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A construction for variable dimension
strong non-overlapping matrices

Elena Barcucci, Antonio Bernini,
Stefano Bilotta, Renzo Pinzani

Dipartimento di Matematica e Informatica “Ulisse Dini”
Università di Firenze

Viale G. B. Morgagni 65, 50134 Firenze, Italy

Abstract
We propose a method for the construction of sets of variable di-

mension strong non-overlapping matrices basing on any strong non-
overlapping set of strings.

1 Introduction

Intuitively, two matrices do not overlap if it is not possible to move one over
the other in a way such that the corresponding entries match. In some recent
works ([2],[3],[4]) the matrices are constructed by imposing some constraints
on their rows which must avoid some particular consecutive patterns or must
have some fixed entries in particular positions. The matrices of the sets there
defined have the same fixed dimension.

In the present paper, we deal with matrices having different dimensions
and we construct them by means a different approach: we move from any
strong non-overlapping set W of strings, defined over a finite alphabet, and,
in a very few words, the strings of W becomes the rows of our matrices. The
method is general and once the cardinality of the strings of W with a same
length is known, the cardinality of the set of matrices is straightforward.

This work could fit in the theory of bidimensional codes, as well as non
overlapping sets of strings do in the theory of codes. Moreover, if the latter
have been used in telecommunication systems both theory and engineering
[1, 13], the matrices of our sets could be useful in the field of digital image
processing, and a possible (future) application of this kind of sets is in the
template matching which is a technique to discover if small parts of an image
match a template image.
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2 Preliminaries

Let Mm×n be the set of all the matrices with m rows and n columns. Given
a matrix A ∈ Mm×n, we consider a block partition

A = (Ai,j) =

A11 . . . A1k
... . . .

...
Ah1 . . . Ahk

 . (1)

Let us define fr(Aij) the frame of a block Aij of A. Intuitively, it is a set
tracking the borders of the block which lie on the top (t), left (l), right (r)
and bottom (b) border of the matrix A. More precisely, the set fr(Ai,j) is a
subset of {t, b, l, r} defined as follows:

Definition 1.

fr(Ai,j) ⊇


t, if i = 1

b, if i = h

l, if j = 1

r, if j = k

.

For example, if A =
[
A11 A12 A13

]
(h = 1 and k = 3) then fr(A11) =

{t, b, l}, fr(A12) = {t, b}, and fr(A13) = {t, b, r} since i = h = 1. But if

A =

A11 A12 A13

A21 A22 A23

A31 A32 A33


then fr(A11) = {t, l}, fr(A12) = {t}, fr(A13) = {t, r} and similarly for the
other blocks. Note that in this case fr(A22) = ∅.

Definition 2. Given two matrices A ∈ Mm×n and B ∈ Mm′×n′ , they are
said overlapping if there exist two suitable block partitions A = (Aij) ,
B = (Bi′j′), and some i, j, i′, j′ such that

• Ai,j = Bi′j′ , and

• fr(Aij) ∪ fr(Bi′j′) = {t, l, r, b}.

In the case A = B, the matrix is said self-overlapping.
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To illustrate the definition, the following examples are given:

• Given the two matrices

A =


1 2 1 1 2
0 1 0 3 0
3 2 1 0 2
0 1 3 1 3

 and B =

 2 1
1 1
0 3

 ,

they overlap since the entries of the blocks A12 and B21 coincide. More-
over, we have fr(A12) = {t}, fr(B21) = {l, b, r} so that fr(A12) ∪
fr(B21) = {l, t, b, r}.

• If B =

[
3 1 2
2 0 1

]
the matrix A (as before) and the matrix B again

overlap since A11 = B12 and fr(A11) ∪ fr(B12) = {l, r, b, t} being
fr(A11) = {l, t} and fr(B12) = {t, r, b}.

• Note that if B =

[
1 2 3
0 1 2

]
, even if A11 = B11, we have fr(A11) =

{l, t} and fr(B11) = {l, t, b} so that fr(A11) ∪ fr(B11) = {l, b, t} ̸=
{l, t, b, r}. Nevertheless, the two matrices are overlapping since, con-

sidering the block partitions B =

[
B11 B12

B21 B22

]
=

[
1 2 3
0 1 2

]
and

A =

[
A11 A12

A21 A22

]
=


1 2 1 1 2
0 1 0 3 0
3 2 1 0 2
0 1 3 1 3

 ,

we have A11 = B22 and fr(A11) ∪ fr(B22) = {l, t, b, r}.

• As a further example we consider the particular case where A = [A11]

and B =

B11 B12 B13

B21 B22 B23

B31 B32 B33

 with B22 = A11. Here, we have fr(A11) ∪

fr(B22) = {t, b, l, r} ∪ {∅} = {t, b, l, r} and the two matrices are over-
lapping.
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• We conclude this list of examples showing two matrices A and B such
that, even if they have two equal blocks (A11 = B11), they are not over-
lapping since the second condition on the frames of the blocks of Defi-
nition 2 is not fulfilled (since fr(A11) ∪ fr(B11) = {t, l} ≠ {t, b, l, r}):

A =


1 2 1 1 2
0 1 0 3 0
3 2 1 0 2
0 1 3 1 3

 , B =

 1 2 3
0 1 1
1 0 3

 .

From these examples, it should be clear that if two matrices are overlap-
ping, then the common block naturally induces a block partition (Ai,j) for
A (and a block partition (Bi,j)) such that the number of blocks in each its
row and column can be not larger than 3. Figure 1 shows two examples of
the least fine block partitions for two overlapping matrices A and B induced
by the (gray) common block. Therefore, the block partitions 1 involved in
Definition 2 are such that h, k ∈ {1, 2, 3}.

A11 A12 = B21 A13

B11

B31

A11 A12

A21
A22 = B11

B21 B22

B12

A
A

B B

Figure 1: The least fine block partition in two examples of two overlapping
matrices

We note that if a matrix is completely contained in the other, then the two
matrices are overlapping according to Definition 2, as in the second to last
example of the above list. In the context of strings, the scenario is different,
as illustrated in the following. Two strings are said overlapping if there is a
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proper prefix of one that is equal to a proper suffix of the other. Consequently,
they are said to be non-overlapping if there is no a proper prefix of one that
is equal to a proper prefix of the other (these definitions are more formally
recalled, later in this section). It can happen that, given two non-overlapping
strings, one of them is an inner factor of the other, as in the case of the two
binary strings 1111000 and 10. If this is not allowed, then the strings are
said strong non-overlapping (i.e. two strings are strong non-overlapping if
they are non-overlapping and if one of them is not an inner factor of the
other), as in the case of the two binary strings 1111000 and 10100. In short,
being non-overlapping strings or strong non-overlapping strings are different
concepts.

In our framework, if two matrices A and B are not overlapping then it can
not happen that one of them (say B) is completely contained in the other.
Indeed, if this were the case, then the smaller matrix B could be trivially
partitioned in one block B = B11 so that fr(B11) = {t, b, l, r}). Moreover, it
would be B11 = Aij for some block Aij of the matrix A, and the matrices A
and B would be overlapping, whatever the block Ai,j.

Therefore, when two matrices are not overlapping, we prefer to call them
strong non-overlapping matrices (instead of simply non-overlapping matri-
ces), in order to emphasize that certainly neither is contained in the other.
Then, we give the following formal definitions characterizing two such ma-
trices and a set of strong non-overlapping matrices:

Definition 3. The matrices A and B are said strong non-overlapping if there
does not exist any block partition for A and B, and any i, j, i′, j′ such that
Ai,j = Bi′,j′ or, if such block partitions exist, then fr(Aij) ∪ fr(Bi′j′) ̸=
{t, l, r, b}.

Definition 4. A set P of matrices is said to be strong non-overlapping if
each matrix is self non-overlapping and if for any two matrices in P they are
strong non-overlapping.

For completeness, let us recall some notions about non-overlapping and
strong non-overlapping sets of strings.

Given a finite alphabet Σ, a string v ∈ Σ∗ is said to be self non-overlapping
(often said unbordered or equivalently bifix-free) if any proper prefix of v is
different from any proper suffix of v (for more details see [11]).
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Two self non-overlapping strings v, v′ ∈ Σ∗ are said to be non-overlapping
(or equivalently cross bifix-free) if any proper prefix of v is different from any
proper suffix of v′, and vice versa. A set of strings is said to be a non-
overlapping set (or cross bifix-free set) of strings if each element of the set is
slef non-overlapping and if any two strings are non-overlapping.

Definition 5. Two non-overlapping strings v and v′ are said to be strong
non-overlapping if there do not exist α, β ∈ Σ∗, with α and β not both empty,
such that v′ = αvβ (or v = αv′β).

In other words, the strong non-overlapping property requires that the
shortest string between v and v′ (if any) does not occur as an inner factor in
the other one ([6, 12]). For example, if v = 1100 and v′ = 11100100, then v
and v′ are non-overlapping but they are not strong non-overlapping since v′

contains an occurrence of v (in bold).

Definition 6. A set of strings is said to be a strong non-overlapping set if
any two strings of the set are strong non-overlapping.

3 Construction of the set of matrices

Let Vn =
⋃
s≤n

V s be a variable dimension strong non-overlapping set of strings

where each V s is a non-overlapping set of strings of length s, for s0 ≤ s ≤ n,
where s0 ≥ 2 is the minimum string length. We now define a set of variable
dimension matrices, using strings of a same length s of V s as rows of a
matrix. In the following, the two matrices C and D of dimension m1× s and
m2 × t, respectively, are constructed with the rows Cs

i ∈ V s and Dt
j ∈ V t,

with i = 1, 2, . . . ,m1 and j = 1, 2, . . . ,m2.

C =


Cs

1

Cs
2
...
...

Cs
m1

 D =


Dt

1

Dt
2
...

Dt
m2


It is not difficult to show that if C and D have a different number of

columns (then s ̸= t) they can not be overlapping (see next proposition).
Unfortunately, in the case C andD have the same number of columns (s =

t), then the two matrices can present a “vertical” overlap. More precisely:
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• the matrix D could be equal to a sub-matrix of C constituted by m2

consecutive rows of C (or vice versa):

C =

C11

C12

C13

 =

C11

D
C13


(with either blocks C11 or C13 possibly empty).

• the first (last) ℓ rows of D could be equal to the last (first) ℓ rows of
C (or vice versa):

C =

[
C11

C12

]
=



C11

Dt
1

Dt
2

...
Dt

ℓ

 D =

[
D11

D12

]
=


Dt

1

Dt
2
...
Dt

ℓ

D12

 .

In order to avoid the situations described above, we introduce a constraint
for the first and the last row of each matrix: all the matrices with the same
number s of columns must have the same first row T s ∈ V s and the same last
row Bs ∈ V s, with T s ̸= Bs. Also, these two selected rows cannot appear
as inner rows of any other matrix with that number s of columns. In other
words, we force:

• the top row T s of all the matrices with the same number s of columns
to be the same;

• the bottom row Bs of all the matrices with the same number s of
columns to be the same;

• T s ̸= Bs;

• the rows T s and Bs not to occur in any other line of the matrix.

Formally, the matrices C with the same number s of columns must have the
following structures:
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C =



T s

Cs
2
...
...

Cs
m1−1

Bs


with Cs

j ̸= T s, Bs, for j = 2, 3, . . . ,m1 − 1, and Cs
j , T

s, Bs ∈ V s.

We can now define the set V(≤)
m×n of variable-dimension matrices as follows:

Definition 7. Let Vn =
⋃
s≤n

V s be a variable dimension strong non-overlapping

set of strings where each V s is a non-overlapping set of strings of length s,
for s0 ≤ s ≤ n, where s0 ≥ 2 is the minimum string length. Moreover, let

V(≤)
m×n =

⋃
M

be the union of the matrices M where M ∈ Mh×s, with 2 ≤ h ≤ m and
s0 ≤ s ≤ n, such that

M =




T s

As
2
...

As
h−1

Bs




with As

j , T
s, Bs ∈ V s and As

j ̸= T s, Bs for j = 2, 3, . . . , h− 1 .

The matrices M ∈ V(≤)
m×n have at most m rows and n columns. They are

constructed by means of h ≤ m strings of length s ≤ n belonging to Vn. All
the matrices M with the same number s of columns have the same bottom
row Bs and the same top row Ts, which are not the same. Moreover, each
inner row is different from Ts and Bs.

We have the following proposition:
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Proposition 8. The set V(≤)
m×n is a strong non-overlapping set of variable-

dimension matrices.

Proof. Let C,D ∈ V(≤)
m×n and suppose that C and D are two overlapping

matrices: then there exists a block matrix E ∈ Mr×c such that E = Ci,j =
Di′,j′ fore some two blocks Ci,j and Di′j′ in two suitable block partitions of
C and D, and with fr(Ci,j) ∪ fr(Di′j′) = {l, t, r, b}. We have

E =

e11 . . . e1c
... . . .

...
er1 . . . erc

 .

For each row eℓ, with ℓ = 1, 2, . . . , r, there exist two rows Ci, Dj ∈ Vn

such that one of the following cases occurs:

• Ci = ueℓv and Dj = eℓ, with either u or v possibly empty, where
u, v ∈ Σ∗;

• Ci = ueℓ and Dj = eℓv;

• Ci = eℓv and Dj = ueℓ.

In any case, the strings Ci and Dj are not strong non-overlapping strings
(since they overlap over eℓ) against the hypothesis Ci, Dj ∈ Vn .

We note that in the case Vn is a variable dimension non-overlapping set
of strings (i.e. the non-overlapping property is not required to be strong),
the resulting matrices are not strong non-overlapping according to Definition
2, since it is possible that one of the two matrices is completely contained
in the other one as a suitable block. If we did not contemplate this possibil-
ity in Definition 2, then two matrices constructed with such a Vn could be
considered still non-overlapping (according to a different definition of non-
overlapping matrices).

Moreover, if Vn contains strings all of the same lengths, then Proposition
8 still holds: the matrices will have all the same number of columns.

Finally, if |V s| denotes the cardinality of the non-overlapping set V s, it is

straightforward to deduce the following formula for the cardinality of V(≤)
m×n:

|V(≤)
m×n| =

∑
h≤m

∑
s≤n

(|V s| − 2)h−2 . (2)

9



The two terms −2 in the above formula take into account that the first
and the last row in the matrices with s columns are fixed and can not occur
as inner rows.

For the sake of clearness, we propose an example for the construction
of a set of variable dimension strong non-overlapping matrices. Let V 3 =
{110, 210, 310, 320} and V 5 = {22000, 23000, 33000} be two sets of non-
overlapping strings over the alphabet Σ = {0, 1, 2, 3}. It is easily seen that
V 3 ∪ V 5 is a strong non-overlapping code. Then, we construct

V(≤)
4×5 = M(≤)

2×3 ∪M(≤)
3×3 ∪M(≤)

4×3 ∪M(≤)
2×5 ∪M(≤)

3×5 ∪M(≤)
4×5

where:

M2×3 =

{(
1 1 0
3 2 0

)}

M3×3 =


1 1 0
2 1 0
3 2 0

 ,

1 1 0
3 1 0
3 2 0



M4×3 =



1 1 0
2 1 0
2 1 0
3 2 0

 ,


1 1 0
2 1 0
3 1 0
3 2 0

 ,


1 1 0
3 1 0
2 1 0
3 2 0

 ,


1 1 0
3 1 0
3 1 0
3 2 0




M2×5 =

{(
2 2 0 0 0
3 3 0 0 0

)}

M3×5 =


2 2 0 0 0
2 3 0 0 0
3 3 0 0 0


M4×5 =



2 2 0 0 0
2 3 0 0 0
2 3 0 0 0
3 3 0 0 0




The reader can easily check that V(≤)
4×5 is a set of variable dimension strong

non-overlapping matrices having cardinality 10 according to (2).
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4 Conclusions

The paper provides a simple and general method to generate a set of strong
non-overlapping matrices over a finite alphabet, once a strong non-overlapping
set of strings (over the same alphabet) is at our disposal. The crucial point
is the constraint on the first and last rows which must be the same for all
the matrices with the same number of columns.

Using the variable length strong non-overlapping sets of strings defined in
[12] and [6], two different set of strong non-overlapping matrices arise which
could be compared in terms of cardinality or its asymptotic behaviour.

Moreover, the construction we proposed, in the case of fixed dimension
matrices, gives the possibility to list them in a Gray code sense, following
the studies started in [2, 5, 8, 7, 10, 9] where different Gray codes are defined
for several set of strings and matrices.

In this case, we generate the matrices moving from a set of non-overlapping
strings V s of length s and we suppose that there exists a Gray code GV s for
V s:

GV s = {w1, w2. . . . , wt, wt+1, wt+2} with t > 0 .

Note that we require |V s| ≥ 3. We choose two strings from GV s. Without
loss of generality, we choose wt+1 and wt+2 and we define the set of matrices
Mh+2,s with h + 2 rows and s columns where the first and last rows are,
respectively, the strings wt+1 and wt+2:

Mh+2,s =




wt+1

Cs
1
...
Cs

h

wt+2


∣∣∣∣∣ Cs

i ∈ V s \ {wt+1, wt+2}


.

Let Nh,s be the set of matrices obtained by Mh+2,s removing the first and
last rows:

Nh,s =


Cs

1
...
Cs

h

∣∣∣∣∣ Cs
i ∈ V s \ {wt+1, wt+2}

 .

Clearly, the cardinality of Nh,s and Mh+2,s is the same and denoting it by q
it is q = th.
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We now recursively define a Gray code GNh,s for the set Nh,s. If h = 1,
then the list GN1,s = (w1), (w2), . . . , (wt) is a Gray code (since it is obtained
by GV s where the strings are read as matrices of dimension 1× s). Suppose
now that GNh,s = A1, A2, . . . , Aq is a Gray code where h ≥ 1 and Ai ∈ Nh,s,
for i = 1, 2, . . . , q. The following list GNh+1,sof matrices, defined as block
matrices,

GNh+1,s =

[
w1

A1

]
· · ·

[
w1

Aq

][
w2

Aq

]
· · ·

[
w2

A1

]
· · · · · ·

[
wt

Aℓ

]
· · ·

[
wt

Aq+1−ℓ

]
,

where

ℓ =

{
q, if t is even

1, if t is odd
,

is easily seen to be a Gray code since the listsA1, A2, . . . , Aq and w1, w2, . . . , wt

are Gray codes for hypothesis.
Finally, adding the strings wt+1 and wt+2, respectively, as first and last

rows to all the q matrices A1, A2, . . . , Aq of GNh,s we obtain a Gray code
GMh+2,s for the set Mh+2,s:

GMh+2,s =


wt+1

A1

wt+2

 · · · · · · · · ·


wt+1

Aq

wt+2

 .
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