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ABSTRACT. We consider Serrin’s overdetermined problem for
the torsional rigidity, and Alexandrov’s Soap Bubble Theorem.
We present new integral identities that show a strong analogy
between the two problems and help to obtain better (in some
cases optimal) quantitative estimates for the radially symmet-
ric configuration. The estimates for the Soap Bubble Theorem
benefit from those of Serrin’s problem.

1. INTRODUCTION

The pioneering symmetry results obtained by A. D. Alexandrov [Al1, Al2] and J.
Serrin [Se] are now classical but still influential. The former—the well-known
Soap Bubble Theorem—states that a compact hypersurface, embedded in RN ,
that has constant mean curvature must be a sphere. The latter—Serrin’s symmetry
result—has to do with certain overdetermined problems for partial differential
equations. In its simplest formulation, it states that the overdetermined boundary
value problem

{
∆u = N in Ω,
u = 0 on Γ ,

(1.1)

uν = R on Γ ,(1.2)

admits a solution for some positive constant R if and only if Ω is a ball of radius
R and, up to translations, u(x) = (|x|2 − R2)/2. Here, Ω denotes a bounded
domain in RN , N ≥ 2, with sufficiently smooth boundary Γ , say C2, and uν is the
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outward normal derivative of u on Γ . This result inaugurated a new and fruitful
field in mathematical research at the confluence of Analysis and Geometry and has
many applications to other areas of mathematics and natural sciences. To be sure,
that same result was actually motivated by two concrete problems in mathematical
physics regarding the torsion of a straight solid bar and the tangential stress of a
fluid on the walls of a rectilinear pipe.

The two problems share several common features. To prove his result, Alexan-
drov introduced his reflection principle, an elegant geometric technique that also
works for other symmetry results concerning curvatures. Serrin’s proof hinges on
his method of moving planes, an adaptation and refinement of the reflection prin-
ciple. That method proves to be a very flexible tool, since it allows us to prove
radial symmetry for positive solutions of a far more general class of non-linear
equations that includes the semi-linear equation

(1.3) ∆u = f (u),

where f is a locally Lipschitz continuous non-linearity.
Also, alternative proofs of both symmetry results can be given, based on cer-

tain integral identities and inequalities, and the maximum principle. H. F. Wein-
berger’s proof ([We]) of symmetry, even if it is known to work only for problem
(1.1)– (1.2) and other few instances, leaves open the option of considering less
regular settings. These ideas can be extended to the Soap Bubble Theorem, using
R. C. Reilly’s argument ([Re]), in which the relevant hypersurface is regarded as
the zero level surface of the solution of (1.1).

In this paper, we further analyze the analogies in Weinberger’s and Reilly’s ar-
guments to obtain quantitative estimates of the desired radial symmetries. Roughly
speaking, we address the problem of estimating how close to a sphere is a hyper-
surface Γ , if either its mean curvature H is close to be constant or, alternatively, if
the normal derivative on Γ of the solution of (1.1) is close to be constant.

In both problems, the radial symmetry of Γ will follow from that of the solu-
tion u of (1.1). In fact, we will show that in Newton’s inequality

(1.4) (∆u)2 ≤ N|∇2u|2,

which holds pointwise in Ω by Cauchy-Schwarz inequality, the equality sign is
identically attained in Ω. Such equality holds if and only if u is a quadratic poly-
nomial q of the form

(1.5) q(x) = 1
2
(|x − z|2 − a),

for some choice of z ∈ RN and a ∈ R. The boundary condition in (1.1) will then
tell us that Γ must be a sphere centered at z.

The starting points of our analysis are the following two integral identities:

(1.6)
∫

Ω
(−u)

{
|∇2u|2 − (∆u)

2

N

}
dx = 1

2

∫

Γ
(u2
ν − R2)(uν − qν)dSx
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and

1
N − 1

∫

Ω

{
|∇2u|2 − (∆u)

2

N

}
dx + 1

R

∫

Γ
(uν − R)2 dSx(1.7)

=
∫

Γ
(H0 −H)(uν − qν)uν dSx +

∫

Γ
(H0 −H)(uν − R)qν dSx .

The two identities hold regardless of how the point z or the constant a are
chosen in (1.5). In (1.6) and (1.7), R and H0 are reference constants given by

(1.8) R = N|Ω||Γ | , H0 =
1
R
= |Γ |
N |Ω| .

If uν is constant on Γ , that constant must be equal to R, by the identity

∫

Γ
uν dSx = N|Ω|,(1.9)

and hence we obtain symmetry by using (1.6), since the equality sign must hold
in (1.4) (in fact, −u > 0 in Ω by the maximum principle). If, on the other hand,
H is constant on Γ , then Minkowski’s identity

∫

Γ
Hqν dSx = |Γ |,(1.10)

implies that H ≡ H0 on Γ , and hence once again symmetry follows by an inspec-
tion of (1.7), instead.

Identity (1.6), which appears without proof in [MP, Remark 2.5], puts to-
gether Weinberger’s identities and some remarks of L. E. Payne and P. W. Schaefer
[PS]; (1.7) is a slight modification of one that was proved in [MP, Theorem 2.2]
and will turn out to be useful to improve our desired quantitative estimates. For
the reader’s convenience, we will present the proofs of (1.6)–(1.7) in Section 2.

Identity (1.6) certainly holds under Serrin’s smoothness assumptions (Γ ∈ C2),
but it is clear that it can be easily extended by approximation to the case of
Γ ∈ C1,α, since in that case uν is continuous on Γ . Nevertheless, it should be
noticed that, to infer the radial symmetry of Ω, it suffices to show that the surface
integral on the right-hand side of (1.6) is zero.

The main motivation of this paper is to investigate how the use of (1.6) and
(1.7) benefits the study of the stability of the radial configuration in the Soap
Bubble Theorem and Serrin’s problem. Technically speaking, one may look for
two concentric balls Bρi(z) and Bρe(z), centered at z ∈ Ω with radii ρi and ρe,
such that

Bρi(z) ⊂ Ω ⊂ Bρe(z)(1.11)
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and

ρe − ρi ≤ ψ(η),(1.12)

where ψ : [0,∞) → [0,∞) is a continuous function vanishing at 0 and η is a
suitable measure of the deviation of uν or H from being a constant.

Our main result for Serrin’s problem is the following theorem. Here and in
the sequel, dΩ denotes the diameter of Ω, ri and re are the relevant radii in the
interior and exterior uniform sphere conditions for Ω, and δΓ (z) is the distance
of z to Γ .

Theorem 1.1 (Stability for Serrin’s problem). Let Ω ⊂ R
N , N ≥ 2, be a

bounded domain with boundary Γ of class C2, and R be the constant defined in (1.8).
Let u be the solution of problem (1.1) and z ∈ Ω be any of its critical points.

Then, (1.11) holds with ρi and ρe such that

(1.13) ρe − ρi ≤ C
∥∥uν − R

∥∥2/(N+2)
2,Γ if ‖uν − R‖2,Γ < ε.

The constants C and ε depend on N, dΩ, ri, re, and δΓ(z).

The problem of stability for Serrin’s problem was considered for the first time
in [ABR]. There, for a C2,α-regular domain Ω, it is considered a positive solution
u of semilinear equation (1.3), such that u = 0 on Γ , and it is proved that (1.11)
and (1.12) hold with ψ(η) = C | logη|−1/N and η = ‖uν − c‖C1(Γ). (Here and
in the remaining paragraphs of this introduction, for the dependence of the con-
stants C on the geometric and regularity parameters associated with Ω and, when
applicable, f , we refer the reader to the cited references.) The proof in [ABR] is
based on a quantitative study of the method of moving planes. In [CMV], in the
same general framework and with a similar proof, that stability estimate has been
improved. It is in fact shown that (1.11) and (1.12) hold with ψ(η) = Cητ and

η = sup
x,y∈Γ , x≠y

|uν(x)−uν(y)|
|x −y| .

The exponent τ ∈ (0,1) can be computed for a general setting, and is (if Ω is
convex) arbitrarily close to 1/(N + 1).

Theorem 1.1 improves on a different technique, based on Weinberger’s in-
tegral identities and first employed in [BNST]. There, a quantitative estimate
of Hölder type was obtained for the first time, by using the weaker deviation
η = ‖uν − c‖∞ of uν from some reference constant. In [BNST], it is also con-
sidered the deviation in L1-norm η = ‖uν − c‖1,Γ and, by assuming an additional
uniform bound on uν , it is shown that Ω can be approximated in measure by
a finite number of mutually disjoint balls Bi. The error in the approximation
is ψ(η) = Cη1/(4N+9). Recently, the approach of [BNST] has been greatly im-
proved in [Fe]. There, rather than by (1.11) and (1.12), the closeness of Ω to
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a ball is measured by the following slight modification of the so-called Fraenkel
asymmetry:

(1.14) A(Ω) = inf
{ |Ω∆Bx|

|Bx| : x center of a ball Bx with radius R
}
.

Here, Ω∆Bx denotes the symmetric difference of Ω and Bx , and R is the constant
defined in (1.8). In [Fe], the deviation of uν from a constant is measured in
L2-norm and the estimate obtained is of Lipschitz type: A(Ω) ≤ C‖uν − R‖2,Γ .

The proof of Theorem 1.1 simplifies and improves arguments of Feldman [Fe]
by the use of our first identity (1.6). The obtained estimate (1.13) makes better
than [CMV], even if we replace the Lipschitz semi-norm by an L2-deviation. In
addition, Feldman’s inequality is improved with a stronger control of symmetry at
the cost of a slight decrease of the continuity exponent. As pointed out in Remarks
3.8 and 3.9, the dependence on the point z of the constants in (1.13) can (so far)
be removed when Ω is convex or by assuming some additional requirement (see
Remark 3.9).

In passing, we will also prove the inequality

(1.15) ρe − ρi ≤ C
∥∥uν − R

∥∥1/(N+2)
1,Γ ,

which clearly improves that obtained in [BNST] (see Theorem 3.6).
Another important result in our paper is a quantitative control of symmetry

in the Soap Bubble Theorem. That is obtained as a benefit from the analysis
employed to derive (1.13).

Theorem 1.2 (Stability for the Soap Bubble Theorem). Let N ≥ 2 and let Γ
be the connected boundary of class C2 of a bounded domain Ω ⊂ RN . Denote by H
the mean curvature at points of Γ , and let H0 be the constant defined in (1.8).

Then, (1.11) holds for some point z ∈ Ω, and we have the following:
(i) If N = 2 or N = 3, then

(1.16) ρe − ρi ≤ C‖H0 −H‖2,Γ .

(ii) If N ≥ 4, then

(1.17) ρe − ρi ≤ C
∥∥H0 −H

∥∥2/(N+2)
2,Γ if ‖H0 −H‖2,Γ < ε.

The constants C and ε depend on N, dΩ, ri, re, and δΓ(z).
Theorem 1.2 enhances in all dimensions estimates obtained in [CM] for

strictly mean convex surfaces with the uniform deviation ‖H0 − H‖∞,Γ . Also,
it improves by a factor of 2 the results derived by the authors in [MP]. More im-
portantly, it gains the (optimal) Lipschitz stability for the cases N = 2,3 and for
a general class of hypersurfaces. That kind of stability was already obtained in
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[CV] and [KM, Theorem 1.8], but with a uniform deviation and for strictly mean
convex hypersurfaces.

As a final important achievement, by arguments similar to those of [Fe], we
also get in Theorem 4.6 the (optimal) inequality for the asymmetry (1.14):

A(Ω) ≤ C ‖H0 −H‖2,Γ .

In the remaining paragraphs of this introduction, we shall pinpoint the main
remarks that lead us to the proof of Theorems 1.1 and 1.2.

We start to simplify matters by noticing that, by (1.6), the harmonic function
h = q −u satisfies

(1.18)
∫

Ω
(−u)|∇2h|2 dx = 1

2

∫

Γ
(R2 −u2

ν)hν dSx.

Also, notice that h = q on Γ , and hence

(1.19) max
Γ
h−min

Γ
h = 1

2
(ρ2
e − ρ2

i ) ≥
1
2

( |Ω|
|B|

)1/N

(ρe − ρi).

Now, observe that (1.18) holds regardless of the choice of the parameters z
and a defining q. We will thus complete the first step of our proof by choosing
z ∈ Ω in a way that the oscillation of h on Γ on the lefthand side of (1.19) (which
is indeed the oscillation of h on Ω̄) can be bounded in terms of the lefthand side
of (1.18).

To carry out this plan, we use three ingredients. First, we choose z ∈ Ω as a
minimum (or any critical) point of u and, as done in [MP, Lemma 3.3], we show
that

max
Γ
h−min

Γ
h ≤ C

(∫

Ω
h2

dx

)1/(N+2)

.

Second, we observe that, depending on the regularity of Γ , we can easily obtain
the bound

CδΓ (x)
α ≤ −u on Ω̄,

where α = 1 or 2. Third, we apply two integral inequalities to h and its first
(harmonic) derivatives. One is the Hardy-Poincaré-type inequality

∫

Ω
v(x)2 dx ≤ C

∫

Ω
δΓ (x)

α|∇v(x)|2 dx,

which is applied to the first (harmonic) derivatives. It holds for fixed α ∈ [0,1]
and for any harmonic function v ∈ W 1,2(Ω) that is zero at some given point in Ω
(in our case that point will be z, since ∇h(z) = 0). The other one is applied to h
and is the Poincaré-type inequality

∫

Ω
v2

dx ≤ C
∫

Ω
|∇v|2 dx,
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which holds for any harmonic function v ∈ W 1,2(Ω) with zero mean value on Ω.
Thus, summing up the last five inequalities gives

(1.20) max
Γ
h−min

Γ
h ≤ C

(∫

Ω
(−u)|∇2h|2 dx

)1/(N+2)

.

Next, we work on the righthand side of (1.18). The important observation is that,
if uν − R tends to 0, then hν does also. Quantitatively, this fact can be expressed
by the inequality

‖hν‖2,Γ ≤ C‖uν − R‖2,Γ ,

which can be derived from [Fe]. Thus, (1.13) will follow by using this inequality,
after an application of Hölder’s inequality to the righthand side of (1.18).

In order to prove Theorem 1.2, we use the new identity (1.7). In fact, dis-
carding the first summand at its lefthand side and applying Hölder’s and the last
inequality to its righthand side yield that

‖uν − R‖2,Γ ≤ C‖H0 −H‖2,Γ .

Theorem 1.2 then follows again from (1.7) and the following estimate already
obtained in [MP]:

max
Γ
h−min

Γ
h ≤ C

(∫

Ω
|∇2h|2 dx

)τN/2
,

where τN = 1 for N = 2,3 and τN = 2/(N + 2) for N ≥ 4.
The paper is organized as follows. In Section 2, we collect the relevant iden-

tities on which our results are based. Section 3 is dedicated to the stability of
Serrin’s problem. Subsection 3.2 contains the estimates on harmonic functions
that are instrumental in deriving (1.15) and (1.13). Then, in Subsection 3.3, we
prove Theorems 1.1 and 3.6 by assembling all the obtained relevant identities and
inequalities. In Section 4, we prove the new stability for the Soap Bubble Theorem
(Theorem 1.2).

2. IDENTITIES FOR SERRIN’S PROBLEM AND

THE SOAP BUBBLE THEOREM

We begin by setting some relevant notation. By Ω ⊂ RN , N ≥ 2, we shall denote
a bounded domain that is a connected bounded open set, and call Γ its boundary.
By |Ω| and |Γ |, we will denote indifferently the N-dimensional Lebesgue measure
of Ω and the surface measure of Γ . When Γ is of class C1, ν will denote the
(exterior) unit normal vector field to Γ and, when Γ is a hypersurface of class C2,
H(x) will denote its mean curvature (with respect to −ν(x)) at x ∈ Γ .

We will also use the letter q to denote the quadratic polynomial defined in
(1.5), where z is any point in RN and a is any real number; furthermore, we will
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always use the letter h to denote the harmonic function

h = q −u.

Finally, as already mentioned in the Introduction, for a point z ∈ Ω to be
determined, ρi and ρe shall denote the radius of the largest ball contained in Ω
and that of the smallest ball that contains Ω, both centered at z; in formulas,

(2.1) ρi = min
x∈Γ

|x − z| and ρe = max
x∈Γ

|x − z|.

To start, we provide the proof of identity (1.6) appearing in Remark 2.5 of
[MP]. The proof is as minimal as possible. It follows the tracks of and improves
on the work of Weinberger [We] and its modification due to Payne and Schaefer
[PS].

Identity (1.6) is a consequence of two formulas involving the solution u of
(1.1). One is the differential identity

(2.2) |∇2u|2 − (∆u)
2

N
= ∆P,

which associates the Cauchy-Schwarz deficit on the lefthand side with the P-
function

P = 1
2
|∇u|2 −u.

The other one is the Rellich-Pohozaev identity (see [Po]):

(2.3) (N + 2)
∫

Ω
|∇u|2 dx =

∫

Γ
(uν)

2qν dSx.

Notice that (2.2) also implies that P is subharmonic, since the lefthand side is
non-negative by Cauchy-Schwarz inequality.

Theorem 2.1 (Fundamental identity for Serrin’s problem). Let Ω ⊂ RN be
a bounded domain with boundary Γ of class C1,α, 0 < α ≤ 1, and R be the positive
constant defined in (1.8). Then, the solution u of (1.1) satisfies identity (1.6), that
is, it holds that

∫

Ω
(−u)

{
|∇2u|2 − (∆u)

2

N

}
dx = 1

2

∫

Γ
(u2
ν − R2)(uν − qν)dSx .

In particular, if the righthand side of (1.6) is non-positive, Γ must be a sphere
(and hence Ω a ball ) of radius R. The same conclusion clearly holds if uν is constant
on Γ .
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Proof. First, suppose that Γ is of class C2,α, so that u ∈ C2,α(Ω̄). Integration
by parts then gives

∫

Ω
(u∆P − P∆u)dx =

∫

Γ
(uPν −uνP)dSx .

Thus, since u satisfies (1.1), we have that

(2.4)
∫

Ω
(−u)∆P dx = −N

∫

Ω
P dx + 1

2

∫

Γ
u3
ν dSx ,

since P = |∇u|2/2 = u2
ν/2 on Γ .

Notice that we can write u3
ν = (u2

ν − R2)(uν − qν)+ R2(uν − qν)+u2
νqν .

Next, by the divergence theorem and (2.3) we compute

N

∫

Ω
P dx = N

2

∫

Ω
|∇u|2 dx −

∫

Ω
u∆udx

=
(
N

2
+ 1

)∫

Ω
|∇u|2 dx = 1

2

∫

Γ
u2
νqν dSx .

Thus, this identity, (2.4), and (2.2) give (1.6), since

∫

Γ
(uν − qν)dSx = 0,

with u− q harmonic in Ω.
If Γ is of class C1,α, then u ∈ C1,α(Ω̄)∩ C2(Ω). Thus, by a standard approx-

imation argument, we conclude that (1.6) holds also in this case.
Now, if the righthand side of (1.6) is non-positive, then the integrand at the

lefthand side must be zero, as it is non-negative by (1.4) and the maximum princi-
ple for u. Then, (1.4) must hold with the equality sign, since u < 0 on Ω, by the
strong maximum principle. Since ∆u = N, we infer that ∇2u coincides with the
identity matrix I. Thus, u must be a quadratic polynomial q of the form (1.5),
for some z ∈ RN and a ∈ R.

Since u = 0 on Γ , we have |x − z|2 = a for x ∈ Γ ; that is, a must be positive
and √

a|Γ | =
∫

Γ
|x − z|dSx =

∫

Γ
(x − z) · ν(x)dSx = N|Ω|.

In conclusion, Γ must be a sphere centered at z with radius R.
Finally, if uν ≡ c on Γ for some constant c, then

c|Γ | =
∫

Γ
uν dSx = N|Ω|;

that is, c = R, and hence we can apply the previous argument. ❐
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Corollary 2.2. Let u be the solution of (1.1) and set h = q − u. Then, h is
harmonic in Ω and (1.18) holds true, that is,

∫

Ω
(−u)|∇2h|2 dx = 1

2

∫

Γ
(R2 −u2

ν)hν dSx .

Moreover, if the center z of the polynomial q in (1.5) is chosen inΩ, then the oscillation
of h on Γ can be bounded below as in (1.19).

Proof. Simple computations give that |∇2h|2 = |∇2u|2−(∆u)2/N and hν =
qν −uν , and hence (1.18) easily follows from the fundamental identity (1.6) for
Serrin’s problem.

Notice that h = q on Γ . Thus, the equality in (1.19) follows from (2.1),
by choosing z in Ω. The inequality in (1.19) is implied by ρe + ρi ≥ ρe ≥
(|Ω|/|B|)1/N , since Bρe ⊇ Ω. ❐

Remark 2.3. The assumptions on the regularity of Γ can further be weakened.
For instance, if Ω is a (bounded) convex domain, then inequality (3.3) below
imply that uν is essentially bounded on Γ with respect to the (N−1)-dimensional
Hausdorff measure on Γ . Thus, an approximation argument again gives that (1.6)
holds true.

We now present the proof of (1.7), which is a modification of formula (2.6)
in [MP].

Theorem 2.4 (Fundamental identity for the Soap Bubble Theorem). Let Ω
be a bounded domain with boundary Γ of class C2. Then, (1.7) holds true, that is,

1
N − 1

∫

Ω

{
|∇2u|2 − (∆u)

2

N

}
dx + 1

R

∫

Γ
(uν − R)2 dSx

=
∫

Γ
(H0 −H)(uν − qν)uν dSx +

∫

Γ
(H0 −H)(uν − R)qν dSx .

Proof. We proceed similarly to the proof of Theorem 2.1, but with two main
differences: in place of Pohozaev’s identity, we use Minkowski’s identity; we use
the following well-known formula for the Laplacian of u:

∆u = uνν + (N − 1)Huν .

This last identity holds pointwise on any regular level surface of u if we agree to
still denote by ν the vector field ∇u/|∇u| (it is clear that, on Γ , this coincides
with the normal).

We begin with the divergence theorem:

∫

Ω
∆P dx =

∫

Γ
Pν dSx.
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To compute Pν , we observe that ∇u is parallel to ν on Γ , that is ∇u = (uν)ν on
Γ . Thus,

Pν = 〈∇2u∇u,ν〉 −uν = uν〈(∇2u)ν, ν〉 −uν = uννuν −uν
= uν[∆u− (N − 1)Huν]−uν = (N − 1)(1−Huν)uν ,

where we have used (1.1). Therefore,

(2.5)
1

N − 1

∫

Ω
∆P dx =

∫

Γ
(1−Huν)uν dSx .

Now, straightforward calculations that use (1.8), (1.10), and (1.9) tell us that

∫

Γ
(H0 −H)(uν − qν)uν dSx +

∫

Γ
(H0 −H)(uν − R)qν dSx

= H0

∫

Γ
u2
ν dSx −

∫

Γ
Hu2

ν dSx ,

while
1
R

∫

Γ
(uν − R)2 dSx = H0

∫

Γ
u2
ν dSx −

∫

Γ
uν dSx .

The conclusion then follows by a simple inspection, from the two formulas (2.5)
and (2.2). ❐

Corollary 2.5. Let Ω be a bounded domain with boundary Γ of class C2, and
set h = q −u. Then, it holds that

1
N − 1

∫

Ω
|∇2h|2 dx + 1

R

∫

Γ
(uν − R)2 dSx(2.6)

= −
∫

Γ
(H0 −H)hνuν dSx +

∫

Γ
(H0 −H)(uν − R)qν dSx .

3. STABILITY FOR SERRIN’S OVERDETERMINED PROBLEM

3.1. Notation. As already mentioned in the Introduction, the diameter ofΩ
is indicated by dΩ, while δΓ (x) denotes the distance of a point x to the boundary
Γ .

Even if the fundamental identity for Serrin’s problem, (1.6), holds for less
regular domains, in order to consider the stability issue, we shall assume that Ω is
a bounded domain with boundary Γ of class C2. In fact, under this assumption,
Ω has the properties of the uniform interior and exterior sphere condition, whose
respective radii we have designated by ri and re. In other words, there exists
re > 0 (respectively, ri > 0) such that for each p ∈ Γ there exists a ball contained
in RN \ Ω̄ (respectively, contained in Ω) of radius re (respectively, ri) such that its
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closure intersects Γ only at p. We shall later see that, when Ω is a convex domain
we can remove the assumption on the regularity of Γ .

The assumed regularity of Ω ensures that the unique solution of (1.1) is of
class at least C1,α(Ω̄). Thus, we can define

(3.1) M = max
Ω̄
|∇u| =max

Γ
uν .

As shown in [MP, Theorem 3.10], the following bound holds for M :

(3.2) M ≤ cN
dΩ(dΩ + re)

re
,

where cN = 3
2 for N = 2 and cN = N/2 for N ≥ 3. Notice that, when Ω is convex,

we can choose re = +∞ in (3.2) and obtain

(3.3) M ≤ cN dΩ.

For other similar estimates present in the literature, see [MP, Remark 3.11].

3.2. Some estimates for harmonic functions. As already sketched in the
Introduction, the desired stability estimate for the spherical symmetry of Ω will be
obtained by linking the oscillation of h on Γ to the integral

∫

Ω
(−u)|∇2h|2dx,

by means of identity (1.18).
To this end, we start by relating the factor −u appearing in that quantity to

the function δΓ (x); we do this in the following lemma.

Lemma 3.1. Let Ω ⊂ RN , N ≥ 2, be a bounded domain such that Γ is made of
regular points for the Dirichlet problem, and let u be the solution of (1.1). Then,

−u(x) ≥ 1
2
δΓ (x)

2 for every x ∈ Ω̄.

Moreover, if Γ is of class C2, then it holds that

−u(x) ≥ ri
2
δΓ (x) for every x ∈ Ω̄.(3.4)

Proof. If every point of Γ is regular, then a unique solutionu ∈ C0(Ω̄)∩C2(Ω)
exists for (1.1). Now, for x ∈ Ω, let r = δΓ (x) and consider the ball B = Br (x).
Let w be the solution of (1.1) in B, that is, w(y) = (|y − x|2 − r 2)/2. By
comparison we have that w ≥ u on B̄ and hence, in particular, w(x) ≥ u(x).
Thus, we infer the first inequality in the lemma.
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If Γ is of class C2, (3.4) certainly holds if δΓ (x) ≥ ri. If δΓ (x) < ri, instead,
let z be the closest point in Γ to x, and call B the ball of radius ri touching
Γ at z and containing x. Up to a translation, we can always suppose that the
center of the ball B is the origin 0. If w is the solution of (1.1) in B, that is
w(y) = (|y|2 − r 2

i )/2, by comparison we have that w ≥ u in B, and hence

−u(x) ≥ 1
2
(|x|2 − r 2

i ) =
1
2
(ri + |x|)(ri − |x|) ≥

1
2
ri (ri − |x|).

This implies (3.4), since ri − |x| = δΓ (x). ❐

By the last lemma, we can estimate the righthand side of (1.18) from below
in terms of the integral ∫

Ω
|∇h|2δ2α

Γ dx,

with α = 1 or 1
2 . For this kind of integral, useful estimates are present in the

literature. We shall briefly report on some of them.

Lemma 3.2 (Hardy-Poincaré-type inequalities). Let Ω ⊂ RN , N ≥ 2, be a
bounded domain with boundary Γ of class C0,α, and let z be a point in Ω. Then, we
have the following:

(i) There exists a positive constant µα(Ω, z), such that

(3.5)
∫

Ω
v2

dx ≤ µα(Ω, z)−1
∫

Ω
|∇v|2δ2α

Γ dx,

for every function v which is harmonic in Ω and such that v(z) = 0.
(ii) There exists a positive constant µ̄α(Ω) such that

(3.6)
∫

Ω
v2

dx ≤ µ̄α(Ω)−1
∫

Ω
|∇v|2δ2α

Γ dx,

for every function v which is harmonic in Ω and has mean value zero on Ω.
In particular, if Γ has a Lipschitz boundary, the number α can be replaced by any
exponent in (0,1].

Proof. The assertions (i) and (ii) are easy consequences of a general result of
Boas and Straube (see [BS]) that improves a work of Ziemer’s ([Zi]). In case (i),
we apply [BS, Example 2.5]). In case (ii), [BS, Example 2.1] is appropriate.

The variational problems

(3.7) µα(Ω, z) = min
{∫

Ω
|∇v|2δ2α

Γ dx :
∫

Ω
v2

dx = 1, ∆v = 0 in Ω, v(z) = 0
}

and

(3.8) µ̄α(Ω) = min
{∫

Ω
|∇v|2δ2α

Γ dx :
∫

Ω
v2

dx = 1, ∆v = 0 in Ω,
∫

Ω
v dx = 0

}

then characterize the two constants. ❐



14 ROLANDO MAGNANINI & GIORGIO POGGESI

Remark 3.3. (i). Notice that in the special case where α = 0 from (3.5) and
(3.6), we recover the Poincaré-type inequalities that we proved and used in [MP].
Also, in the case α = 0, inequality (3.5) directly follows from the result in [Zi].
Of course, in place of (3.8), the constant in the classical Poincaré inequality would
work as well. The addition of the harmonicity of v in (3.8) clearly gives a better
constant.

(ii) We have that µα(Ω, z) ≤ µ̄α(Ω), as one can verify by using the function

v0 =
v − v(z)

1+ |Ω|v(z)2 ,

where v is a minimizer for (3.8).

(iii) In the sequel, we will choose α = 1
2 in (3.7) and α = 0 in (3.8) and use the

simplified notation

µ(Ω, z) = µ1/2(Ω, z) and µ̄(Ω) = µ̄0(Ω).

The next lemma, which modifies for our purposes an idea of W. Feldman [Fe],
will be useful to bound the righthand side of (1.18).

Lemma 3.4 (Trace inequality). Let Ω ⊂ RN , N ≥ 2, be a bounded domain
with boundary Γ of class C2 and z be any critical point in Ω of the solution u of
(1.1).

The following inequality holds for h = q −u, where q is given by (1.5):

(3.9)
∫

Γ
|∇h|2 dSx ≤

2
ri

(
1+ N

riµ(Ω, z)

)∫

Ω
(−u)|∇2h|2 dx.

Proof. It is clear that h ∈ C1(Ω̄) ∩ C2(Ω). We begin with the following
differential identity:

div{v2∇u−u∇(v2)} = v2∆u−u∆(v2) = Nv2 − 2u|∇v|2,

which holds for any v harmonic function in Ω, if u satisfies (1.1). Next, we
integrate on Ω and, by the divergence theorem, we get

∫

Γ
v2uν dSx = N

∫

Ω
v2

dx + 2
∫

Ω
(−u)|∇v|2 dx.

We use this identity with v = hxi , and hence we sum up over i = 1, . . . , N to
obtain

∫

Γ
|∇h|2uν dSx = N

∫

Ω
|∇h|2 dx + 2

∫

Ω
(−u)|∇2h|2 dx.
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This formula, together with (3.5) and (3.4), gives us

∫

Γ
|∇h|2uν dSx ≤ 2

(
1+ N

riµ(Ω, z)

)∫

Ω
(−u)|∇2h|2 dx.

The term uν at the lefthand side of this last inequality can be bounded from
below by ri, by an adaptation of Hopf ’s lemma (see also [MP, Theorem 3.10]).
Therefore, (3.9) follows at once. ❐

The crucial step in our analysis is Theorem 3.5 below, in which we associate
the oscillation of h, and hence ρe − ρi, with a weighted L2-norm of its Hessian
matrix.

Before stating that, we recall from [MP] the following estimate that links
ρe − ρi with the L2-norm of h. In fact, if Ω is a bounded domain with boundary
of class C2, we have that

(3.10) ρe − ρi ≤ aNMN/(N+2)|Ω|−1/N
∥∥h
∥∥2/(N+2)

2 ,

for

(3.11) ‖h‖2 ≤ αNMr (N+2)/2
i .

The values of the constants aN and αN can be found in [MP, Lemma 3.3].

Theorem 3.5. Let Ω ⊂ RN , N ≥ 2, be a bounded domain with boundary Γ of
class C2, and z be any critical point in Ω of the solution u of (1.1).

Consider the function h = q −u, with q given by (1.5), where the constant a is
chosen such that h has mean value zero on Ω. Then, we have that

ρe − ρi ≤ C
{∫

Ω
|∇2h|2δΓ dx

}1/(N+2)

, if
∫

Ω
|∇2h|2δΓ dx < ε2.

Here,

C = aNM
N/(N+2)

|Ω|1/N [µ̄(Ω)µ(Ω, z)]1/(N+2)
,

ε = αNMr (N+2)/2
i

√
µ̄(Ω)µ(Ω, z),

and the constants aN and αN are those in (3.10) and (3.11).

Proof. We apply (3.5) with and α = 1
2 to each first derivative of h (since

∇h(z) = 0), and obtain that

∫

Ω
|∇h|2 dx ≤ µ(Ω, z)−1

∫

Ω
|∇2h|2δΓ dx.
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Hence, we apply (3.6) with α = 0 to h and get

∫

Ω
h2

dx ≤ µ̄(Ω)−1
∫

Ω
|∇h|2 dx.

Thus, ∫

Ω
h2

dx ≤ [µ̄(Ω)µ(Ω, z)]−1
∫

Ω
|∇2h|2δΓ dx,

and the conclusion follows from (3.10) and (3.11). ❐

3.3. Stability for Serrin’s problem. We collect here our results on the sta-
bility of the spherical configuration by putting together the identities of Section 2
and the estimates in the previous subsection.

Theorem 3.5 above gives an estimate from below of the lefthand side of (1.18).
In this subsection, we will take care of its righthand side and prove our main result
for Serrin’s problem.

Proof of Theorem 1.1. We have that

∫

Γ
(R2 −u2

ν)hν dSx ≤ (M + R)‖uν − R‖2,Γ ‖hν‖2,Γ ,

after an application of Hölder’s inequality. Thus, by Lemma 3.4, (1.18), and this
inequality, we infer that

∥∥hν
∥∥2

2,Γ ≤
2
ri

(
1+ N

riµ(Ω, z)

)∫

Ω
(−u)|∇2h|2 dx

≤ M + R
ri

(
1+ N

riµ(Ω, z)

)
‖uν − R‖2,Γ ‖hν‖2,Γ ,

and hence

‖hν‖2,Γ ≤
M + R
ri

(
1+ N

riµ(Ω, z)

)
‖uν − R‖2,Γ .(3.12)

Therefore,
∫

Ω
|∇2h|2δΓ (x)dx ≤

2
ri

∫

Ω
(−u)|∇2h|2 dx

≤
(
M + R
ri

)2
(

1+ N

riµ(Ω, z)

)
∥∥uν − R

∥∥2
2,Γ ,

by Lemma 3.1. These inequalities and Theorem 3.5 then give (1.13). ❐

If we want to measure the deviation ofuν from R in L1-norm, we get a smaller
stability exponent.
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Theorem 3.6 (Stability in L1-norm). Under the same assumptions of Theo-
rem 1.1, we have that

(3.13) ρe − ρi ≤ C
∥∥uν − R

∥∥1/(N+2)
1,Γ if ‖uν − R‖1,Γ < ε,

for some positive constants C and ε.

Proof. Instead of applying Hölder’s inequality to the righthand side of (1.18),
we just use the rough bound:

∫

Ω
(−u)|∇2h|2 dx ≤ 1

2
(M + R)(M + dΩ)

∫

Γ
|uν − R|dSx ,

since (uν +R)|hν| ≤ (M +R)(M +dΩ) on Γ . The conclusion then follows from
similar arguments. ❐

Remark 3.7 (On the constants C and ε). For the sake of clarity, we did not
display the values of the constants C and ε in Theorems 1.1, 3.6, and the relevant
theorems in the sequel. However, their computation will be clear by following the
steps of the proofs.

For instance, an inspection of the proof of Theorem 1.1 informs us that the
constants in (1.13) are

C = aN
MN/(N+2)(M + R)2/(N+2)

|Ω|1/Nr 3/(N+2)
i

{
N + riµ(Ω, z)
µ̄(Ω)µ(Ω, z)2

}1/(N+2)

and

ε = αN
M

M + R

√
µ̄(Ω)µ(Ω, z)√
N + riµ(Ω, z)

r
(N+5)/2
i .

Here, the constants aN and αN are those appearing in (3.10) and (3.11).
The constants C and ε can be shown to depend only on some geometric

parameters of Ω. In fact, we can use (3.2) to bound M in terms of dΩ and re. To
estimate the ratio R, we can use the isoperimetric inequality to bound |Γ | from
below in terms of |Ω|1−1/N , and then a trivial inequality to bound |Ω|1/N in terms
of dΩ.

Remark 3.8 (Estimating µ̄(Ω) and µ(Ω, z)). For simplicity, in what follows,
kN denotes a positive number that only depends on N, whose value may change
from line to line.

(i) A lower bound of µ̄(Ω) can be obtained as follows. In Theorem 1.3 of [HS]
a more general form of inequality (3.6) (without the assumption of harmonicity)
is proved for the class of the b0-John domains (see [HS] for the definition), and
the constants are explicitly computed; in particular, with the aid of [HS], we can
easily deduce that

µ̄(Ω)−1 ≤ kN|Ω|2/Nb2N
0 ,
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for some constant kN only depending on N. A domain of class C2 is obviously a
b0-John domain, and it is not difficult to show that

b0 ≤
dΩ
ri
,

and hence obtain that

(3.14) µ̄(Ω)−1 ≤ kN|Ω|2/N
(
dΩ
ri

)2N

.

An alternative way to estimate µ̄(Ω) can be found in [MP, Remark 3.8 (ii)].
A lower bound for µ(Ω, z) can also be obtained, but it may depend on the

choice of the particular critical point of u. In fact, by following the argument of
[Fe, Lemma 8], one can adapt the result contained in [HS, Theorem 1.3] to the
case of harmonic functions vanishing at a given point z (i.e., the case of (3.5)). To
explicitly carry out the computations, the definition of bounded L0-John domain
with given base point is appropriate (see [Fe]). In fact, for that class of domains,
by means of [Fe, Lemma 8], we can deduce that

(3.15) µ(Ω, z)−1 ≤ kN|Ω|1/NL2N
0

and, by the definition, it is not difficult to prove the following bound:

(3.16) L0 ≤
dΩ

min[ri, δΓ (z)]
.

Thus, we obtain

(3.17) µ(Ω, z)−1 ≤ kN|Ω|1/N
(

dΩ
min[ri, δΓ (z)]

)2N

.

Finally, it is clear that we can eliminate the dependence on |Ω| in (3.14) and
(3.17) in favour of dΩ again.

(ii) The use of δΓ (z) gives an estimate of the number L0 in terms of an explicit
geometrical quantity. Moreover, in case Ω is convex, by using δΓ (z) we are able to
completely remove the dependence of the constants on z, and we can affirm that
C and ε are controlled by ri and dΩ, only.

In fact, we notice that the dependence of M on re can be removed, thanks
to (3.3). Moreover, we can further eliminate the dependence on δΓ(z) and |Ω|
appearing in (3.17). Indeed, u has a unique minimum point z in Ω, since u
is analytic and the level sets of u are convex by a result in [Ko] (see [MS], for a
similar argument), and hence we have only one choice for the point z. Thus, an



Serrin’s Problem and Alexandrov’s SBT 19

estimate of δΓ (z) from below can be obtained, first, by putting together arguments
in [BMS, Theorem 2.7] and [BMS, Remark 2.5], to obtain that

δΓ (z) ≥
kN

|Ω|dN−1
Ω

max
Ω̄
(−u).

Second, by a simple comparison argument, the maximum can be bounded from
below by r 2

i /2, and hence we have that

δΓ (z) ≥ kN
r 2N
i

|Ω|dN−1
Ω

.

Again, |Ω| can be easily bounded in terms of dΩ. By similar arguments, we can
take care of ε.

Remark 3.9. The dependence on δΓ(z) of the constants in the relevant esti-
mates can also be removed by choosing the point z appearing in (1.5) differently.

(i) As already done in [MP, Theorem 3.6 and item (ii) of Remark 4.2], we can

choose z as the center of mass of Ω. In fact, we obtain that
∫

Ω
∇h(x)dx = 0, and

we can use (3.6), instead of (3.5), in Lemma 3.4 and Theorems 3.5, 1.1, and 3.6.
In this way, we avoid the use of µ(Ω, z) (and hence of δΓ (z)).

However, in this case the extra assumption that z ∈ Ω is needed, since we
want that the ball Bρi(z) (considered in Theorems 1.1, 1.2, and 3.6) be contained
in Ω.

(ii) As pointed out by the anonymous referee and as done in [Fe], another possible
way to choose z is z = x0−∇u(x0), where x0 is the base point in the definition of
L0-John domain mentioned in Remark 3.8. In fact, we obtain that ∇h(x0) = 0,
and we can thus use (3.5), with µ(Ω, z) replaced by µ(Ω, x0), in Lemma 3.4 and
Theorems 3.5, 1.1, and 3.6. Moreover, it is easy to check that every x0 ∈ Ω such
that δΓ (x0) ≥ ri is an appropriate base point for the L0-John condition for which
it holds that

L0 ≤
dΩ
ri
,

since one can use (3.16) with z replaced by x0. Hence, from (3.15) we have that

µ(Ω, x0)
−1 ≤ kN|Ω|1/N

(
dΩ
ri

)2N

.

As in item (i), we should additionally require that z ∈ Ω.

Since the estimates in Theorems 1.1 and 3.6 do not depend on the particu-
lar critical point chosen, as a corollary, we obtain results of closeness to a union
of balls, similar to [MP, Corollary 4.3]: here, we just illustrate the instance of
Theorem 1.1.
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Corollary 3.10 (Closeness to an aggregate of balls). Let Γ , R, and u be as
in Theorem 1.1. Then, there exist points z1, . . . , zn in Ω, n ≥ 1, and corresponding
numbers

ρ
j
i = min

x∈Γ
|x − zj| and ρje =min

x∈Γ
|x − zj|, j = 1, . . . , n,

such that

n⋃

j=1

B
ρ
j
i
(zj) ⊂ Ω ⊂

n⋂

j=1

B
ρ
j
e
(zj)

and

max
1≤j≤n

(ρ
j
e − ρji ) ≤ C

∥∥uν − R
∥∥2/(N+2)

2,Γ if ‖uν − R‖2,Γ < ε,

for some positive constants C and ε.

Proof. We pick one point zj from each connected component of the set of
local minimum points of u. By applying Theorem 1.1 to each zj , the conclusion
is then evident. ❐

4. ENHANCED STABILITY FOR

ALEXANDROV ’S SOAP BUBBLE THEOREM

In this section, we collect the benefits of the new estimate (1.13) that affect the
stability issue for the Soap Bubble Theorem.

We begin by recalling a couple of inequalities concerning the harmonic func-
tion h that we obtained in [MP, Theorem 3.4] and, in the sequel, will play the
role of those of Theorem 3.5. It holds that

(4.1) ρe − ρi ≤ C0

(∫

Ω
|∇2h|2 dx

)1/2

,

if N = 2,3, and

(4.2) ρe − ρi ≤ C0

(∫

Ω
|∇2h|2 dx

)1/(N+2)

for
∫

Ω
|∇2h|2 dx < ε2

0,

for N ≥ 4. The point z chosen in the definition (2.1) of ρi and ρe is any critical
point of u, as usual.

The positive constants C0 and ε0 depend on N, |Ω|, dΩ, ri re, and µ0(Ω, z)
given by (3.7) with α = 0. For their values, we refer to [MP, Theorem 3.4].

Remark 4.1. The parameter µ0(Ω, z) can be estimated by following the ar-
guments used in item (i) of Remark 3.8 to estimate µ(Ω, z). In fact, we deduce
that

µ0(Ω, z)−1 ≤ kN|Ω|2/NL2N
0 .

Another way to estimate µ0(Ω, z) can be found in [MP, Remark 3.8 (iii)].
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Next, we derive the following lemma, which parallels and is a useful conse-
quence of Lemma 3.4.

Lemma 4.2. Let N ≥ 2 and let Γ be the connected boundary of class C2 of a
bounded domain Ω ⊂ RN . Denote by H the mean curvature function for Γ , and let
H0 be the constant defined in (1.8).

Then, the following inequality holds:

(4.3) ‖uν − R‖2,Γ ≤ R
{
dΩ +

M(M + R)
ri

(
1+ N

riµ(Ω, z)

)}
‖H0 −H‖2,Γ .

Proof. Discarding the first summand on the lefthand side of (2.6) and apply-
ing Hölder’s inequality on its righthand side gives that

1
R

∥∥uν − R
∥∥2

2,Γ ≤ ‖H0 −H‖2,Γ (M‖hν‖2,Γ + dΩ‖uν − R‖2,Γ),

since uν ≤ M and |qν | ≤ dΩ on Γ . Thus, inequality (3.12) implies that

∥∥uν − R
∥∥2

2,Γ ≤ R
{
dΩ +

M(M + R)
ri

(
1+ N

riµ(Ω, z)

)}

× ‖H0 −H‖2,Γ ‖uν − R‖2,Γ ,

from which (4.3) follows at once. ❐

Proof of Theorem 1.2. Discarding the second summand on the lefthand side
of (2.6) and applying Hölder’s inequality on its righthand side, as in the previous
proof, gives that

1
N − 1

∫

Ω
|∇2h|2 dx ≤

≤ R
{
dΩ +

M(M + R)
ri

(
1+ N

riµ(Ω, z)

)}
‖H0 −H‖2,Γ ‖uν − R‖2,Γ ,

≤ R2

{
dΩ +

M(M + R)
ri

(
1+ N

riµ(Ω, z)

)}2 ∥∥H0 −H
∥∥2

2,Γ ,

where the second inequality follows from Lemma 4.2.
Inequalities (1.16) and (1.17) then result from (4.1) and (4.2). ❐

Remark 4.3 (On the constants C and ε). Needless to say, the proof of Theo-
rem 1.2 tells us that, by proceeding as in Remarks 3.7, 3.8, and 4.1, we can reduce
the dependence of C and ε to the parameters N, ri, re, dΩ, and δΓ (z), if Γ is
of class C2, and to N, ri, and dΩ, if Ω is also convex or chosen as described in
Remark 3.9.
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Remark 4.4. (i). Assertion (ii) of Theorem 1.2 can also be proved as a direct
corollary of Theorem 1.1, by noting that (4.3) together with (1.13) gives (1.17).

(ii). Analogs of Theorem 3.6 and Corollary 3.10 can be easily derived by following
the steps of their proofs.

Remark 4.5. The assumption of smallness of the relevant deviation η re-
quired in Theorems 1.1 and 3.6, Corollary 3.10, and (ii) of Theorem 1.2 is only
apparent because, if η ≥ ε, then it is a trivial matter to obtain an upper bound for
ρe−ρi in terms of η. Thus, all the stability estimates that we presented are global.

Another consequence of Lemma 4.2 is the following inequality that shows an
optimal stability exponent for any N ≥ 2. The number A(Ω), defined in (1.14),
is some sort of asymmetry similar to the so-called Fraenkel asymmetry (see [Fr]).

Theorem 4.6 (Stability by asymmetry). Let N ≥ 2 and let Γ be the connected
boundary of class C2 of a bounded domain Ω ⊂ RN . Denote by H the mean curvature
function for Γ and let H0 be the constant defined in (1.8).

Then, it holds that

(4.4) A(Ω) ≤ C ‖H0 −H‖2,Γ ,

for some positive constant C.

Proof. We use [Fe, inequality (2.14)]: we have that

|Ω∆BzR|
|BzR|

≤ C ‖uν − R‖2,Γ ,

where BzR is a ball of radius R (as defined in (1.8)) and centered at the point z
described in item (ii) of Remark 3.9. Hence, we obtain that

A(Ω) ≤ C ‖uν − R‖2,Γ ,

by the definition (1.14). Thus, thanks to (4.3), we obtain (4.4).
Here, if we estimate L0 as done in item (ii) of Remark 3.9, we can see that C

depends on N,dΩ, ri, and |Γ |/|Ω|. ❐

Remark 4.7 (On the asymmetry A(Ω)). Notice that, for any x ∈ Ω, we
have that

|Ω∆BxR |
|BxR |

≤
|Bxρe \ Bxρi|
|BxR |

=
ρNe − ρNi
RN

≤ Nρ
N−1
e

RN
(ρe − ρi),

and ρe ≤ dΩ. Thus, if dΩ/R remains bounded and (ρe − ρi)/R tends to 0, then
the ratio |Ω∆BxR |/|BxR | does the same.

The converse is not true in general. For example, consider a lollipop made by
a ball and a stick with fixed length L and vanishing width; as that width vanishes,
the ratio dΩ/R remains bounded, while |Ω∆BxR |/|BxR | tends to zero and ρe−ρi ≥
L > 0.
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If we fix ri and re, we have the following result.

Theorem 4.8. Let Ω ⊂ RN , N ≥ 2, be a bounded domain satisfying the uniform
interior and exterior sphere conditions with radii ri and re.

Then, we have that

ρe − ρi ≤ 4RA(Ω)1/N if A(Ω) ≤
(
ri

R

)N
.

Proof. Let x be any point in Ω. It is clear that

(4.5) max(ρe − R,R − ρi) ≥
ρe − ρi

2
.

If that maximum is ρe − R, at a point y where the ball centered at x with radius
ρe touches Γ , we consider the interior touching ball Bri .

If 2ri < (ρe − ρi)/2, then Bri ⊂ Ω \ BxR , and hence

|Ω∆BxR |
|BxR |

≥
(
ri

R

)N
.

If, otherwise, 2ri ≥ (ρe−ρi)/2, then Bri contains a ball of radius (ρe−ρi)/4 still
touching Γ at y . Such a ball is contained in Ω \ BxR , and hence

|Ω∆BxR |
|BxR |

≥
(
ρe − ρi

4R

)N
.

Thus, we have proved that

|Ω∆BxR |
|BxR |

≥min

{(
ri

R

)N
,

(
ρe − ρi

4R

)N}
,

and the conclusion easily follows, since x was arbitrarily chosen in Ω.
If, otherwise, the maximum in (4.5) is R − ρi, we proceed similarly, by rea-

soning on the exterior ball Bre and RN \ Ω̄, instead. ❐

Remark 4.9. Theorem 4.8 and (4.4) give the inequality

ρe − ρi ≤ C
∥∥H0 −H

∥∥1/N
2,Γ

that, for any N ≥ 2, is poorer than that obtained in Theorem 1.2.
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