as the
ratio between the total leaf area distributed on the riverine plants’ height (in m2) and the
projected ground area (in m2) in the field [12,31,38,39].

As suggested by many previous analytical and modeling studies on the real-scale
ecohydrodynamic response of common reed stands [11,40,41], the vertical distribution
of plants’ green leaf volumes is very similar on the whole reed height, with negligible
LAI values in the first 0.10–0.15 m from the ground [38,41]. Thus, LAI is rigorously the
same as plant area index (PAI) in the case of common reed beds, with PAI quantitatively
obtained by dividing the total stems and leaves areas (in m2) within the examined riverine
plants’ height (in m2) and the projected ground area (in m2), both measured in dedicated
ecohydraulic field campaigns [42,43].

In the present study, to properly consider the actual phenological and morphometric
processes associated with riverine vegetation canopy traits in the hydraulic simulations,
overall Morra Creek’s hydraulic roughness was modeled in the case of green–blue scenario
I by considering increasing Manning’s n values ranging from 0.05 m−1/3 s (no vegetation
cover) to 0.40 m−1/3 s (massive common reed cover), to assess the flood peak control
efficiencies associated with a diffuse augmentation in hydraulic roughness due to the only
common reed beds’ growth. Thus, for green–blue scenario I, the hydraulic simulations
aimed at identifying the minimum value of Manning’s n hydraulic roughness coefficient
corresponding to a surface water elevation (SWE, m a.m.s.l.) value compatible with span
height at “Bridge B” cross-section, equal to 4.50 m (See Table 2).
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D (m) is the average diameter of the “Projected ground area” (m2).

A total of twenty 1D unsteady hydraulic simulations were carried out for green–blue
scenario I, by applying an increase of 0.02 m−1/3 s to Manning’s n hydraulic roughness
coefficient at each HEC-RAS v5.0 run.

2.4. Green–Blue Flood Control Scenario II

The HEC-RAS v5.0 geometry model adopted in the 2D hydraulic simulation is re-
ported in Figure 7a, with FCA1 and FCA2 representing here two vegetated flood control
areas located at Morra Creek left and right orographic banks, respectively (indicated in
Figure 7a by the green polygons). In detail, FCA1 and FCA2 are two agricultural areas, to
be employed here as vegetated flood control areas, representing a proposal of engineering
solution based on a perspective of low environmental and ecological impacts. The 2D un-
steady hydraulic simulation was first carried out by connecting the 2D geometry networks
of FCA1 and FCA2 vegetated flood control areas to the 1D geometry model through side
green structures to allow the bidirectional exchange of water volumes between the 1D and
the 2D geometry models.
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Figure 7. (a) HEC-RAS v5.0 geometry models associated with Morra Creek and the two vegetated
flood control areas indicated as FCA1 and FCA2 adopted in green–blue scenario II. The * in the figure
is just due to the software output visualization. (b) View of the single flood control area FC*A1,
representing an alternative solution to FCA1 and FCA2 areas. The blue arrow indicates the flow
direction.

To exclude the riverine vegetation growth from the 2D hydraulic simulations asso-
ciated with Morra Creek in the green–blue scenario II, a value of Manning’s n coefficient
of 0.05 m−1/3 s was assigned to the whole vegetated water body to simulate the total
riverine vegetation removal along the vegetated river examined in the present study. As
indicated in Figure 7b, a further 2D hydraulic simulation was carried out by replacing the
two vegetated flood control areas FCA1 and FCA2 areas with a single area, indicated here as
FC*A1, narrower and 2 m deeper than the original FCA1, to evaluate its hydraulic efficiency
in achieving the desired peak reduction effect for both discharge and water level values at
“Bridge B” cross-section of Morra Creek.

As shown in Figure 7b, the proposal to realize a natural wet area and the planting of
trees and shrubs buffer strips or riparian hygrophilous plants would result in eco-friendly
and sustainable protection of water resources quality and, therefore, in the contemporary
improvement of the ecological services associated with the presence of the single vegetated
flood control area FC*A1.

The following Table 3 summarizes the main dimensional features of FC*A1. Width
and depth are indicated here as average values.
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Table 3. Main dimensional features of the vegetated flood control area FC*A1: volume (m3), average
depth (m), length (m) and average width (m).

FC*A1 Feature Value

Volume (m3) 8.02 × 103

Depth (m) 1.26
Length (m) 730
Width (m) 105

In Table 4 are reported the most relevant numerical features of the 1D and 2D un-
steady hydraulic simulations carried out in the present study for the two green–blue flood
control scenarios.

Table 4. Main features of the unsteady hydraulic simulations performed here: Scenarios, numerical
scheme, number of simulations, here indicated as runs.

Scenario Scheme Runs

Current ecohydraulic conditions 1D 1
Green–blue scenario I 1D 20
Green–blue scenario II 1D + 2D (2 areas) 1

1D + 2D (1 area) 1

2.5. Flood Control Efficiency: Peak Discharge and Water Level Reduction

As remarked by Del Giudice et al. [44] among others, the hydraulic efficiencies (ex-
pressed here in percentage, %) of the flood control effects corresponding to both green–blue
scenario I and green–blue scenario II in terms of peak discharge Q (m3 s−1) and water level
h (m) reduction associated with a return period T of 200 years, were quantitively computed
as follows:

η (%) = (peakin − peakout)/peakin, (1)

where peakin and peakout indicate, respectively, the peak discharge Q (m3 s−1) and water
level h (m) peak values in input and output at “Bridge B” cross-section of Morra Creek
for a return period T of 200 years. The corresponding peak reduction efficiencies are here
indicated as ηQ (%) and ηh (%), respectively.

3. Results
3.1. Morra Creek Current Ecohydraulic Conditions

The flooding outcomes resulting from the 1D unsteady hydraulic simulation of the
actual Morra Creek ecohydraulic conditions are displayed in Figure 8a,b, representing,
respectively, surface water elevation (SWE) and flow average velocities U (m s−1) at
each Morra Creek cross-section identified in the HEC-RAS v5.0 geometry model, for a
hydrological hydrograph based on a return period T of 200 years, indicated in the present
study as Q200 (m3 s−1).

As it emerges from the analysis of Figure 8a, the water level value at “Bridge B” cross-
section of Morra Creek resulting from the 1D unsteady hydraulic simulation under the
actual riverine vegetation conditions is equal to approximately 6.50 m, which is higher than
“Bridge B” span height, equal to 4.50 m, as shown in Table 2. Thus, both green–blue scenario
I and green–blue scenario II were modeled and then simulated in the following sections
aiming at reducing the hydrological peaks for T of 200 years at “Bridge B” cross-section of
Morra Creek.
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Figure 8. (a) Surface Water Elevation SWE (m a.m.s.l.) and (b) Flow average velocities U (m s−1) at Morra Creek cross-
sections resulting from the 1D unsteady simulation. The continuous black line represents the Morra Creek bed elevation.
The blue arrow indicates the flow direction, while the orange dashed lines and the purple dotted lines respectively indicate
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3.2. Green–Blue Flood Control Scenario I

In Figure 9a,b are, respectively, displayed the values in percentage of peak discharge
Q (m3 s−1) and water level h (m) reduction efficiencies associated with T = 200 years for
green–blue Scenario I at “Bridge B” cross-section, as a function of the increasing Manning’s
n coefficients values reproducing the real-scale augmentation in LAI values characterizing
the riverine vegetation stands examined in the present study. In detail, both Figure 9a,b
were obtained through twenty 1D unsteady hydraulic simulations (see Table 4).

As expected, it is possible to observe, in Figure 9a,b, that for green–blue scenario I, the
peak reduction efficiencies in terms of both peak discharge and water level values at “Bridge
B” cross-sections increase with common reed biomass growth over Morra Creek vegetated
river, according to two very similar trends. In detail, ηQI values vary from 28.35% to 29.70%,
while ηhI ones vary from 25.09% to 31.46%. These values indicate that ηhI is slightly more
sensitive than ηQI to the real-scale changes in Manning’s n hydraulic roughness coefficients,
corresponding to the phenological evolutive trend of riverine common reed beds under
their natural conditions across the whole length of the vegetated watercourse.
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reduction efficiencies (in percentage, %) computed at “Bridge B” cross-section of Morra Creek, as a
function of Manning’s n ranging between 0.05 m−1/3 s (no Common reed cover) and 0.40 m−1/3 s
(massive Common reed cover), respectively indicated as ηQI (%) and ηhI (%).

3.3. Green–Blue Flood Control Scenario II

Figure 10a,b illustrate, respectively, the outcomes of the 2D unsteady simulation
in terms of SWE (m a.m.s.l.) for the whole Morra Creek length (Figure 10a), originally
considered in green–blue scenario II and a detailed view of the two vegetated flood control
areas FCA1 and FCA2 (Figure 10b).
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for Morra Creek. (b) Detailed view of the two vegetated flood control areas FCA1 and FCA2, and
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The results of the 2D hydraulic simulation reported in Figure 10a,b show that the
combined action of the two vegetated flood control areas FCA1 and FCA2 was not sufficient
for reducing peak SWE (m a.m.s.l.) at the examined “Bridge B” cross-section, equal to
6.0 m, indicating the need for replacing FCA1 and FCA2 areas with the only vegetated flood
control area FC*A1 in the further 2D hydraulic model and simulation.

In Figure 11a,b, the HEC-RAS v5.0 geometry model and the flooding outcomes are
shown, resulting from the 2D hydraulic simulation implemented here for green–blue
scenario II in terms of SWE (m a.m.s.l.), by considering the only single vegetated flood
control area FC*A1.

It emerges from the analyses of Figure 11a,b that for green–blue scenario II the surface
water elevations SWE (m a.m.s.l.) is equal to 4.04 m, which is quantitatively compatible
with “Bridge B” span height, equal to 4.50 m. These trends can also be easily observed
by analyzing the effects on the overall flood risk assessment of the flooding outcomes
computed along the Morra Creek cross-sections through the 2D unsteady hydraulic simu-
lation, displayed in Figure 12a,b. In detail, in Figure 12a,b the values of SWE (m a.m.s.l.)
and flow average velocities U (m s−1) at each modeled and then simulated Morra Creek
cross-sections, respectively.

In Table 5 are indicated the discharge QII (m3 s−1) and water level hII (m) values of the
output hydrograph of the 2D unsteady hydraulic simulation at “Bridge B” cross-section of
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Morra Creek for green–blue scenario II because of the existence of the only vegetated flood
control area FC*A1.

Table 5. Discharge QII, (m3 s−1) and water level hII, (m) values for the green–blue flood control sce-
nario II at “Bridge B” cross-section and t (h) is the time from the beginning of the output hydrograph.

t (h) QII (m3 s−1) hII (m)

0 3.41 1.03
1 9.32 1.64
2 68.47 2.76
3 109.53 4.04
4 97.14 3.93
5 40.66 2.39
6 17.39 2.05
7 9.22 1.99
8 4.68 1.01

It is possible to observe from Table 5 that, given the presence of the single vegetated
flood control area FC*A1, the value of peak discharge QII (m3 s−1) at “Bridge B” cross-
section moved from 155.15 to 109.53 m3 s−1, while the value of peak water level hII (m)
effectively decreased from 6.50 to 4.04 m.
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flow direction.
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Figure 12. (a) Surface water elevation (SWE) and (b) flow average velocities U along the Morra Creek cross-sections
resulting from the 2D unsteady simulation. The continuous black line represents Morra Creek bed elevation. The blue
arrow indicates the flow direction, while orange dashed lines and purple dotted lines, respectively, indicate the locations of
“Bridge A” and “Bridge B” cross-sections. The * in the figure is just due to the software output visualization.

4. Discussion

Based on the two green–blue flood control scenarios herein proposed, the results of
the present study in terms of peak discharge and water level control effects for Morra
Creek well demonstrated that both of them are capable of obtaining a satisfactory flood
risk mitigation, with low ecological and environmental impacts compared to grey—or
structural—hydraulic engineering solutions.

Values of Manning’s n coefficients, ranging between 0.10 m−1/3 s and 0.40 m−1/3 s,
are highly comparable with those obtained by the two previous ecohydraulic studies
performed by Liu and Shan [45] and Lama et al. [46], which analyzed the average and
turbulent fluctuations of flow velocity fields experimentally measured in vegetated streams
to evaluate the main field-scale hydraulic and hydrodynamic effects of the riverine veg-
etation stands’ phenology on the hydraulic conveyance of real vegetated water bodies.
Both studies were carried out at increasing discharge and water levels. In the study of
Liu and Shan [45], the values of Manning’s n coefficients ranged from 0.12 m−1/3 s to
0.36 m−1/3 s, while they varied between 0.27 m−1/3 s and 0.49 m−1/3 s in the study carried
out by Lama et al. [46].

In addition, it is important to emphasize here that Manning’s n coefficient values
resulting from the 1D hydraulic simulations (0.10-0.40 m−1/3 s) well represent the actual
vegetative flow resistance induced by patchy riverine vegetation, as reported by the previ-
ous ecohydraulic studies carried out by West et al. [47] and Zhu et al. [48]. Their works,
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respectively, modeled the impacts of real-scale riverine vegetation distribution on water
level argumentation and hydrodynamic dispersion within vegetated open channels under
different growth conditions of riverine plants in both flume laboratory and field-scale
study cases.

It is crucial to highlight that the outcomes of the present study refer to a single
riparian vegetation species (common reed beds), while, in a more realistic perspective, the
combined effect of two or more species represent a source of uncertainty which inevitably
propagates in the vegetative Manning’s n hydraulic roughness coefficient associated with
each simulated cross-section, quantitatively varying in a wider range of values. Thus, this
uncertainty could be reduced by implementing more complex and rigorous numerical
analyses, obtained by coupling high-performance computational fluid dynamics (CFD)
models [49–53] and simulations [54–61] with the most advanced remote sensing techniques
of fluvial hydraulics, agro-forestry and land use governance interest [62–71].

5. Conclusions

From the analysis and the discussion of the outcomes of this study was possible to
observe that green–blue scenario I, obtained by considering the diffuse peak lamination
effect associated with common reed beds’ growth along the whole Morra Creek vegetated
watercourses, constitutes a valuable alternative to the fairly more impacting green–blue
scenario II proposal.

In addition, it emerges that the proposals of green–blue scenarios in both urban and
agricultural areas effectively constitute decisive steps in the definition of a new engineering
and scientific methodology for flooding risk control associated with vegetated rivers with
low ecological and environmental impacts [72–76], preserving their riverine and riparian
ecosystems.

It is possible to assess that the main findings of the hydraulic simulations performed in
the present study represent a useful tool for ecohydrological and ecohydraulic forecasters
and modelers for flood risk control associated with both urban and agro-forestry territories.
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