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1 | INTRODUCTION AND BACKGROUND

Big data, artificial intelligence and machine learning are dramatically fostering the number of models being developed
and deployed. When these models are integrated into business decision-making situations, institutions are becoming
exposed to greater model risk and subsequent potential losses. Therefore, the importance of model risk management has
increased rapidly. And, it refers to all phases, from models design and their implementation to the final quantification of
capital requirements. Therefore, the proposed approach aims at providing a way to compare and assess model risk when
a large number of models can be considered.

In the financial literature, it is well-known that the choice of the underlying probabilistic model for the risk factors can
have a significant impact on risk forecasts.! Indeed, it has been observed that the range of possible risk values, computed
using risk metrics such as the Value-at-Risk (VaR) or the Expected Shortfall (ES), can be surprisingly wide even imposing
apparently stringent constraints on the distribution of risk factors; in this framework see for instance Reference 2 in the
univariate case, and Reference 3 in the multivariate one.

The hazard of producing a poor risk assessment due to the choice of an unsuited model is usually called model risk.
It is common to distinguish between two aspects of model risk, that is the estimation risk and the misspecification risk.
The former one refers to the uncertainty arising from parameters estimation (or calibration), once a parametric family of
distributions has been chosen. The literature on this aspect is well developed; see References 4-7, among many others.
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Whereas, the latter one refers to the choice of the parametric family itself' and its subsequent quantification and
management is more difficult and it has been less investigated?. Then, our paper aims at filling this gap.

To deal with the misspecification risk, the Worst-Case and the Model Averaging approaches have emerged. For both
of them, the starting point is represented by a finite set of plausible models, that is, parametric families of distributions
for the relevant risk factors. In order to obtain a completely specified distribution, each family is fitted to the data, hence
providing a fitted model.

On one hand, in the Worst-Case approach, the maximum and minimum values for the risk measure p (denoted ppax
and pnin) are computed over all competing fitted models. The most conservative risk value, that is, pmax, is then taken as
a “robust” forecast. Moreover, the amount of model risk can be quantified as some “distance” between pmax, fmin, and,
possibly, the risk value p* obtained under a fitted reference model or simply obtained by some standard procedures (as
the historical simulation); see References 8,10 and 11 for different proposals in this regard. Within this approach, the
considered models are usually disjoint (as parametric families) or at least non-nested.>

On the other hand, the Model Averaging approach requires the specification of a weight for each model, and then uses
the set of weights to average out the risk values obtained under different fitted models. Model risk can then be assessed
through some (weighted) dispersion measures of the risk values. Within this approach, the number of models can be
substantial and nested specifications are often considered, particularly in multiple regression analyses. This approach
may come in a Bayesian form in which prior weights are updated to posterior weights with respect to data, and in a simpler
frequentist form in which weights are directly built on the basis of some fitting ability criterion, generally based on the
maximized likelihood. The Akaike Information Criterion (AIC) or the Bayesian Information Criterion (BIC) are common
choices for this purpose, as they reward fitting performance, while penalizing for over-parametrization. See Reference 12
for a comparison of Bayesian and frequentist model averaging.

In the present paper, we aim at empirically assessing misspecification risk when forecasting daily VaR (at 1% and 5%
levels), for some selected financial and energy assets over years 2001-2015. In particular, we adopt a mixed approach,
between the Worst-Case and the (frequentist) Model Averaging approach. Through a dynamic daily procedure, we quan-
tify for each asset the so-called Relative Measure of Model Risk (henceforth RMMR), introduced in Reference 10. The
definition of this measure relies on the maximum, minimum and reference risk values among a class of competing fitted
models.

Given that it has been argued that the Worst-Case approach relies on the class of plausible models in a critical way,
we consider here a mix of the Worst-Case and the (frequentist) Model Averaging approaches. Specifically, for each model
and asset we compute daily the Information Criteria (henceforth IC, for AIC or BIC) based on maximized likelihood,
and then we use it for different purposes: first, we select daily the best model, that is, the one having the lowest* IC, to be
used to compute the reference risk value; second, we build weights of models, based on the IC, and use them to derive
an average forecast, again to be used as the reference risk value; third, and more importantly, we use the weights in order
to trim the original set of plausible models, discarding the worst performing ones. The goal of this last step is to make
the assessment of model risk less reliant on the initial choice of competing models. We investigate model risk, assessed
via RMMR, with different combinations of the set of models and of the choice of the reference risk value. Additionally,
we inspect two different weights constructions, one based on AIC and the other one based instead on BIC. Moreover, we
follow three alternative strategies for the choice of the reference risk value: in the first one, a particular reference model is
a priori selected and kept for the entire sample; in the second one, the best fitting model is chosen on a daily basis, where
the fitting ability is measured by IC; in the third one, the (possibly trimmed) weighted average of risk values is considered
on a daily basis. We emphasize that the measure of model risk that we use produces a pure number, independent from
the reference currency, hence allowing for immediate comparisons across different assets, countries and markets.

'For example, if we assume that stock returns follow an unconditional Student-t distribution, characterized by three parameters (location, scale and
degrees of freedom), then the estimation risk arises from the variability inherent in the estimation process of the parameters. Indeed, the outcome of
this process depends on the data set, on the estimation window and possibly on the employed inference method (e.g., maximum likelihood vs. method
of moments). Instead, the misspecification risk occurs at a more fundamental level and it is due to the choice of the parametric distribution itself:
where in our example, it is set to be the Student-t instead of some alternative ones, such as the Normal or Skew Student-t distributions.

2For completeness, it is worth to mention that there are additional sources of model risk (such as the identification and granularity risk), which are
however not considered here. Further details can be found in References 8 and 9.

3A model is nested if, viewed as a family of distributions, is contained in another model. For instance, the Student-t model is nested in the Skew
Student-t one.

4We note that such Criteria are decreasing in the maximized likelihood and increasing in the “complexity level” of the model.
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Recent papers close to our contribution are References 11,13,14 and 15 provide an empirical dynamic assessment of
model risk for a range of US financial assets, proposing a measure of model risk defined as the ratio of the maximum
over the minimum VaR. Contrary to what we do here, they do not consider a reference estimate and implicitly give all
models the same level of plausibility, thus making the initial choice of the competing models more crucial than in our
paper; we view this as a drawback of their approach. More similarly to us, Reference 13 propose a methodology to rule
out models not passing some standard back-tests; then, they compute the mean absolute deviation of the VaR estimates
under all remaining models; and, finally, divide it by the mean estimate, in order to obtain a possible quantification
of model risk. Still, in their approach, no reference model is involved and all models receive equal weights. Moving to
model risk in energy markets,'* quantify parameter uncertainty in complex stochastic models where the sensitivities of a
derivative value, corresponding to specific pricing models, are used to quantify model risk in the economic evaluation of
power plants. And, a similar approach is taken by Reference 15, who assess the impact of parameter uncertainty on the
adaptation of investments to climate change. However, these latter two studies have a focus on valuation instead of risk
forecasting and do not compare estimation models as we do.

As far as the model design is concerned, we rely on the literature on risk forecasting which makes a widespread use
of GARCH-type models, since they are able to capture well-known features of financial time series, as non-normality
and volatility clustering. Moreover, their flexibility allows to model additional features, such as conditional skewness,
conditional excess kurtosis, and leverage effects. Therefore, following References 16-18, and 13 among many others, we
consider a set of competing AR-GARCH-type models, coupled with different parametric families of distributions for the
standardized innovations.

Given that the detection, quantification, and management of model risk are becoming crucial tasks, particularly in
energy and commodity markets where modelling is often complex, we provide empirical examples based on real data for
financial assets and commodities, studying the evolutions of RMMR from 2001 to 2015 for the Deutsche Bank stock prices,
the USD/EUR exchange rate, the German equity index, Brent crude oil prices, ICE UK natural gas prices, and the German
day-ahead auction electricity prices; hence, enlarging the set of energy commodities investigated in earlier studies.’

The paper is structured as follows: the definition of the Relative Measure of Model Risk, the construction of the
weights, and the description of the considered GARCH models are reported in Section 2. Data description and the pre-
liminary analysis are presented in Section 3, whereas empirical and simulated results are provided in Section 4. Finally,
Section 5 concludes.

2 | METHODOLOGY
2.1 | General setting

Let S denote the value of a financial variable, for example, a price or an index level. On day ¢, the value that the variable
S will take on the next day (that is S;41) is not known, but there is usually considerable interest in forecasting some of its
(probabilistic) characteristics. In particular, for fixed « € (0, 1), for example, « = 1% or 5%, we are interested in forecasting
the daily Value-at-Risk at level «, that is the quantity VaR implicitly defined by®

P(St+1 < St - VaR) =a.

Here, P is the probability on the underlying measurable space (Q, F), where all random variables are defined. Equiv-
alently, if F is the cumulative distribution function (cdf) of the price/index change variable Y;;1 = S;+1 — S;, that is,
F(x) = P(Y:;1 < x), then we can write

VaR = —F (). (1)

In other words, VaR is (minus) the a-quantile of Y;,;. Strictly speaking, all above probabilities are conditional on the
information set available up to day ¢, Z;, but we do not explicitly include this aspect in the notation, for ease of exposition.

>See References 19,20 and 17 among those considering energy brent, crude oil, heating oil, propane, and gasoline prices.
°In the present paper, all distributions of S, are absolutely continuous; in the more general case, the definition VaR = sup{x : P(S;;; < S, —x) > a}
may be employed.
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In the presence of competing distributions for Y;,1, each one yields a different VaR forecast through (1). In this paper,
a model is a parametric family M = {F( - ;0) : 0 € ©®} of univariate cdfs, depending on a vector of parameters 6 lying
in a parameter set ® C R?, p > 1. Each cdf is a plausible distribution for Y;;;, conditional on the information up to time
t. As such, the specification of F may contain, apart from the parameters, past observations of the variable S or related
variables, as better described in what follows.

We consider a finite set M = {My, ... ,Mg} of competing models for Y;;; (in the present paper K = 9). For each

k=1, ... ,K, themodel My = {Fk (-;0%) : 0% ¢ oW },with ©® ¢ RPx, is characterized by a different functional form
of the cdfs (Fy), different parameters (6%) and, possibly, a different number of parameters (py). Nested models are allowed
(i.e. My C M;). Each model My is fitted to data,” resulting in a fitted vector of parameters ﬁ(k) and an associated fitted model
f?k( -)=Fy ( - é(k)>. Finally, such a fitted model is used, via (1), in order to obtain a risk forecast, that we denote VaR.

As proposed in Reference 10, the Relative Measure of Model Risk (henceforth RMMR) for using a particular reference
forecast VaR* for VaR at level «, in the presence of the competing models in M, is defined by

max,, VaR — VaR*
max,, VaR —miny, VaR

RMMR =

()

where max,, VaR = max; VaR; and miny, VaR = miny VaR are respectively the highest and lowest risk values obtained
from the family of K fitted models.

The higher is RMMR, the lower is VaR* with respect to the other risk forecasts. In other words, a high level of RMMR
provides a signal that the reference forecast VaR* may be too optimistic and may significantly underestimate the actual
riskiness of the asset/index, a much undesirable situation. On the contrary, a low value of RMMR means that the reference
forecast is overestimating risk with respect to all other competing models. This is of course not desirable either, but less
so than risk underestimation.

It is natural to set the reference risk forecast either as the risk value under a given model (i.e., VaR* = VaRy- for fixed
k*) or as a weighted average under all models (i.e., VaR* = Y, w,VaRy for given non-negative weights summing to 1).
We note that in both cases VaR* necessarily lies between min,, VaR and max,, VaR, so that RMMR is in the unit interval
[0, 1]. However, it is also possible to set VaR* by other means, for instance via a model not belonging to the set M, or some
other forecasting procedure, not necessarily linked to the specified competing models (e.g., historical simulation). In this
case, VaR* does not need to lie between min,, VaR and max,, VaR, and this means that RMMR may turn negative or
higher than 1. We do not view this as a drawback: indeed, when VaR™ < min, VaR it means that the reference forecast
VaR* is lower than the lowest plausible forecast, and VaR is so underestimated that the model risk is higher than 1. For
instance, if RMMR = 3, then VaR* equals max,, VaR — 3 - (max,, VaR — min,, VaR), or, in plain words, VaR* is lower
than the highest plausible VaR by 3 times the range of plausible VaR.

It is immediately seen that RMMR is insensitive to scaling, meaning that if we change the currency or we rescale the
indices by a fixed constant, the resulting RMMR does not change.® This is a desirable feature of this measure of model
risk, not shared by other proposals made in the literature; see Reference 10 for a discussion on this important point and
further properties of RMMR.

The RMMR value clearly depends on both M and VaR*: indeed, excluding or adding competing models, or changing
the reference forecast surely affects the quantity computed in (2). In order to curb this sensitivity, one can consider, as we
do in the present paper, two procedures in which the set of competing models and the reference forecast are not fixed, but
they may change from day to day. These changes are solely driven by data and are based on empirical evaluation, thus
making the assessment of model risk less subjective and more intrinsic. We start with a set M of K competing models,
and we consider M to be wide enough for all our purposes. On a daily basis, we consider the VaR forecast under the best
fitting model as the reference one (M* € M); note that M* may (and does) change as we roll over the data window. In
addition, the weights wy reflecting the fitting ability of each model are computed and used for two purposes: first, they
are used to discard the worst fitting models, thus reducing the set of competing models to a set of plausible ones, P C M;
second, they are used to compute the weighted average of risk forecasts under the plausible models, thus giving more
influence to best fitting models. This weighted average, updated on a daily basis, is then used in place of VaR* in the
definition of RMMR. In the rest of this section, we are going to describe the above procedure in detail.

7 At this stage, it is irrelevant which inference method is used.
8This is true even if VaR is replaced by another positively homogeneous risk measure, such as Expected Shortfall.
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2.2 | Model selection and averaging

As described before, each single model M is specified by means of a p-dimensional vector of parameters 6, which may
include coefficients of regression of the conditional mean and variance, skewness and shape parameters.® Such parame-
ters are estimated via Maximum Likelihood on past data, resulting in a risk forecast computed using (1) under the fitted
model F. As a by-product of the estimation process, we compute the maximized value of the Likelihood function, L. This
quantity or, equivalently, the maximized Log-Likelihood, £ = log L, provides an important tool for ranking all considered
models according to their plausibility: the higher is 7, the better is the fit of the model to the data.

However, it has been argued that f when used for comparisons, should be corrected for the number of parameters
used to specify the model. This leads to two celebrated measures of fitting ability: the Akaike Information Criterion (AIC)
and the Bayesian Information Criterion (BIC), introduced in References 21 and 22, respectively. They are defined as

AIC=-2/+2p  BIC = -2/ +1log(n) p (3)

where p is the number of parameters in a model and n is the length of the dataset. Roughly speaking, the lower is AIC
or BIC, the better a model adapts to the given dataset. Both Information Criteria penalize for over-parametrization, but,
everything else being equal, the BIC penalization is stronger (indeed logn > 2 as long as n > 8), hence more desirable for
our purposes. The two criteria differ under other aspects: provided the “true” model is in the class of competing models,
the BIC is shown to detect it with probability tending to 1 as n increases, a property not shared by the AIC. In turn, the AIC
proves superior to the BIC under the opposite assumption that the true model is not among those considered. We refer to
References 23 and 12 for extensive discussion on AIC, BIC and other Information Criteria, not considered in the present
paper. In Section 4, we perform a preliminary comparison between results obtained through AIC and BIC, showing the
superiority of the latter criterion, at least for the goals of this paper.

At every given date and for any given asset/index, we declare as the “best” model the one providing the lowest value
of the Information Criterion IC (either AIC or BIC). Formally, the (daily) best model is

Mpest = arg.min {ICy : My € M} 4)

where ICy is the Information Criterion computed for the model Mj.. We can then use the estimate of VaR under the fitted
model resulting from My, that is VaRyeg, as the reference model in (2), and denote RMMRy,e¢ the resulting measure.

Going further, we use the IC values to build weights wy € [0, 1], one for each model M, that sum up to one. Such
weights should be decreasing functions of IC values, in such a way that models with good fitting ability have more influ-
ence: below, we present two possible constructions. Once the weights have been set, we can compute the weighted average
of all risk forecasts as

K

VaRuyg = ) wiVaRy ©)
k=1

where VaRy is the VaR forecast obtained under model M. This definition is a simple instance of a combination of forecasts,
a procedure which may substantially improve the accuracy of any of the individual forecasts; see Reference 24 for a review.
By using VaR,, in place of VaR* in (2), we obtain a quantity that we denote RMMRy,.

2.3 | Building weights

Asproposed in Reference 25, a simple way to build weights consists firstly in computing the so called IC differences defined
as

Ap =ICy — min ICjZO, k=1, ...,K
j=1,...K

°For instance, an AR(5)-GARCH(1,1) model with Student-t innovations is specified in terms of 10 parameters: six coefficients for the conditional
mean equation expressed as an Auto-Regressive process with five lags, three coefficients for the conditional variance equation following a GARCH
model, and finally one parameter for the degrees of freedom of the (standardized) Student-t distribution of innovations.
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so that Ay = 0 for the best model (i.e., the one with lowest IC); and, secondly, in defining the so-called Akaike weights as

wy = P/ (6)
YL, exp(=4/2)

By their definition, these weights are all positive and sum up to unity. The motivation for this construction is discussed
in Reference 23.1°

However, Akaike weights tend to take extreme values close to 0 or 1, as we document later. Hence, we propose an
alternative construction. First, we normalize all A to the interval [0, 1] through

max; A — Ay
a j B
k= —————"
max; Aj

in such a way that a low IC (i.e., A ~ 0) corresponds to a; ~ 1 and a high IC (i.e., Ay ~ max; A;) corresponds to a; =~ 0.
Then, we define the new weights as

2
a
W = @)

e .
Zj:l ajz

Again, it is immediately seen that these weights are non-negative and that their sum is one. Note that in both (6) and
(7), the weight w is decreasing in IC so that “good” models (i.e., models with low IC) receive high weight. The Akaike
weights have a theoretical appeal, while the ones in (7) seem quite ad-hoc. However, contrary to Akaike weights, the ones
we propose in (7) show a homogeneous empirical pattern, observed over almost all days and assets/indices (see Table 5
for further insights).

Since we are going to trim the set of models by excluding those with small weight, relying on (6) sometimes results in
an excessive shrinking of M. For the purpose of assessing model risk, the goal of the selection process should be aimed at
discarding the few models that perform particularly bad, rather than picking the few ones that perform particularly well.
For this reason, we believe that the weights we propose in (7) represent a better choice than Akaike ones. As we show
later, this insight is confirmed by the empirical results.

2.4 | Identifying the set of plausible models

The weights can be used for building a subset of plausible models on a daily basis. Indeed, by sorting them in descending
order, we can keep just the first ordered models until the cumulative weight passes a given threshold. In this way, the initial
set M of competing models can be shrunk by discarding the less plausible ones. Then, the maximum and minimum in
(2) can be computed on this reduced set of models. This use of weights in order to produce a sort of “confidence interval”
of models is discussed in Reference 23. Explicitly, let us assume that on a certain day the weights are sorted in descending
order as!!

Wra) > Wr@2) > ... > Wrk)
where 7 is a suitable permutation of {1, ... ,K}. Let kK’ be the lowest index greater or equal to 2 such that
kr
D Weay > 0.95.

k=1

0Basically, for two models having the same number of parameters, the ratio of their weights reduces to the ratio of their Likelihoods. This is true both
for AIC and for BIC (in the latter case provided the employed datasets have equal length).
Tn practice, the possibility of ties is remote.
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Then, the set
P ={Mu : 1§k§k’}CM ®)

can be interpreted as a sort of 95% confidence interval for the set of models, and we call it the set of plausible models (on
a given date).

The construction of P obviously depends on the threshold level; in principle, the higher is the threshold, the larger
is the set of plausible models. The choice of 0.95 is suggested in Reference 23, since it is the typical level employed for
building confidence intervals for estimated parameters. Later, we provide some empirical evidence on the robustness of
P with respect to the choice of the threshold.

Various alternative approaches for constructing a set of plausible models have been proposed in the statistical liter-
ature. For instance, Reference 23 propose a cut-off applied directly on the Information Criterion or on the maximized
Log-Likelihood, while Reference 26 discard models having a weight below 5% of the maximum weight. A quite dif-
ferent approach has been presented in Reference 27, where a so called model confidence set is produced through a
sequential procedure, involving at any step, an equivalence test (for detecting whether or not all models are equally
good) and an elimination rule (for discarding bad models). The procedure is run until all models are deemed equally
good. This approach is proved to possess good asymptotical properties, but we do not consider it in the present
paper.

Once the subset P C M has been built, then it is natural to restrict the average of VaR in (5) only to the plausible
models, hence arriving to a new definition of weighted average VaR as follows!?

2, ep WiVaRy

VaR,,, =
¢ ZM ep Wk

©)

Even though this new definition of VaR, is very close to the one in (5), this choice guarantees that RMMR;“‘,‘éd, defined
below, lies in [0, 1]. Moreover, the max/min VaR in (2) can be naturally computed over P instead of over the larger M.
Therefore, the modified RMMR is!?

RMMR™od — _ Maxp VaR — VaR*
" maxp VaR — minp VaR’

(10)

As before, in this definition VaR* may be: the VaR forecast under a fitted reference model M*, kept fixed for the entire
dataset; or, VaRyeg as defined above (notice that the best model necessarily lies in P); or, VaRyy, as defined in (9). The
resulting measures are denoted respectively RMMRX}Sd, RMMRL‘;‘;? and RMMR;“‘,‘g’d.

As discussed in Reference 10, reducing the set of models does not necessarily yield to a decrease in model risk. In
other words, for a given choice of VaR* we may (and we actually do often) observe the inequality RMMR™ > RMMR.
However, the use of weights to rule out badly fitting models should make the initial choice of the competing models less
crucial for the RMMR value.

For any fixed model M*, RMMR,» quantifies the (relative) model risk that we are prone to by fixing the reference
model m* and considering all alternative models as perfectly plausible. Instead, RMMRI\"/}‘;’d rules out the alternative
models which provide a poor fitting of the data on a specific day, deemed implausible. Then, RMMR]I\‘}Sd seems to provide
a more sensible assessment of the actual model risk than RMMRy,-. It must be noticed that when M* turns itself to be
implausible (i.e., M* & P), VaRy;- may'# not lie in the range [minp VaR, maxp VaR]. As a consequence, RMMR}\‘}?d does
not need to be constrained to the interval [0, 1]; however, as we already commented, measures of model risk make perfect
sense also in this case. Instead, it can be easily seen that RMMRpegt, RMMRE;‘;?, RMMR,,,; and RMMR;’Q,‘éd all lie in [0, 1]
by construction.

12A simpler approach, proposed by Reference 28 and going under the name of thick modelling, assigns equal weights to all plausible models.
13Note that when building 7 we have forced k' > 2, that is, we select at least 2 models, in order to prevent the denominator in (10) to vanish.
4Indeed, we observe this possibility in all our series.
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TABLE 1 Descriptive statistics for logarithmic returns and price changes computed over the full sample.
Asset Mean Std. dev. Min Max Skewness Kurtosis

Log-returns

DB —0.000313 0.0243 —0.1807 0.2230 0.21 11.65
$/€ 0.000038 0.0062 —0.0384 0.0461 0.09 5.55
DAX 0.000131 0.0153 —0.0887 0.1079 —0.02 7.62
OIL 0.000135 0.0212 —0.1696 0.1368 -0.10 7.01
GAS 0.000053 0.0364 —0.2627 0.4776 3.03 3243

Price changes

ELE 0.002372 11.26 —191.22 200.80 0.79 96.57

3 | DATA AND COMPETING MODELS

In the present paper we consider six variables: Deutsche Bank stock prices (henceforth: DB), USD/EUR exchange rate lev-
els ($/€), German equity index level (DAX); Brent crude oil prices (OIL), ICE UK natural gas prices (GAS), the day—-ahead
auction prices for electricity observed on the European Energy Exchange for delivery in the German/Austrian zones
(ELE). For each of the listed variables, let S; be their level on a given day t. As described in the previous sections, we are
interested in assessing model risk when forecasting VaR at level 1% or 5% for the variable Y;;; = Si41 — St

For all variables, but electricity prices, we follow common practice and we specify competing models for the log-return
Ri11 = 1og(S:41/S:) between t and ¢ + 1, so that

Y1 = Si(exp(Rey1) — 1).

Since S; is known at day ¢ (and positive) and h(x) = e* — 1 is strictly increasing, by known properties of VaR we have (at
any level «)

VaR(Yi1) = —Si(exp(=VaR(Rs41)) — 1) 11)

which directly links the VaR of the log-returns to the VaR of Y.

Instead, for electricity it is not possible to resort to log-returns, since prices may become negative: in this case, we
directly model the price difference Y;.;. The considered market zones (German/Austrian) are indeed characterized by a
high penetration of renewable energy sources which has increased the complexity of the electricity price dynamics, given
that wind (and solar to less extent) is highly variable and partially predictable. This results in nil or even negative prices,
the frequency of which has increased over the years and across several markets.

All time series have been collected from Datastream, from 01/01/2001 to 31/12/2015, and are quoted on a basis of 5
days per week (weekends not included), for a total of 3914 observations. Descriptive statistics of log-returns and price
differences (for electricity only) are presented in Table 1. In all considered series, there is clear evidence of asymmetry
and fat tails, especially for natural gas.

Among stylized facts for financial asset returns, we also find confirmation that the variance series, measured by squared
returns or squared price changes, displays positive correlation with its own past, hence giving support to a time-varying
volatility dynamics. In addition, the unconditional distributions of returns and price changes are definitely not nor-
mal.'> Furthermore, the inspection of empirical autocorrelation and partial autocorrelation functions, together with the
time-structure and non-normality of the data, suggest us to select autoregressive processes for the conditional mean
and a GARCH process for the conditional variance. For all series X;, where either X; = R; (log-returns, for the first five
assets/indices) or X; = Y; (price differences for electricity), we consider K = 9 competing models.

15Having more than 2000 but less than 5000 observations, we implemented the Shapiro-Francia test as in Reference 29, observing that the index
values for all assets are far from being nil (for the null hypothesis of normality) even if the magnitude of these indices is decreasing over time, clearly
indicating the departure from normality for all considered series.
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TABLE 2 Number of parameters (p) in each model.

Model GED GHYP JSU NIG NORM SGED SNORM SSTD STD

p 10 12 11 11 9 11 10 11 10

Specifically, each model is formulated as an AR(5)-GARCH(1,1), coupled with nine different parametric families of
distributions for the (standardized) innovations. Explicitly, for a given variable, we posit

Xi = U + 012y, 12)
where
5
p=T+ Y hiXi (13)
i=1

is the conditional mean following an AR(5) process, and
5[2 =w+aXo — 1) + ﬁo'tz_l (14)

is the conditional variance following a GARCH(1,1) model; the parameters w, « and f must satisfy known constraints.
The innovation series (Z;) are assumed IID with nine possible parametric standardized (i.e., mean 0, variance 1, whenever
these moments are defined) distributions, which are'®

1. the Normal distribution (NORM), with no additional parameters, other than location and scale;

2. the Student-t distribution (STD) with a tail parameter (degrees of freedom) in addition to location and scale;

3. the Generalized Error Distribution (GED), which generalizes the Normal distribution, with an additional tail
parameter;

4. the skewed generalizations of the previous three distributions, defined as in Reference 32, which present an additional
skew parameter: they are the Skew Normal (SNORM), the Skew Student-t (SSTD), and the Skew GED (SGED);

5. the Johnson’s Sy (JSU) distributions, obtained as parametric non-linear transforms of a standard Normal, with two
additional parameters;

6. the Normal Inverse Gaussian (NIG) which is a normal variance-mean mixture with the Inverse Gaussian as the mixing
distribution, with two additional parameters;

7. the Generalized Hyperbolic family (GHYP) which generalizes the NIG distribution, adding an extra-parameter that
gives further control on the tails.

Since within each family we are considering the standard representative, we are actually considering four types of
distributions:

1. NORM, which has no additional parameters and therefore cannot account for asymmetries or fat tails;

2. STD and GED, which have a tail parameter controlling tail thickness, but no parameter for the skewness (hence, they
are symmetric);

3. SNORM, which has a skew parameter, but not a tail parameter;

4. SSTD, SGED, JSU, NIG, and GHYP, which have both skew and tail parameters and with GHYP having actually two
tail parameters.

These distributions display different complexity levels, from very simple (but still common) choices like NORM, to
very flexible families, such as the JSU and GHYP. Therefore, we think that this set is large and diversified enough for our
purposes of assessing model risk. We stress that the complete specification of each of the nine models includes both the
parameters of the AR-GARCH part (9 in total: 6 for the AR part, 3 for the GARCH part) and the additional parameters of
the (standard) distribution of the innovations. The total number of parameters in each model is summarized in Table 2.

18The exact densities of these distributions are described in Reference 30 and implemented in the rugarch R-package (see Reference 31).
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4 | EMPIRICAL RESULTS
41 | The procedure

For any given asset/index, we estimate nine AR(5)-GARCH(1,1) models under the stated different distributional
assumptions.

After one of the above distributions is chosen, the parameters of both the AR-GARCH process and of the innovations
distribution are determined by Maximum Likelihood (ML)!7 on a daily basis, by adopting a rolling-window approach
with a window size of n = 256 past observations (one year of data). Explicitly, for any series and for two considered VaR
orders (@ = 1% or 5%) the step-by-step procedure can be summarised as follows:!3

1. We start on day t=261 considering an estimation window made of the last 256 observations, that is
W, = (Xi—2s5, ... ,X;). Note that when t = 261, the window is Wy = (Xs, ... , X261) as the first five observations have
to be excluded for the estimation of the AR(5) part of the model.

2. For any of the nine choices of the innovations distributions, we jointly estimate, by ML over the estimation window
W;, the parameters of the AR(5)-GARCH(1,1) model specified as in Equations (12), (13) and (14), together with the
additional distributional parameters.

3. For each given model, we compute the VaR for X;;:

VaR,(X;41) = —Hi1 + 6141 VaR(Zi41) (15)

where Jiy11 and 641 are obtained via (13) and (14), employing the estimated parameters, and VaR,(Z;,1) depends on
the estimated parameters for the innovations distribution.'® For electricity, this is already the final VaR forecast of the
price difference; otherwise, we need to apply the transform (11). In both cases, for each asset/index and both « = 1%
and 5%, we end up with the (nine) forecasted VaRy of the variable Y;,;, withk =1, ... ,9.

4. We use the maximized log-likelihood i of each model My, retrieved at step 2, to compute BICy (or AICy) values, using
(3) with n = 256 and pi being the number of parameters in model My summarized in Table 2.

5. We select the (daily) best model, that is, the one with lowest BIC/AIC; recall we denote VaRy.g the corresponding VaR
estimate.

6. We build the weights as in (7) and use them firstly to select the set of plausible models as in (8), and secondly to
compute the VaR,, as in (9).

7. We evaluate various (modified) RMMR values as in (10), taking as reference VaR either VaRy, for a fixed model
M* € {My, ... ,Mo}, or VaRpest Or VaR,y,.

8. We increment the time ¢ by one day and go back to step 2. Hence, at the second iteration, ¢t = 262 and Wy, =
(X7, ... ,X262) and so on.

Recalling that we have 3913 observations for our series X;, the procedure outlined above yields various series for
the RMMRs of length 3653 (i.e., 3913 — 261 + 1) which allow us to inspect their dynamics through days and even over
years.

To report some information about the estimation on the whole sample, we observe that the unconditional mean y is
generally non-significant, as expected from the descriptive statistics of returns and price changes. Secondly, heteroskedas-
ticity is an important feature to be included. On the contrary, evidence for skewness and kurtosis turns from significant
to non-significant values, according to the considered distributions.

In the remaining of this section, we present the main empirical findings of our study: the details of the best/worst
models, a comparison of weights built under the two schemes, and the analysis of the dynamics of the various Relative
Measures of Model Risk.

7Tt is worth to recall that Reference 13, instead, first use Quasi Maximum Likelihood (i.e., they estimate the parameters of the conditional mean and
variance as if innovations were normal), then estimate the remaining parameters on inferred innovations.

18 All computations were executed using the R software and the rugarch package on a PC with an Intel(R) Core(TM) i7 processor. Computational
times for each round of the procedure (i.e., steps 1 to 7) are in the order of few seconds.

19The Equation (15) relies on the known identity VaR(aX + b) = aVaR(X) — b (a > 0) applied to (12), noting that y,,, and o,,, are known at day ¢.
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4.2 | The best and worst models

Concerning the fitting performance of employed models, Table 3 shows the number of days in which any of the nine
distributions provided the lowest AIC/BIC values among all competing models for any asset/index. In Table 4, we indicate
for any asset which model has proved to be the best or worst one over the entire period, that is, it has provided the lowest
AIC/BIC (or the highest Maximized Likelihood, MaxL) for the highest or lowest number of days.

Looking at both tables, sometimes we observe marked differences between the rankings provided by the three cri-
teria, even though the number of parameters p in the models seem quite close each other (ranging from 9 to 12).
Indeed, MaxL just looks at the fitting ability, regardless of the complexity of the model, AIC imposes a soft penalty for
over-parametrization, and BIC magnifies the AIC penalty with a factor close to 3 (since log 256 =~ 5.5.) This is well exem-
plified by the rankings for Electricity (see Table 4): the best model according to MaxL is GHYP with p = 12 parameters;
this number is reduced to 11 by AIC, which selects JSU as the best model, and further reduced to 10 by BIC, for which
the best model is instead STD.

Looking at Table 3, we observe that for every asset there is no model clearly outperforming all other models. In partic-
ular, for each assets and criteria, the frequency with which the best overall model provides the lowest AIC/BIC remains
well below 40%.

Looking at Table 4, we can interestingly observe that GHYP, although having a complex structure able to cap-
ture many features of financial variables, does not rank best according to MaxL, except for Gas and Electricity. When
over-parametrization is taken into account (AIC/BIC), it even turns into the worst overall model. Not surprisingly the
NORM model always ranks worst for MaxL; however, when parameters are considered via BIC, it remains the worst
model only for Gas. Additionally, JSU and the relatively simple STD perform well for the three financial assets and Oil.
More generally, we observe that the best/worst models for Oil tend to be more in line with those of the three financial
assets than with those of the other two energy commodities.

TABLE 3 Number of days in which any given model provides the lowest AIC (and BIC, in parentheses) among all nine competing
models and across assets.

DB $/€ DAX OIL GAS ELE

GED 455 (594) 545 (697) 433 (574) 348 (456) 824 (1140) 372(591)
GHYP 39 (14) 418 (197) 157 (90) 54(9) 659 (501) 681 (504)
ISU 873 (639) 803 (742) 996 (762) 877 (636) 627 (559) 727 (633)
NIG 717 (577) 360 (324) 606 (501) 849 (645) 613 (521) 695 (542)
NORM 143 (359) 96 (180) 106 (272) 131 (345) 0(4) 41 (124)
SGED 242 (152) 370 (241) 388 (282) 288 (193) 596 (497) 321 (230)
SNORM 113 (183) 555 (596) 246 (327) 180 (254) 10 (16) 49 (58)
SSTD 374 (198) 142 (109) 273 (191) 398 (267) 159 (131) 331(278)
STD 692 (932) 359 (562) 441 (649) 523 (843) 160 (279) 431 (688)

TABLE 4 Listof the best and the worst overall models according to maximized likelihood (MaxL), AIC and BIC.

Best models Worst models
Assets MaxL AIC BIC MaxL AIC BIC
DB JSU JSU STD NORM GHYP GHYP
$/€ JSU JSU JSU NORM NORM SSTD
DAX JSU JSU JSU NORM NORM GHYP
OIL JSU JSU STD NORM GHYP GHYP
GAS GHYP GED GED NORM NORM NORM
ELE GHYP JSU STD NORM NORM SNORM
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TABLE 5 Akaike weights as in (6) versus weights as in (7) for nine different models specified for Gas on the 22 January 2002.

Model Akaike weights Weights as in (7)

GED 99.52 23.88

GHYP 0.00 0.00

JSU 0.00 13.24

NIG 0.08 16.49

NORM 0.00 0.00

SGED 0.00 12.39

SNORM 0.00 0.51

SSTD 0.36 17.90

STD 0.04 15.61

Note: Weights are in percentages.

These results clearly show the importance of accounting for the additional estimation effort when more parameters
enter in the model. Furthermore, it is possible to understand even better the importance of the penalty term when com-
paring these findings with the ranking depicted by simply looking at the Maximized Likelihood, since this step affects
the subsequent construction of weights and then the selection of models. Based on this evidence, we conclude that, in
our analysis, the AIC measure is not able to properly penalize for over-parametrization: for this reason in what follows
we just use BIC.

We have also inspected whether the best models, as selected via BIC, have a good predictive power as measured
through a suitable scoring function; and, results are reported in Appendix B.

4.3 | Empirical analysis of weights

We have already highlighted that a potential drawback of Akaike weights as in (6) is that they tend to assume extreme
values, close to zero or one. In order to provide empirical evidence of this aspect, we now make a comparison of the Akaike
weights as in (6) with the weights we propose as formulated in (7), when BIC is used as Information Criterion.

In Table 5 we report the two sets of weights computed the 22 January 2002 for Gas.?’ We observe that eight models
out of nine get almost vanishing Akaike weights, and just one model totals more than 99.5%; this behavior raises obvi-
ous doubts on the use of such weights in model trimming and averaging procedures. On the contrary, according to our
alternative construction, just three models receive negligible weights, while the remaining six models are characterized
by quite uniform weights, the highest one being just 24%.

Following the practice of assuming a threshold equal to 0.95, it is possible to identify the set of plausible models, which
in the case of Akaike weights reduces to?! P = {GED, SSTD}. On the contrary, according to our alternative weights, we
have

P = {GED, JSU, NIG, SGED, SSTD, STD}.

We repeated the analysis on all other assets and days, and the empirical results on our series show that most of the time at
least six models out of nine are deemed plausible according to our alternative weights. On the contrary, most of the time
just two out of nine models are deemed plausible using the Akaike weights. Even taking a threshold higher than 0.95 does
not seem to offer a practical solution when working with Akaike weights. Indeed, we find that a threshold guaranteeing
at least five plausible models on most days would be (much) higher than 99.99%.

When working with our proposed weights, we have also considered two other thresholds (0.90 and 0.99), building the
corresponding plausible sets . For each asset, it turns out that by moving the threshold from 0.95 to 0.90 we discard at

20 A similar pattern is observed across all other assets/indices and dates in our dataset.
2L And SSTD is included just because we enforce P to be made by at least two models.
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TABLE 6 Standard deviations and maximum values (in percentages) of the nine weights series for DAX.
Akaike weights Weights as in (7)
Std. dewv. Max Std. dev. Max
GED 32.48 99.99 8.42 50.41
GHYP 0.29 16.34 3.86 24.22
JSU 33.17 99.99 9.61 78.71
NIG 27.33 99.99 8.61 64.31
NORM 22.40 99.99 7.47 3591
SGED 23.47 99.99 8.22 63.91
SNORM 24.96 99.99 9.62 74.60
SSTD 17.56 99.99 6.93 48.65
STD 31.16 99.99 7.75 61.05

most a single model from P in nearly 90% of the dates. Likewise, by moving the threshold from 0.95 to 0.99 most of the
days we add at most a single model to P. We interpret these findings as an indication of robustness of our procedure with
respect to the adopted threshold (0.95).22

To provide further comparison between the two weighting schemes, Table 6 presents the standard deviation and the
maximum value on the entire dataset for all nine weights for DAX; results for other assets are similar hence omitted, but
available on request.

For each given distribution, we see that the Akaike weights have higher standard deviation compared to the alternative
ones. Furthermore, the maximum value of each Akaike weight over the entire sample is almost?®* 100% for eight out of
nine models, while it is always less than 80% for the weights proposed in (7). As a consequence of these two considerations,
we believe that the weights we propose represent a better choice for the analysis of model risk. Therefore, in what follows
we will compute them according to our construction as in (7), using BIC as previously motivated.

In order to provide a more complete picture, we provide in Table 7 the average, the standard deviation, the minimum
and the maximum values of the weights (as defined in (7)) computed over the entire period across assets and models. As
expected and identified in Table 4, for each asset the best overall model is characterized by a high mean weight (though
not necessarily the highest). Next, we can observe that the variability of weights does not seem very high, particularly
for the DB stock and OIL. The minimum value that any weight can reach is (almost) 0, while the maximum value never
exceeds 83%, as observed for the exchange rate.

4.4 | Historical dynamics of RMMR

Using the procedure outlined at the beginning of this section and employing weights computed as in (7) using BIC, we are
able to produce several series for the Relative Measure of Model Risk (RMMR), for all studied assets/indexes. Specifically,
our results refer to the following series, for VaR both at 1% and at 5%):

1. the base RMMR for a fixed reference model M*, denoted RMMR,,+ and computed as in (2);
2. the modified RMMR in terms of the plausible set P (with threshold 0.95), computed as in (10) for
- a reference model M* fixed throughout the sample period, that is, with VaR* = VaRy; we denote the
resulting measure RMMRZY;
- the daily best model, that is, with VaR* = VaRy.y as defined in (4); we denote the resulting measure

d.
RMMR}O;

22We also analyse the impact of moving the threshold from 0.90 to 0.99 directly on the RMMR values and, most of the days, we find the (relative)
difference quite small.
BPrecisely, it is higher than 99.9999% in all cases.
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TABLE 7 Descriptive statistics (in percentages) of the weights as in (7) for any given asset and model.

DB $/€ DAX OIL GAS ELE

GED Mean 13.18 15.13 14.63 12.60 18.17 14.19

Std. dev. 5.71 10.96 8.42 4.63 7.76 10.44
Min 0.05 0.00 0.00 0.00 0.00 0.00

Max 54.27 66.99 50.41 46.43 60.86 65.01

GHYP Mean 0.35 5.27 1.84 0.30 2.55 10.84
Std. dev. 0.99 7.31 3.86 0.87 2.57 9.33
Min 0.00 0.00 0.00 0.00 0.00 0.00

Max 6.96 32.27 24.23 6.29 16.50 59.98

JSU Mean 14.61 13.10 14.22 14.59 15.58 15.08
Std. dev. 6.43 14.05 9.61 5.51 6.20 9.62
Min 0.00 0.00 0.00 0.00 0.00 0.00

Max 53.22 82.83 78.71 35.74 58.34 79.64

NIG Mean 14.50 7.84 11.45 14.62 14.77 14.48
Std. dev. 6.51 10.14 8.61 5.93 6.61 9.62
Min 0.00 0.00 0.00 0.00 0.00 0.00

Max 46.80 81.11 64.31 33.34 60.24 81.17
NORM Mean 9.09 7.01 7.80 9.49 1.19 4.30
Std. dev. 6.26 7.31 7.47 6.62 3.23 7.21
Min 0.00 0.00 0.00 0.00 0.00 0.00

Max 39.00 43.55 3591 45.29 33.78 62.61

SGED Mean 11.79 13.65 13.80 11.49 16.93 12.41
Std. dev. 5.18 10.48 8.22 4.24 6.40 8.75
Min 0.00 0.00 0.00 0.00 0.00 0.00

Max 52.90 63.33 63.91 43.75 54.46 62.51
SNORM Mean 11.76 16.51 13.01 12.16 3.50 4.93
Std. dew. 5.35 13.67 9.62 4.45 5.13 7.10
Min 0.00 0.00 0.00 0.17 0.00 0.00

Max 51.10 76.28 74.60 37.93 49.25 51.29

SSTD Mean 11.73 9.76 11.01 11.99 13.07 11.55
Std. dev. 5.29 7.43 6.93 5.04 513 8.09

Min 0.00 0.00 0.00 0.00 0.00 0.00

Max 34.97 45.99 48.65 35.33 51.02 67.21

STD Mean 12.96 11.73 12.23 12.77 14.24 12.23
Std. dev. 5.55 8.69 7.75 5.12 5.18 8.45

Min 0.00 0.00 0.00 0.00 0.06 0.00

Max 38.93 44.30 61.05 34.26 48.21 56.16
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TABLE 8 Some descriptive statistics of the base RMMR (for VaR,4), for some choices of the reference models when considering the set
of all nine competing models, M.

Reference DB $/€ DAX OIL GAS ELE
Normal Mean 0.63 0.80 0.77 0.67 0.47 0.61
Std. dev. 0.26 0.26 0.24 0.25 0.31 0.35
Best model Mean 0.34 0.54 0.23 0.34 0.52 0.65
Std. dev. 0.24 0.30 0.22 0.22 0.28 0.30
Worst model Mean 0.99 0.43 0.98 0.99 0.96 0.65
Std. dev. 0.04 0.22 0.06 0.03 0.12 0.30

- the (daily) weighted average of estimates, that is, with VaR* = VaR,,, as defined in (5); we denote the

resulting measure RMMR;“‘,gd.

In Table 8 we present the average values and standard deviations of the base RMMR for VaR;¢, computed using the
fixed model NORM, and the asset-specific overall best and worst models as reference models (with respect to BIC as
summarized in Table 4).

We see that the average RMMR is lower when using the overall best model than when considering the overall worst
model, for four out of six assets, the two exceptions being $/€ and electricity. It is important to observe that, in principle,
a better performance of a model, as measured through its fitting ability does not necessarily mean a lower model risk.
Indeed, recalling the definition of RMMR, it is possible to observe low model risk when the VaR forecast produced under
the reference model is high in comparison to the forecast under the other models, which may not be the case even when the
best fitting model is taken as the reference one. For Electricity, it is interesting to note that all three considered reference
models are characterized by a comparable amount of model risk. On the contrary, we see that for some assets (notably, DB,
DAX, and OIL) the average model risk for the best and worst models are substantially different. Turning to the standard
deviation of RMMRs, we see that it is quite high and stable across assets for the best and the NORM model, and generally
lower for the worst models.

Table 9 shows the descriptive statistics related to various modified RMMR (for VaR;¢) as described before. First we
consider RMMRR“[:‘j for three fixed models M* throughout the sample, that is, Normal and asset-specific overall best and
worst models for BIC (as in Table 4). Then, we consider RMMR{)‘;‘;? (daily best model) and RMMRgégd (weighted average).

We can observe that for all assets (but electricity), the average RMMR for the overall best model is much lower than the
corresponding value for the worst model, with the latter being consistently greater than 1. Next, we see that the average
RMMR for the daily best model is the lowest one and, as expected, the RMMR for the average estimate is always close to
0.50. Since the RMMR for the best and worst models are not constrained to the interval [0, 1], we see a sharp increase of
their volatility, particularly for the worst model.?* On the contrary, the RMMR for the average estimate is stable around its
mean value. Finally, by looking at the maximum value, we can notice that the RMMR for overall worst models can take,
for all assets, values which are above 5 (even 16 in the $/€ case). Surprisingly high values, well beyond 1, are observed also
when considering the overall best models: this means that just fixing a model at the onset, regardless of how this model
is chosen, may carry a substantial amount of model risk. We notice that even when considering the daily best model, the
RMMR value can sometime reach its upper bound 1.

To show the dynamics of these measures, Figure 1 shows the daily values of the base RMMR for $/€ throughout 2002,
using JSU (overall best) as reference model. We can observe that in the first part of the year, the RMMR varies between
values close to 0 and 1, whereas they tend to remain below 0.5 in the second half of the year. However, in general the series
is volatile and this may mask the overall dynamics. A similar behaviour is observed for the RMMR series associated to
other assets and reference models. Therefore, in order to catch the long-run patterns and make easier comparisons across
models and assets, we continue our analysis by plotting rolling means computed on a 256-day basis.

To appreciate the dependence of the RMMR on the selected level of the Value-at-Risk (1% vs. 5%), we present in
Figure 2 the dynamics of the two series of rolling means for Gas, using NORM as the reference model. We see that the
difference is substantial and that model risk is higher for the lower value of @ (1%). This is in line with the well-received

%4This happens because the worst model seldom happens to be plausible.
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TABLE 9 Some descriptive statistics of the modified RMMR (for VaR;¢,) for some reference models, when considering the restricted set
of plausible models, P.

Reference DB $/€ DAX OIL GAS ELE
Normal Mean 0.98 1.05 1.05 1.04 1.31 0.64
Std. dev. 0.51 0.65 0.43 0.52 0.44 0.91
Max 7.66 15.92 7.44 5.95 5.55 5.04
Overall best model Mean 0.51 0.50 0.65 0.52 0.64 0.77
Std. dev. 0.35 0.49 0.36 0.32 0.33 0.44
Max 2.99 9.62 6.85 2.28 3.44 8.25
Overall worst model Mean 1.60 1.37 1.38 1.59 1.31 0.73
Std. dev. 0.50 0.67 0.44 0.46 0.44 0.50
Max 7.75 16.16 7.33 5.99 5.55 9.41
Daily best model Mean 0.28 0.27 0.24 0.31 0.20 0.29
Std. dev. 0.29 0.33 0.29 0.30 0.28 0.34
Max 1.00 1.00 1.00 1.00 1.00 1.00
Weighted average Mean 0.46 0.44 0.46 0.48 0.49 0.44
Std. dev. 0.11 0.14 0.12 0.11 0.13 0.14
Max 0.81 0.91 0.92 0.87 0.88 0.95
1
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FIGURE 1 Dynamics of base RMMR for VaR;y, for $/€ over 2002, with JSU as reference model.

L L L L L L
2004 2006 2008 2010 2012 2014

FIGURE 2 Dynamics of the (256-day rolling means) base RMMR,: for Gas, using NORM as reference model and comparing VaR;q
versus VaRsg,.
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FIGURE 3 Dynamics of the (256-day rolling means) base and modified RMMR for Gas, using GED as reference model. Top panel:
VaR,¢; bottom panel: VaRsg,.

fact that the Normal model tends to underestimate financial risks at low VaR levels (e.g., « = 1%), while it tends to
overestimate risks at high levels (e.g., « = 5%).

In Figure 3 we instead compare for Gas the dynamics of the base versus the modified RMMR (i.e., RMMRy- vs.
RMMRIH\}Ii’d) using the overall best model (GED) as the reference one, considering both VaR;¢ and VaRsg. Although dis-
playing roughly similar dynamics, the two quantities are sometimes quite apart. We can also notice that reducing the set
to just plausible models (i.e., moving from RMMR to RMMR™?) does not always yield a decrease in model risk. It seems
that the modified RMMR increased after 2008, when the financial crisis started, and a possible explanation can be found
in the progressive “financialization” of energy markets; see for instance.?

The analysis for other assets is reported in the Appendix A, whereas the main findings are summarized as follows:
(i) the overall worst model provides by far the highest amount of RMMR for DB, DAX, OIL and GAS; (ii) the overall best
and worst models provide comparable model risk for the $/€ and electricity; (iii) most of the time, using the daily best as
a reference model yields the lowest amount of model risk; (iv) using a Normal distribution clearly exposes to model risk;
(v) selecting each day the currently best fitting model exposes us to less model risk than using an a priori fixed one, even
though it is the overall best fitting model.

Finally, it may be rightly argued that a low model risk value in a period of high VaR may be as problematic as a high
model risk in a period of low VaR. Therefore, in Figure 4 we compare for DAX the base RMMR for VaR;4 under the
SSTD reference model, the normalized?> VaR, estimates (under the same SSTD distribution), and the product between
the RMMR and the normalized VaR forecast, over all days in 2003. We can see that around March-April this product
is roughly at the same level as in August-September, even though in the former period the model risk is clearly lower
(but VaR is higher). Therefore, we think that the product RMMRXxVaR (or a similar quantity) is a meaningful indicator,
providing precious additional insights.

%The VaR estimates are normalized by dividing them by their initial value (beginning of 2003), in order to ease the comparison.
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FIGURE 4 Dynamics during year 2003 of the base RMMR (VaR;) for DAX, using SSTD as reference model, of (normalized) VaR;4
estimates under the SSTD model, and of the product between the RMMR and the normalized VaR estimate over year 2003.

4.5 | Simulated series

In order to check how our approach works in a controlled setting, we applied it to two simulated series.?® In particular,
we simulate two series of returns using an AR-GARCH specification with a fixed set of parameters?’ and employ two
different distributions for the innovations: the NORM for the first series that we call “Series 1”, and the JSU for the second
series that we call “Series 2.2

As far as the first series simulated from a Normal is concerned, we include it in the initial set of competing mod-
els hence consider all nine distributions, as listed in Section 3. The aim of this part of the simulation is to inspect
what may happen if the “true” data generating process is among the competing ones. Then, on a daily basis, we fit all
nine models to the simulated series, we compute weights and identify the set of plausible models. Finally, we quantify
the relative measure of model risk, considering as reference models: the Normal (hence, the “true model”), the over-
all best, worst®® and the average VaR. Some numerical results are summarized in Tables 10 and 11. First and more
importantly, the NORM model turns out to be “plausible” 92% of times, whereas when real data were considered the
frequency for NORM was at most 50% and often much lower. Next, looking at Table 10, we see that the best overall
model (according to BIC) is the Skew Normal distribution (SNORM), which nests the NORM model and is deemed
plausible with a frequency of 96%. We also found that the mean weight for NORM and SNORM are 11% and 25%, respec-
tively, which sum up to 36%: all these means are much higher than those observed for the real series of the six assets
considered. Finally, looking at Table 11, we see that the values of model risk for different reference models are in line
with those found for the six assets (reported in Table 9). Therefore, we can state that the proposed trimming proce-
dure does not tend to discard the “true” data generating process, even if it is nested in a larger model (SNORM in this
current case).

As far as the second series is concerned, since it has been simulated from a JSU, this has been excluded from the
set of competing models. This part of the simulation aims at inspecting what may happen if the “true” data generating
process is not among the competing ones. We chose the JSU as it is not included in, nor it includes, any other competing
distributions and so it can be considered as quite “far” from the other models. Then, on a daily basis, we fit the remaining
8 models (thus excluding JSU) to the simulated series and we compute weights, plausible models and measures of model
risk, considering the same reference models as for “Series 1”: the overall best and worst (respectively, GED and NORM as

26We thank two referees for suggesting this extension of our investigation.

Y7Precisely, those obtained from fitting an AR(5)-GARCH(1,1) to gas series over the full sample.
28We used the software R and the package rugarch to run all simulations.

2 According to BIC and being respectively, SNORM and GED; as it can be seen in Table 10.
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TABLE 10 List of the best and worst overall models according to the maximized likelihood (MaxL) and BIC for the two series,
simulated from NORM in the first case and from JSU in the second one.

Best models Worst models

MaxL BIC MaxL BIC
Series 1 SNORM SNORM STD GED
Series 2 SGED GED NORM NORM

TABLE 11 Some descriptive statistics of the modified RMMR (for VaR;¢,) for some reference models for the two simulated series.

Reference Series 1 Series 2
Normal Mean 1.06 0.67
Std. dev. 0.47 0.48
Max 18.39 5.39
Overall best model Mean 0.55 0.55
Std. dev. 0.51 0.54
Max 16.77 5.35
Overall worst model Mean 1.03 0.67
Std. dev. 0.45 0.48
Max 17.06 5.39
Weighted average Mean 0.49 0.41
Std. dev. 0.15 0.11
Max 0.89 0.87

shown in Table 10) and the average VaR. These numerical results are summarized in Tables 10 and 11. We can notice that
the gap between the mean model risk under the worst and the best overall models is just 0.12, a value which is sensibly
lower than the corresponding gap found for all other real series, except for electricity. This finding shows that when the
set of competing models does not contain any model which is sufficiently close to the “true” one, there is no clear winner
in the race for the best model. This means that all models perform nearly at the same level, both for what concerns the
fitting ability and the model risk associated with their use.

5 | FINAL REMARKS AND CONCLUSIONS

In this paper, we provide an empirical assessment of model risk for both financial assets and energy commodities, imple-
menting a modification of a measure of model risk first proposed in Reference 10. Under the well-established setting
of GARCH models, but relaxing the assumption of normality, replaced by a wide range of alternative distributions for
innovations, we are able to quantify model risk over a long period.

In our empirical analysis, we adopt a general and commonly used modelling framework (i.e., GARCH), kept fixed
for simplicity. However, the procedure can be applied to a wide range of model designs, where the modelling is instead
adapted to the industry business, the peculiarity of the market or the specificities of the assets considered.

We propose the construction of new weights different from, and more uniform than, those introduced by Akaike.
Discarding the worst models, we restrict the set of “possible” models to a set of “plausible” ones on a daily basis. In this way
we can obtain a more intrinsic and robust assessment of model risk by deriving a pure number that allows comparisons
across markets, models and assets.
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Moreover, by averaging out the forecasts, using the weights we build, we never significantly over- or under-estimate
risk. Our empirical results emphasize that the distributional assumptions made in price modelling can produce a relevant
discrepancy in risk forecasts and then trigger substantial model risk.

In general, we find that better models tend to produce less model risk. Although not completely surprising, this pattern
is quite evident across different assets and levels of VaR. We also discover that, again not surprisingly, fixing a model at
the onset as the reference one, even if this model is the best performing over the entire period, generally carries much
more model risk than relying on models chosen day-by-day.

We also provide empirical evidence that the amount of model risk associated to a given model crucially depends on
the estimated risk measure. In particular, under normality we observe more model risk at the more extreme levels for
VaR. Instead, the model risk associated to the daily best distribution is more stable across VaR levels.

Finally, from a practical point of view, the proposed approach is timely and extremely relevant since the diffu-
sion of artificial intelligence, machine learning and big data are expanding the set of models at a fast pace. Hence,
it can provide support to the decision-making processes reducing the exposition to model risk and its potential
losses.

We elaborate a bit further on this point. From a practical point of view, the procedure delineated in this paper
can be used to answer the following question: given the analysis performed on the behaviour of the RMMR measure
for a set of competing models, which one should be used today to predict VaR for tomorrow? Indeed, let us first recall
that the RMMR value describes the relative position of a forecast with respect to the risk values provided by a set
of competing but all “plausible” models. As such, values of RMMR that are above (respectively below) 0.5 signal
a possible underestimation (overestimation) of risk. Both scenarios are undesirable, but underestimation can have
more serious consequences, and financial regulations acknowledge this fact. Therefore, the whole series of RMMR
values, computed daily for each competing model/forecast, can be used to “rank” the models. In practice, one can
consider a “scoring function” S such that S(0.5) =0, S is strictly decreasing for x < 0.5 and strictly increasing for
Xx > 0.5, and S(x) > S(1 — x) holds for x > 0.5. Note that the last requirement translates the fact that, given the same
departure from 0.5, underestimation (x > 0.5) has to be more penalized than overestimation. An example of such a
function is S(x) = (x — 0.5)? for x < 0.5 and S(x) = k(x — 0.5)> for x > 0.5, with a fixed k > 1. On daily basis and for
each model, S is evaluated at the RMMR value. Then, the average score for each model can be computed on a cho-
sen window and the model having the lowest average score can be considered as the best one as far as model risk is
concerned.
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APPENDIX A. FURTHER HISTORICAL DYNAMICS OF RMMR

Considering Value-at-Risk at level 1%, Figures A1 and A2 show, for each asset/index, the dynamics of the modified RMMR
using three possible reference distributions: the overall best and worst models (with respect to BIC as in Table 4) and the
daily best model, as defined on a daily basis by (4).

First, we notice that for DB, DAX, OIL and GAS the overall worst model provides by far the highest amount of RMMR,
consistently above 1. On the contrary, for the $/€ and Electricity series the overall best and worst models provide compa-
rable model risk, with the RMMR value for the former often close to or even above 1. Most of the time, using the daily
best as a reference model yields the lowest amount of model risk. We observe that there is no clear trend in none of the
RMMR series, except maybe for Gas, where the dynamics for RMMR associated to overall worst and best models display
a weak upward trend after 2008.

Figure A3 provides a comparison of the modified RMMRs across all six assets/indices, for both Value-at-Risk
at level 1% and 5%. Three different choices for the reference distribution are made: the fixed NORM distribution,
the daily best model for each asset and, finally, the overall best model for each asset with respect to BIC, as in
Table 4.

Looking at the graphs in the top row, we see that using a normal distribution clearly exposes to model risk, with average
values close to 1, particularly when @ = 1%. Looking at the two graphs on the middle row, the model risk carried by using
the daily best model is, as expected, quite moderate and stable, even if it sometimes displays some peaks, particularly
for energy commodities. The two bottom graphs show that the model risk associated to the overall best model can be
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FIGURE Al Dynamics of the (256-day rolling means) modified RMMR for VaR,q, using as reference models the overall best, the
overall worst, and the daily best models. Top panel: DB; middle panel: $/€; bottom panel: DAX.

substantial, particularly for Electricity, and when a = 5%. We can also notice that the model risk at « = 5% for $/€ turns
from very high values (around 1.7) to very low and even negative values.

Looking specifically at Electricity in Figure A4, we provide a graphical comparison of the modified RMMRs (with
VaR at level 1% and 5%) using the overall best model (STD), the daily best model and the weighted average forecast.
We can see that the overall best model produces the highest level of model risk, whereas the daily best model results
in the lowest level. This is not surprising given that the nature of these electricity prices changed dramatically with the
progressively increasing renewable generation, which acted as shape-shifters of the price densities, see Reference 34. In
the middle, the daily weighted average forecast case is characterized by a quite stable level of model risk, which mildly
fluctuates around 0.5: this comes at no surprise, given the definition of RMMR;“‘,‘éd. Similar results are recovered when
looking at the other assets, in line with the summary statistics in Table 9. We can conclude that if we change the model,
selecting each day the currently best fitting model, exposes us to less model risk than using an a priori fixed one, even
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FIGURE A2 Dynamics of the (256-day rolling means) modified RMMR for VaR;, using as reference models the overall best, the
overall worst, and the daily best models. Top panel: Oil; middle panel: Gas; bottom panel: Electricity.

though it is the overall best fitting model. Instead, averaging out plausible estimates has a double effect: it smooths the
dynamics of the RMMR and it additionally brings its level toward 0.5 and this means that we never significantly over- or
under-estimate risk.

APPENDIX B. BEST MODELS VIA SCORING FUNCTIONS

We assessed the predictive ability of the nine models for each of the six assets using a suitable scoring function. Precisely,
as our goal is quantile forecasting at level a, we employed the so-called pinball loss function defined as

Sa(x,y) = (x 2 ) — a)(x = y),
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FIGURE A3 Dynamics, across all six assets/indices, of the (256-day rolling means) modified RMMRs for VaR;, (left) and VaRs,
(right), using as reference models: NORM (top row), daily best model (middle row), overall best model (bottom row).

where I is the indicator function. We computed, for each model and asset, the average scoring over the entire dataset, that
is,

n
s 1
S==3 Su(xy)
h i=1

where n is the number of forecasts, X; is the quantile forecast (under a given model) issued at day i — 1 for the variable on

day i and, finally, y; is the series observation on day i. Good predictive ability is associated with low values of S.
Numerical results for the level @ = 1% are collected in Table B1, while in Table B2 we report, for each asset, the model

having the lowest average scoring for a« = 1% and a = 5%. For comparison, we display also the best model according
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FIGURE A4 Dynamics of the modified RMMR (averaged over a 256-day rolling window) for electricity, using the overall best model
(STD), the daily best model and the average model. Values for VaR;¢ (top panel) and for VaRs, (bottom panel) are reported.

TABLE Bl Average pinball for VaR at 1%.

DAX ELE
GED 0.376 0.217
GHYP 0.421 0.240
JSU 0.300 0.213
NIG 0.331 0.219
NORM 0.463 0.235
SGED 0.358 0.207
SNORM 0.381 0.237
SSTD 0.344 0.231
STD 0.361 0.235

Note: Values are multiplied by 1000 (but for ELE) to ease comparisons.

$/€

0.174
0.191
0.142
0.151
0.205
0.170
0.170
0.158
0.158

GAS OIL

0.625 0.490
0.791 0.537
0.736 0.420
0.734 0.398
0.697 0.631
0.653 0.488
0.804 0.505
0.750 0.444
0.732 0.463

DB

0.499
0.562
0.460
0.432
0.606
0.496
0.528
0.458
0.473

TABLE B2 Listof the models having the lowest average scoring for two values of « and best models according to BIC.

Assets a=1%
DB NIG
$/€ JSU
DAX JSU
OIL NIG
GAS GED
ELE SGED

o =5%
SNORM
SNORM
SGED
SNORM
SNORM
SNORM

BIC
STD
JSU
JSU
STD
GED
STD
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to BIC, as already presented in Table 4. We can see that, as far as the DAX, $/€, GAS, and OIL series are concerned,
models that provide superior in-sample fitting ability (as measured by BIC) tend to perform well also out-of-sample,
providing comparatively low mean values of the pinball loss, at least for « = 1%. Instead, the evidence for ELE and DB
is mixed.
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