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Abstract
Left ventricular hypertrophy (LVH) is a frequent imaging finding in the general population. In order to identify the precise 
etiology, a comprehensive diagnostic approach should be adopted, including the prevalence of each entity that may cause 
LVH, family history, clinical, electrocardiographic and imaging findings. By providing a detailed evaluation of the myocar-
dium, cardiovascular magnetic resonance (CMR) has assumed a central role in the differential diagnosis of left ventricular 
hypertrophy, with the technique of parametric imaging allowing more refined tissue characterization. This article aims to 
establish a parallel between pathophysiological features and imaging findings through the broad spectrum of LVH entities, 
emphasizing the role of CMR in the differential diagnosis.
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Left ventricular hypertrophy (LVH) is a frequent imaging 
finding in the general population, as detected by imaging [1, 
2]. Unless it is a physiological adaptation, LVH is clinically 
relevant since it constitutes a marker of adverse prognosis 
including major cardiovascular events [3, 4]. However, LVH 

is not a diagnosis per se but a phenotype resulting from sev-
eral myocardial processes. An extensive evaluation of the 
family history, extra-cardiac abnormalities, the electrocar-
diographic pattern and echocardiographic findings aid in 
determining the etiology.

Left ventricular (LV) size is influenced by gender, age, 
ethnicity, body mass index and physical activity—although 
its relative geometry is relatively independent of body size 
[5, 6]. When LV mass and/or relative wall thickness (the 
ratio of twice the posterior wall thickness to LV diastolic 
diameter) are increased, a remodeling process has occurred 
resulting in LVH. LVH may result in an increase of total LV 
mass, or may manifest as a more focal phenomenon with 
increase of LV wall thickness in a few segments.

When LVH is detected, the prevalence of each etiology 
should be considered (Fig. 1). Physiologic increase in car-
diac mass and wall thickness may occur in highly trained 
individuals—although this is not the rule, especially in 
women—and only a mild wall thickness increase (≤ 12 mm) 
is observed in the majority of the athletes [7, 8]. Physiologic 
hypertrophy reflects cardiac adaptation to exercise, consist-
ing in a proportional growth of muscular and non-muscular 
compartments, and a balanced thickness-to-cavity ratio.

Coronary microvascular dysfunction (CMD) resulting 
from microvascular remodelling and extravascular compres-
sion often coexists with pathologic LVH [9, 10].
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Pressure overload is the most frequent cause of patho-
logic LVH, due to the high prevalence of arterial hyper-
tension (HTN) and aortic stenosis (AS) in the general 
population. In the absence of abnormal loading condi-
tions, sarcomeric hypertrophic cardiomyopathy (HCM) 
is the most likely diagnosis, particularly in young 
patients.

Pathologic LVH may be the hallmark of inherited 
metabolic disorders, such as Fabry or Danon disease 
[11, 12]. Aptly termed storage diseases, the accumula-
tion of metabolic products accounts only for a small per-
centage of the increase in cardiac mass, which is largely 
due to true myocyte hypertrophy, triggered by unknown 
mechanisms. Conversely, “pseudo”-hypertrophy is typi-
cal of infiltrative diseases characterized by extra-cellular 
deposits, as in cardiac amyloidosis, or diffuse myocardial 
edema caused by acute in inflammatory diseases. In older 
patients, more than one disease may coexist e.g., AS and 
HTN, AS and amyloid, AS and HCM, and amyloid and 
HCM.

Different pathophysiological mechanisms lead to distinct 
imaging findings, through the broad spectrum of LVH. This 
review aims to summarize how CMR may depict the patho-
logical features beyond LV morphology, by performing a 
parallelism between pathophysiological features and imag-
ing findings for each entity, providing a 360° panorama of 
LVH beyond plain sight.

The role of cardiovascular magnetic 
resonance

CMR has emerged as the gold standard imaging technique to 
characterize abnormalities of myocardial structure and func-
tion, able to differentiate features of LVH in various contexts. 
As result of its spatial resolution it allows a detailed char-
acterization of LVH severity and distribution and accurate 
measurement of mass, volumes and function, more reliably 
compared to echocardiography [13, 14]. Furthermore, the 
most important additional value of CMR comparing to echo-
cardiography is likely the capacity for tissue characterization.

By using CMR to evaluate LV mass, no uniformly accepted 
convention has been used for analysing papillary muscle mass, 
and current recommendations indicate that these structures 
should be consistently included in the LV volume or in the 
LV mass [15]. Reflecting the discrepancy in the values for LV 
mass through the different studies, the normal range values 
slightly vary between consensus documents [15, 16]. In the 
European Association of Cardiovascular Imaging expert con-
sensus (2019) the normal range for LV mass is 49–85 g/m2 for 
adult males and 41–81 g/m2 for adult females, with papillary 
muscle mass included in the LV mass [16].

Furthermore, CMR details the severity of LVH, its 
morphology, allows tissue characterization, detection of 
inflammation and ischemia. Parametric mapping techniques 
measure the T1 and T2 relaxation times of each voxel in the 

Fig. 1  Left ventricular hyper-
trophy—360° panorama. The 
importance of bearing in mind 
the prevalence of each etiology 
in the differential diagnostic 
process
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myocardium, building a visual map that allows quantifica-
tion (Table 1; Fig. 2).

(a) Native T1 mapping measures both intracellular and 
extracellular components. In the presence of LVH, T1 
may reflect cellular hypertrophy, extracellular fibrosis 
and/or edema. Its value increases with interstitial fibro-
sis and edema, and decreases with intracellular accu-
mulation of iron or lipids [17, 18].

(b) Myocardial extracellular volume (ECV) can be cal-
culated using pre- and post-contrast T1 maps. ECV 
is used as a surrogate measure specifically aimed at 
the extracellular space [17, 18], with correlation with 
interstitial fibrosis by endomyocardial biopsy [19]. 
Increased ECV may also occur from diffuse protein 
deposition or edema [20].

(c) T2 values are useful to detect interstitial edema [17, 
18]. Thus, in the presence of increased ECV, T2 map-
ping allows the distinction between interstitial fibrosis 
and concomitant edema.

(d) Late gadolinium enhancement (LGE) imaging identifies 
replacement fibrosis in a variety of cardiac diseases, but 
is less sensitive to detect diffuse interstitial collagen 
deposition [21, 22].

The incorporation of mapping data and LGE patterns are 
rapidly becoming a key tool in clinical practice in the evalu-
ation of certain conditions. Despite the additional role of 
parametric mapping in the detection of interstitial fibrosis, 
its importance in differential diagnosis is reserved for enti-
ties with extreme values as cardiac amyloid or Fabry disease, 
as there is a significant overlap between different entities and 
even with normal individuals. LGE keeps its role mainly as 
a marker of pathological process and well stablished prog-
nostic value.

Despite the unquestionable importance of CMR in assess-
ing cardiac morphology, function and tissue characteriza-
tion, images per se should never lead to a diagnosis dis-
connected from patients’ clinical profiles, as a significant 
overlap in imaging findings may be found between some 
entities, and more than one pathological process may be pre-
sent simultaneously (for example hypertension and HCM; 
aortic stenosis and amyloidosis). In the evaluation of LVH, 
a family history and extensive clinical evaluation, includ-
ing extra cardiac features, should complement findings on 
electrocardiography and echocardiography as the first step. 
Subsequently, CMR with detailed tissue characterization, 
provides additional details to increase the diagnostic objec-
tivity (Fig. 3).

Physiologic hypertrophy

Athlete’s heart

Regular exercise leads to cardiac physiological adaption, 
which encompasses electrical, structural and functional 
changes. In a subset of highly trained individuals, it may 
cause the “Athlete’s heart”, a balanced increase in left and 
right cardiac cavity size and LV wall thickness. Compared 
to those of pathologic LVH, such changes are usually mod-
est and usually fall within accepted normal limits [8, 23]. 
The prevalence and extent of these changes reflects a poly-
genic background as well as gender and ethnicity. Notably, 
LV wall thickness > 12 mm is only seen in 2% of white 
athletes (and virtually never in women), but up to 18% 
in black athletes [8]. Even in the presence of pronounced 
increase in LV wall thickness in endurance athletes, it is 
balanced with associated increase in LV cavity size, and 
conserved indices of diastolic function. Increased LV 

Table 1  Mapping findings in 
the different etiologies of left 
ventricular hypertrophy

Entity Native T1 Extracellular volume T2

Athlete’s heart ↔↓ ↔↓ ↔

Hypertensive cardiomyopathy ↑ ↑ ↔

Aortic stenosis ↑ ↑ ↔

Hypertrophic cardiomyopathy ↑↑ ↑↑ ↔↑

Fabry disease ↓↓↓ ↔ ↔↑

TTR amyloidosis ↑↑↑ ↑↑↑↑ ↑

AL amyloidosis ↑↑↑↑ ↑↑↑ ↑↑

Myocardial inflammation ↑↑ ↑↑ ↑↑
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wall thickness is the result of myocyte hypertrophy with 
side-by-side addition of sarcomeres, rather than increased 
extracellular matrix [24]. CMR detects this as a relative 
decrease in extracellular compartment, with normal or 
slightly decreased ECV [25, 26]. Adequate detraining usu-
ally reverses physiologic LVH related to exercise [27]. 
Additionally, anabolic–androgenic steroids misused by 
some athletes and body builders further drive cardiac mus-
cle growth contributing for LVH, however these changes 
in LV wall thickness may not recover with discontinuation 
of the drug [28, 29].

LGE detected at the RV insertion points into the septum 
may represent microinjuries due to RV pressure/volume 
overload during exercise [25, 30]. Subepicardial or mid-
myocardial LGE in the inferolateral wall or interventricular 
septum have been reported in athletes and may represent 
previous myocarditis or an undiagnosed cardiomyopathy in 
its preclinical stages, rather than part of the physiological 
remodeling of the athlete’s heart.

Pathologic hypertrophy

Pressure overload

Hypertensive heart disease

Arterial hypertension is the most common cause of LVH 
worldwide. To counter the increased afterload and LV wall 
stress, hypertensive hearts develop structural remodeling 
resulting in increased cellular size (hypertrophy) and addi-
tion of myofibrills in-parallel and in-series (hyperplasia). 
This cellular adaption leads to concentric LV wall thickening 
[31–33]. Fibroblast proliferation and increased collagen for-
mation lead to diffuse fibrosis of the interstitial and perivas-
cular space [34, 35]. Extracellular matrix expansion and 
accumulation of interstitial collagen fibers can be detected 
by CMR. In hypertensive patients with LVH, which develops 
over time, native T1 mapping and ECV are elevated, and 
native T1 and ECV are higher in hypertensive LVH subjects 

Fig. 2  Imaging findings through the spectrum of left ventricular 
hypertrophy (LVH). Two frequent causes of LVH: hypertensive 
(HTN) heart disease and aortic stenosis showing mild and asymmet-
ric LVH with maximal wall thickness (MWT) of 12-14 mm, normal 
native T1 and extracellular volume (ECV), intramural late gadolin-
ium enhancement (LGE) (red arrows). Athlete´s heart with balanced 
left and right cardiac cavity sizes, mild LVH, normal native T1 and 
ECV and LGE in the right ventricular insertion point. Mild and 

severe hypertrophic cardiomyopathy (HCM) showing the associa-
tion between the severity of LVH and increased values of native T1 
and ECV and more extensive LGE. Fabry disease denoting concen-
tric LVH with prominent hypertrophy of papillary muscle, low values 
of native T1 representing the sphingolipid accumulation and LGE in 
the inferolateral wall. Cardiac amyloidosis showing asymmetric LVH, 
markedly increased native T1 and ECV and diffuse LGE with charac-
teristic gadolinium kinetic
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comparing to hypertensive non-LVH [33]. ECV can identify 
the abnormalities in extracellular matrix before the appear-
ance of LGE [33, 36, 37].

Focal fibrosis may also be found. LV remodeling, includ-
ing enlarged LV mass, and increased LV wall stress have 
been linked to midwall fibrosis on CMR studies [38], and 
may potentially constitute contributors for the LGE pattern 
found in hypertensive heart disease. LGE is usually detected 
in a patchy midwall pattern within the LV, and may also be 
evident at the RV insertion point [39].

Secondary hypertension

While LVH in essential HTN is generally mild and concen-
tric, patients with secondary forms of hypertension more 
often exhibit severe and diverse patterns of hypertrophy and 
may develop phenotypes resembling cardiomyopathies [40].

In renovascular hypertension, sympathetic nerve fibres 
stimulate cardiomyocyte alpha-adrenergic receptors leading 
to LVH, while renal denervation therapy has the potential 
of reducing LV mass [41]. Furthermore LVH is a result of 
the effects of molecules such as angiotensin II, aldosterone, 
or catecholamines, that stimulate muscle cell growth inde-
pendently of blood pressure, and may cause myocardial cell 

hypertrophy and/or hyperplasia and promotes collagen depo-
sition and interstitial myocardial fibrosis [42].

Patients with primary aldosteronism have greater 
degrees of LVH and concentric remodeling when com-
pared to those with essential HTN [43] and often exhibit 
a non-ischemic LGE pattern [44, 45].

Among patients with Cushing syndrome, the prevalence 
and severity of LVH and fibrosis are increased compared 
with essential HTN. Structural abnormalities, including 
increased LV mass, are only partially explained by the rise 
in blood pressure, while the most important role is attrib-
uted to the excess cortisol secretion. Other Cushing’s syn-
drome-related cardiovascular risk factors such as visceral 
obesity, glucose intolerance, and dyslipidemia may also 
contribute to LVH [46]. These patients show increased 
myocardial fibrosis [47], and perivascular inflammation 
[48], which leads to increased native T1 values [49].

Pheochromocytomas are neuroendocrine catechola-
mine-secreting tumors, that frequently lead to hyperten-
sive crisis and deleterious cardiac effects, namely car-
diac hypertrophy, myocarditis and myocardial fibrosis. 
Consequently, increased LV mass, systolic dysfunction, 
increased native T1 and LGE may be found on imaging 
[50]. After treatment, recovery of LV ejection fraction 

Fig. 3  Integration of CMR in the differential diagnosis of left ven-
tricular hypertrophy. *Tissue characterization by CMR may be useful 
to exclude concomitant entities, more commonly cardiac amyloidosis. 
**Early involvement by amyloid may present only slight elevation of 

native T1 and ECV, that may overlap with other etiologies, such as 
hypertrophic cardiomyopathy with significant fibrosis. ECV extracel-
lular volume, LGE late gadolinium enhancement, LVH left ventricular 
hypertrophy, RV right ventricular
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and regression in LVH is noted, but elevated T1 and LGE 
persist [50].

Thyroid hormones directly promote LVH independent of 
associated HTN, and increased LV mass has been described 
even in subclinical hyperthyroidism [51, 52].

In acromegalic cardiomyopathy, circulating growth hor-
mone (GH) and insulin-like growth factor-1 activate myo-
cyte growth resulting in biventricular hypertrophy [53]. GH 
promotes collagen synthesis and deposition [54], which are 
demonstrated by midwall LGE on CMR [55], present in a 
minority of patients [55, 56]. Myocardial edema is also an 
important histologic feature, reversible after treatment [57, 
58].

LVH is a common finding in patients with obstructive 
sleep apnea, along with RV hypertrophy and LA enlarge-
ment. Biventricular hypertrophy is the result of increased 
preload and afterload, generated by the exacerbated negative 
intrathoracic pressures during inspiratory efforts, increased 
venous return and stimulation of sympathetic system activity 
[59]. The concomitant hypertension, diabetes and obesity in 
these patients may further contribute for LVH.

In children and young adults, coarctation of the aorta is 
an important cause of hypertension, representing a classic 
model of chronic pressure overload, leading to LVH [60] 
which seems to be less often associated with myocardial 
fibrosis compared to other genetic causes of LVH [61]. 
Other congenital models of pressure overload may also lead 
to LVH. Subvalvular aortic stenosis, presenting as a thin 
membrane just below the aortic valve, thick fibromuscular 
ridge, or long and narrow fibromuscular channel along the 
LV outflow tract [62]. On the other hand, supravalvular aor-
tic stenosis is a systemic elastin arteriopathy that includes 
congenital narrowing of the lumen of the aorta. This condi-
tion may be present in non-syndromic or syndromic condi-
tions such as Williams–Beuren syndrome [63].

Aortic valve stenosis

In AS, LV wall thickening is typically concentric, although 
asymmetric patterns preferentially involving the inter-
ventricular septum may occur. Histological abnormalities 
include myocyte hypertrophy and interstitial fibrosis. In AS, 
capillary density and coronary flow reserve are reduced. 
Structural changes in intramural coronary vessels are less 
pronounced in aortic stenosis compared to hypertensive 
heart disease, and CMD is primarily a result of extravascu-
lar mechanisms, secondary to LVH and diastolic dysfunction 
[9, 64, 65].

Electron microscopy demonstrates areas of progressive 
degenerative injury of cardiomyocytes, culminating in cel-
lular atrophy, myocyte death and replacement fibrosis [66]. 
Men with AS have more prominent LVH than women and 
develop a less favorable, maladaptive ventricular phenotype 

with focal fibrosis and extracellular expansion, resulting in 
higher indexed extracellular matrix and ECV [67]. This gen-
der difference may be due to greater activation of profibrotic 
and inflammatory pathways in men, and differential expres-
sion of androgen and estrogen receptors [67]. CMR studies 
have shown that the extent of diffuse myocardial fibrosis is 
a strong determinant of functional status and mortality [68, 
69]. Recent data have shown a correlation between ECV 
and LV mass, left atrial volume, New York Heart Associa-
tion functional class, LGE and lower LV ejection fraction. 
ECV is an independent predictor of cardiovascular and all-
cause mortality [70]. LGE is consistently more prevalent 
in males [39, 71], exhibiting a midwall pattern which is an 
independent predictor of mortality in patients with moder-
ate and severe AS [72, 73]. After aortic valve replacement, 
cellular hypertrophy and diffuse myocardial fibrosis may 
be reversible, as demonstrated in myocardial biopsies [74], 
and more recently by CMR studying ECV [75]. However, 
cardiomyocyte loss is irreversible and replacement fibrosis 
depicted by LGE does not regress [75].

AS may occasionally be associated with transthyretin 
cardiac amyloidosis [76]. Evaluation of AS patients should 
include the assessment of typical cardiac amyloidosis 
findings to rule-out the coexistence of the two disorders. 
A disproportionate level of LVH, for example in a patient 
with severe AS but no concomitant hypertension or even 
moderate AS, should raise the possibility of amyloidosis 
and a CMR study may be worthwhile [77]. LGE, native T1 
and ECV values become progressively abnormal with the 
increase of amyloid burden. Patients with concomitant car-
diac amyloidosis and AS have higher native T1 and ECV 
values [78]. Extremely high values of T1 and ECV (par-
ticularly T1 higher than 1164 ms and ECV higher than 37%) 
in a patient with AS should lead one to consider coexistent 
amyloid [79], as it does a circumferential and extensive LGE 
which starts from the subendocardium and predominates 
at the basal segments [77]. Persistent LVH with minimal 
regression post-treatment is another clinical clue, if a CMR 
was not done prior to valve replacement.

Genetic cardiomyopathies causing LVH

Hypertrophic cardiomyopathy Hypertrophic cardiomyopa-
thy (HCM) is defined by the presence of LVH, unexplained 
by abnormal loading conditions. The disease is inherited as 
an autosomal dominant trait, caused by mutations in cardiac 
sarcomeric genes [80, 81], although the diagnostic yield of 
genetic testing is 30–40% generically, being influenced by 
the LVH pattern and severity, age at diagnosis, or family 
history [82, 83]. The classic LVH pattern is asymmetric, 
affecting the basal and mid anteroseptal segments, although 
a huge number of variants have been described, including 
apical and concentric phenotypes (Fig. 4) [84]. This hetero-
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geneity is also noted in the patchy distribution of cardio-
myocyte disarray, since severely disarrayed myocytes may 
appear adjacent to normally sized and normally aligned 
myocytes. This unequal distribution might reflect cell to 
cell differences in gene expression and autocrine production 
[85]. HCM patients may have markedly coronary micro-
vascular dysfunction due to severe microvascular remodel-
ling, although other mechanisms exist, including reduced 
capillary density, myocyte disarray, extravascular compres-
sion due to LVH, diastolic dysfunction and LV outflow 
obstruction [85–87]. Coronary microvascular dysfunction 
in patients with HCM has been assessed by CMR, show-
ing decreased hyperemic myocardial blood flow/vasodilator 
response, mainly in the endocardium, and demonstrating a 
link to wall thickness, tissue abnormalities, arrhythmias and 
functional capacity [88–91].

Two patterns of fibrosis may be found histologically in 
HCM—diffuse interstitial fibrosis and replacement fibrosis 
[22, 92]. Interstitial fibrosis results from fibroblast activity 
and increased number and thickness of collagen fiber com-
ponent of the matrix, arranged in disorganized patterns 
[93]. Native T1 and ECV correlates with diffuse fibrosis, 
elevated even in areas without LGE [21, 94, 95], and were 
found to be elevated in genotype-positive patients without 
overt hypertrophy [94]. On the other hand, progressive 
myocyte loss and necrosis results in replacement fibrosis 
[92]. LGE in HCM patients has a typical midwall pattern 
localized in the hypertrophied segments. In advanced dis-
ease, LGE increases considerably and, in patients develop-
ing end-stage features, can be transmural and occupy up 
to 40% of the LV, with relevant prognostic consequences 
[21, 92, 93]. LGE extent is also associated with arrhythmic 
risk constituting one of the risk factors for sudden cardiac 
death taken into consideration for prophylactic implant-
able cardioverter defibrillator [80, 96].

Myocardial edema has been described in patients with 
HCM. T2-weighted imaging showed hyperintensity in areas 
which may or may not be coincident with LGE, associated 
with signs of advanced disease, such as higher LV mass, 

lower ejection fraction and greater LGE extent, and higher 
arrhythmic risk [97].

Diffusion tensor CMR has emerged as a potential marker 
of disarray, since this structural abnormality may be inferred 
by mapping the preferential diffusion of water along car-
diac muscle fibers [98]. In HCM, this technique showed that 
sheetlet mobility is impaired and the diastolic orientations 
appear markedly abnormal, mainly in more hypertrophied 
segments[99]. Despite the promising role of this tech-
nique, its use is not widespread and clinical value remains 
unknown.

Besides evaluating the myocardium, other features are 
detected on CMR, include mitral leaflet and papillary mus-
cle abnormalities, LV outflow obstruction and crypts [100].

Rare cardiomyopathies A broad spectrum of rare genetic 
diseases may manifest as LVH (Fig. 5). However, extracar-
diac abnormalities are important clinical features, provid-
ing relevant clues for the differential diagnosis. Although 
pathognomonic CMR findings can be found in some enti-
ties, such as Fabry disease, other diagnoses require a focus 
on clinical clues to clinch the diagnosis, reflecting the fact 
that imaging alone does not provide all the answers.

In Fabry disease, LVH has a concentric pattern in the 
majority of cases, although other pattern of LVH may also 
be found. Additionally, it is also frequent a diffuse involve-
ment of the LV papillary muscles and the right ventricle 
[11, 101, 102]. Chronic accumulation of globotriaosylcera-
mide contributes itself to LVH, and further triggers sarco-
meric protein expression leading to myocyte hypertrophy 
[103–105]. As sphingolipid storage is mainly an intracellular 
phenomenon and extracellular space is spared by accumula-
tion, native T1 values are low (as fat has low T1 mapping 
values), while ECV remains normal. The fall in T1 with age 
is steeper in men, suggesting that storage is faster in men 
than in women [11]. Patients receiving enzyme replacement 
therapy show less shortening of T1, and may also present 
reduction in T2 in correlation with the reduction in LV mass 
[106–108]. In more advance stages of the disease, with the 

Fig. 4  Left ventricular hypertrophy patterns in hypertrophic cardiomyopathy: asymmetric septal (A, B), concentric (C) and apical (D)
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progression of myocyte hypertrophy and myocardial fibrosis, 
native T1 shows pseudo-normalization and ECV increases 
[11, 109, 110]. LGE is typically located in the basal infero-
lateral wall, probably reflecting inflammation in the initial 
stages accompanied by T2 elevation, and scar with the dis-
ease progression [111]. By providing a comprehensive tissue 
dissection, CMR has assumed a central role in diagnosis and 
staging of Fabry disease [105].

In Friedreich’s ataxia, besides cellular hypertrophy, the 
deficiency of frataxin leads to mitochondrial iron accumula-
tion in cardiomyocytes, mitochondrial damage, necrosis and 
myocardial fibrosis [112–117]. This process is depicted by 
LGE that may be found even in the absence of severe LVH 
[118, 119].

In RASopathies, a particular pattern of hypertrophy 
beyond the LV includes involvement of RV outflow tracts 
with dynamic obstruction and midventricular stenosis due 
to hypertrophied moderator band with muscle bundles [120, 
121].

Mitochondrial diseases are characterized by deficiencies 
in the mitochondrial oxidative phosphorylation system, lead-
ing to diffuse cellular hypertrophy with swollen and often 
vacuolated cardiomyocytes [122, 123]. Perturbations in 
cellular energetic metabolism further cause cell death and 
replacement fibrosis [124]. Imaging shows concentric, non-
obstructive LVH, potentially with evolution to LV dilation 
and dysfunction, and LV trabeculae may be prominent [124]. 

Intramural or subepicardial pattern of LGE reflects the myo-
cardial fibrosis, and may precede LVH [125].

More details regarding these rare disorders are shown in 
Table 2.

“Pseudo‑hypertrophy”

In some entities, increased LVH is the manifestation of inter-
stitial space expansion rather than true cellular hypertrophy. 
Cardiac amyloidosis is the classical example where amy-
loid fibrils deposit in extracellular space causing LVH [126]. 
Genetically mutated or wild-type transthyretin (ATTR) and 
immunoglobulin-derived light chains (AL) amyloidosis are 
responsible for the vast majority of cardiac amyloidosis 
[127, 128]. The two entities have very similar morphology 
but differ substantially in myocardial tracer uptake with 
bone scintigraphy, and have different clinical profiles. While 
ATTR amyloidosis has a slower clinical course, behaving 
more like a cardiomyopathy, AL amyloidosis resembles 
myocarditis, due to the toxic effect of light chains within 
the heart. In these patients, myocardial edema associated 
with light chain or fibril toxicity further increases extracel-
lular fraction [129]. CMR parametric imaging has a crucial 
role in the diagnosis of cardiac amyloidosis [79] by detecting 
very high values of native T1 and ECV reflecting the mas-
sive extracellular expansion (cut-off of 1164 ms for native 

Fig. 5  A case of Danon disease with fast progression. Baseline: 
11-year-old Afro-Carribean male teenager with recent diagnosis of 
mild concentric left ventricular hypertrophy (11  mm) CMR showed 
absence of late gadolinium enhancement (LGE), native T1 1039 ms, 
extracellular volume (ECV) 28%. Since the patient was adopted, 
family history was unknown. Clinically asymptomatic with an unre-
markable physical examination. Normal mental and somatic growth 

was reported. Three years later, massive and abrupt progression of 
myocardial hypertrophy was noted. Left ventricular hypertrophy had 
asymmetric septal pattern with a maximum wall thickness of 20 mm. 
Moderate circumferential pericardial effusion was noted. Tissue char-
acterization evidenced diffuse LGE, native T1 of 1110 ms and ECV 
30% (native T1 normal range 970 ± 40 ms)
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T1 and 37% for ECV showed high diagnosis accuracy) [79, 
130, 131]. The very high values of T1 can be diagnostic in 
themselves, a benefit in those who may not receive contrast 
due to renal dysfunction. The pattern of LGE is globally sub-
endocardial, becoming transmural with incremental amyloid 
accumulation. Gadolinium presents a characteristic kinetic 
pattern, since it is avidly taken up by the infiltrated myocar-
dium [132–134]. Despite the differences between cohorts of 
patients with AL and ATTR amyloidosis, for an individual 
patient CMR alone does not allow an accurate differential 
diagnosis between the two types, although some aspects can 
point toward a specific type. Native T1 and T2 are higher in 
AL amyloidosis due to the direct cellular light-chain toxicity 
and consequent edema [79, 129]. On the other hand, ECV 
is higher and LGE substantially more extensive in ATTR 
[79, 133]. RV LGE is present in the vast majority of ATTR 
compared to AL patients [133]. When combined with nega-
tive monoclonal protein studies, characteristic LGE pattern 
indicative of cardiac amyloidosis is highly specific for the 
diagnosis of cardiac ATTR amyloidosis (specificity of 98% 
and positive predictive value of 99%), compared with endo-
myocardial biopsy [135]. In cardiac amyloidosis, paramet-
ric mapping may further provide prognostic information, as 
ECV quantifies disease severity and adds prognostic value 
[132], while T2 is higher in untreated AL compared with 
treated AL, constituting also a predictor of prognosis [129].

“Pseudo-hypertrophy” may be the presenting phenotype 
of acute myocarditis (Fig. 6), regardless of the aetiology. 

Myocardial inflammation is the result of a response to 
viruses, autoimmune disease or toxic agents [136]. Extra-
cellular expansion is primarily characterized by the infil-
tration of inflammatory cells and interstitial edema, fol-
lowed by collagen deposition, fibrosis and scar [136, 137]. 
The imaging equivalent of the inflammatory process con-
sists of an increased T1 as result of intra and extra-cellular 
edema, hyperemia/capillary leak, necrosis and fibrosis; 
increased T2 due to myocardial edema/active inflamma-
tion; increased ECV reflecting extracellular edema, hyper-
emia/capillary leak, necrosis and fibrosis [138]. LGE also 
depicts areas of necrosis, fibrosis and extracellular edema, 
with a subepicardial and midwall pattern, frequently in 
the basal to mid-inferolateral wall [138]. In severe inflam-
mation, LGE is extensive through to the subendocardium 
[138].

A unique cause of myocardial inflammation is cardiac 
allograft rejection [139] where variable degrees of LVH can 
occur. Endomyocardial biopsy is still the gold standard for 
the diagnosis, but a non-invasive approach using CMR has 
emerged as a relevant complement. Native T1, T2 and ECV 
were found to be elevated in patients with acute cardiac allo-
graft rejection [140] as result of myocardial edema and fibro-
sis, important pathological markers of the condition [141]. 
Furthermore, T1 mapping showed to be able to track recov-
ery after pulse immunosuppressive therapy [142]. Recently, 
a prospective randomized noninferiority pilot study com-
pared a strategy based on CMR vs endomyocardial biopsy 

Fig. 6  Acute myocarditis. 20-year-old man with unremarkable previ-
ous medical history, presented with chest pain associated with infe-
rior negative T waves on electrocardiogram and mildly increased 
troponin I. Cardiovascular magnetic resonance (CMR) showed con-
centric left ventricular (LV) hypertrophy (LV wall thickness 16 mm, 
LV mass 200 g), mildly impaired LV systolic function (LV ejection 
fraction 52%). On T2 weighted (T2w) imaging, myocardial signal 

was diffusely increased reflecting myocardial edema. Subepicardial 
to transmural late gadolinium enhancement (LGE) was noted in the 
LV mid-inferior wall. At 6  months follow up CMR showed normal 
LV wall thickness (9 mm); normal LV systolic function (LV ejection 
fraction 59%). Normal myocardial signal was documented on T2w. 
Transmural LGE persisted in the LV mid-inferior wall
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for rejection surveillance, documented that CMR rejection 
surveillance was feasible in the first year after transplanta-
tion and reduced the number of invasive endomyocardial 
biopsy [143].

Conclusion

In an era in which imaging is being increasingly used, 
rational incorporation into the diagnostic process is manda-
tory. Identifying the true etiology of an apparent pathologi-
cal process is the final aim, which allows for optimal thera-
peutic options and estimating prognosis. CMR is rapidly 
becoming a new gold standard for the assessment of LVH, 
but finds its rightful place only when adequately integrated 
in a rich clinical milieu. Due to the overlap of phenotypes 
between the distinct etiologies, CMR in isolation has evi-
dent limitations in differential diagnosis, performing better 
in diseases with severe tissue abnormalities.
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