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Abstract

Automatically classifying images is a long-standing problem in computer vi-
sion. While recently Convolutional Neural Networks (CNNs) have become
the state-of-the-art approach and have made a substantial improvement in
accuracy when enough supervision is available, they still do not solve the task
entirely. Many real-world applications demand machines capable of classify-
ing the vast quantity of object classes known, even when the supervision is
limited or unavailable. Deep learning models require huge labeled data col-
lections for training. Creating these datasets has a high cost and requires a
very long time as each sample needs to be manually annotated by experts of
the domain. The Internet has made accessible a massive collection of images
annotated by ordinary users or associated with text and other metadata that
may suggest their content. Given their context, these data have mislabeled
samples that could induce performance reduction or bad behavior in the
trained model. In addition, these collections may contain an imbalance in
the distribution of the number of samples of each category. The frequency
of objects in the real world often shows a long-tailed distribution where few
classes dominate. Extremely specific concepts have low availability of sam-
ples despite the large amount of online data. Training CNNs on these data
fail to classify the underrepresented tail classes. The challenge is to use such
zero-cost images while employing minimal human effort in labeling. It is thus
mandatory to look for new ways of handling noise and long-tail distributions,
designing new image models and strategies, that may work even with few
correctly labeled images.

In this thesis, we developed the novel concept of advisor networks to
address both the noisy label problem and the long-tail distribution problem.
This network helps the classifier by taking advantage of two new methods
that exploit information extracted from it.

In the first part of the thesis, we propose a meta-learned attention ap-
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vi Abstract

proach that lets the classifier focus only on the meaningful part of the vi-
sual feature of an image, according to the advisor network. That gives the
classifier the ability to take advantage of examples with noisy annotation,
improving the model generalization. We show that meta attention is an effi-
cient approach to handle synthetic and real-world noise for the classification
task.

In the last part of the thesis, we apply the previously meta-learned atten-
tion approach to the long-tail distribution problem for image classification.
We demonstrate that the method is an effective solution to handle this type
of training data issue. We also introduce a new meta-activation feature suited
for the class imbalance problem. Through this, the network of advisors learns
to avoid the discouraging gradients of common classes that harm the proper
learning of rare ones. We show the effectiveness of this meta-activation even
on the problem of noisy labels. Our two methods can be used jointly by
operating on different sections of the classifier. Their cooperation allows for
greater efficacy of the advisor network in helping the classifier. We intro-
duce a new dataset setting, where the noisy labels problem and the long-tail
distribution are present conjunctly, to prove the adaptability of our solution.

Keywords: machine learning, deep learning, meta-learning, noisy labels,
long-tail, attention, discouraging gradient, computer vision.
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Chapter 1

Introduction

Natural intelligent systems learn new concepts in a world containing a myr-
iad of information that is not always correct and can remember items seen
even a few times. During their education, humans can focus more on only the
proper concepts and be able to exploit even those data that have a wrong
association. In addition, many notions that have been learned quickly or
studied a few times are remembered even though they are overwhelmed by
other prevalent information. Most supervised learning systems work under
the assumption that all training data is correct and perfectly balanced. In
contrast to humans, they suffer when many data have a wrong association
or when a few concepts dominate over all other categories. Moreover, mod-
ern classification systems require a large amount of data to achieve optimal
performance. Labeling examples is an expensive and time-consuming process
that requires the participation of expert annotators. Online sources offer a
huge quantity of images annotated by everyday users and provided often
with text and other metadata that may indicate their content. Due to their
nature, these generated datasets can contain mislabeled samples [1]. In a
real-world scenario, collecting a sufficiently large number of representative
examples for each category is not always possible. Instances of some con-
cepts are difficult to find, or their availability is limited because they are
poorly documented. Object frequency in the natural world often exhibits
a long-tailed distribution where a tiny number of categories dominate the
others [24]. This phenomenon leads to a severe imbalance within the train-
ing dataset that causes classification systems to over-learn the predominant
classes and under-represent the tail ones. The problems of noisy annotations
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2 Introduction

and long-tail distribution are actual and seriously affect the efficiency of the
most modern classification models [10,25]. Often the noise is not predictable
in advance, and the distribution of concepts varies according to the specific
topic and task. The solutions proposed in the literature typically require a
well-structured type of annotation noise, or the frequency of the categories,
addressing each of these aspects individually.

In this thesis, we introduce the new concept of advisor network that can
help the classifier address both noisy labels and long-tail problems separately
and jointly. In the following sections, we discuss, confront and examine rel-
evant literature providing additional technical details of this dissertation.
Finally, in the last section, we introduce the contributions made in this the-
sis.

1.1 Noisy Annotation Learning

The problem of noisy annotation has been extensively studied in litera-
ture [17,28,35,45,48,50,57]. Modern classification systems, and all machine
learning methods in general, are prone to performance degradation when
noise is present in the training label. Moreover, convolutional neural net-
work (CNN) architectures, trained with stochastic gradient descent (SGD)
optimizers, can fit large training datasets composed entirely of random la-
bels [75]. As demonstrated by [3] when a training dataset has mostly correct
annotations, deep neural models do not memorize the data, but they learn
the predominant patterns shared among the training samples only in the
initial part of the learning. For [3], this behavior happens thanks to explicit
regularization strategies and the design of deep neural networks, which inher-
ent distributed and hierarchical representation. The empirical results of [56]
demonstrate a strong learning tendency of deep CNNs, in contrast to mem-
orization. However, other studies have reported somewhat contradictory re-
sults to those just mentioned. Label noise can have a significant impact on
the accuracy of CNN when applied to face recognition tasks [65]. Training on
a smaller dataset with verified annotations is better than training on a much
larger dataset with significant label noise. The trade-off between memoriza-
tion and learning, as suggested by [3], depends on the nature and richness of
the data, amount of label noise, model architecture, as well as training pro-
cedures along with regularization. As shown by [42], label noise conditions
the local intrinsic dimensionality of the features, learned by a deep learn-
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ing model. Local intrinsic dimensionality [22] measures the dimensionality of
the underlying data manifold. Given a data point xi, it quantifies the rate of
encountering other data points as the radius of a ball centered at xi grows.
During the training on data with noisy labels, when the model learns the
dominant patterns in the data, the local intrinsic dimensionality of the fea-
tures initially decreases. Instead, the dimensionality starts to increase when
the model begins to overfit on samples with incorrect labels [42].

1.1.1 Label cleaning

Identifying and either fixing or discarding noisy label data samples are the
purposes of methods belonging to this category. The approach introduced
by [64] made use of two CNNs trained in parallel on two different datasets,
where the first was small and verified, instead the second was large and with
noisy annotations. With the verified dataset, a CNN learned to clean the
noisy annotations. The other CNN was optimized to solve the main classifi-
cation task with the cleaned noisy data. Experiments demonstrated that this
approach was more effective than training on the noisy dataset followed by
a fine-tune on the verified dataset. The method CleanNet, proposed by [34],
compared the feature vector of a noisy label sample with the representative
feature vector of its class calculated from a small clean dataset. The similar-
ity between these vectors determined whether the label is correct. For image
classification, CleanNet assigned weights to training samples based on the
similarity. An improved version of CleanNet was introduced by [20]. They es-
timated the correct labels with an iterative framework removing the need for
a verified dataset. Moreover, multiple prototypes feature vectors represented
each class, instead of the only one used in [34].

1.1.2 Noise layer

A well-studied strategy is adding a ”noise layer” to the end of deep neural
networks. The noise layer, introduced by [58], corresponds to multiplication
with the transition matrix between noisy and corrected labels. It is learned in
parallel with the network weights using error back-propagation. Instead, an
Expectation-Maximization optimizing method, developed by [17], estimated
the parameters of the noise layer. Further, they applied their model to the
case where the label noise also depends on image features. An estimate of
correct labels and annotator confusion matrices was introduced by [62] to
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address the case of noisy labels obtained from multiple annotators. With
the ambiguity in the concurrent estimation of correct labels and annotator
confusion matrices, the traces of these matrices had to be penalized. Instead,
for image classification [44] presented two CNNs, jointly trained, to separate
the object presence and relevance. An extra latent variable was introduced
to the previous strategy to measure the reliability of noisy labels [72].

1.1.3 Loss functions

In the literature, a large number of methods, instead of changing the network
architecture or training data, keep these intact and make modifications to the
cost function. The conditions for the robustness of a loss function were well-
studied in [16]. In [47] a ”B-correction” and ”F-correction” were presented to
improve the robustness of the model loss function. These two methods take
advantage of an error confusion matrix T , defined as Ti,j = p(ỹ = ej |y = ei)
where y and ỹ are the correct and noisy labels respectively. When T is
non-singular, ”B-correction” strategies was lcorr(◦p(y|x)) = T−1l(◦p(y|x)).
A linear weighting of the loss values for each category was applied, where
the weights are the probability of the correct label given the observed label.
A small verified dataset with clean labels was used by [21] to estimate T .

1.1.4 Data re-weighting

The methods in this category aim to reduce the weight of training samples
that are most likely to have incorrect labels. A meta-learning approach [52]
weigh each training data. Weights were optimized by minimizing the loss on
a verified auxiliary dataset with clean annotations. This weighting scheme
was equivalent to assigning larger weights to training samples similar to the
clean auxiliary data in respect of both the learned features and optimization
gradient directions. Rather than adopting a pre-defined weighting scheme, a
multi-layer perceptron model MW-Net [57] composed of a single hidden layer
was used to learn a proper weighting strategy for a specific task and dataset.
This method also needs a small dataset with clean labels. The learned weight-
ing scheme on datasets with noisy labels was similar to those proposed in
other studies. MW-Net learned to down-weight samples when noisy labels
were present.
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1.1.5 Training procedures

Many strategies that exploit curriculum learning [4] have been proposed to
address the label noise problem. Curriculum learning is a training process
where samples are presented to the model in order of difficulty or complexity.
Mentor-Net [26] was an LSTM network that generates weights on the training
samples to provide a curriculum to a second network, called Student-Net. A
knowledge distillation approach was adopted by [37]. An auxiliary model,
optimized on a small dataset with clean labels, guided the training of the
main model through pseudo-labels generated as a convex combination of
the noisy label and the label predicted by the auxiliary model. Based on
the label transition matrix, they introduced a knowledge graph to reduce
the risk of the auxiliary model overfitting on the small clean dataset. A
convex combination of labels predicted by the model at its current training
stage and noisy labels was used by [50]. During learning, the model accuracy
increased, and its predictions could be weighted more strongly, so gradually
forgetting the original erroneous labels. Co-teaching [18] further developed
this idea, whereby the two networks identified mislabeled samples and shared
the updated information with the other network. This method also improves
computational efficiency since unnecessary updates are avoided on easy data
samples once the models predict the correct label on those samples. Similar to
[18], a meta-learning objective was introduced by [36] to encourage consistent
predictions between a student model. Mixup [76] generated new training
data and labels through a convex combination of pairs of them. Given two
randomly selected training data and label pairs (xi, yi) and (xj , yj), a new
pair was generated as x̃ = λxi + (1 − λ)xj and ỹ = λyi + (1 − λ)yj , where
λ ∈ [0, 1] is sampled from a beta distribution. Mixup is primarily a data
augmentation and regularization strategy with a remarkably efficacious for
combatting label noise.

1.2 Long-Tail Learning

Deep long-tail learning aims to train a deep neural network model from a
collection of data that follows a long-tail class distribution. A small fraction
of classes has a dominant number of samples concerning the other ones as-
sociated with only a few data. The models are usually evaluated to perform
well on all categories, i.e. on a clean and balanced test set. However, the class
imbalance of training sample numbers causes deep network models training
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to be very challenging. Imbalanced data across classes make deep models
overly fit the dominant classes and fail in the underrepresented tail classes.
Moreover, the lack of tail-class samples makes classification hard on those
concepts.

1.2.1 Class Re-balancing

Class re-balancing, a mainstream paradigm in long-tailed learning, seeks to
balance the training sample numbers of different classes during model train-
ing. The class re-balancing paradigm aims to balance the number of train-
ing samples of different classes during model optimization. In the last few
decades, one of the widely-used methods to resolve the class imbalance is re-
sampling [6,15,19,39]. Over-sampling and random under-sampling were the
first developed strategies belonging to this category. Over-sampling randomly
repeats the samples from tail classes until the class balance is achieved, while
under-sampling randomly discards the samples from head classes. These two
methods can’t address the problem completely. Over-sampling tends to over-
fit tail classes when the imbalance ratio between the head and the tail class
is very high. Instead, under-sampling tends to degrade the model perfor-
mance on head classes. Recent long-tail learning studies develop different
sampling methods, including class-balanced re-sampling. The basic strategy
is instance-balanced sampling, where each data has an equal probability of
being selected. Instead, in class-balanced sampling, each class has an equal
possibility of being selected. An alternative of instance-balanced sampling is
square-root sampling [43], where the probability for each class to be sampled
is related to the square root of example number in the corresponding class.

1.2.2 Cost-sensitive Learning

The cost-sensitive learning branch aims to re-balance with loss values ad-
justments specific for each class during training [14, 59, 79]. The two main
categories that fall under this approach are class-level re-weighting and class-
level re-margining. For the first one, the most intuitive method was weighted
softmax loss, which directly exploits label frequencies for loss re-weighting.
Also, Balanced Softmax [51] uses the label frequencies to alleviate the bias of
class imbalance by prior knowledge. They demonstrated how their loss min-
imizes the generalization bound for multiclass Softmax regression. Class-
balanced loss introduced the concept of effective number to estimate the
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expected number of samples from different classes. It is an exponential func-
tion of the number of training samples, instead of label frequencies. The
class-balanced loss imposes a class-balanced re-weighting term inversely pro-
portional to the number of classes. Long-tail class distribution usually raises
the prediction hardness of tail classes because their prediction probabilities
are lowered from head classes. Focal loss [38] used the prediction probabil-
ities to inversely re-weight classes. It assigned higher weights to the harder
tail classes and lower weights to the easier head classes. The increase in
prediction hardness of the tail classes is due to an over-suppression of the
negative gradient coming from the dominant categories [60]. In softmax or
sigmoid cross-entropy, a positive sample for one class can be seen as negative
for the others. The tail classes receive more negative gradients than positive
ones. Equalization loss [60] introduced a weighting term in the loss, based
on class frequency, to avoid discouraging gradients on the tail-class samples.
Meta-Weight-Net [57], driven by a balanced validation set, exploited a loss
weighting function learned by a one-layer MLP to let the main model fit the
long-tail distribution. The class weights were learned from verified data as for
the noisy label problem 1.1.4. Unlike the re-weighting approach, class-level
re-margining aims to adjust the minimal margin (i.e., distance), between
the learned features and the model classifier, for different classes. Expanding
the soft margin loss [31,66], label-distribution-aware margin (LDAM) [5] en-
forced class-dependent margins based on label frequencies and facilitated tail
classes to have larger margins. Their method was not empirically acceptable
to solve the class imbalance problem. Thus, LDAM introduced a deferred
re-balancing optimization schedule.

1.2.3 Prototype learning

Learning class-specific feature prototypes is the objective of prototype learning-
based methods developed to improve long-tailed learning performance. The
first to explore this idea was Open long-tailed recognition (OLTR) [40]. A
visual meta-memory containing discriminative feature prototypes was used
to augment the original features of the training data. Their test set includes
the head, tail, and open classes, where open indicate categories that do not
exist in the training set. Moreover, a self-attention mechanism was applied
in OLTR to enhance feature learning.
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1.2.4 Decoupled Training

Decoupled training split the learning process into representation learning
and classifier training. [27] introduced this two-stage training scheme for the
long-tail problem. They considered different sampling approaches for rep-
resentation learning and then evaluated various classifier training schemes,
fixing the previously trained feature extractor. They tested four methods
to re-train the classifier: the class-balanced sampling, the τ -normalized and
the nearest class mean classifier, and a trainable weight scaling approach.
According to [27], instance-balanced sampling was the best strategy for rep-
resentation learning.

1.3 Contributions

In this thesis, we focus initially on the noisy label learning classification
problem, where the image annotations are not always correct and verified.
We were interested in finding a way to take advantage of all the visual in-
formation coming from the training set, including the images with erroneous
annotation. First, we proposed a meta-attention approach, that mimics the
human attention, automatically learned through a meta-learned advisor net-
work, developed to help the main classifier address the noisy label problem.
Our method could be leveraged for different types and levels of annotation
noise. In particular, we were interested in real-world noise typically found in
collections of images gathered from online resources.

The online collected training datasets also suffer from the long-tail class
distribution problem. We developed a new meta-activation function, learned
from an advisor network, to wisely avoid the huge amount of discourag-
ing gradients that suppress proper learning in rare classes. The strategy
of weighting discouraging gradients can also be applied to other problems
besides imbalance, such as noisy labels. Because our activation function is
trained through a verified and balanced auxiliary dataset, it could easily
adapt to the noisy label problem. The same reasoning has been applied for
the meta-attention method, applying it to the case of long-tail distributions.
Our two techniques, affecting different aspects of the classifier, were used
jointly to address the two, even concurrent, problems typical of online col-
lected training datasets.

In summary, we show several contributions in this dissertation:
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Learning advisor networks for noisy label image classification

In Chapter 2 we addressed noisy annotation learning using a novel advisor
network that helps the main model through a meta-attention method. Our
method applied an automatically learned attention mask to the classifier’s
visual features. In this way, the classifier focused only on the meaningful
information and could use parts of the mislabeled visual data to improve
performance on the category assigned to the image. While weighting loss
strategies aim to remove the influence of noisy samples, our method helps
the classifier without altering the loss value of any data. We achieve state-of-
the-art results on synthetically generated datasets with heavy noise levels,
and most importantly on a dataset containing real-world noise.

Meta-learning advisor networks for long-tail and noisy labels im-
age classification

In Chapter 3 we present a meta-activation function that avoids discouraging
gradients of dominant concepts to solve the long-tail learning problem. We
designed a new advisor network that learned a weight for each class to be
applied in the activation function. Proved the efficiency of this new approach
on standard evaluation dataset for long-tail distribution, we extended this
method to the noisy label problem. We achieved good results on synthetically
generated and real-world noisy datasets. This showed the applicability of dis-
couraging gradients elimination to a different task than the long-tail class
problem. We studied the application of our meta-attention method to solve
the unbalance issue, obtaining great results on standard evaluation datasets.
Since our approaches involve different classifier properties, we decided to ap-
ply them jointly, getting the state-of-the-art result on the real-world noise
dataset. We finally introduced a new synthetic dataset containing noisy and
long-tail distribution annotations to demonstrate the adaptability of our so-
lution in handling multiple dataset issues.

Finally, in Chapter 4, conclusions of the dissertation and future challenges
of advisor network related to online generated datasets are discussed.
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Chapter 2

Learning advisor networks for
noisy label image classification

In this paper, we introduced the novel concept of advisory net-
work concept to address the problem of noisy labels in image
classification. Deep neural networks (DNN) are prone to perfor-
mance reduction and overfitting problems on noisy training data.
Weighting loss methods aim to mitigate the influence of noisy
examples during the training, completely removing their contri-
bution. This prevents DNNs from learning wrong associations be-
tween images and their correct labels but reduces the amount of
data used, especially when most of the examples are noisy. Dif-
ferently, our method weighs the feature extracted directly from the
classifier without altering the loss value of each data. The advi-
sor helped to focus only on some part of the information present
in noisy examples, allowing the classifier to leverage that data as
well. We trained it with a meta-learning strategy so that it can
adapt throughout the training of the main model. We tested our
method on CIFAR10 and CIFAR100 with synthetic noise, and
on Clothing1M that contains real-world noise, reporting state-of-
the-art results. 1

1The part of this chapter has been published as “Learning advisor networks for noisy
label image classification” at the 21st International Conference on Image Analysis and
Processing (ICIAP), 2021 [54].

11
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Figure 2.1: Clothing images obtained from online shopping websites. Anno-
tations are generated from the description of the clothes delivered by the
vendors. The red crossed images are mislabeled, instead the green ones are
correct.

2.1 Introduction

Modern image classification systems are based on using deep neural networks
models that are trained on a huge number of labeled images [32]. Due to the
extreme cost of labeling such an amount of images and difficulty in covering
many concepts, researchers recently have looked into methods that generate
labels automatically. One significant line of research exploits available labeled
images from non-experts (e.g. from social networks, online stores) that can
be easily retrieved in large quantities but may have mislabeled [1]. Figure
2.1 shows some examples of these data.

Deep neural networks typically consist of a large number of parame-
ters that are highly shared among feature dimensions and states, enabling
flexibility in learning different tasks and classes. This flexibility has the ad-
vantage to lead to strong discriminative models unless data is corrupted by
noise, leading to performance reduction and overfitting problems [25]. Re-
cent methods tried to address the problem by using curriculum learning [4],
directly estimating the noise in the set [21], or measuring the confidence of
the network during training [33], also using another co-trained network [18].
The idea was usually to understand samples out of distribution and reduce
their influence on the learning by dampening their loss or decreasing their
impact directly from the training set.

We proposed a meta-learning approach to address the problem of noisy
labels in image classification based on an advisor network, developed to help
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the classifier. While a standard image classification model is trained, the ad-
visor network observes the main network activations and adjusts features at
training time when noisy label images are identified as input. This allows the
classifier model to get information even from mislabeled samples where some
noise structure is present. We only retained the main model as the final clas-
sifier, while the advisor was discarded. Unlike the teacher-student paradigm,
the advisor network was not trained to solve the image classification task,
but only to help the learning process of the classifier model by its altering
activations.

2.2 Related Works

In literature, the research on the noisy label learning problem was very active
since machine learning systems are prone to performance degradation when
noise is present in the training label [45, 48]. Loss correction was a well-
treated technique to mitigate the effect of noisy samples on the classifier
network. Works like Reed [50], F-correction [17], GLC [21], M-correction [2]
and S-adaptation [47] made loss adjustments based on the estimated cor-
ruption probabilities matrix, changing the wrong labels to the correct ones.
In [42, 61, 73] the noise distribution was modeled by linearly combining the
noisy label with the output of the network. Re-weighting approaches as-
signed a weight to each data instance, avoiding the contribution of a noisy
sample to the training by giving it a lower weight value. MentorNet [26]
and MentorMix [25] found the latent weights through data-driven curricu-
lum learning and student-teacher paradigm respectively. Some works used
augmentation strategies that encourage the main model to behave linearly
in-between training examples like Mixup [76], Advaug [7]. DivideMix [35] dy-
namically separated training data into clean and noisy sets to optimize two
diverged networks with a semi-supervised strategy. In contrast, our method
took advantage of an advisor network that alters activations of the main
classifier to increase its performance, without isolating noisy label samples
from the clean ones.

The noisy labels problem was also addressed by [36,52,68] with a meta-
learning approach. These methods leveraged a small clean validation dataset
to implement the meta-learning scheme. For example, L2R [52] weighed each
sample by giving less importance to the noisy one. MLNT [36] imitated regu-
lar training with fabricated noisy labels. MLC [68] estimated the corruption
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probabilities matrix to adjust the training loss values. MW-Net [57] auto-
matically determined an explicit weighting function that can easily fit the
biased training data, and it worked on both the noise and imbalance training
problems. Differently from them, our advisor network modifies the network
activations using a meta-attention layer to increase the performance of the
main classifier during its learning, despite the noise in the training labels.

2.3 Contributions

In summary, our contribution are:

• We propose the novel concept of advisor network, i.e. the use of an
additional network only at training time, learned by meta-learning.
The advisor helps the main classifier to address noisy label learning
problems.

• We introduce a Meta Feature Re-Weighting (MFRW) method that
automatically generates an attention mask on the visual features of
the classifier so that it focuses only on the information in an image
deemed relevant by the advisor network.

• We test our approach in presence of artificial noise and on a popu-
lar real-world noisy dataset, obtaining state-of-the-art performance on
Clothing1M.

2.4 Proposed Method

We developed a method that can handle images with noisy labels during the
training of deep neural networks for the image classification task. Our idea
originates from the idea that even an example associated with an erroneous
annotation can contain information that can contribute to a greater gener-
alization of the network. The model should focus on only a few convenient
parts of this data. Our approach has been to exploit an attention mecha-
nism to enhance the useful portions of the visual information and lower the
rest. We developed an auxiliary advisor network that automatically learned
a function that weighs the visual features extracted from a DNN during
its training. This advisor network was aware of the state of the main model
thanks to a meta-learning optimization strategy (Figure 2.2). We introduced
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Figure 2.2: General overview of our system. An advisor network assists an
image classifier by exploiting an auxiliary meta-set to reduce the effects of
noisy annotations while learning on the training set.

a new method Meta Feature Re-Weighting (MFRW) which acts like a meta-
attention layer. Different from weighting loss methods that tend to remove
the influence of noisy examples during the training, our MFRW can take
advantage of them.

In Section 2.4.1, we introduce meta-learning basics and formulation typ-
ical of methods that learn robust deep neural networks from noisy labels.
Then in Section 2.4.2, we explain our method showing the architecture of
the whole process. Finally, the learning process of the classifier together with
the advisor network is described in Section 2.4.4.

2.4.1 Background meta-learning

In general, meta-learning (ML) refers to the process of improving a learn-
ing algorithm over multiple learning episodes, it is also called learning to
learn. ML is divided into two algorithms: an inner (or base) and an outer
(or upper/meta) algorithm. The inner one solves the main task minimizing
an objective function, for image classification we have a convolutional neural
network and the cross-entropy loss respectively. Instead, the outer algorithm
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updates the inner one such that it improves also on an outer objective func-
tion. When the objective functions are the same for both algorithms, the
outer algorithm can help the inner one to work well on new data distribu-
tion. If the new distribution is a smaller version of training data but free
of errors and balanced, it is possible to train the outer algorithm to solve
the problem of noisy or imbalanced labels inside the main training data. We
refer to this distribution as meta-set. As in [57], the outer algorithm can be
a multilayer perceptron network, called meta-model, that learns automati-
cally how to address these problems helping the main image classifier during
its learning. We introduce the symbols useful for understanding ML in this
particular setting and how the entire learning process is divided, describing
the [57] algorithm for simplicity.

Let Dtrain = {xtrai , ytrai }Ni=1 be the training set with noisy or imbalanced
annotations, where N is the total number of samples, composed of an image
xi and the correspondent one-hot label yi over C classes. The main DNN
model is defined as Φ(·;w), where w are its parameters. The prediction on an
input image x is ŷ = Φ(x;w) and the optimal parameters w∗ are obtained
by minimizing the softmax cross-entropy loss `(ŷ, y) on the training set.
Let Dmeta = {xmetaj , ymetaj }Mj=1 be the meta-set, a well verified and balanced
version of training one but much smaller,M � N . The meta-model is defined
with Ψ(·; θ), parameterized by θ. In [57] the optimal parameter w∗ is derived
using the following weighted loss:

w∗(θ) = argmin
w

1
N

N∑
i=1

Vtrai (θ)Ltrai (w) (2.1)

where Ltrai (w) is the loss value and Vtrai (θ) = Ψ(Ltrai (w); θ) is the weight
predicted by the meta-model for the i-th training example. The meta-model
is trained minimizing the loss of previously updated Φ(·;w∗(θ)) on the meta
dataset Dmeta:

θ∗ = argmin
θ

1
M

M∑
j=1

Lmetaj (w∗(θ)) (2.2)

where Lmetaj (w∗(θ)) = `(Φ(xmetaj ;w∗(θ), ymetaj )) is the softmax cross-entropy
loss for the j-th meta example.

Both equations Eq. (2.1) and Eq. (2.2) can be solved by alternating op-
timization through gradient descent. An online strategy, that is divided into
three main steps, can be adopted to update θ and w through a single opti-
mization loop. This guarantees the efficiency of the algorithm and its conver-
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gence [57]. In the first step, called Virtual-Train, the original DNN will not
be updated and the optimization is carried out on a virtual model that is the
clone of the original one. We consider the t-th iteration and the related mini
batches Btrain = {(xtrai , ytrai )}ni=1 and Bmeta = {(xmetaj , ymetaj )}mj=1, where n
and m are the size of mini-batch respectively. The virtual update is derived
by:

ŵ(θ) = w − α 1
n

n∑
i=1

Vtrai (θ)∇wLtrai (w) (2.3)

where w are its parameters at the current iteration and α is the learning rate
for the DNN. Keeping in mind the virtual update previously carried out, in
the successive step called Meta-Train, the meta-model is updated by:

θ′ = θ − β 1
m

m∑
j=1

∇θLvali (ŵ(θ)) (2.4)

where β is the learning rate for the meta-model. Actual-Train is the last step
where the base DNN model is optimized taking into account the previously
updated meta-model.

w′ = w − α 1
n

n∑
i=1

Vtrai (θ′)∇wLtrai (w) (2.5)

w′ becomes the w in Eq. (2.3) for the (t+ 1)-th iteration.

2.4.2 Meta Feature Re-Weighting (MFRW)

Human attention is the ability of the brain to selectively concentrate on
one aspect of the environment while ignoring other information. Attention
for a DNN is a mechanism that tries to mimic the cognitive attention of the
human brain, calculating a soft (or hard) mask which is then multiplied with
the visual features of the network. The mask W is usually the output of a
function g of some input x

W = g(x) (2.6)

and W is element-wise multiplied with a feature f of the network

fatt = W � f (2.7)

where � is the symbol for element-wise multiplication.
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Figure 2.3: Example of how the human brain selectively concentrates on the
meaningful aspect of the environment.

This intensifies the important parts of the feature and reduces the rest.
We proposed a meta-attention mechanism, called Meta Feature Re-Weighting
(MFRW), that can be used to mitigate noisy labels problems in the training
data. A mismatch between the content of the image and its annotation can
lead to the degradation of the classifier’s performance for that annotated
class. With our method, the main network can use only parts of the erro-
neous visual information to enhance performance in that class. Finding the
handwritten function g that generates the right masks is very challenging.
The type of noise is not always known in advance and may vary for each class.
We used a meta-model to automatically infer the correct g. Meta-learning
allowed the learned g to change during the training of the main network and
adapt automatically to the noise present in the annotations. The element-
wise product is done between the feature f extracted from a DNN and a
vector of weights Wf learned from a meta-model.

fatt = Wf � f (2.8)

The meta-model can take into consideration important aspects for each
training data, so it can generate the proper activation weights based on them.
Attention must be differentiated between the various categories, as each may
have different noise levels. This is done by giving as input to the meta-model
visual features extracted from the classifier’s backbone. In addition, misla-
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Figure 2.4: The architecture of the meta-model Ψ. The color green is used to
highlight the inputs of the model. Instead, the orange indicates the attention
mask output vector.

beled images have a different difficulty than cleanly labeled images, as they
are outside the correct distribution of each category. The attention should
be adjusted according to the difficulty that a training example represents
for the classifier. This way, it can focus differently on the information in the
data by learning a better representation. The cost value typically used to ex-
press the difficulty of classification samples [33] is given to the meta-model
in combination with the visual features.

2.4.3 Meta model architecture

Our meta-model Ψ has a really simple architecture, as shown in Figure 2.4.
The inputs of the network are a visual feature vector f and a loss value Lx.
Each input is projected in a fixed size embedding space through a separate
fully connected layer. Then the embeddings are concatenated and passed to
another fully connected layer that projects them into a larger common space.
Its size is the sum of the dimension of each previous embedding. Finally, a
linear layer elaborates the data from the common space to a vector with a
size equal to the visual feature f given as input. Because the output must
be an attention weight in the range ∈ (0, 1), we added a sigmoid activation
after the last layer.
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Figure 2.5: Scheme of all the steps of the optimization phase of MFRW,
reaching the (t+ 1)-th iteration from the (t)-th.

2.4.4 Algorithm

In this section, we describe how the base classifier Φ and our meta-model Ψ
are trained jointly. Because the meta-model needs as input the visual feature,
we separate the main model Φ(·;w) in two different parts: the backbone
Φb(·;wb) and the category predictor Φc(·;wc). The first one has an image x
as input and gives out a feature vector f . Instead, the second part has f as
input and a probability score vector z as output. In this way, it is possible to
manipulate the feature f directly with our meta-model Ψ. The meta-model
takes two different input Ψ(f,L) and gives back the weight vector Wf . Our
algorithm is divided into 4 main phases shown in Figure 2.5. We describe
each phase in detail starting with the t-th iteration and moving forward each
step until we reach the (t+ 1)-th.

Different from the meta-learning optimization strategy described in 2.4.1,
we need an additional initial phase, called Loss Pre-Calculation (Figure 2.6).
The value of loss Lpre related to the training batch Xtrain must be calculated
at the beginning. This loss value must be dependent on the original feature
f train and not on the weighted one fatt. Since this is a direct loss inference
without gradient calculation, it is not an expensive step.

In the second step Virtual-Train (Figure 2.7), Φtb and Φtc are the virtual
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Figure 2.6: Full scheme of the Loss Pre-Calculation step. Here is computed
value of loss Lpre related to the training batch Xtrain.

clones of the backbone Φb(·;wb) and the category predictor Φc(·;wc) at the
beginning of the t-th iteration. We obtain the features f train passing through
Φtb the batch Xtrain. Then the loss values Lpre pre-calculated and its relative
feature f train are given to Ψt (the meta-model at time t) in order to obtain
the two vector of weightsWf and sk. The feature f train is multiplied element-
wise with Wf to get a new feature vector with attention fatt as in section
2.4.2. The modified feature is passed to the predictor Φtc obtaining the score
ztrain. Then Φtb and Φtc parameters are virtually updated to minimize Ltrain,
excluding those of Ψt.

For the third step Meta-Train (Figure 2.8), we need a clean and balanced
meta dataset that will be used to train the meta-model Ψ. We pass a meta
batch Xmeta through the virtually updated Φt+1b and Φt+1c in order to get
a validation loss Lmeta. In this step, the feature is not modified. Then only
Ψt is updated minimizing Lmeta. In this way, the meta-model is optimized
to help the main model minimize its error on clean and balanced data. Here
the optimization takes into consideration also the previous Virtual-Train.

In the last phase, Actual-Train (Figure 2.9) the original Φtb and Φtc are
optimized taking into account the updated meta-model Ψt+1. Our meta-
model is used only during the training of the main network Φ when external
help is needed to solve the noisy label problem. It will be discarded at test
time when only the main network is retained as the final model.

2.5 Experiments

To demonstrate the effectiveness of our method, we conducted experiments
on synthetically generated datasets with controlled noise structure and level.
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updateupdate

Figure 2.7: Full scheme of Virtual-Train step. The virtual clones Φtb and Φtc
are updated minimizing Ltrain.

Then we tested its ability to generalize with experiments on a real-world
dataset.

2.5.1 Datasets

Flip CIFAR10 and Flip CIFAR100
Following previous works [26, 52, 57], we used CIFAR-10 and CIFAR-

100 which are the classical choice to generate synthetic datasets containing
different types of noise structures. They are composed of 50K training images
and 10K test images of size 32×32. Of the training set, 1000 images with
clean labels, 10 for each category, are selected to form the meta-set for meta-
training. In literature Flip (or asymmetric) is a noise designed to mimic the
structure of labels replaced by similar classes, e.g. dog↔cat. We decided
to test our method on that type of noise because it usually appends that
the label error could depend on the ambiguity between classes and similar
visual patterns [70]. We created a synthetic version of CIFAR-10 and CIFAR-
100. The noise ratio was controlled by a parameter p, which represents the
probability that a clean example is contaminated by noise. In this way, we
could test our method on different levels of noise, from p = 0.0 (no noise)
to p = 0.8 (heavy noise). We also introduced Flip2 and Flip3, two new
noise versions of Flip. The difference from Flip is that the noise is equally
distributed over multiple similar classes, respectively two and three.

Clothing1M
In addition to synthetic datasets, we tested our method on a collection of

data containing real-world label noise. Clothing1M [70] is a dataset that is
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update

Figure 2.8: Full scheme of Meta-Train step. The meta-model is updated
taking into account the previously optimized virtual clones Φt+1b and Φt+1c .

composed of 1 million images of clothing taken from online shopping websites.
There are 14 categories like T-shirts, Shirts, Knitwear, etc. The annotations
are obtained from the description of clothes images provided by online sellers,
thus from non-expert annotators. This procedure originates an unpredictable
noise into the image labels (Figure 2.1). The validation set of 7k clean data
was used as the meta-set.

2.5.2 Meta-model implementation details

In every experiment, the meta-model was optimized with Adam [30] and a
learning rate of 1e-4. The size of each embedding space was set always to
100.

2.5.3 Flip label noise results

To train our model under Flip (or asymmetric) label corruption noise, we
used the same experimental settings of other works that studied this type of
noise. The backbone was a Resnet-32 trained through SGD with a momen-
tum of 0.9, weight decay of 5e-4, batch size of 128, and a starting learning
rate of 0.1. Learning rate decreases to its 1

10 at the 50 epoch and 70 epoch.
The training procedure was stopped after 100 epochs.

Table 2.1 shows the accuracy results obtained on the test set of CIFAR-
10 and CIFAR-100 datasets. The compared methods were directly reported
with the results obtained in their paper. For MW-Net [57] and the direct
training (CrossEntropy), we also reported our implementation results, de-
noting them with the † symbol. The accuracy gains over the other methods
were significant especially on heavy levels of noise(p = 0.6 and p = 0.8).
From Table 2.1, our MFRW method outperforms MW-Net [57] and the ba-
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updateupdate

Figure 2.9: Full scheme of Actual-Train step. The original Φtb and Φtc are
optimized with help of the updated meta-model Ψt+1.

Table 2.1: Top-1 accuracy on CIFAR10 and CIFAR100 dataset with Flip
noise. The backbone used is a ResNet-32. p denotes the different levels of
noise. The results for the cited method are reported directly from their orig-
inal papers. Instead, † indicates the results obtained by our implementation.
The first and the second best results are respectively marked with bold and
underline.

Dataset Flip CIFAR-10 Flip CIFAR-100
Noise p 0.0 0.2 0.4 0.6 0.8 0.0 0.2 0.4 0.6 0.8

CrossEntropy [57] 92.89 76.83 70.77 - - 70.50 50.86 43.01 - -
Reed-Hard [50] 92.31 88.28 81.06 - - 69.02 60.27 50.40 - -
S-Model [17] 83.61 79.25 75.73 - - 51.46 45.45 43.8 - -

Self-paced [33] 88.52 87.03 81.63 - - 67.55 63.63 53.51 - -
Focal Loss [38] 93.03 86.45 80.45 - - 70.02 61.87 54.13 - -

Co-teaching [18] 89.87 82.83 75.41 - - 63.31 54.13 44.85 - -
D2L [42] 92.02 87.66 83.89 - - 68.11 63.48 51.83 - -

Fine-tuning [57] 93.23 82.47 74.07 - - 70.72 56.98 46.37 - -
MentorNet [26] 92.13 86.3 81.76 - - 70.24 61.97 52.66 - -

L2RW [52] 89.25 87.86 85.66 - - 64.11 57.47 50.98 - -
GLC [21] 91.02 89.68 88.92 - - 65.42 63.07 62.22 - -

MW-Net [57] 92.04 90.33 87.54 - - 70.11 64.22 58.64 - -
CrossEntropy† 92.33 90.56 86.25 26.67 13.58 70.18 65.02 50.25 18.67 4.32
MW-net† [57] 92.19 90.74 87.63 42.41 27.19 70.57 64.13 51.23 19.89 7.42

MFRW 91.87 91.09 90.26 89.34 82.47 68.93 63.54 59.07 56.13 20.29

sic CrossEntropy approaches by a large margin, indicating the effectiveness
of our method on the synthetic Flip noise. When there is no noise (p = 0.0),
MFRW got worse accuracy values than a normal training with the classic
softmax cross-entropy loss on both CIFAR10 and CIFAR100. It happens
because the advisor network, trying to help the classifier, introduces a bias
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of the examples distribution contained in the meta-set. If the training dis-
tribution already reflects the test one better than the one contained in the
meta-set then, introducing this meta-bias, the accuracy will be a little worse
than without.

Table 2.2: Accuracy result on CIFAR10 and CIFAR100 dataset with Flip2
noise. p denotes the different level of noise. † indicates the results obtained
by our implementation. The first and the second best results are respectively
marked with bold and underline

Dataset Flip2 CIFAR-10 Flip2 CIFAR-100
Noise p 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8

CrossEntropy† 90.71 87.83 75.83 11.86 64.91 57.7 36.55 7
MW-net† [57] 90.93 88.83 86.85 27.49 65.37 59 36.97 7.99

MFRW 90.66 89.72 87.75 73.83 63.07 57.96 45.35 22.41

Table 2.3: Result for Flip3 noise on CIFAR10 and CIFAR100 dataset. p
denotes the different level of noise. † indicates the results obtained by our
implementation. The first and the second best results are respectively marked
with bold and underline

Dataset Flip3 CIFAR-10 Flip3 CIFAR-100
Noise p 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8

CrossEntropy† 90.13 88.44 82.31 20.34 65.29 59.35 44 11.07
MW-net† [57] 90.56 88.49 85.65 22.69 65.33 62.74 45.77 10.33

MFRW 90.31 88.96 87.73 75.53 62.98 59.08 52.28 25.72

Table 2.2, 2.3 show respectively the result for noise of type Flip2 and
Flip3. We can see how our method performs better than the others, especially
in very noisy situations.

2.5.4 Real-world label noise results

With the real-world noise Clothing1M dataset, we used as backbone a ResNet-
50 pre-trained on ImageNet. It was trained through SGD with a momentum
of 0.9, weight decay of 1e-3, and a starting learning rate of 0.01. The batch
size was 32, and it was preprocessed through resizing the image to 256 × 256,
cropping the center 224 × 224, and performing normalization. The learning
rate is divided by 1

10 at 10 and 15 epochs. The complete learning process
was executed for a total of 20 epochs.
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Table 2.4: Comparison with state-of-the-art methods in test accuracy (%)
on Clothing1M dataset with real-world noise. Results for cited methods were
copied from original papers.

Method Accuracy (%)
CrossEntropy [57] 68.94
F-correction [47] 69.84
JoCoR [69] 70.30
S-adaptation [17] 70.36
M-correction [2] 71.00
MLC [68] 71.06
Joint-Optim [61] 72.16
MLNT [36] 73.47
P-correction [73] 73.49
MW-Net [57] 73.72
MentorMix [25] 74.30
FaMUS [71] 74.43
DivideMix [35] 74.76
AugDesc [46] 75.11
MFRW 75.35

Table 2.4 shows the results on the Clothing1M dataset. Our method
outperformed the current state-of-the-art result on real-world noise.

2.5.5 Qualitative Meta Feature Re-Weighting (MFRW)
results

This section provides a qualitative analysis of various aspects of our MFRW
method. To better understand how our method is helping the main classifier,
it is important to look at what and how the meta-model learns.

First, we checked how the weights, learned by the meta-model, were dis-
tributed. After the last epoch of the training on Flip (p = 0.6) label noised
CIFAR10, we extracted the first two main components of a PCA reduction
on the predicted weights Wf . The figure 2.10 shows two separate large clus-
ters which indicate that the meta-model learned to weigh the examples that
contain label errors differently from those that have correct labeling. This is
the effect of giving the advisor network the loss value of each training data.



2.5 Experiments 27

Noisy

Correct-
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Figure 2.10: Plot of the first two main components of a PCA reduction on
the weight Wf obtained from the training on CIFAR10 with Flip (p = 0.6)
noise. Pink dots indicate an example with the correct label, instead, the light
blue ones are for example with the noisy label. The clear separation between
noisy and correct examples indicates a different way of weighing between
these two categories
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Figure 2.11: T-SNE of the first two main components of the PCA shown in
Figure 2.10. Pink dots indicate an example with the correct label, instead,
the light blue ones are for example with the noisy label. Each category is
denoted by a different color and marked in the plot with an ellipse. Besides
a separation between noisy/correct examples, there is also one at the cate-
gory level. This indicates distinct predicted weight vectors Wf for features
belonging to different classes.

An out-of-distribution example has a bigger cost than a good one.

Next, we did a T-SNE [63] on the two previously extracted PCA compo-
nents to see if there is also a per-class separation on the weights Wf . From the
T-SNE plot in figure 2.11, it is possible to deduce that the weights have also
an additional per-class separation concerning the noisy/correct one. This is
due to the contribution of the input visual features to the meta-model, which
allows predicting different weights not only based on the loss value, but also
thanks to the image content. In Figure 2.12, the weights Wf relative to the
first 50 examples of the class ”airplane” are shown. The information from
noisy label examples (light blue border) is manipulated differently from one
of the correct examples (pink border).
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Figure 2.12: Attention weights Wf relative to the first 50 examples of the
class ”airplane” learned by our meta-model at the end of training on Flip
(p = 0.6) noised CIFAR10. The pink color indicates examples with the cor-
rect label, instead, the light blue is for the noisy ones.

2.6 Conclusions

In this chapter, we introduced our new Meta Feature Re-Weighting (MFRW)
method, which mitigated the problem of training DNNs on corrupted labels
exploiting the novel concept of advisor network. We empirically show the
effectiveness of our method on a synthetic and real-world noisy dataset for
the classification task. The experimental results demonstrate that advisor
strategy can leverage information present in noisy data helping the main
network to achieve a better generalization performance. Our approach yields
state-of-the-art performance on the real-world noisy Clothing1M dataset.
Future research in this area may include adapting the advisor network to
different problems than noise, like long-tail learning.
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Chapter 3

Meta-learning advisor networks
for long-tail and noisy labels
image classification

Deep neural networks (DNNs) for image classification are prone
to performance reduction and overfitting when trained on datasets
plagued by noisy or imbalanced labels. Weight loss methods tend
to ignore the influence of noisy or frequent category examples
during the training, resulting in a reduction of final accuracy
and, in presence of extreme noise, even a failure of the learn-
ing process. A new advisor network is introduced to address both
imbalance and noise problems, able to pilot learning of a main
network by adjusting the visual features and the gradient with a
meta-learning strategy. In a curriculum learning fashion, impact
of redundant data is reduced while recognizable noisy label images
are downplayed or redirected. The proposed method is first tested
on synthetic versions of CIFAR10 and CIFAR100, and then on
the more realistic Imagenet-LT, Places-LT, and the Clothing1M
datasets, reporting state-of-the-art results. 1

1The part of this chapter has been published as “Meta-learning advisor networks for
long-tail and noisy labels in social image classification” in ACM Transactions on Multi-
media Computing, Communications, and Applications, 2022 [55].
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3.1 Introduction

Training deep neural networks on large amounts of labeled images is crit-
ical for modern image classification [32]. Labeling such a large amount of
images has a very high cost and covering many concepts is very challenging.
Therefore, automatic methods for label generation have recently been in-
vestigated by researchers, for instance in the form of semi-supervised. They
exploit labeled images from non-experts (e.g., from social networks) or even
unlabeled ones that are available in very large quantities at no cost. Due to
their nature, these data have unbalanced or mislabeled samples [1], as shown
in Figure 3.1. The large number of parameters from which deep neural net-
works are composed provides great adaptability in learning different tasks
and concepts. This property leads to the generation of highly discriminative
models if the training data are balanced and correct. When this assumption
is not true and the data are unbalanced or their annotations are noisy, then
there is a resulting reduction in performance and possible overfitting [10,25].
Recent methods have attempted to address the label noise problem by mea-
suring network confidence during training through curriculum learning [33],
employing another co-trained network [18], or directly estimating noise in
the set [21]. Finding samples out of the correct distribution and trying to
reduce their impact on training is the general idea for dealing with this
dataset problem. Instead, the unbalanced distribution (long-tail) of concepts
is solved through feature augmentation techniques [8], but above all with
the design of ad-hoc loss functions for this type of problem [10, 51, 60]. In
contrast, a meta-learning approach is here proposed to address long-tailed
and noisy labels problems, which is based on an advisor network trained to
help the main classifier model (Figure 2.2) to perform better at the image
classification task. During the training of a standard classification model,
the advisor network adjusts feature activations and gradients of the main
model by observing its feature activations and training loss. At test time,
the advisor is discarded keeping only the main network as the final model.
Compared to the teacher-learner paradigm our advisor network is trained to
help another model instead of being trained to do image classification.

3.2 Related Works

Imbalanced training labels
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Training on imbalanced (or Long-tailed) datasets is an active research
field in computer vision [5, 8, 24, 51, 60, 78, 80]. A common solution present
in literature is re-sampling. While [6, 19, 43] sampled more (over-sampling)
training data from the minority classes to balance the distribution of all
classes, [13] removed (under-sampling) data from frequent classes to make
the data distribution more uniform. Under-sampling is infeasible in extreme
long-tailed datasets, where the imbalance ratio between the head and the tail
class is high, because most of the examples would be excluded from train-
ing. Another solution is re-weighting, where weight was assigned to each
different training sample, according to its importance. [23, 67] used the in-
verse of class frequency to determine the weight value. Re-weighting can be
done even on a sample level. In [38] a modulating loss factor was introduced
to make the neural network cost-sensitive, reducing the loss contribution
from easy examples. Instead, [5,10,29,78] manipulated the loss based on the
category distribution. In [51] an unbiased softmax function was derived to
explicitly model the class distribution shift and minimize the generalization
error bound. [60] introduced a new loss that avoids discouraging gradients for
the rare class. [8, 74] exploited the feature augmentation method to trans-
fer the feature variance of common classes to the rare ones. The solution
proposed by [40] adopted a memory module to augment the rare categories
with semantic feature representation obtained from common ones. Instead,
our method exploits a new layer of meta-attention to direct the classifier’s
attention much more to the rare categories, while still not forgetting the
common ones. Moreover, our advisor network automatically modifies the
classifier’s gradients to avoid the negative impact of the common classes on
the rare ones.

Noisy training labels

In literature, numerous works deal with the problem of noisy labels in
training data. It has been shown that the performance of machine learn-
ing systems degrades in the presence of label noise [45], [48]. One cate-
gory of solutions involves a loss correction to mitigate the effect of noisy
samples on the classifier network. For example, GLC [21], Reed [50], M-
correction [2], F-correction [17] and S-adaptation [47] estimated the matrix of
corruption probabilities to change the wrong annotations to the correct ones.
Instead, [61], [42], [73] modeled the noise distribution linearly combining the
output of the network and the noisy label to estimate true labels. Another
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Figure 3.1: Examples of mislabeled (red cross) and correct (green tick) cloth-
ing images obtained from online shopping stores. Annotations are obtained
from the description of the clothes provided by the sellers.

different approach is assigning a weight to each sample. Lower weights avoid
the contribution of the correspondent sample to the training of the network.
In this way, it is possible to assign low values to noisy examples and high val-
ues to correct ones. MentorNet [26] and MentorMix [25] estimated the latent
weights with data-driven curriculum learning and student-teacher paradigm.
Other contributions include data augmentation strategies like Mixup [76],
Advaug [7] and DevideMix [35]. In contrast, our method takes advantage of
an advisor network that alters activations and gradients of the main classi-
fier can increase its generalization performance, without isolating noisy label
samples from the clean ones.

Meta learning

Meta-learning was used to assist the training and optimization of learning
models, and it was also applied to the long-tailed classification task. In [24,36]
the meta-model learned to assign higher weights to the examples of the rare
classes. With small clean validation data, the meta-model learns how to cor-
rect the biased training dataset. Meta-learning was also applied to address
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the problem of the noisy labels [36, 52, 68]. For example, L2R [52] weighed
each sample giving less importance to the noisy one. MLNT [36] simulates
regular training with synthetic noisy labels, instead MLC [68] estimates the
noise transition matrix. MW-Net [57] automatically determined an explicit
weighting function that can be easily fitting to a different type of task, and it
works on both the noise and imbalance training issues. These methods took
advantage of a small clean validation dataset to apply the meta-learning
scheme. Differently from them, our advisor network modifies the network
activations using a meta-attention layer and simultaneously learns to weigh
training gradients to increase the performance of the main classifier dur-
ing its training. Our method addresses both imbalance and noise training
concurrently.

3.3 Contributions

Our contributions are:

• Following the principles of our advisor network, we present a new meta-
model to solve concurrently both the imbalance and label noise prob-
lems for the image classification task.

• We apply the Meta Feature Re-Weighting (MFRW) method, which
automatically generates an attention mask on the visual features of
the classifier, to the long-tail learning problem.

• The Meta Equalization Softmax (MES) activation function has been
formulated to automatically adjust the grader gradients so that its
learning is not adversely affected by an image belonging to a frequent
category or with a noisy label.

• The effective performance of our method is shown numerically and
qualitatively by experiments conducted on synthetic (long-tailed and
noisy label corruption) and real-world datasets. We achieve the state-
of-the-art result on Clothing1M.

3.4 Proposed Method

We developed a new advisor network that helps the deep neural network
(DNN) to address both the noisy labels and long-tail image classification
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problems. Our method is composed of two main parts that can work jointly:
Meta Feature Re-Weighting (MFRW) and Meta Equalization Softmax (MES).
The first component, MFRW, makes use of an auxiliary advisor network that
automatically learns how to weigh the features extracted from a DNN during
its training. Our idea was to exploit an attention mechanism to enhance the
useful parts of visual information and lower the rest. If a network can con-
centrate only on some convenient parts of an image, that information can
contribute to increasing the overall generalization capacity of the network
even if the annotation is wrong. This is also true for the long-tailed dis-
tribution of data where information from common classes can be leveraged
to improve performance on the rare ones. In the second component, MES,
the advisor network automatically learns how to reduce the discouraging
gradients of some images concerning others. In long-tailed distributions, the
discouraging gradients of frequent categories samples can worsen the learn-
ing of the rare ones [60]. This can happen even with noisy labels because
the discouraging gradients of an example with the wrong label can affect
the correct learning of the entire classifier. These two methods can be used
simultaneously to help the learning of an image classifier, reducing the nega-
tive effect that unbalanced or noisy annotations in the training datasets can
produce. Our advisor network is trained with the meta-learning paradigm,
so it can know the current state of the classifier and learn how to help it at
that moment.

We proceed to show in detail each part of our method: Meta Feature
Re-Weighting is specified in Section 3.4.1 and Meta Equalization Softmax in
Section 3.4.2. Finally, the learning process of the classifier together with the
advisor network is described in Section 3.4.4.

3.4.1 Meta Feature Re-Weighting (MFRW)

Deep Neural Networks can exploit the human brain mechanism that se-
lectively concentrates the attention on one aspect of the information while
ignoring others. Mimic the cognitive attentioncan be done calculating a soft
(or hard) mask which is then multiplied with the visual features of the net-
work. The mask W is usually the output of a function g of some input x

W = g(x) (3.1)
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and W is element-wise multiplied with a feature f of the network

fatt = W � f (3.2)

where � is the symbol for element-wise multiplication.
We proposed a meta-attention method, called Meta Feature Re-Weighting

(MFRW), that mitigates noisy or imbalanced labels problems in the train-
ing data. A possible mismatch between the content of the image and its
associated label can lead to a classifier’s performance degradation for that
annotated class. Our method made the main network use only parts of the
erroneous visual information to improve performance in that class. Instead
in the case of imbalance, MFRW can attribute to the visual information
relative to common classes smaller importance than those of the rare ones.
Finding the handwritten function g that generates the right masks for each
of the two cases is challenging. We used a meta-model to automatically in-
fer the correct g. This gives two properties to g: it can change during the
training of the main network and it can adapt automatically to the problem
present in the training data. The element-wise product is done between the
feature f extracted from a DNN and a vector of weights Wf learned from a
meta-model

fatt = Wf � f (3.3)

The meta-model can take into consideration important aspects for each train-
ing data, so it can generate the proper activation weights based on them.
Attention must be differentiated between the various categories, as each may
have a different number of examples and noise levels. This is done by giv-
ing as input to the meta-model visual features extracted from the classifier’s
backbone. In the case of unbalanced labels, examples of the more common
categories, since they are presented many more times during training, are
easier to be learned than those of the rarer ones. In addition, mislabeled im-
ages have a different difficulty than cleanly labeled images, as they are out-
side the correct distribution of each category, and their size is often smaller
than the correct ones. The attention should be adjusted according to the
difficulty that a training example represents for the classifier. This way, it
can focus differently on the information in the data by learning a better
representation. The cost value typically used to express the difficulty of clas-
sification samples [33] is given to the meta-model in combination with the
visual features.
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3.4.2 Meta Equalization Softmax (MES)

The conventional loss function for image classification is the softmax cross-
entropy. A multinomial distribution p over C categories is obtained from
the network outputs score z with the softmax activation function. Then the
cross-entropy is calculated between p and target distribution y. The softmax
cross-entropy loss can be formulated as:

LSCE = −
C∑
j=1

yj log(pj) (3.4)

where the distribution pj is described as follow:

pj = softmax(zj) =
ezj∑C
k=1 e

zk
(3.5)

When the distribution of categories in the training dataset is imbalanced,
the softmax cross-entropy loss makes the learning of rare categories easily
suppressed by the common ones. In [60] a softmax equalization loss is pro-
posed to avoid the discouraging gradients from samples of frequent categories
for the rare ones. The difference with the softmax cross-entropy is the weight-
ing of a term within the softmax activation function. The new distribution
pj is calculated as:

pj = softmaxEQ(zj) =
ezj∑C

k=1 w̃ke
zk

(3.6)

where

w̃k = 1− βTλ(fk)(1− yk) (3.7)

The element Tλ(fk) is an handcrafted threshold function which outputs
a value ∈ {0, 1} based on the category frequency value fk. When Tλ output
is 1 the gradient is ignored, otherwise it is taken into account. Instead, β is
a Bernoulli random variable with a probability of ρ to be 1 and 1− ρ to be
0.

The strategy of avoiding the discouraging gradients can be useful in other
problems different from imbalance training, for example image classification
with noisy labels. The discouraging gradients of a mislabeled image can be
scaled to not harm the correct learning of the classifier model. This behavior
can be obtained by modifying the weights w̃k passed to the softmaxEQ
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function in the Eq. 3.6. The element that determines each category weight is
Tλ(fk), but it works only for the imbalance training problem. Writing a new
function for the noisy annotation problem is hard because the noise can be
really complex or completely unknown, for example when data is collected
automatically [70].

Inspired by this we proposed a meta-learned equalization loss (MES)
that can adapt the weight to the task that needs to be solved. The new
formulation of the weights w̃k passed to the softmaxEQ is:

ŵk = 1− βsk(1− yk) (3.8)

where sk is the vector of value ∈ (0, 1). This vector sk is the output of
a meta-model trained to help the main model handle noise and imbalance
label problems present in the training data. The visual feature and the cost
of each training data are given as input to the meta-model. This allows the
model to generate output vectors sk that are differentiated between classes
and between ”easy” and ”hard” examples.

3.4.3 Meta-model architecture

Since both MFRW and MES require the same input data, it was possible to
combine the two methods through a single meta-model. Our meta-model Ψ
is a neural network composed only by a fully connected layer. Its architecture
is really simple. The inputs are a feature f and a loss value Lx. Each input is
projected in a fixed size embedding space through a separate fully connected
layer. These embeddings are concatenated to form a larger common space,
the size of which is the sum of the dimension of each previous embedding.
MFRW method requires a weight vector Wf in the range ∈ (0, 1) of the same
size of the feature input f . Instead, MES needs a weight vector in the range
∈ (0, 1) but with a length equal to the number of classes C. From the last
embedding space, we get the needed outputs thanks to a fully connected
layer followed by a sigmoid activation function for each of the outputs. In
this way, MFRW and MES share the same internal representation learned
from the inputs. The meta-model architecture permits the two methods to
work together, allowing both of their benefits to be leveraged at the same
time.
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Figure 3.2: The architecture of the meta-model Ψ. The color green is used to
highlight the inputs of the model. Instead, the orange indicates the attention
mask output vector. This version of the meta-model has two outputs respect
to the one showed in Figure 2.4.

3.4.4 Algorithm

In this section, we illustrate the four phases optimization strategy to jointly
train the base classifier Φ and our new meta-model Ψ.

Firstly, we separated the main model Φ(·;w) into two different parts to
extract the visual features needed as input by the meta-model. The backbone
Φb(·;wb), that takes an image x and gives out the visual feature vector f , and
the classifier Φc(·;wc), that has f as input and a probability score vector s
as output. The meta-model takes two different input Ψ(f,L) and gives back
two vectors of weights Wf and sk. We focus on the beginning of the t-th
optimization iteration and describe each step to reach the (t+ 1)-th. Unlike
the meta-learning optimization strategy illustrated in 2.4.1, we added an
initial phase, called Loss Pre-Calculation (Figure 2.6), to estimate in advance
the value of loss Lpre related to the training batch Xtrain. This loss value
relies on the original feature f train.

The second step is called Virtual-Train (Figure 3.3). In this phase, Φtb
and Φtc are respectively virtual clones of Φb(·;wb) and Φc(·;wc), taken at the
beginning of the t-th iteration. The pre-calculated loss values Lpre and its
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updateupdate

Figure 3.3: Full scheme of Virtual-Train step with both MFRW and MES
methods. The virtual clones Φtb and Φtc are updated minimizing Ltrain.

relative feature f train, extracted from Φtb, are given to the meta-model Ψt

to get the two vector of weights Wf and sk. As described in section 3.4.1,
the feature f train is multiplied element-wise with Wf to get feature vector
with attention fatt. The altered feature vector fatt is given to Φtc in order
to obtain the score ztrain. Then passing the vector sk to the Eq. 3.8 of the
equalization loss, described in section 3.4.2, we compute the Ltrain . The
parameters of Φtb and Φtc are virtually updated to minimize Ltrain. In this
phase, Ψt is not optimized.

The third step is called Meta-Train (Figure 2.8) because it is the meta-
model Ψ is updated. We pass a meta batch Xmeta, sampled from a clean and
balanced meta-set, through the virtually updated Φt+1b and Φt+1c to obtain a
validation loss Lmeta. The visual features, used in this step, are not altered by
the meta-model, and the loss value is obtained with a classic softmax cross-
entropy. We only update Ψt minimizing Lmeta, leaving the rest unchanged.
The meta-model is optimized to help the main model minimize its error on
clean and balanced data, considerating also the previous Virtual-Train.

In the last phase, called Actual-Train, the original Φtb and Φtc are opti-
mized taking into account the updated meta-model Ψt+1. Our meta-model
will be discarded at test time, and it is used only during the training of the
main network Φ when external help is needed to solve noisy or imbalance
label problems.
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Figure 3.4: Full scheme of Actual-Train step with both MFRW and MES
methods. The original Φtb and Φtc are optimized with help of the updated
meta-model Ψt+1.

3.5 Experiments

To demonstrate the effectiveness of our method, we conducted several ex-
periments on synthetically generated datasets with a controlled level of noise
and imbalance. We also tested it in real-world datasets to prove its ability
to adapt to any context.

3.5.1 Datasets

CIFAR10 and CIFAR100
Following previous works [26,52,57], we used CIFAR-10 and CIFAR-100

as bases to generate synthetic datasets. They are composed of 50, 000 training
images and 10, 000 test images of size 32×32. Off the training set, we ran-
domly selected 10 images per class to create the meta set for meta-training.
The long-tailed versions of the datasets, CIFAR-LT-10 and CIFAR-LT-100,
are created randomly removing training examples. Following the standard
evaluation protocol for the long-tailed problem, we studied five different im-
balance factors (IFs) of 200, 100, 50, 20, and 10, where IF=1 coincides with
the original datasets. These IFs are related to the parameter µ ∈ (0, 1), where
the number of examples dropped from the y-th class is nyµy and ny is the
original number of training examples for that class. We tested our method
even on a noisy labels version of CIFAR-10 and CIFAR-100. We chose the
standard Flip (or asymmetric) noise because it is designed to mimic the
structure where labels are only replaced by similar classes, e.g., dog↔cat.
This type of noise usually happens when there is ambiguity between cate-
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gories or visual similarity between images [70]. The noise ratio is controlled
with a parameter p, which represents the probability that a correct label
is flipped with the correspondent similar one. In this way we could test our
method on different levels of noise, from p = 0.0 (no noise), to p = 0.6 (heavy
noise). Merging the two strategies to inject data issues, we also introduced
a new synthetic version of each dataset as a new evaluation protocol for the
case of training data with simultaneously unbalanced and noisy labels.

ImageNet-LT

In [40] a long-tailed version of ImageNet-2012 [11] called ImageNet-LT,
was introduced as standard evaluation protocol for the long-tailed problem.
From a Pareto distribution with shape value α = 6, each class size is sampled
to obtain the corresponding number of images for each one. ImageNet-LT has
115, 800 training images in 1000 classes with an imbalance factor of 1280/5.
We randomly selected 10 images per class from the provided validation set
to create our meta set for meta-training. The test set is the original balanced
ImageNet-2012 validation set with 50 images per class.

Places-LT

The Places-LT dataset is created by sampling from the dataset Places-
2 [77] with the same strategy used for ImageNet-LT. The training set is
composed of 62.500 images from 365 classes with an imbalance factor of
4980/5. The test set has 100 images per class. Our meta set is created ran-
domly selected 10 example per class from a validation set of 20 images per
class.

Clothing1M

The Clothing1M [70] is a dataset that is composed of 1 million images
of clothing taken from online shopping websites. There are 14 categories like
T-shirts, Shirts, Knitwear, etc. The labels are obtained from the text of the
images provided by the sellers and not from an expert annotator. This process
introduces into the labels a real-world noise, which cannot be predicted in
advance. In Figure 3.1 some examples of noisy and correct annotations are
shown. A validation set of 72, 409 manually well-annotated images is provided
and it was used as the meta dataset in our experiments.
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3.5.2 Meta-model implementation details

In every experiment, the meta-model was optimized with Adam [30] and a
learning rate of 1e-4. The size of each embedding space was set always to
100. The probability of ρ of the Bernoulli distribution β for MES was equal
to 0.9.

3.5.3 Long-Tail label distribution results

We conducted several experiments on the imbalance training problem related
to image classification. We tried different settings and datasets to compare
our method with the others in the literature. We tested MFRW and MES
both disjointly and together (MFRW-MES).

CIFAR-LT-10 and CIFAR-LT-100
The first part of experiments on CIFAR-LT-10 and CIFAR-LT-100 was

conducted with a Resnet-32 network trained through SGD with a momentum
of 0.9, weight decay of 5e-4, batch size of 128, and a starting learning rate
of 0.1. The learning rate decreased to its 1/10 at the 160 epoch and 180
epoch, stopping the learning at 200 epochs. In Table 3.1 the results in this
experiment’s setting of different works are shown.

Instead, in the second part of the experiments, a more strong prepro-
cessing and a different learning rate scheduler were applied to the training.
The results of Table 3.2 were obtained with a Resnet-32 trained for 13000
iteration with a batch of 512, on which was applied AutoAugment [9] and
Cutout [12]. The initial learning rate was 0.1, then decreased to zero with a
Cosine Annealing scheduler [41]. The optimizer used was SGD with a mo-
mentum of 0.9, weight decay of 5e-4. Here only MFRW-MES was compared
against the other methods.

We also tested our method on a model with fewer parameters (ResNet-
18) but with the same settings as for the experiments done in Table 3.1. The
results are shown in Table 3.3.

From Table 3.1, 3.2 and 3.3 is possible to notice how our method exceeds
or is in line with the results obtained from the state-of-the-art algorithms for
long-tailed training. We obtained the best accuracy values in almost all IFs,
especially when the dataset is extremely unbalanced (IF=200,100,50). Table
3.3 shows the effectiveness of our method even on smaller network architec-
ture. Both MFRW and MES obtained good results, even individually. We
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Table 3.1: Test accuracy (%) of ResNet-32 architecture on CIFAR-LT-10
and CIFAR-LT-100 under different imbalance factors (IFs). The results for
the cited methods are reported directly from their original papers. Instead,
† indicates the results obtained by our implementation. The first results are
marked in bold and the second ones with an underline.

Dataset Long-Tailed CIFAR-10 Long-Tailed CIFAR-100
IF 200 100 50 20 10 200 100 50 20 10

CrossEntropy [57] 65.68 70.36 74.81 82.23 86.39 34.84 38.32 43.85 51.14 55.71
Focal Loss [38] 65.29 70.38 76.71 82.76 86.66 35.62 38.41 44.32 51.95 55.78
Fine-tuning [57] 66.08 71.33 77.42 83.37 86.42 38.22 41.83 46.4 52.11 57.44

CB Loss [10] 68.89 74.57 79.27 84.36 87.49 36.23 39.6 45.32 52.59 57.99
L2RW [52] 66.51 74.16 78.93 82.12 85.19 33.38 40.23 44.44 51.64 53.73

MW-Net [57] 68.91 75.21 80.06 84.94 87.84 37.91 42.09 46.74 54.37 58.46
LDAM-DRW [5] - 77.03 - - 88.16 - 42.04 - - 58.71

CE [24] - 76.41 80.51 86.46 88.85 - 43.35 48.53 55.62 59.58
LDAM [24] - 80.00 82.34 84.37 87.40 - 44.08 49.16 52.38 58.00

FaMUS CE [71] - 79.30 83.15 87.15 89.39 - 45.60 49.56 56.22 60.42
FaMUS LDAM [71] - 80.96 83.32 86.24 87.90 - 46.03 49.93 55.95 59.03

BALMS† [51] 74.76 80.42 83.56 87.33 89.19 42.91 47.21 51.85 57.43 61.61
MFRW 78.07 80.43 84.08 87.43 88.76 40.77 44.85 49.65 56.46 60.25
MES 72.23 78.35 81.84 86.71 88.95 40.56 44.68 50.81 57.07 61.35

MFRW-MES 75.91 81.19 83.87 86.84 88.83 43.33 46.8 52.02 56.95 60.6

could observe how they could be used simultaneously without compromising
the final performance of the classifier.
ImageNet-LT and Places-LT

Following the experiment setup of [51], we employed ResNet-10 and
ResNet-152 networks for ImageNet-LT and Places-LT, respectively. For ImageNet-
LT, we adopted an initial learning rate of 0.2 and decayed with Cosine An-
nealing scheduler during training of 180 epochs. For Places-LT, the learning
rate started at 0.005 and it was reduced like for ImageNet-LT. We trained
ResNet-152 for a total of 60 epochs with a batch size of 64. In both cases,
our method started from a baseline that had been pre-trained on the en-
tire dataset. We did not freeze the feature extractor part of the pre-trained
network as the decoupled training strategy of [27] does. We pre-trained the
backbone to accelerate the total training time and to make our method starts
from an almost good feature extractor.

Table 3.4 shows the result of MFRW-MES on ImageNet-LT and Places-
LT. In the first dataset, our method achieved a Top-1 accuracy value compa-
rable to other methods that only target this task. Instead, for the Places-LT
dataset, we got the second-best result.

With these experiments, we showed how our algorithm can solve the
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Table 3.2: Test accuracy (%) of ResNet-32 architecture on CIFAR-LT-10
and CIFAR-LT-100 under different imbalance factors (IFs). Autoaugment
and Cutout are additionally applied as preprocessing on the data. The results
of the cited methods are reported directly from their original papers. Bold
is used for the first results and underline for the second ones.

Dataset Long-Tailed CIFAR-10 Long-Tailed CIFAR-100
IF 200 100 10 200 100 10

CrossEntropy 71.2 77.4 90.0 41.0 45.3 61.9
CBW 72.5 78.6 90.1 36.7 42.3 61.4
CBS 68.3 77.8 90.2 37.8 42.6 61.2

Focal Loss [38] 71.8 77.1 90.3 40.2 43.8 60.0
CB Loss [10] 72.6 78.2 89.9 39.9 44.6 59.8

LDAM Loss [5] 73.6 78.9 90.3 41.3 46.1 62.1
Equalization Loss [60] 74.6 78.5 90.2 43.3 47.4 60.5

cRT [27] 76.6 82.0 91.0 44.5 50.0 63.3
LWS [27] 78.1 83.7 91.1 45.3 50.5 63.4

BALMS [51] 81.5 84.9 91.3 45.5 50.8 63.0
MFRW 78.32 82.49 90.22 42.9 47.05 62.77
MES 77.12 81.19 91.03 43.52 48.44 63.63

MFRW-MES 81.38 84.97 90.99 46.52 50.44 64.06

Table 3.3: Classification accuracy (%) of a low parameters architecture,
ResNet-18, trained on the same settings of Tab.3.1. The first and the second
best results are respectively marked with bold and underline. † indicates the
results obtained by our implementation.

Dataset Long-Tailed CIFAR-10 Long-Tailed CIFAR-100
IF 200 100 50 20 10 200 100 50 20 10

CrossEntropy 70.22 75.16 82.32 87.24 90.73 38.87 43.65 48.55 57.09 62.59
CB Loss [10] 69.16 75.16 81.9 86.61 90.79 38.58 43.51 48.15 57.02 63.1

FSA [8] 77.06 80.57 84.51 88.54 91.75 42.84 46.57 51.9 58.69 65.08
BALMS† [51] 76.86 81.78 85.28 89.27 90.86 42.19 48.07 53.83 59.87 64.13

MFRW 79.49 81.35 86.32 89.23 91.44 43.19 47.51 53.15 60.38 65.36
MES 73.11 77.96 83.33 88.69 90.63 40.28 44.49 50.1 58.24 63.99

MFRW-MES 79.94 83.43 86.8 89.13 91.02 43.85 50.04 54.12 61.37 65.28

long-tail data problem via a simple advisor network trained with the meta-
learning paradigm.
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Table 3.4: Top-1, Top-3 and Top-5 accuracy (%) of ResNet-10 classifier
on Imagenet-LT and Places-LT. We report directly the result of the cited
methods from their original papers. The first and the second results are
marked with bold and the second ones with underline.

Dataset Imagenet-LT Places-LT
Method Top-1 Top-3 Top-5 Top-1 Top-3 Top-5

CrossEntropy 25.26 38.65 47.88 27 47.95 58.56
RCB [24] 29.9 46.71 54.82 30.8 52.05 62

OLTR [40] 35.6 - - 35.9 - -
Equalization Loss [60] 36.44 - 61.19 - - -

cRT [27] 41.8 - - 36.7 - -
LWS [27] 41.4 - - 37.6 - -

BALMS [51] 41.8 - - 38.7 - -
MFRW-MES 41.78 59.87 67.25 38.34 61.2 71.09

3.5.4 Flip label noise results

We trained our model under Flip (or asymmetric) label corruption noise at
various levels. To assess the performance of the advisor network, we compared
it to other works that studied this type of noise. We trained a Resnet-32
through SGD with a starting learning rate of 0.1 and batch size of 128. We
decreased the learning rate at epoch 50 and 70 by a factor of 0.1. We stopped
the training after 100 epochs. We also reproduced the [51] algorithm under
this experiment setting to observe how an ad-hoc long-tailed distribution
method works under the Flip noise.

We can notice from Table 3.5 that our method obtained the best results
for the flip noise on CIFAR10 and CIFAR100. The use of our advisor net-
work avoided a drastic accuracy drop than the other methods, especially
when the noise was really strong (p = 0.6). When there is no noise (p = 0.0)
our method got worse accuracy values than a normal training with the clas-
sic softmax cross-entropy loss on both CIFAR10 and CIFAR100. It happens
because the advisor network, trying to help the classifier, introduces a bias
of the examples distribution contained in the meta set. If the training dis-
tribution already reflects the test one better than the one contained in the
meta set then, introducing this meta bias, the accuracy is a little worse than
without.
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Table 3.5: Test accuracy on CIFAR10 and CIFAR100 dataset with Flip
(asymmetric) label noise. The backbone used is a ResNet-32. p denotes the
different levels of noise. The results for the cited methods are reported di-
rectly from their original papers. Instead, † indicates the results obtained by
our implementation. The first and the second best results are respectively
marked with bold and underline.

Dataset Flip CIFAR-10 Flip CIFAR-100
Noise p 0.0 0.2 0.4 0.6 0.0 0.2 0.4 0.6

CrossEntropy [57] 92.89 76.83 70.77 - 70.50 50.86 43.01 -
Reed-Hard [50] 92.31 88.28 81.06 - 69.02 60.27 50.40 -
S-Model [17] 83.61 79.25 75.73 - 51.46 45.45 43.8 -

Self-paced [33] 88.52 87.03 81.63 - 67.55 63.63 53.51 -
Focal Loss [38] 93.03 86.45 80.45 - 70.02 61.87 54.13 -

Co-teaching [18] 89.87 82.83 75.41 - 63.31 54.13 44.85 -
D2L [42] 92.02 87.66 83.89 - 68.11 63.48 51.83 -

Fine-tuning [57] 93.23 82.47 74.07 - 70.72 56.98 46.37 -
MentorNet [26] 92.13 86.3 81.76 - 70.24 61.97 52.66 -

L2RW [52] 89.25 87.86 85.66 - 64.11 57.47 50.98 -
GLC [21] 91.02 89.68 88.92 - 65.42 63.07 62.22 -

MW-Net [57] 92.04 90.33 87.54 - 70.11 64.22 58.64 -
CrossEntropy† 92.33 90.56 86.25 26.67 70.18 65.02 50.25 18.67
MW-Net† [57] 92.19 90.74 87.63 42.41 70.57 64.13 51.23 19.89
BALMS† [51] 92.86 90.99 83.51 51.76 69.66 65.61 56.83 39.16

MFRW 91.87 91.09 90.26 89.34 68.93 63.54 59.07 56.13
MES 93.03 91.25 90.76 90.58 69.74 65.36 62.96 60.82

MFRW-MES 92.46 91.44 90.7 90.21 68.33 65.17 62.26 58.43

3.5.5 Long-Tail & Flip label noise results

We decided to introduce a new synthetic dataset setting in which unbalanced
and noisy label problems are both present. We chose 3 values of IFs (200,
100, 10) and two of p (0.4, 0.6), and all possible combinations for both
CIFAR10 and CIFAR100 were generated. All experiments were performed
training a Resnet-32 with the same settings and hyperparameters of the one
used to obtain the results listed in Table 3.1. This experiment is important
to establish the ability of an algorithm to handle different types of dataset
conditions at the same time.

We compared our method with BALMS [51], because it is designed for
long-tailed distributions, and with MW-Net [57], which can deal with any
type of bias in the data, similar to us. The results shown in Table 3.6 indicate
that our advisor network can manage at the same time both noisy labels and
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Table 3.6: Test accuracy on CIFAR10 and CIFAR100 dataset with two levels
of Flip label noise p (0.4, 0.6) and three different imbalance factors IFs (200,
100, 10). The backbone used is a ResNet-32. † indicates the results obtained
by our implementation of different methods. Bold is used for the first results
and underline for the second ones.

Dataset LT Flip CIFAR-10 LT Flip CIFAR-100
Noise p 0.4 0.6 0.4 0.6

I.R 200 100 10 200 100 10 200 100 10 200 100 10
CrossEntropy† 49.64 56.98 76.58 31.78 31.96 31.78 22.03 23.81 39.48 12.08 13.65 19.6
MW-Net† [57] 45.74 52.43 82.22 32.06 33.22 46.5 24.34 25.24 39.05 12.96 14.96 20.01
BALMS† [51] 53.73 59.24 70.4 48.53 52.55 57.39 27.02 29.18 44.44 18.8 22.14 32.02

MFRW 55.9 63.52 83.76 44.41 52.62 69.16 23.45 25.26 38.08 17.65 18.48 29.58
MES 53.33 64.51 85.8 44.45 52.46 83.17 25.41 26.76 47.54 17.12 18.79 38.75

MFRW-MES 55.13 61.67 85.34 50.19 59.38 90.26 31.73 34.2 53.89 21.79 24.3 39.99

long-tailed distributions better than the other methods.

3.5.6 Real-world label noise results

In order to test real-world noise, we used Clothing1M and ResNet-50 as
backbone, pre-trained on ImageNet, that was trained through SGD with a
momentum of 0.9, weight decay of 1e-3, and a starting learning rate of 0.01.
The batch had a size of 32 and it was preprocessed resizing the image to
256 × 256, then random cropping a 224 × 224 patch, and finally performing
normalization. The total training process consisted of 20 epochs where the
learning rate was multiplied by 0.1 after 10 and 15 epochs.

The results reported in Table 3.7 show how our method obtains the state-
of-the-art accuracy on the clothing dataset, improving it by 3, 10% compared
to the best algorithm previously used [46].

3.5.7 Qualitative long-tail advisor network results

Since section 2.5.5 discussed the MFRW method in the case of noisy labels,
we analyzed the Wf learned on CIFAR-LT-100 when the IF is 200, the
most difficult setting case of the long-tail problem. The predicted weights
Wf differ both between different classes. The weights of the frequent class
”apples” (Figure 3.5) have more values closer to zero (black color) instead
of the one belonging to the rare class ”roses” (Figure 3.6) with a lot of value
close to one (white color). This means that the information from common
category examples is ignored much more than the one belonging to the rare
classes.
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Table 3.7: Comparison with state-of-the-art methods in test accuracy (%)
on Clothing1M dataset with real-world noise. Results for cited methods were
copied from original papers.

Method Accuracy (%)
CrossEntropy [57] 68.94
F-correction [47] 69.84
JoCoR [69] 70.30
S-adaptation [17] 70.36
M-correction [2] 71.00
MLC [68] 71.06
Joint-Optim [61] 72.16
MLNT [36] 73.47
P-correction [73] 73.49
MW-Net [57] 73.72
MentorMix [25] 74.30
FaMUS [71] 74.43
DivideMix [35] 74.76
AugDesc [46] 75.11
MFRW 75.35
MES 76.43
MFRW-MES 77.44

Moreover, every example belonging to the same class is not weighted
equally. This is shown in the right-top section of Figure 3.6 where there are
some weight vectors with more value close to one (white color) than others.
It happens because those examples contain information that is still useful to
the main classifier.

Softmax weights learned with MES

We investigated how our softmax weight sk, learned with MES, differs
from the handmade solution proposed by [60]. We measured the effectiveness
of each solution by calculating the Mean Absolute Error (MAE) between the
distribution of the classes size, normalized between 0 and 1, and the vector
of the weights passed to Eq 3.6. Figure 3.7 shows the MAE values obtained
during the training of the main network on CIFAR-LT-100 when the IF
is 200. MES fits the target distribution better than the simple threshold
function applied in [60] and does not need any extra hyperparameter tuning.
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Figure 3.5: Attention weights Wf , relative to examples of the common class
”apples”, obtained after a complete training on CIFAR-LT-100 with IF
equals to 200.

Figure 3.6: Attention weights Wf , relative to examples of the rare class
”roses”, obtained after a complete training on CIFAR-LT-100 with IF equals
to 200.
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Figure 3.7: Comparison of MES with the two functions defined in [60] on
CIFAR-LT-100 with a IF of 200. In the graph is reported the Mean Absolute
Error (MAE) between the distribution of the size of the classes (normalized
between 0 and 1) and the vector of weights given to Eq 3.6. Lower values of
MAE indicate a better fit of the target distribution. In the graph, there are
also details of the predicted vector weights sk at various learning steps.
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3.5.8 Qualitative long-tail & Flip advisor network re-
sults

In this section, we provide a qualitative analysis of our two methods, MFRW
and MES, in the context of a training dataset with concurrently noisy an-
notations and long-tail label distribution. As discussed in section 2.5.5, we
checked how the weights were distributed after the meta-model learning.
We extracted the first two main components of a PCA reduction, shown in
Figure 3.8, on the predicted weights Wf at the end of training on Flip LT
CIFAR-10 with IF = 100 and p = 0.4. Unlike the result obtained in 2.10
where the two large clusters are separated, in this more complex setting the
division is less evident. The effect of the loss value, given as input to the
advisor network, is altered by the presence of few dominant classes, that in-
clude the majority of the training data. Out-of-distribution examples are not
only data with a wrong label but also the ones belonging to rare categories.

Next, we did a T-SNE [63] on the two previously extracted PCA compo-
nents to see if the per-class separation of Figure 2.11 on the weights Wf was
always present. From the T-SNE plot in figure 3.9, it is possible to conclude
that the weights still maintained additional per-class separation concerning
the noisy/correct one. The split is less evident for rare categories than com-
mon ones, due to the significant disparity of the number of training data
between them.

In Figure 3.10 and Figure 3.11 are respectively shown the attention
weights Wf learned by the advisor network for the common class ”apples”
and the rare class ”roses” from Flip LT CIFAR-100 (generated with IF = 100
and p = 0.4). In both figures, a clear distinction is present between the
weights generated by the MFRW method for samples with noisy and correct
labels.

We analyzed the softmax weights sk learned by MES. We compared them
with the handmade solutions proposed by [60]. To measure the effectiveness
of each solution, we calculated the Mean Absolute Error (MAE) between
the distribution of the classes size, normalized between 0 and 1, and the
vector of the weights passed to Eq 3.6. Figure 3.12 shows the MAE values
obtained during the training of the main network on Flip LT CIFAR-100
with IF of 100 and p = 0.4. MES fits the target distribution better than the
simple threshold function applied in [60] without any extra hyperparameter
tuning. Different from Figure 3.7, the predicted vector weights sk have values
close to zero even for some of the rare classes. This behavior was caused by



54
Meta-learning advisor networks for long-tail and noisy labels

image classification

Noisy

Correct-
-

Figure 3.8: Plot of the first two main components of a PCA reduction on the
weight Wf learned from the training on Flip LT CIFAR-10 with the noise
parameter p = 0.4 and an IF of 100. Pink dots indicate an example with
a correct label, instead, the light blue ones stand for example with a noisy
label. The separation between noisy and correct points indicates a different
way of weighing these two categories. The division is not completely clear as
in 2.10 due to the presence of unbalance in the training data.
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Figure 3.9: T-SNE of the first two main components of the PCA shown in
Figure 3.8. Pink dots indicate an example with the correct label, instead,
the light blue ones are for example with the noisy label. Each category is
denoted by a different color and marked in the plot with an ellipse. The
black indicator on the right indicates how the classes follow the long-tail
distribution. Besides a separation between noisy/correct examples, there is
also one at the category level. This indicates predicted weight vectors Wf for
features belonging to different classes even if there is a unbalance between
them.
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Figure 3.10: Attention weights Wf , relative to examples of the common class
”apples”, obtained after a complete training on Flip LT CIFAR-100 with
IF equals to 100 and p = 0.4. The pink color indicates examples with the
correct label, instead, the light blue is for the noisy ones.

Figure 3.11: Details of the attention weights Wf , relative to examples of the
rare class ”roses”, obtained after a complete training on Flip LT CIFAR-100
with IF equals to 100 and p = 0.4. The light blue color denotes the noisy
data, instead the pink color is used for examples with the correct label.
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the presence of Flip noise inside the image annotations. Our method MES
permitted discouraging gradients on some rare categories to help the main
classifier handle the noisy annotations problem.

3.6 Conclusions

We introduced two methods Meta Feature Re-Weighting (MFRW) and Meta
Equalization Softmax (MES), that make use of a novel concept of advi-
sor network to mitigate the problem of training DNNs on noisy labels and
long-tailed class distributions. We empirically showed the effectiveness of our
method on synthetic generated and real-world datasets for the classification
task. Experimental results demonstrate that the advisor strategy can help
the main classifier achieve better generalization performance for both the
training data problems. We introduced a new synthetic dataset setting where
the long-tailed distribution is mixed with the noisy label problem. Then we
showed how our method succeeds in solving both problems simultaneously
unlike other similar work. We got the state-of-the-art performance on the
Clothing1M dataset, which contains real-world label noise. Future research
in this area may include adapting the advisor network to a more complex
task than classification, like Object Detection or Image Segmentation.
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Figure 3.12: Comparison of MES with the two functions defined in [60] on LT
Flip CIFAR-100 with an IF of 100 and a noise level p equals to 0.4. On the
y-axis is shown the Mean Absolute Error (MAE) between the distribution of
the size of the classes (normalized between 0 and 1) and the vector of weights
sk. The x-axis is the actual training epoch. Lower values of MAE indicate a
more reasonable fit of the noisy long-tail target distribution. Details of the
predicted vector weights sk are exhibited at various learning steps.



Chapter 4

Conclusion and Future
Challenges

In this thesis, we studied the problems of noisy label learning and long-
tail learning for the image classification task. The methods we developed
employ the novel concept of advisor network to help the classifier address the
two issues separately and even together. Through a meta-attention module
and an adaptive activation function, the advisor network adjusts the visual
features and gradients generated during the training of a classifier.

To address the noisy label problem, we presented in Chapter 2 a novel
solution that mimics the human attention capacity of the brain to focus
only on some portions of the viewed scene. A soft weight mask was multi-
plied with the visual feature of the main classifier during its learning. We
exploited a meta-learning approach, where a meta-model automatically gen-
erates the correct weight mask thanks to a small verified and balanced auxil-
iary dataset. This learned attention permitted the classifier to focus only on
the useful information of samples with noisy annotations. We demonstrated
its effectiveness against other related methods over synthetic and real-world
datasets. We showed that our method is capable of handling high levels of
labels noise, obtaining the state-of-the-art result on the Clothing1M dataset.

In Chapter 3, we employed the concept of advisor network to alleviate
the problem of training DNNs for image classification on noisy labels and
long-tailed class distributions. The advisor guided the learning of a classi-
fier adjusting its visual feature and gradients with a meta-attention method
and a meta-activation function. We presented a new artificial dataset setting
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where noisy annotations are combined with the long-tailed distribution. Ex-
periments on the synthetic and real-world datasets demonstrated the efficacy
of our methods. We prove that our advisor network can work to help the clas-
sifier against high imbalance and noisy data. We got a new state-of-the-art
result on the real-world noise Clothing1M dataset.

In the future, there are several directions to further investigate on. The
advisor network proposed in Chapter 3, exploits an activation function to
modify the discouraging gradients obtained during the training of a neural
network. This property could be also applied to tasks different and more
complex than image classification, like Object Detection and Image Segmen-
tation. these two tasks have great application typically for vision solutions
that interact with the real world, for instance medical imaging, self-driving,
and satellite imaging. The real-world objects typically follow a long-tail dis-
tribution. Our advisor network could be adapted to interact with more com-
plex neural network architectures. For example, the meta-attention method
could interact with visual features extracted by the ROI pooling operation
inside the Faster-RCNN [53] or directly with the last classification layer of
YOLO [49].
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