
warwick.ac.uk/lib-publications  
 

 

 

 

 

 

A Thesis Submitted for the Degree of PhD at the University of Warwick 

 

Permanent WRAP URL: 

http://wrap.warwick.ac.uk/121448 

 

Copyright and reuse:                     

This thesis is made available online and is protected by original copyright.  

Please scroll down to view the document itself.  

Please refer to the repository record for this item for information to help you to cite it. 

Our policy information is available from the repository home page.  

 

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

http://go.warwick.ac.uk/lib-publications
http://wrap.warwick.ac.uk/
mailto:wrap@warwick.ac.uk


Random polymers
via orthogonal Whittaker and
symplectic Schur functions

Elia Bisi

Thesis submi�ed for the degree of Doctor of Philosophy

University of Warwick
Department of Statistics

July 2018





Contents

Contents iii

List of figures v

Acknowledgments vii

Declarations ix

Abstract xi

Introduction 1

1 Combinatorics and special functions 13
1.1 RSK-type correspondences . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.1.1 Combinatorial RSK correspondence . . . . . . . . . . . . . . . . . 13

1.1.2 Geometric RSK correspondence . . . . . . . . . . . . . . . . . . . . 18

1.1.3 Tropicalization and extended RSK . . . . . . . . . . . . . . . . . . . 26

1.2 Schur functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

1.2.1 Standard Schur functions . . . . . . . . . . . . . . . . . . . . . . . 29

1.2.2 Symplectic Schur functions . . . . . . . . . . . . . . . . . . . . . . 32

1.3 Whi�aker functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

1.3.1 gln-Whi�aker functions . . . . . . . . . . . . . . . . . . . . . . . . 36

1.3.2 so2n+1-Whi�aker functions . . . . . . . . . . . . . . . . . . . . . . 40

2 Log-gamma polymer models 45
2.1 Point-to-line polymers and Whi�aker functions . . . . . . . . . . . . . . . 47

2.1.1 Point-to-line polymer . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.1.2 Point-to-half-line polymer . . . . . . . . . . . . . . . . . . . . . . . 53

2.1.3 Restricted and symmetric point-to-line polymers . . . . . . . . . . 57

iii



Contents

2.2 Point-to-line polymers and contour integrals . . . . . . . . . . . . . . . . . 62

2.2.1 Point-to-line polymer . . . . . . . . . . . . . . . . . . . . . . . . . 64

2.2.2 Point-to-half-line polymer . . . . . . . . . . . . . . . . . . . . . . . 66

3 Last passage percolation models 69
3.1 Geometric last passage percolation . . . . . . . . . . . . . . . . . . . . . . 70

3.1.1 Point-to-line geometric model . . . . . . . . . . . . . . . . . . . . . 71

3.1.2 Point-to-half-line geometric model . . . . . . . . . . . . . . . . . . 74

3.1.3 Restricted point-to-line geometric model . . . . . . . . . . . . . . . 76

3.2 Exponential last passage percolation . . . . . . . . . . . . . . . . . . . . . 78

3.2.1 Point-to-line exponential model . . . . . . . . . . . . . . . . . . . . 81

3.2.2 Point-to-half-line exponential model . . . . . . . . . . . . . . . . . 86

3.2.3 Restricted point-to-line exponential model . . . . . . . . . . . . . . 87

3.3 Scaling limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

3.3.1 From determinants to Fredholm determinants . . . . . . . . . . . 90

3.3.2 Steepest descent analysis . . . . . . . . . . . . . . . . . . . . . . . 93

3.3.3 Point-to-line and GOE Tracy-Widom . . . . . . . . . . . . . . . . . 99

3.3.4 Point-to-half-line and Airy2→1 . . . . . . . . . . . . . . . . . . . . 104

Future plans and open problems 109

A Zero temperature limit 111

B Whi�aker functions in number theory 115
B.1 Maass forms and Whi�aker functions on GL2 (�) . . . . . . . . . . . . . . 115

B.2 Ishii-Stade parametrization . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

Bibliography 123

iv



List of figures

1 Directed la�ice paths in the point-to-line, point-to-half-line, and restricted

point-to-half-line geometries . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Examples of Young diagrams and tableaux . . . . . . . . . . . . . . . . . . 14

3 Visualization of the RSK correspondence . . . . . . . . . . . . . . . . . . . 15

4 Triangular arrays and Gelfand-Tsetlin pa�erns . . . . . . . . . . . . . . . . 17

5 Alternative ways to represent the output of the RSK correspondence . . . 18

6 Young-shaped polygonal arrays . . . . . . . . . . . . . . . . . . . . . . . . 19

7 Graphical representation of the local moves that compose the geometric

RSK correspondence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

8 “Half-triangular” arrays and symplectic Gelfand-Tsetlin pa�erns . . . . . . 32

9 Contours in the steepest descent analysis of an integral that converges to

the Airy function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

v





Acknowledgments

I am very grateful to my PhD supervisor Nikos Zygouras for truly caring about my

research project and giving me valuable advice.

I also wish to thank Jon Warren and Patrick Ferrari, who carefully examined my thesis,

provided useful suggestions, and stimulated interesting discussions.

Finally, I am thankful to Alejandra for always being there.

vii





Declarations

I declare that I have developed and wri�en this PhD thesis entitled “Random polymers

via orthogonal Whi�aker and symplectic Schur functions” completely by myself, under

the supervision of Nikos Zygouras, for the degree of Doctor of Philosophy in Statistics. I

have not used sources or means without declaration in the text. I also confirm that this

thesis has not been submi�ed for a degree at any other university.

During my PhD I have wri�en the following articles in collaboration with my super-

visor Nikos Zygouras:

• “Point-to-line polymers and orthogonal Whi�aker functions” [BZ17a], to be pub-

lished in Transactions of the American Mathematical Society ;

• “GOE and Airy2→1 marginal distribution via symplectic Schur functions” [BZ17b],

to be published in a Springer volume in honor of the 75th birthday of S. R. Srinivasa

Varadhan.

Chapter 1 deals with preliminary notions that can be found, o�en presented in a di�er-

ent form, in the literature (references are provided therein); some parts are also based

on [BZ17a]. Chapter 2 and section 3.2 are an extended version of the content of [BZ17a]

(even though some of the proofs in section 3.2 are obtained via di�erent methods). Sec-

tion 3.1 has not been published at the time of writing. Section 3.3 is based on the content

of [BZ17b]. Finally, some of the figures come from one of the two articles cited above.

ix





Abstract

This thesis deals with some (1 + 1)-dimensional la�ice path models from the KPZ

universality class: the directed random polymer with inverse-gamma weights (known as

log-gamma polymer) and its zero temperature degeneration, i.e. the last passage percola-

tion model, with geometric or exponential waiting times. We consider three path geome-

tries: point-to-line, point-to-half-line, and point-to-line with paths restricted to stay in

a half-plane. Through exact formulas, we establish new connections between integrable

probabilistic models and the ubiquitous Whi�aker and Schur functions.

More in detail, via the use of A. N. Kirillov’s geometric Robinson-Schensted-Knuth

(RSK) correspondence, we compute the Laplace transform of the polymer partition func-

tions in the above geometries in terms of orthogonal Whi�aker functions. In the case of

the first two geometries we also provide multiple contour integral formulas.

For the corresponding last passage percolation problems, we obtain new formulas in

terms of symplectic Schur functions, both directly via RSK on polygonal arrays and via zero

temperature limit from the log-gamma polymer formulas. As scaling limits of the point-to-

line and point-to-half-line models with exponential waiting times, we derive Sasamoto’s

Fredholm determinant formula for the GOE Tracy-Widom distribution, as well as the one-

point marginal distribution of the Airy2→1 process.
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Introduction

In statistical physics, surface growth models simulate the behavior of particles such as

atoms or molecules that, once ejected onto a surface, a�ach to each other and form grow-

ing islands. The most celebrated and studied equation that governs the behavior of ran-

domly growing interfaces in physics is the Kardar-Parisi-Zhang (KPZ) equation [KPZ86].

This is a nonlinear stochastic partial di�erential equation characterized by both local evo-

lution and local randomness:

∂th =
1
2
∂2
xxh +

1
2
(∂xh)

2 + Ẇ (t ,x ) ,

where Ẇ (t ,x ) is space-time white noise. The solution h(x , t ) is a random function that

represents the height of the surface and depends on a spatial coordinate x and a time coor-

dinate t . The KPZ equation is characterized, in one spatial dimension, by the fluctuation

exponent 1/3 and spatial correlation exponent 2/3, and by certain asymptotic distribu-

tions (such as the GOE and GUE Tracy-Widom distributions [TW94; TW96] from random

matrix theory) depending on the initial conditions.

Many influential mathematical works have analyzed a few probabilistic models that

in various ways represent discretizations of the KPZ equation, leading to remarkable con-

nections with random matrices, combinatorial structures, and representation theoretic

objects. This rich family of models, called KPZ universality class, includes:

• the problem of the length of the longest increasing subsequence of random permu-

tations [BDJ99; BR01a; BR01b], and the related last passage percolation [Joh00] and

polynuclear growth [PS00; PS02; Fer04] models;

• the asymmetric simple exclusion process (ASEP)† with step and step Bernoulli initial

conditions, solved via Bethe Ansatz by Tracy and Widom [TW09a; TW09b];

†This is an interacting particle system on � where each site is either occupied by one particle or empty.
Each particle independently, a�er a mean one exponential time, jumps one site to the right with probability p
and one site to the le� with probability 1−p. The jump is performed only if the target site is vacant, otherwise
nothing happens and the particle waits another independent exponential time.
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• the construction of Macdonald processes by Borodin and Corwin [BC14], including

various interacting particle systems that fall within this scope;

• the stochastic six-vertex model [BP16];

• the Brownian semi-discrete directed polymer studied by O’Connell [O’C12] and its

relation to the quantum Toda hamiltonian;

• the log-gamma directed polymer, introduced by Seppäläinen [Sep12] and further

studied in [COSZ14; OSZ14; BCR13; NZ17];

• the totally asymmetric simple exclusion process (TASEP)† with arbitrary initial con-

ditions, studied via the KPZ fixed point process [MQR16].

In this thesis we deal with a few discrete models within the KPZ universality class. In

particular, the two main random objects of interest will be the so-called polymer partition

function and last passage percolation (LPP), respectively defined by

Z :=
∑
π ∈Π

∏
(i, j )∈π

Wi, j , (0.1)

τ := max
π ∈Π

∑
(i, j )∈π

Wi, j . (0.2)

They are both associated to a given path geometry Π, i.e. a finite set of (nearest neighbor)

directed paths in the la�ice �2
>0 and to a field of independent random weights {Wi, j }

(assumed to be positive in (0.1)) assigned to the sites of the la�ice. Here, by directed path

we mean a finite sequence π = ((i1, j1), (i2, j2), . . . ) such that and (ik+1, jk+1) − (ik , jk )

is either (1, 0) or (0, 1); namely, at each step of the path, one and only one of the two

integer coordinates increases by one. The denomination “last passage percolation” is self-

explanatory. Indeed, if each variable Wi, j is thought of as a waiting time associated to

the site (i, j ), the total waiting time associated to a path is the sum of allWi, j ’s collected

along the given path; if then Π is the set of all directed paths that go across a region of

the la�ice, then τ is the maximal passage time necessary to cross such a region. On the

other hand, explaining where the denomination “polymer partition function” for Z arises

from will be also helpful to understand its deep connection with the LPP.

The directed polymer in random environment (see the lecture notes [Com17] for a recent

review) is a statistical mechanical model defined via the following probability measure P

†This particle system is a specialization of ASEP in the case p = 1, i.e. when particles can only jump to the
right.
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on a set Π of directed paths:

P (π ) :=
1

Z β,ω
e−βH

ω (π ) for π ∈ Π . (0.3)

The objects involved in the polymer measure are:

• a parameter β ≥ 0, o�en thought of as inverse temperature;

• a fieldω of random variables ωi, j assigned to each site (i, j ) of the la�ice;

• a hamiltonian function H that associates to each path π the energy

Hω (π ) := −
∑

(i, j )∈π

ωi, j ; (0.4)

• a normalization Z β,ω (depending on β andω), called partition function, that makes

P a probability measure.

According to the intuition, the higher the energy of a path, the lower its probability. Now,

thanks to (0.3) and (0.4), the partition function can be rewri�en as

Z β,ω =
∑
π ∈Π

eβ
∑

(i, j )∈π ωi, j =
∑
π ∈Π

∏
(i, j )∈π

eβωi, j (0.5)

and it corresponds to the variable defined in (0.1), if we setWi, j := eβωi, j for all (i, j ). It is

likewise clear that

lim
β→∞

1
β

logZ β,ω = max
π ∈Π

∑
(i, j )∈π

ωi, j (0.6)

is the LPP defined in (0.2) for the random environment ω. Since β is the inverse tem-

perature, the limit β → ∞ above is called zero temperature limit. For this reason, (0.2) is

considered to be the zero temperature version of (0.1). For a more in-depth and compre-

hensive analysis of the zero temperature limit, see Appendix A.

Let us mention that our two models have direct links to surface growth models: for

example, the LPP can be seen to be equivalent to a certain discrete polynuclear growth

model [PS00; PS02; Fer04]. In fact, both the polymer partition function and the LPP can

be viewed as discretizations of the solution to the KPZ equation with initial conditions

depending on the geometry of the la�ice paths [Cor12]. For instance, the point-to-point

geometry corresponds to the so-called narrow wedge initial condition for the KPZ equa-

tion.

Many breakthroughs in the se�ing of the KPZ universality class have been possible by

analyzing integrable models, where the choice of a particular distribution for the random

3
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environment permits to obtain exact formulas, typically in terms of special functions from

algebraic combinatorics and representation theory. For instance, this has been the case for

the point-to-point last passage percolation with geometric waiting times [Joh00], or the

log-gamma polymer [Sep12]. In this thesis we will focus precisely on the aforementioned

models, exploring new path geometries and discovering connections to di�erent special

functions.

Let us first discuss the log-gamma polymer, i.e. simply a polymer model with inverse-

gamma weightsWi, j ’s in (0.1) (or equivalently log-gamma weightsωi, j ’s in (0.5)). We refer

to point-to-point geometry as the set of all directed paths starting at a fixed point, usually

(1, 1), and ending at another fixed point, say (m,n). Using ideas from algebraic combina-

torics and in particular a geometric† li�ing (due to A. N. Kirillov [Kir01] and further stud-

ied in [NY04]) of the classical Robinson-Schensted-Knuth correspondence, in [COSZ14;

OSZ14] the point-to-point log-gamma polymer partition function was linked to GLn (�)-
Whi�aker functions. Whi�aker functions will be introduced in section 1.3. They are ubiq-

uitous in mathematics, as they appear for instance in the theory of automorphic forms,

mirror symmetry, quantum integrable systems, and representation theory (see [Lam13]

for a review). An earlier probabilistic connection to GLn (�)-Whi�aker functions had been

found out in [O’C12], for the Brownian semi-discrete polymer. In [COSZ14; OSZ14], the

Laplace transform of the point-to-point log-gamma polymer partition function was ex-

pressed, essentially, as an integral of two GLn (�)-Whi�aker functions - see (2.2). Fur-

thermore, using the Plancherel theory for GLn (�)-Whi�aker functions and a remark-

able Whi�aker functions’ integral identity due to Bump and Stade (see Theorem 1.16),

the aforementioned Laplace transform was also wri�en as a multiple contour integral of

gamma functions. This formula was subsequently turned into a Fredholm determinant

in [BCR13], thus facilitating the asymptotic analysis (KPZ fluctuation exponent 1/3 and

the GUE Tracy-Widom limiting distribution, in this case). We will review the point-to-

point log-gamma polymer model in the introduction to chapter 2.

Our contribution in the context of the log-gamma polymer amounts to exploring other

path geometries and establishing new connections to di�erent types of Whi�aker func-

tions. We still consider the directed polymer with inverse-gamma weights, but with the

endpoint lying free on a line. In particular, we take into account three di�erent geometries

of paths (see also Figure 1 for a graphical representation):

(i) point-to-line or flat geometry, where paths start from (1, 1) and end at any point of

the line {(m,n) : m +n = N + 1} for a fixed N (equivalently, all paths of a fixed length

N − 1 are considered);

†Originally named tropical by Kirillov.
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(a) Point-to-line path (b) Point-to-half-line path (c) Restricted path

Figure 1. Directed paths in �2
>0 of length 9. The three paths, highlighted

in red, correspond to three di�erent geometries, as specified. The picture is
rotated by 90◦ clockwise w.r.t. the Cartesian coordinate system, to adapt it to
the usual matrix/array indexing.

(ii) point-to-half-line or half-flat geometry, where paths start from (1, 1) and end at any

point of the half-line {(m,n) : m + n = N + 1, m ≤ n} for a fixed N ;

(iii) restricted point-to-line or restricted half-flat geometry, where paths start from (1, 1),
end at any point of the half-line {(m,n) : m + n = N + 1, m ≤ n} for a fixed N , and

are restricted to stay in the half-space {(i, j ) : i ≤ j}.

We will express the distribution of the log-gamma polymer partition function in the above

geometries in terms of Whi�aker functions associated to both GLN (�) and the orthog-

onal group SO2N+1 (�). In particular, the Laplace transform of the point-to-line, point-

to-half-line, and restricted point-to-line partition functions will be given, respectively,

in terms of: an integral of two SO2N+1 (�)-Whi�aker functions (formula (2.13)), an in-

tegral of one SO2N+1 (�) and one GLN (�)-Whi�aker function (formula (2.23)), and an

integral of one SO2N+1 (�)-Whi�aker function (formula (2.35)). It is interesting to note

the structure of these formulas in comparison to formula (2.2) for the point-to-point poly-

mer. Informally, one could say that “opening” each part of the endpoint’s “wedge” to

a (diagonally) flat part corresponds to replacing a GLN (�)-Whi�aker function with an

SO2N+1 (�)-Whi�aker function. However, a priori there is no obvious reason why this

analogy should take place.

Whi�aker functions associated to general Lie groups have already appeared in prob-

ability to describe the law of the Brownian motion on these Lie groups conditioned on

certain exponential functionals [BO11; Chh13]. In [Nte18], orthogonal Whi�aker func-

tions also emerged in the description of the Markovian dynamics of systems of interacting

particles restricted by a “so�” wall. In our se�ing, orthogonal Whi�aker functions emerge

through a combinatorial analysis of the log-gamma polymer via the geometric Robinson-

Schensted-Knuth correspondence. Using an extension of geometric RSK to polygonal

5
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arrays and its properties as in [NZ17], we determine the joint law of all point-to-point

partition functions with endpoint on a line or half-line, also when paths are restricted to

a half-plane (see Lemmas 2.4, 2.8, and 2.13). Subsequently, we derive integral formulas

for the Laplace transform of the various point-to-line partition functions a�er expressing

them as a sum of the corresponding point-to-point ones. Such formulas do not immedi-

ately relate to Whi�aker functions, but they do so a�er a certain change of variables and

appropriate decompositions of the integrals, thus leading to the aforementioned results.

Even though simple, the alluded change of variables is remarkable in the sense that it

precisely couples the structure of orthogonal Whi�aker functions with the combinatorial

structure of the point-to-line polymers and their Laplace transforms. As it will become

clear in the proofs of Theorems 2.5, 2.9, and 2.14, here the role of the Laplace transform

as a functional is crucial. In fact, we would probably not have been able to see the con-

nection to Whi�aker functions, had we aimed to compute di�erent functionals. On the

other hand, the Laplace transform determines the distribution and its use is thus totally

justified.

For the point-to-line and point-to-half-line cases, we go one step further by rewriting

the Laplace transforms as contour integrals involving gamma functions†. This is done

via the use of the Plancherel theory for GLN (�)-Whi�aker functions and certain spe-

cial integral identities. The Bump-Stade identity (1.59) expresses a certain integral of two

GLN (�)-Whi�aker functions in terms of gamma functions. The Ishii-Stade identity (1.67)

does a similar job for an integral of one SO2N+1 (�) and one GLN (�)-Whi�aker function.

They are important in number theory as they lead to functional equations for automorphic

L-functions, facilitating the study of their zeros [Bum89; Gol06]. Currently, integral iden-

tities for products of one GLN (�) and one SO2N (�)-Whi�aker functions are not available

in the literature; this is the reason why we restrict our presentation to polymers of odd

length, even though our combinatorial analysis would also allow us to write analogous

formulas for polymers of even length in terms of SO2N (�)-Whi�aker functions.

Calabrese and Le Doussal studied in [CL11; LC12] the continuum random polymer with

flat initial conditions. Via the non-rigorous approach of Bethe ansatz for the Lieb-Liniger

model and the replica trick, they exhibited that the Laplace transform of the partition func-

tion can be wri�en in terms of a Fredholm Pfa�ian, from which they obtained the GOE

Tracy-Widom asymptotics. Their method consisted in first deriving a series representa-

tion for the half-flat initial condition and then the flat case was deduced from the former

via a suitable limit. More recently, Grange [Gra17] applied the methods of Calabrese-Le

Doussal and of Thiery-Le Doussal [TL14] to study, again at non-rigorous level, the Laplace

†Even though we can also formally do it in the restricted point-to-line case, we miss the estimates that
would fully justify such a transformation.
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transform of the log-gamma polymer with endpoint lying free on a line.

Ortmann-�astel-Remenik [OQR16; OQR17] made some steps rigorous in the ap-

proach of Calabrese-Le Doussal, working on the ASEP with half-flat and flat initial con-

ditions (see also the earlier work [Lee10]). Notice that, in the context of particle sys-

tems on �, the flat state is an alternating configuration of particles and holes of type

· · · 01010101 · · · (where 1 denotes a particle and 0 a hole), whereas the half-flat state

· · · 01010000 · · · alternates particles and holes on one half-line and has holes only on the

other half-line. In the half-flat case [OQR16], a series formula was obtained for the q-

deformed Laplace transform of the ASEP height function. Formal asymptotics on this

formula suggested that the (centered and rescaled) limiting distribution should be given

by the one-point marginal of the Airy2→1 process. Even though such a limiting distri-

bution is expressed in terms of a Fredholm determinant, the Fredholm structure is not

apparent before passing to the limit. In the flat case [OQR17], on the track of [CL11;

LC12], a series formula was obtained for the same q-deformed Laplace transform of the

height function as a suitable limit of the half-flat case. This formula does not have an

apparent Fredholm structure either. A Fredholm Pfa�ian appears only for a di�erent q-

deformation of the Laplace transform, which has the drawback of not determining the

distribution of the height function.

Our approach is orthogonal to the methods used in the above works. We do not rely

on Bethe ansatz computations, but we rather explore the underlying combinatorial struc-

ture of the log-gamma polymer. Moreover, we do not derive the flat case as a limit of

the half-flat, but we work instead with their common features; this allows for a more

unified and systematic approach and gives access to other geometries too. We do not

pursue in this thesis an asymptotic analysis on the law of the partition functions, as our

primary focus has been the analysis of their combinatorial structure and the links to or-

thogonal Whi�aker functions. We hope, though, that the methods developed here can

provide a rigorous route to the asymptotics of the log-gamma polymer in the flat and

half-flat geometries; this is currently under investigation. Such a hope is also reinforced

by the fact that in the zero temperature case (see the discussion that follows) the formulas

that emerge from our approach provide alternative derivations of GOE Tracy-Widom and

Airy2→1 statistics.

We now pass to the zero temperature se�ing. In general, the last passage percolation

models are easier to analyze than the corresponding polymer models, thanks to the direct

availability of determinantal structures. For an overview on the LPP and other similar

integrable models related to random matrix theory and determinantal structures, we refer

the reader to [For10, ch. 10].

The first systematic study on the LPP model goes back to Johansson [Joh00], who ob-

7



Introduction

tained an exact formula for the point-to-point model with i.i.d. geometric waiting times

via the classical combinatorial Robinson-Schensted-Knuth (RSK) correspondence; he was

then able to derive the GUE Tracy-Widom distribution in the scaling limit. Baik and

Rains [BR01a], among other things, extended Johansson’s formula by considering geo-

metric waiting times with a wider range of parameters: this allowed expressing the dis-

tribution of the point-to-point LPP in terms of a sum of two Schur functions (see (3.2)).

Schur functions will be introduced in section 1.2. In representation theory, they appear as

characters of irreducible representations of classical groups [FH91], and can be defined

as certain sums over combinatorial structures such as Gelfand-Tsetlin pa�erns or Young

tableaux. They possess a very useful determinantal structure, which arises from the Weyl

character formulas as well as the Jacobi-Trudi identities.

Our contribution in this se�ing consists in studying the LPP models corresponding to

the same three path geometries considered in positive temperature, with either geometric

or exponential waiting times. In the geometric case, our formulas for the distribution of

τ will involve, besides standard Schur functions (i.e. characters of GLN (�)), which have

appeared so far in the study of LPP models, also symplectic Schur functions (i.e. charac-

ters of Sp2N (�)). In particular, we will find: a sum of two symplectic Schur functions in

the point-to-line case, see (3.6); a sum of one symplectic and one standard Schur function

in the point-to-half-line case, see (3.13); a sum of one symplectic Schur function in the re-

stricted point-to-line case, see (3.18). The proofs will be, in spirit, similar to the analogous

ones for the log-gamma polymer: they will be based on a suitable extension (described in

subsection 1.1.3) of the classical RSK correspondence, instead of its geometric li�ing as in

positive temperature.

Let us point out here that a formula for the geometric point-to-line LPP was already

given in [BR01a], and involves a sum of one standard Schur function parametrized by even

partitions - see (3.9). As such, Baik-Rains’s formula is essentially di�erent in its structure,

but still equivalent, to our point-to-line LPP formula (3.6) that involves a sum of two sym-

plectic Schur functions. See the discussion at the end of subsection 3.1.1 for more details.

Furthermore, Ferrari [Fer04] studied the flat polynuclear growth model, a continuous ver-

sion of the LPP model related to the Hammersley process. Methodologically, both [BR01a]

and [Fer04] used a symmetrization argument that amounts to considering point-to-point

LPP on a square array with symmetric environment about the antidiagonal; this turns out

to be essentially equivalent to the point-to-line LPP†. On the contrary, instead of applying

†If one thinks about that, it all comes down to the fact that max(2a, 2b, . . . ) = 2 max(a,b . . . . ). On the
other hand, the analogous statement in positive temperature is not true: the point-to-point partition function
for a symmetric environment about the antidiagonal does not equal the point-to-line partition function.
Again, the basic reason for this is quite simple: a2

+ b2
+ · · · , (a + b + . . . )2.

8
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the RSK to a symmetrized square array, we directly apply it to a triangular array; for this

reason, we need to use a generalization of RSK to generic polygonal arrays.

Let us now discuss the exponential LPP model, which is the most directly related to

the TASEP (see the introduction to section 3.2 for more details). The formulas (3.30), (3.34),

(3.38) we obtain for our three path geometries are similar to the geometric case, mutatis

mutandis: sums need to be replaced by integrals and discrete Schur functions by their

continuum analogs. Continuous Schur functions are continuous limits of rescaled Schur

functions, and by Riemann sum approximation turn out to be integrals on continuous

Gelfand-Tsetlin pa�erns (see (1.34) and (1.43)). Notice that, at this stage, we can obtain

these formulas in three di�erent ways: (i) via zero temperature limit from the log-gamma

polymer formulas, (ii) directly via RSK, and (iii) via exponential limit from the geometric

LPP formulas. We will see all these methods in action.

In principle, one might expect that, in the zero temperature limit, SO2n+1 (�)-Whi�aker

functions scale to the corresponding (continuous) orthogonal Schur functions. In fact, in

Proposition 1.18 we will see that orthogonal Whi�aker functions scale to (continuous)

symplectic Schur functions: this is why, for example, the integral of two orthogonal Whit-

taker functions for the point-to-line log-gamma polymer scales to an integral of two con-

tinuous symplectic Schur functions for the point-to-line exponential LPP. The reason for

this lies in the Casselman-Shalika formula [CS80], which links Whi�aker functions on a

group G to characters of the irreducible representations of the Langlands dual group of

G. Since the dual of the orthogonal group SO2n+1 (�) is the symplectic group Sp2n (�),

odd orthogonal Whi�aker functions are the analog of symplectic Schur functions. On

the other hand, since the dual of GLn (�) is GLn (�), GLn (�)-Whi�aker functions are the

analog of Schur functions.

We conclude this thesis by an asymptotic analysis of our point-to-line and point-to-

half-line exponential LPP models, finding KPZ fluctuations of orderN 1/3 and the expected

limiting distributions for these two path geometries. We thus provide a new route to the

GOE Tracy-Widom distribution and to the one-point marginal distribution of the Airy2→1

process respectively, via symplectic Schur formulas. Using the determinantal form of

Schur functions (1.35) and (1.44) and the so-called Cauchy-Binet identity (3.24), which

expresses the multiple integral of the product between two determinantal functions as

the determinant of a single integral, our Schur functions’ formulas (3.30) and (3.34) can

be turned into ratios of determinants (see (3.32) and (3.36)) and then into Fredholm de-

terminants, amenable to asymptotic analysis via steepest descent.

For the point-to-line model we obtain Sasamoto’s formula [Sas05] for the GOE Tracy-

Widom distribution, see (3.63) and (3.64). This expression is di�erent from the one origi-

nally derived by Tracy and Widom, first expressed in terms of Painlevé functions [TW96]

9
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and then in terms of a block-Fredholm Pfa�ian [TW98; TW05]. Sasamoto’s original deriva-

tion of (3.64) came through the analysis of TASEP with an initial configuration of the form

· · · 01010000 · · · , where 1 denotes a particle and 0 a hole. The presence of the semi-infinite

sequence of holes is technical and the actual focus of the asymptotic analysis in [Sas05]

is on the alternating particle-hole regime, which simulates the flat initial condition. The

starting point for this derivation was Schütz’s determinantal formula [Sch97] for the occu-

pation probabilites in TASEP, obtained via Bethe ansatz methods. A proof that Sasamoto’s

formula actually provides a di�erent expression for the GOE Tracy-Widom distribution

was provided in [FS05]. Subsequently to [Sas05], the Airy2→1 process was constructed

in [BFS08] by studying, again via Schütz’s and Sasamoto’s formulas, the asymptotic dis-

tribution of TASEP particles with initial configuration · · · 01010000 · · · , but now at the

interface between the le� half-line · · · 0101 of alternating particles-holes and the right

half-line 0000 · · · of holes.

Asymptotics recovering the GOE Tracy-Widom distribution as a limiting law have

been also performed in [BR01b; Fer04] for last passage percolation and polynuclear growth

models, as well as in the more recent nonrigorous work [LC12] for the KPZ equation with

flat initial data. All these already cited works derive Painlevé expressions or various forms

of block-Fredholm Pfa�ian formulas for the GOE Tracy-Widom distribution. In contrast,

our approach leads directly to Sasamoto’s Fredholm determinant formula (3.63)-(3.64), as

well as to the Airy2→1 marginal distribution (3.77)-(3.78).

Outline of the thesis. In chapter 1 we introduce the main technical tools that we

need (combinatorial and geometric RSK, Schur functions, and Whi�aker functions); in

this propaedeutic material we will provide most of the proofs to make this thesis as self-

contained as possible. Chapter 2 about the log-gamma polymer models is based on our

article [BZ17a]: we first present the Whi�aker integral formulas and then the contour

integrals. Chapter 3 about the LPP models is structured as follows: section 3.1 on the

geometric models does not appear as such in any published work; section 3.2 on the ex-

ponential models is still mainly based on [BZ17a], even though some proofs are di�erent;

section 3.3 on the asymptotic analysis of the exponential models is based on our second

article [BZ17b]. In appendix A we recap the zero temperature limit in the form we need

it; finally, in appendix B we discuss Whi�aker functions from a number theoretic point of

view.

Notation. We adopt the standard notations for number sets, such as �, � and �.

Other notations for number sets will be either self-explanatory, such as �≥0 for the set

of nonnegative integers, or defined where useful. We denote single numbers in nonbold

lower case le�ers (e.g. x ) and arrays of numbers - such as vectors, matrices, tableaux and

partitions - by bold lower case le�ers (e.g. x ). If such objects are random, we tend to

10
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use capitals: again, nonbold for numbers (e.g. X ) and bold for arrays (e.g. X ). We denote

by Γ(·) the gamma function. For a real random variables X , we call CDF its cumulative

distribution function x 7→ �(X ≤ x ). We also fix once for all the following probability

distributions†:

Distribution Notation Parameters Support Density/mass

gamma Gamma(α , β ) α , β ∈ �>0 x ∈ �>0
βα

Γ(α )x
α−1e−βx

exponential Exp(λ) λ ∈ �>0 x ∈ �>0 λe−λx

geometric Geom(p) p ∈ (0, 1) k ∈ �≥0 (1 − p)pk

†Notice that the parametrization of the geometric distribution is not the most standard one.
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Combinatorics and special functions

In this chapter we present some preliminary notions that will play a crucial role in

the thesis: combinatorial correspondences of RSK-type (section 1.1), Schur functions (sec-

tion 1.2), and Whi�aker functions (section 1.3). These tools will be used, in the following

chapters, to study the polymer and last passage percolation models in the various point-

to-line geometries described in the Introduction.

1.1 RSK-type correspondences

We first introduce the classical RSK correspondence as a combinatorial algorithm.

Next, we describe the so-called geometric RSK correspondence and its main properties.

Finally, we derive an extended version of the RSK algorithm as a suitable limit of the

geometric RSK.

1.1.1 Combinatorial RSK correspondence

The classical combinatorial Robinson-Schensted correspondence is a bijection between

permutations and pairs of standard Young tableaux of the same shape. Viewing permu-

tations as special {0, 1}-matrices (“permutation matrices”), it can be generalized to the

so-called Robinson-Schensted-Knuth correspondence (RSK), which is a bijection between

matrices of non-negative integers and pairs of semistandard Young tableaux of the same

shape. We further define the RSK and describe its main features; for further details and

proofs of the results we refer the reader to [Sta99].

A partition ofn of length l is a weakly decreasing sequenceλ = (λ1, . . . , λl ) of l positive

integers that sum up to n: we write λ ` n and l (λ) = l . The empty partition λ = ∅ is

the only one of length 0. A graphical representation of a partition is a Young diagram,

i.e. a finite collection of boxes arranged in le�-justified rows whose lengths are weakly

13
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(a) Young diagram cor-
responding to partition
(4, 3, 1).

1 1 2 3
2 4 4
4

(b) Semistandard Young
tableau of size 8, shape
(4, 3, 1), and type (2, 2, 1, 3).

1 1 2 2
2 3 4
4 4

(c) Semistandard Young
tableau obtained by inserting
2 into the previous one.

Figure 2. Examples of Young diagrams and tableaux.

decreasing, as in Figure 2a.

A Young tableau p is obtained by filling the boxes of a Young diagram with positive

integers; the size of p is its total number of boxes; the shape of p, denoted by sh(p), is the

partition that corresponds to the underlying Young diagram; the type of p is the sequence

(Type(p)1,Type(p)2, . . . ) such that Type(p)i is the number of i’s in p (the sequence is

actually finite, in the sense that Type(p)i = 0 for i large enough). A Young tableau is called

semistandard if its rows are weakly increasing and its columns are strictly increasing, as

in Figure 2b.

We now define the insertion of k ∈ �>0 into a semistandard Young tableau p = {pi, j }.

In the i-th row, starting from i = 1, we search for the smaller j such that pi, j > k . If such

a j does not exist, we simply add a box filled with k at the end of the i-th row; if such

a j does exist, we fill box (i, j ) with k and bump the old entry pi, j to the next row i + 1,

where we will try to insert it in the same way. Clearly, the procedure must stop in a finite

number of steps, producing a new semistandard Young tableau whose size is increased by

one, as the one of Figure 2c.

For any m × n matrix w = {wi, j } with entries in �≥0, we consider two words of the

same length, which are concatenations of weakly increasing words in the alphabet �>0:

(i) the word v := v1 . . .vm such that vi := 1wi,1 . . .nwi,n ;

(ii) the word v ′ := v ′1 . . .v
′
n such that v ′j := 1w1, j . . .mwm, j .

The RSK correspondence is defined as the map that associates such a matrix w to the

pair of semistandard Young tableaux (p,q), where p is obtained by inserting all numbers

appearing in word v successively (starting from the empty tableau) and q is obtained in

the same way using v ′ instead. It is immediate by construction that the j-th column ofw

sums up to the number of j’s in p, and similarly the i-th row of w sums up to the number

of i’s in q. Also observe that, transposing matrixw , the roles of p and q are interchanged.

Looking at the example of RSK given in figure 3, one notices that p and q are of the

same shape. This is not fortuitous, becauseq can also be constructed at the same time asp

14



1. Combinatorics and special functions

w =



1 2 1 1
0 1 1 0
3 0 0 1



v = 12234︸︷︷︸
v1

23︸︷︷︸
v2

1114︸︷︷︸
v3

�
v ′ = 1333︸︷︷︸

v ′1

112︸︷︷︸
v ′2

12︸︷︷︸
v ′3

13︸︷︷︸
v ′4

-

p =
1 1 1 1 3 4
2 2 2
3 4

?

q =
1 1 1 1 1 3
2 2 3
3 3

?

Figure 3. The RSK correspondence: matrix w is associated to words v and v ′,
which are in turn mapped to the corresponding tableaux p and q.

as follows: a�er inserting a number belonging to wordvi into p, a box is added to q in the

same position as the box added to p in the insertion procedure, and filled with i . It is clear

from this alternative construction that p andq, thus called insertion tableau and recording

tableau respectively, are of the same shape. In fact, any given pair of semistandard Young

tableaux with the same shape is the image of a unique �≥0-matrix under RSK.

The reason why we have introduced RSK lies in its connection with the directed last

passage percolation (LPP) model defined in the Introduction: the length of the first row of

the two output tableaux corresponds to the LPP from site (1, 1) to site (m,n) with waiting

timewi, j at site (i, j ). For example, in Figure 3, the LPP time onw from (1, 1) to (3, 4) is 6,

which is also the length of the first row of p and q. Let us just mention that the lengths of

the other rows ofp andq can also be expressed in terms of piecewise linear functions ofw ,

analogous to LPP and involving non-intersecting paths: the result is known as Greene’s

Theorem.

Let us now summarize the properties of RSK seen so far:

Proposition 1.1 ([Sta99]). Letm,n ≥ 1. The RSK correspondence is a bijection between ma-

tricesw = {wi, j } ∈ �
m×n
≥0 and pairs (p,q) of semistandard Young tableaux of the same shape

such that maxi, j pi, j ≤ n and maxi, j qi, j ≤ m. The RSK satisfies the following properties:

(i) If Πm,n is the set of all directed paths from (1, 1) to (m,n), then

sh(p)1 = sh(q)1 = max
π ∈Πm,n

∑
(i, j )∈π

wi, j .
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1.1. RSK-type correspondences

(ii) The type of p and q is determined by:

Type(p)j =
m∑
i=1

wi, j for 1 ≤ j ≤ n ,

Type(q)i =
n∑
j=1

wi, j for 1 ≤ i ≤ m .

(iii) If w
RSK
7−−−→ (p,q), then w>

RSK
7−−−→ (q,p).

We now introduce a further combinatorial object which is in a bijective correspon-

dence with semistandard Young tableaux. Let p = {pi, j } be a semistandard Young tableau

and, for all i, j ≥ 1, let

zi, j := #{entries ≤ i in the j-th row of p} . (1.1)

Notice that, for any given n ≥ maxi, j pi, j , we have that zn, j = zn+1, j = zn+2, j = . . . , hence

all zi, j with i > n are redundant and may be ignored. Moreover, by the column strict rule,

below the i-th row there can only be entries greater than i , so that zi, j = 0 for all j > i .

We may thus arrange all significant zi, j ’s in the triangular array

z = {zi, j : 1 ≤ j ≤ i ≤ n} . (1.2)

An important property of z is given by the interlacing conditions:

zi+1, j+1 ≤ zi, j ≤ zi+1, j for 1 ≤ j ≤ i < n , (1.3)

which follow from the column strict rule forp as well. A triangular array z of the form (1.2)

satisfying the interlacing conditions (1.3) is called Gelfand-Tsetlin pa�ern of height n and is

usually pictured as in Figure 4 (notice that rows are arranged with second index increasing

from right to le�). If, as in the case of (1.1), its entries are non-negative integers, we call

z a �≥0-Gelfand-Tsetlin pa�ern.

By construction, the i-th row (zi,1, . . . , zi,i ) ofz is the shape of the semistandard Young

tableau obtained by removing all boxes filled with numbers greater than i from the original

tableau p; in particular, the bo�om row (zn,1, . . . , zn,n ) is the shape of p, and is called

shape of z by analogy. It is likewise clear that the number of i’s in p equals the di�erence

between the sum of the i-th row of z and the sum of its (i − 1)-th row. Analogously to the
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1. Combinatorics and special functions

z1,1

z2,1z2,2

z3,1z3,2z3,3

zn,1zn,n

Figure 4. A triangular array of height n. If this is interpreted as a Gelfand-
Tsetlin pa�ern, the arrows illustrate the interlacing conditions: a → b means
a ≤ b. The arrows may also refer to the functional (1.48): E4 (z) is the sum of
all ratios a/b such that there is an arrow pointing from a to b in the diagram.

type of p, we then define the type of z by

Type(z)i :=
i∑
j=1

zi, j −
i−1∑
j=1

zi−1, j for i = 1, . . . ,n , (1.4)

where the empty sum equals 0 by convention (as we will always suppose from now on);

we thus have that Type(z) = Type(p).
As the correspondence described above between semistandard Young tableaux and

integer Gelfand-Tsetlin pa�erns is easily verified to be bijective, Proposition 1.1 can be

reformulated as follows:

Proposition 1.2. Letm,n ≥ 1. The RSK correspondence can be seen as a bijection between

matrices w = {wi, j } ∈ �
m×n
≥0 and pairs (z,z ′) of �≥0-Gelfand-Tsetlin pa�erns of height n

andm respectively and of the same shape. The RSK satisfies the following properties:

(i) If Πm,n is the set of all directed paths from (1, 1) to (m,n), then

zn,1 = z ′m,1 = max
π ∈Πm,n

∑
(i, j )∈π

wi, j .

(ii) The type of z and z ′ is determined by:

Type(z)j =
m∑
i=1

wi, j for 1 ≤ j ≤ n ,

Type(z ′)i =
n∑
j=1

wi, j for 1 ≤ i ≤ m .

(iii) If w
RSK
7−−−→ (z,z ′), then w>

RSK
7−−−→ (z ′,z).
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1.1. RSK-type correspondences

z =

4
3 4

1 3 5
0 2 3 6

z ′ =
5

2 5
2 3 6

(a) Pair of Gelfand-Tsetlin pa�erns with common shape (6, 3, 2), cor-
responding to p and q respectively.

t =



1 2 2 5
3 3 3 5
4 4 5 6



(b) Matrix constructed by
gluing together z and z ′.

Figure 5. Alternative ways to represent the output (p,q) of the RSK corre-
spondence illustrated in Figure 3.

For an m × n input matrix w , by the column strict rule the common shape of the

output tableaux p and q is at most of length m ∧ n, hence in the Gelfand-Tsetlin pa�ern

representation we have zi, j = 0 and z ′i, j = 0 for all (i, j ) such that j > m ∧ n (see for

example the zero entry of z in Figure 5a). Ignoring such zero entries, z and z ′ can be glued

together along their common shape to form a newm ×n matrix t = (ti, j ), as in Figure 5b.

For instance, whenm < n:

t =

zm,m zn,m = z ′m,m z ′1,1

z1,1 zm,1 zn,1 = z ′m,1





. (1.5)

In this representation, the common shape of the two Gelfand-Tsetlin pa�erns is thus given

by the (n −m)-th diagonal of t read in reverse order, i.e. starting from the bo�om-right

entry of the matrix.

1.1.2 Geometric RSK correspondence

As first observed in [BK01], the RSK can be entirely described by operations in the

tropical semiring with operations (max,+). Via a so-called geometric li�ing, i.e. by replac-

ing these operations with their analogs (+, ·) in the usual algebra, A. N. Kirillov [Kir01]

introduced the geometric RSK (gRSK) correspondence. In [OSZ14], this was expressed as a

bijection between matrices with positive entries via a composition of local birational maps

(called local moves). Here we mainly follow [NZ17], as the extension to generic polygonal

arrays presented therein is needed for the following chapters. Our description, however,

highlights all the possible sequences of local moves that make up gRSK equivalently, due

to their commuting properties.

We define a polygonal array to be a numeric array t = {ti, j : (i, j ) ∈ I} indexed by a
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t1,1 t1,2 t1,3 t1,4 t1,5 t1,6

t2,1 t2,2 t2,3 t2,4 t2,5

t3,1 t3,2 t3,3 t3,4

t4,1 t4,2 t4,3

t5,1 t5,2

t6,1

(a) Triangular array

t1,1 t1,2 t1,3 t1,4 t1,5 t1,6

t2,1 t2,2 t2,3 t2,4 t2,5 t2,6

t3,1 t3,2 t3,3

t4,1 t4,2 t4,3

t5,1 t5,2 t5,3

t6,1 t6,2

(b) Generic polygonal array

Figure 6. Examples of polygonal array, where all the border indices are circled
and the outer border indices are also highlighted in red. The arrows refer to
formula (1.11): E (t ) is the sum of all a/b such that there is an arrow pointing
from a to b in the diagram; the extra arrow pointing to t1,1 corresponds to
the term 1/t1,1. The figures also illustrate the ordering defined in (1.30), if one
interprets an arrow pointing from a to b as the inequality a ≤ b and the arrow
pointing to t1,1 as the inequality 0 ≤ t1,1.

finite set I ⊆ �>0×�>0 satisfying: if (i, j ) ∈ I, then (i−1, j ) ∈ I if i > 1, and (i, j−1) ∈ I
if j > 1. These conditions simply mean that I is the index set of a Young diagram, hence

t can be equivalently defined as a Young diagram filled with numbers. Given a set of

numbers S , we denote by SI the set of all polygonal arrays indexed by I with entries in

S . We say that (m,n) ∈ I is a border index for I if (m + 1,n + 1) does not belong to I, or

equivalently if it is the last (i.e. rightmost and bo�ommost) index of its diagonal. We call

(m,n) outer index for I if none of the three sites (m,n+1), (m+1,n), (m+1,n+1) belongs

to I, or equivalently if I \ {(m,n)} is still the index set of a Young diagram. Clearly, all

outer index is also a border index. See Figure 6 for a graphical illustration of t and its

border and outer indices.

We start by defining the following birational maps acting on w ∈ �I>0, with the con-

vention that w0, j = wi,0 = 0 but w1,0 +w0,1 = 1:

• for all (i, j ) ∈ I, ai, j replaces wi, j with

wi, j (wi−1, j +wi, j−1) (1.6)

and leaves all other entries of w unchanged;
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1.1. RSK-type correspondences

b2,2

b1,5

a5,3

(a) Commuting local moves.

ϱ4,3 ϱ4,5

(b) Commuting ϱi, j ’s.

Figure 7. Graphical representation of how local moves ai, j ’s and bi, j ’s and
maps ϱi, j ’s that compose the gRSK correspondence act on a polygonal array.
The arrows point from a node involved in the definition of a local move to a col-
ored node, which corresponds to the entry that is modified by the local move.
One can see that any two local moves commute if they are indexed by la�ice
vertices that are not nearest neighbors, and any two maps ϱi, j ’s commute if
they are indexed by vertices that do not belong to neighboring diagonals.

• for all non-border indices (i, j ) ∈ I, bi, j replaces wi, j with

1
wi, j

(wi−1, j +wi, j−1)

(
1

wi+1, j
+

1
wi, j+1

)−1
(1.7)

and leaves all other entries of w unchanged.

These maps are related to Bender-Knuth transformations [BK72], and are called local

moves because they act on matrices locally, modifying the entry (i, j ) only and using its

nearest neighbors only.

Next, we define the operation

ϱi, j := ©k≥1bi−k, j−k ◦ ai, j , (1.8)

where ©k≥1 indicates a sequence of compositions in which bi−k, j−k appears if and only

if (i − k, j − k ) ∈ I. It is clear from Figure 7a that two local moves indexed by (i, j ) and

(i ′, j ′) commute if they are not nearest neighbors, i.e. if ��i − i ′��+ ��j − j ′�� > 1. Consequently,

the order in which the local moves making up a single ϱi, j are applied does not ma�er.

Moreover, ϱi, j and ϱi′, j′ commute whenever the diagonals that (i, j ) and (i ′, j ′) belong to

are neither the same nor consecutive, i.e. ��(j − i ) − (j ′ − i ′)�� > 1, as illustrated in Figure 7b.

We can now construct, inductively on the size of I, the map gRSK: �I>0 → �
I
>0. For
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1. Combinatorics and special functions

the index set of size 0 we set gRSK(∅) := ∅, and for index sets of greater size we define

gRSK(w ) := ϱm,n

(
gRSK

(
w (m,n)

)
twm,n

)
, (1.9)

where (m,n) ∈ I is any outer index arbitrarily chosen,w (m,n) := {wi, j : (i, j ) ∈ I\{(m,n)}}
is the subarray of w that excludes entry (m,n), and t denotes concatenation. In words,

gRSK is first applied to the subarray of w that excludes entry (m,n), then the output is

concatenated with entry (m,n), and finally map ϱm,n is applied to the resulting array; we

call the la�er two steps insertion of wm,n .

For example, for arrays of shape (3, 2) we have:

w1,1 w1,2 w1,3

w2,1 w2,2

gRSK
7−−−−→

w1,2w2,1
w1,2+w2,1

w1,1w1,2 w1,1w1,2w1,3

w1,1w2,1 w1,1w2,2 (w1,2 +w2,1)
.

Notice that gRSK is well defined, because the order in which outer indices are chosen

does not ma�er: distinct outer indices are never on the same diagonal nor on consecutive

diagonals, so all ϱi, j ’s indexed by the outer indices of a given array commute.

In order to state the main properties of gRSK, it is convenient to introduce the follow-

ing notations. We denote by πk (t ) the product of all elements on the k-th diagonal of an

array t :

πk (t ) :=
∏

(i, j )∈I,
j−i=k

ti, j , (1.10)

with the convention that the empty product equals 1 (as we will always suppose from

now on). We also set the energy of t to be

E (t ) :=
1
t1,1
+

∑
(i, j )∈I

ti−1, j + ti, j−1

ti, j
, (1.11)

with the convention that ti, j := 0 when (i, j ) < I. See Figure 6 for a graphical illustration

of the energy of t .

Proposition 1.3. The gRSK correspondence is a bijection �I>0 → �
I
>0 that satisfies the

following properties, for any border index (m,n) ∈ I, w ∈ �I>0, and t := gRSK(w ):

(i) If Πm,n is the set of all directed paths from (1, 1) to (m,n), then

tm,n =
∑

π ∈Πm,n

∏
(i, j )∈π

wi, j . (1.12)
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1.1. RSK-type correspondences

(ii) If (m,n + 1) < I, then
πn−m (t )

πn−m+1 (t )
=

n∏
j=1

wm, j . (1.13)

Analogously, if (m + 1,n) < I, then

πn−m (t )

πn−m−1 (t )
=

m∏
i=1

wi,n . (1.14)

(iii) It holds that

E (t ) =
∑

(i, j )∈I

1
wi, j
. (1.15)

(iv) The transformation

(logwi, j , (i, j ) ∈ I) 7→ (log ti, j , (i, j ) ∈ I) (1.16)

has Jacobian equal to ±1.

We will provide a self-contained proof of this proposition, but let us first make a few

remarks. Property (i) explains how the point-to-point polymer partition functions, defined

in the Introduction, can be expressed in terms of the gRSK correspondence. In light of this

connection, the other properties turn out to be useful in computations related to the log-

gamma polymer, as it will become clear in chapter 2. We finally observe that property (ii)

is easily seen to be equivalent to the following: if (m,n) is a border index, then

πn−m (t ) =
m∏
i=1

n∏
j=1

wi, j . (1.17)

Proof. Since local moves are bijective, the gRSK correspondence is also a bijection. All

the properties can be proven by induction on the size of the arrays. The induction basis

is always trivial, as gRSK coincides with the identity for arrays of size 1. Let us prove

the induction steps, fixing an index set I of size greater than 1 and assuming that the

properties are true for arrays of smaller size.

(i) Assume first that (m,n) is an outer index. Then (1.9) holds and

tm,n = wm,n (tm−1,n + tm,n−1)

by the definition of local moves (see (1.8) and (1.6)). Moreover, (m−1,n) and (m,n−1)
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1. Combinatorics and special functions

are both border indices, hence by induction hypothesis

tm−1,n =
∑

π ∈Πm−1,n

∏
(i, j )∈π

wi, j and tm,n−1 =
∑

π ∈Πm,n−1

∏
(i, j )∈π

wi, j .

Since the penultimate site visited by any path in Πm,n is either (m−1,n) or (m,n−1),
(1.12) follows immediately.

Let now (m,n) be a generic border index. Since (m + 1,n + 1) < I, no insertion

performed a�er the insertion of wm,n can possibly modify entry (m,n). It follows

that tm,n equals the value of entry (m,n) a�er applying gRSK to the subarray of w

indexed by {1, . . . ,m} × {1, . . . ,n}; for this subarray (m,n) is an outer index, so (1.12)

holds true.

(ii) The proofs of (1.13) and (1.14) are analogous, so we will only give the first one.

Suppose first that (m,n) is an outer index, denote byw (m,n) the subarray ofw indexed

by I \ {(m,n)}, and let t (m,n) := gRSK(w (m,n) ). By induction hypothesis we can apply

(1.13) to w (m,n) , obtaining

πn−m−1 (t
(m,n) )

πn−m (t (m,n) )
=

n−1∏
j=1

wm, j . (1.18)

Using (1.9), (1.8), and the definition of local moves, we find:

πn−m (t ) = tm,n

∏
k≥1

tm−k,n−k

= wm,n (t
(m,n)
m−1,n + t

(m,n)
m,n−1)

∏
k≥1

t (m,n)
m−k−1,n−k + t

(m,n)
m−k,n−k−1

t (m,n)
m−k,n−k

t (m,n)
m−k,n−k+1t

(m,n)
m−k+1,n−k

t (m,n)
m−k,n−k+1 + t

(m,n)
m−k+1,n−k

=
wm,n

πn−m (t (m,n) )
πn−m+1 (t

(m,n) )πn−m−1 (t
(m,n) ) ,

under the usual notational conventions. Combining the la�er computation with (1.18),

and using the fact that πn−m+1 (t
(m,n) ) = πn−m+1 (t ) (the insertion of wm,n only mod-

ifies the (n −m)-th diagonal), one easily concludes (1.13).

Let now (m,n) be a generic a border index. Since (m + 1,n + 1) < I, no insertion

performed a�er the insertion of wm,n can possibly modify the (n −m)-th diagonal.

Since by hypothesis (m,n + 1) < I either, the same holds for the (n − m + 1)-th
diagonal. It follows that πn−m (t ) and πn−m+1 (t ) equal the corresponding values for

the image of the subarray indexed by {1, . . . ,m} × {1, . . . ,n}; for this subarray (m,n)

is an outer index, so (1.13) holds true.
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1.1. RSK-type correspondences

(iii) Choosing any outer index (m,n), by induction, it su�ices to prove that

E (t ) − E (t (m,n) ) =
1

wm,n
, (1.19)

where t (m,n) is the image under gRSK of the subarray of w indexed by I \ {(m,n)}.

Since the only entries that the insertion ofwm,n changes are the ones on the (n−m)-

th diagonal, it su�ices to analyze the addends of E (t ) that contain them. Firstly, for

each (i, j ) , (m,n) such that j − i = n −m, we rewrite the terms of E (t ) that contain

ti, j in terms of the entries of t (m,n) :

ti−1, j + ti, j−1

ti, j
+ ti, j

(
1

ti+1, j
+

1
ti, j+1

)
= t (m,n)

i, j
*.
,

1

t (m,n)
i+1, j

+
1

t (m,n)
i, j+1

+/
-
+
t (m,n)
i−1, j + t

(m,n)
i, j−1

t (m,n)
i, j

,

which results from applying local move bi, j to t (m,n) (notice that, in the only case

(i, j ) = (1, 1), ti−1, j + ti, j−1 and t (m,n)
i−1, j + t

(m,n)
i, j−1 are replaced with 1). On the other hand,

by applying local move am,n to t (m,n) , we find that the terms of E (t ) that contain tm,n

equal the inverse of wm,n :

tm−1,n + tm,n−1

tm,n
=

1
wm,n

.

From the la�er two equations, it is easy to conclude (1.19).

(iv) This property follows from the fact that gRSK is defined as a composition of local

moves of type ai, j and bi, j , and each of them is trivially volume preserving in loga-

rithmic variables.

Since we will also deal with polymers in symmetric environment, we now wish to

specialize the gRSK correspondence to symmetric arrays. The particular case of symmetric

matrices has been already studied in [OSZ14], but for our purposes it is useful to extend

the focus to polygonal arrays of arbitrary shape. We thus define the transpose of an index

set I as the index set I> := {(i, j ) ∈ �>0 × �>0 : (j, i ) ∈ I}; similarly, we define the

transpose t> of a polygonal array t by se�ing t>i, j := tj,i for all (i, j ) ∈ I>. An index set

I will be called symmetric if I = I>, and a polygonal array t indexed by a symmetric I

will be called symmetric if t = t>.

Properties (i)-(ii)-(iii) in Proposition 1.3 transfer directly to the case of symmetric ar-

rays. The volume preserving property is also satisfied:

Proposition 1.4. Let w ∈ �I>0 and t := gRSK(w ). Then gRSK
(
w>

)
= t>. In particular, if
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1. Combinatorics and special functions

w is symmetric, so is t . Moreover, in the symmetric case, the transformation

{logwi, j : (i, j ) ∈ I, i ≤ j} 7→ {log ti, j : (i, j ) ∈ I, i ≤ j} (1.20)

has Jacobian equal to ±1.

Proof. The fact that gRSK
(
w>

)
= gRSK(w )> is an easy consequence of the inductive

construction (1.9) of gRSK, since local moves are clearly symmetric, in the sense that

aj,i
(
w>

)
= ai, j (w )>, and the same holds for bi, j .

We now check the volume preserving property in the case of symmetricw , proceeding

by induction on the size of the array. For arrays of size 1 the gRSK is the identity, so the

statement trivially holds. Let us prove it for a given symmetric index set I of size greater

than 1, assuming it holds for any array of smaller size. Suppose first there exists an outer

index (n,n) on the diagonal: then t = ϱn,n (t
(n,n)

t wn,n ), where t (n,n) := gRSK(w (n,n) )

and w (n,n) is the subarray of w indexed by I \ {(n,n)}. Since w (n,n) is symmetric as w is,

by induction hypothesis we have that

(logwi, j : (i, j ) ∈ I \ {(n,n)}, i ≤ j ) 7→
(
log t (n,n)i, j : (i, j ) ∈ I \ {(n,n)}, i ≤ j

)
has Jacobian ±1. A�er the insertion of wn,n , due to the definition of local moves and the

symmetric constraint, the entries on the main diagonal can be wri�en in terms of wn,n

and t (n,n)i, j (i ≤ j), as follows:

tn,n = 2wn,nt
(n,n)
n−1,n , ti,i =

t (n,n)i−1,i t
(n,n)
i,i+1

t (n,n)i,i

for 1 ≤ i < n .

The thesis then follows from the fact that the transformations (x ,y) 7→ (2xy,y) and

(x ,y, z) 7→ (yz/x ,y, z) have Jacobian ±1 in logarithmic variables. Suppose now that I

has no outer index on the diagonal: then by symmetry we can find two outer indices

(m,n) and (n,m) withm < n. By induction, the volume preserving property holds for the

subarray of w indexed by I \ {(m,n), (n,m)} and its gRSK image. To recover the whole t ,

one still has to insert wm,n and wn,m . Since m < n, the insertion of wm,n only acts on the

entries on or above the diagonal and does not modify the volume preserving property, as

local moves have Jacobian ±1 (as we already noticed in the proof of Proposition 1.3-(iv)).

On the other hand, the insertion ofwn,m (which makes the whole array symmetric again)

does not modify the entries on or above the diagonal at all. This concludes the proof.
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1.1. RSK-type correspondences

1.1.3 Tropicalization and extended RSK

We now consider an appropriate limit of gRSK that results in an extension of the com-

binatorial RSK correspondence introduced in subsection 1.1.1. Such a limit is normally

called tropicalization, because it transforms the operations (+, ·) of the usual algebra into

the tropical operations (max,+), thus producing a piecewise linear map. In the terminol-

ogy of statistical mechanics, it corresponds to the zero temperature limit, whose meaning

in our se�ing has been explained in the Introduction and will be further discussed in Ap-

pendix A.

For any ε > 0, define дε : � → �>0 by дε (x ) := ex/ε , so that д−1
ε : �>0 → � is given

by д−1
ε (y) := ε log(y). For any index set I, we also define дε : �I → �I>0 by applying дε

to each entry of the array; we similarly define д−1
ε : �I>0 → �

I by entrywise application

of д−1
ε . Let us then set

RSK: �I → �I , RSK := lim
ε↓0

д−1
ε ◦ gRSK ◦ дε . (1.21)

We will shortly see in what sense the map defined above is an extension of the combina-

torial correspondence defined in subsection 1.1.1.

We first wish to express this RSK as a composition of local moves, similarly as for gRSK.

Using the recursive structure (1.9) of gRSK and the same notation of subsection 1.1.2, we

have that

д−1
ε ◦ gRSK ◦ дε (w ) = д−1

ε ◦ ϱm,n

(
gRSK

(
дε

(
w (m,n)

))
t дε (wm,n )

)
= д−1

ε ◦ ϱm,n ◦ дε
(
д−1
ε ◦ gRSK ◦ дε

(
w (m,n)

)
twm,n

)
,

for any outer index (m,n). We then set

ϱ̃m,n := lim
ε↓0

д−1
ε ◦ ϱm,n ◦ дε = ©k≥1b̃m−k,n−k ◦ ãm,n ,

where ãi, j := limε↓0 д
−1
ε ◦ ai, j ◦ дε and b̃i, j := limε↓0 д

−1
ε ◦ bi, j ◦ дε . Using the definition

of ai, j and bi, j and computing the limits, one can see that ãi, j and b̃i, j are the following

piecewise linear maps acting on w ∈ �I , with the convention that w0, j = wi,0 = −∞ but

max(w1,0,w0,1) = 0:

• for all (i, j ) ∈ I, ãi, j replaces wi, j with

max(wi−1, j ,wi, j−1) +wi, j (1.22)

and leaves all other entries of w unchanged;
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• for all non-border index (i, j ) ∈ I, b̃i, j replaces wi, j with

max(wi−1, j ,wi, j−1) +min(wi+1, j ,wi, j+1) −wi, j (1.23)

and leaves all other entries of w unchanged.

We have thus derived the inductive structure of RSK from the corresponding inductive

structure of gRSK:

RSK(w ) := ϱ̃m,n

(
RSK

(
w (m,n)

)
twm,n

)
, (1.24)

where (m,n) ∈ I is any outer index.

The action on arrays of shape (2, 2), for instance, is given by:

w1,1 w1,2

w2,1 w2,2

RSK
7−−−→

min(w1,2,w2,1) w1,1 +w1,2

w1,1 +w2,1 w1,1 +w2,2 +max(w1,2,w2,1)
.

As one can easily check for this example, we are indeed dealing with an extension of the

combinatorial RSK introduced in subsection 1.1.1, in a twofold sense: nonnegative integer

entries are replaced with real entries, and matrices are replaced with more general polygo-

nal arrays. Namely, the image under this map of a matrix with nonnegative integer entries

is the matrix (1.5) obtained by gluing together the two output �≥0-Gelfand-Tsetlin pat-

terns of the classical combinatorial RSK. The generalization of RSK to input matrices with

real entries was first introduced in [BK01], and described - as we did - as a composition

of piecewise linear local maps in [OSZ14].

All the properties of gRSK seen in subsection 1.1.2 can be specialized to RSK, either

by taking the appropriate limit or by using the inductive construction (1.24) of RSK di-

rectly. In particular, properties (i), (ii) and (iii) of Proposition 1.3 are all of the form

φ (w ) = ψ (gRSK(w )) for certain rational functions φ,ψ : �I>0 → �>0; therefore, the cor-

responding RSK properties read as φ̃ (w ) = ψ̃ (RSK(w )), where φ̃ := limε↓0 д
−1
ε ◦ φ ◦ дε and

ψ̃ := limε↓0 д
−1
ε ◦ψ ◦ дε . They can also be practically obtained by formally replacing (+, ·)

with the tropical operations (max,+). On the other hand, the bijective, symmetric and

volume preserving properties of RSK that we will state can be easily deduced from the

definition of the piecewise linear local moves. For convenience, let us denote by σk (t ) the

sum of all elements on the k-th diagonal of an array t :

σk (t ) :=
∑

(i, j )∈I,
j−i=k

ti, j . (1.25)

Proposition 1.5. The RSK correspondence is a bijection�I → �I that satisfies the follow-
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ing properties, for any border index (m,n) ∈ I, w ∈ �I , and t := RSK(w ):

(i) If Πm,n is the set of all directed paths from (1, 1) to (m,n), then

tm,n = max
π ∈Πm,n

∑
(i, j )∈π

wi, j . (1.26)

(ii) If (m,n + 1) < I, then

σn−m (t ) − σn−m+1 (t ) =
n∑
j=1

wm, j . (1.27)

Analogously, if (m + 1,n) < I, then

σn−m (t ) − σn−m−1 (t ) =
m∑
i=1

wi,n . (1.28)

(iii) It holds that

min
(i, j )∈I

{t1,1 , ti, j − ti−1, j , ti, j − ti, j−1} = min
(i, j )∈I

wi, j , (1.29)

with the convention that ti, j := −∞ when (i, j ) < I. In particular, RSK can be restricted

to a bijection between arrays indexed by I with non-negative real entries, such that the

output array satisfies the following ordering: for all (i, j ) ∈ I

ti−1, j ≤ ti, j if i > 1 and ti, j−1 ≤ ti, j if j > 1 . (1.30)

(iv) The transformation w 7→ t has Jacobian equal to ±1 almost everywhere.

It is clear that properties (i) and (ii) of Proposition 1.5 are a generalization of (i) and (ii)

of Proposition 1.2 respectively, whereas property (iii) corresponds to the non-negativity

and interlacing conditions that the two output Gelfand-Tsetlin pa�erns satisfy in the com-

binatorial RSK. The ordering (1.30) can also be visualized in Figure 6.

Proposition 1.6. Let w ∈ �I and t := RSK(w ). Then RSK
(
w>

)
= t>. In particular, if w is

symmetric, so is t . Moreover, in the symmetric case, the transformation

{wi, j : (i, j ) ∈ I, i ≤ j} 7→ {ti, j : (i, j ) ∈ I, i ≤ j} (1.31)

has Jacobian equal to ±1 almost everywhere.

The symmetric property stated in the la�er proposition generalizes property (iii) of

Proposition 1.2.
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1.2 Schur functions

Schur functions, named a�er Issai Schur, appear in various branches of mathematics,

especially in Young tableaux combinatorics and in the representation theory of classical

Lie groups; see [Sun90] for a survey about the connection between these two viewpoints.

In this section, we will introduce the two types of Schur functions that are relevant to our

purposes: “standard” Schur functions (related to general linear groups) and symplectic

Schur functions (related to symplectic groups).

1.2.1 Standard Schur functions

Schur functions (that we call “standard” in order to distinguish them from their sym-

plectic analog) are symmetric polynomials indexed by integer partitions and form a basis

for the algebra of symmetric functions. In combinatorics they are viewed as generating

functions of semistandard Young tableaux, or Gelfand-Tsetlin pa�erns equivalently, and

are connected to the RSK correspondence (we will see this connection, from a probabilis-

tic standpoint, in the introduction to chapter 3). They also occur in the representation

theory of symmetric groups, general linear groups and unitary groups, as characters of

finite-dimensional irreducible representations. Finally, Schur functions find applications

in algebraic geometry, especially in the Schurbert calculus and the theory of Grassmann

varieties. For a detailed treatment of Schur functions we refer the reader to [Sta99].

We will give the combinatorial definition of Schur functions in terms of Gelfand-

Tsetlin pa�erns. Recall from subsection 1.1.1 that a Gelfand-Tsetlin pa�ern of height n is a

triangular array of the form (1.2) satisfying the interlacing conditions (1.3) (see Figure 4).

Given x ∈ �n and a set S ⊆ �, let us denote by GT4nS (x ) the set of all Gelfand-Tsetlin

pa�erns of height n with entries in S and shape (i.e. bo�om row) equal to x . Notice that

GT4nS (x ) is empty whenever the chain x1 ≥ · · · ≥ xn fails to hold. Recall the defini-

tion (1.4) of type for a Gelfand-Tsetlin pa�ern.

Definition 1.7. The (standard) Schur function inn variablesa = (a1, . . . ,an ) ∈ �
n indexed

by an integer partition λ of length at most n is the polynomial

sλ (a) :=
∑

z ∈GT4n
�

(λ)

n∏
k=1

a
Type(z )k
k . (1.32)

As characters of the irreducible representations of GLn (�), Schur functions can be
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wri�en as a ratio of determinants by the Weyl character formula [FH91]:

sλ (a) =
det

(
a
λj+n−j
i

)
1≤i, j≤n

det
(
an−ji

)
1≤i, j≤n

=

det
(
a
λj+n−j
i

)
1≤i, j≤n∏

1≤i<j≤n (ai − aj )
, (1.33)

being the denominator a Vandermonde determinant. It is clear from the above formula

that Schur functions are symmetric, i.e. invariant under the action of �n (which is the

Weyl group associated to GLn (�)) on its arguments.

It can be easily deduced from either the definition or the determinantal formula that

sλ+k (a) = *
,

n∏
i=1

ai+
-

k

sλ (a) ,

where λ + k stands for (λ1 + k, . . . , λn + k ). This remark permits extending the definition

of Schur functions and its associated determinantal formula to any λ ∈ �n such that

λ1 ≥ · · · ≥ λn . Notice however that, if we do not require λn ≥ 0, the functions thus

obtained are in general not polynomial but Laurent polynomials.

In chapter 3 we will come across a natural “continuous version” of Schur functions,

which is essentially obtained from (1.32) by replacing the sum on integer Gelfand-Tsetlin

pa�erns with an integral on real Gelfand-Tsetlin pa�erns.

Definition 1.8. We define the continuous (standard) Schur function indexed by a param-

eter α = (α1, . . . ,αn ) ∈ �
n to be

scont
α (x ) :=

∫
GT4n
�

(x )

n∏
k=1

eαk Type(z )k
∏

1≤i<n
1≤j≤i

dzi, j (1.34)

for all x = (x1, . . . ,xn ) ∈ �
n such that x1 > · · · > xn .

We point out that, if some of the inequalities in x1 > · · · > xn are replaced with

equalities, then some of the entries of any z ∈ GT4n
�

(x ) are “blocked” by the interlacing

conditions (e.g., if xn−1 = xn , then zn−1,n−1 must also equal them). Therefore, in this case

GT4n
�

(x ) has zero Lebesgue measure and the integral in (1.34) vanishes.

We also remark that, comparing to (1.32), the roles of the parameter and the argu-

ment are exchanged in (1.34): we have adopted this notation in the continuous se�ing

by analogy with the usual notation of Whi�aker functions, whose scaling limits are just

continuous Schur functions (see section 1.3 and in particular Proposition 1.14).

By Riemann sum approximation, continuous Schur functions are indeed the continu-
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ous limit of Schur functions:

scont
α (x ) = lim

δ ↓0
δn (n−1)/2

∑
z ∈GT4n

�
(x /δ )

n∏
k=1

eδαk Type(z )k

= lim
δ ↓0

δn (n−1)/2s bx /δ c
(
eδα1 , . . . , eδαn

)
.

By plugging formula (1.33) for Schur functions into the la�er expression and computing

the limit, one can see that continuous Schur functions also have a determinantal form:

scont
α (x ) =

det
(
eα jxi

)
1≤i, j≤n∏

1≤i<j≤n (αi − α j )
. (1.35)

Remark 1.9. When αi = α j for some i, j, the determinantal formulas (1.33) and (1.35)

take on the indeterminate form 0/0, but are still valid in the limit as αi − α j → 0. For

example, when all αi ’s are equal to a given α , (1.35) becomes

scont
(α, ...,α ) (x ) =

det
(
xn−ji eαxi

)
1≤i, j≤n∏n

k=1 (k − 1)!
.

This formula is an immediate consequence of the following fact: if the functions f1, . . . , fn
are di�erentiable n − 1 times at α , then

det( fi (α j ))1≤i, j≤n∏
1≤i<j≤n (α j − αi )

−→
W ( f1, . . . , fn ) (α )∏n

k=1 (k − 1)!
as α1, . . . ,αn → α , (1.36)

whereW ( f1, . . . , fn ) (α ) := det
(
f (j−1)
i (α )

)
1≤i, j≤n

is the Wronskian of f1, . . . , fn at α .

Schur functions satisfy the celebrated Cauchy identity :

∑
λ

sλ (p1, . . . ,pn ) sλ (q1, . . . ,qn ) =
n∏

i, j=1

1
1 − piqj

, (1.37)

where the sum is over all integer partitions λ of length at most n. If we view each term

(1 − piqj )
−1 as the corresponding geometric series

∑∞
k=0 (piqj )

k , the Cauchy identity is

true in the sense of formal power series, but has analytical meaning only when ���piqj
��� < 1

for all i, j. The classical combinatorial proof of (1.37) (see for example [Sta99, Th. 7.12.1])

relies on the RSK correspondence; at the beginning of chapter 3 we will incidentally see a

version of such a proof that also involves a probabilistic interpretation.
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z1,1

z2,1

z3,1z3,2

z4,1z4,2

z2n,1z2n,n

Figure 8. A “half-triangular” array of height 2n. If this is interpreted as a sym-
plectic Gelfand-Tsetlin pa�ern, the arrows illustrate the interlacing condition:
a → b means a ≤ b, with the convention that a equals 0 if it lies on the vertical
“wall”. The arrows may also refer to the functional (1.61): E (z) is the sum of
all ratios a/b such that there is an arrow pointing from a to b in the diagram;
in this case, a equals 1 by convention if it lies on the vertical wall, so that the
(only) inhomogeneous addends in E (z) are 1/z2k−1,k for 1 ≤ k ≤ n.

The analogous Cauchy identity for continuous Schur functions reads as∫
{x1> · · ·>xn>0}

scont
−α (x ) scont

−β (x )
n∏
i=1

dxi =
n∏

i, j=1

1
αi + βj

, (1.38)

where the parameters α and β satisfy<(αi + βj ) > 0 for all i, j. It can be easily deduced

from (1.37) by se�ing pi := e−δαi and qj := e−δ βj , le�ing δ ↓ 0, and using Riemann sum

approximations.

1.2.2 Symplectic Schur functions

Symplectic Schur functions are Laurent polynomials indexed by partitions, invariant

under both permutation of the variables and multiplicative inversion of any of them. In

combinatorics they are defined as generating functions of symplectic tableaux, or sym-

plectic Gelfand-Tsetlin pa�erns equivalently, and are connected to the Berele’s insertion

algorithm [Ber86]. A symplectic Gelfand-Tsetlin pa�ern of height 2n is a “half-triangular”

array z = {zi, j : 1 ≤ i ≤ 2n, 1 ≤ j ≤ di/2e} satisfying the interlacing conditions:

zi+1, j+1 ≤ zi, j ≤ zi+1, j for 1 ≤ i < 2n , 1 ≤ j ≤ di/2e , (1.39)
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with the convention that zi, j := 0 when j > di/2e (so that all its entries are non-negative);

the shape of z is its bo�om row (z2n,1, . . . , z2n,n ). See Figure 8 for a graphical representa-

tion. Given x ∈ �n and a set S ⊆ �, let us denote by GT 2n
S (x ) the set of all symplectic

Gelfand-Tsetlin pa�erns of height 2n with entries in S and shape x ; notice that GT 2n
S (x )

is empty whenever x1 ≥ · · · ≥ xn ≥ 0 fails to hold. Analogously to (1.4), we define the

type of a symplectic Gelfand-Tsetlin pa�ern z to be the vector Type(z) ∈ �2n
≥0 such that

Type(z)i :=
d i2e∑
j=1

zi, j −

d i−1
2 e∑

j=1
zi−1, j for i = 1, . . . , 2n . (1.40)

Definition 1.10. The symplectic Schur function in n variables a = (a1, . . . ,an ) ∈ �
n

indexed by an integer partition λ of length at most n is the Laurent polynomial

spλ (a) :=
∑

z ∈GT 2n
�

(λ)

n∏
k=1

a
Type(z )2k−1−Type(z )2k
k . (1.41)

As characters of the irreducible representations of the symplectic group Sp2n (�), sym-

plectic Schur functions can be wri�en as a ratio of determinants (the denominator having

a closed form) by the Weyl character formula [FH91]:

spλ (a) =
det

(
a
λj+n−j+1
i − a

−(λj+n−j+1)
i

)
1≤i, j≤n

det
(
an−j+1
i − a−(n−j+1)

i

)
1≤i, j≤n

=

det
(
a
λj+n−j+1
i − a

−(λj+n−j+1)
i

)
1≤i, j≤n∏

1≤i<j≤n (ai − aj ) (aiaj − 1)
∏n

k=1 (a
2
k − 1)a−nk

.

(1.42)

It is clear from the above formula that Schur functions are invariant under transformations

of the type ai 7→ a−1
i and permutations of the ai ’s, i.e. under the action of (�/2�)n o �n

(which is the Weyl group associated to Sp2n (�)) on its arguments.

In chapter 3 we will also use the “continuous version” of symplectic Schur functions,

which is an integral on real symplectic Gelfand-Tsetlin pa�erns as specified below.

Definition 1.11. We define the continuous symplectic Schur function indexed by a param-

eter α = (α1, . . . ,αn ) ∈ �
n to be

spcont
α (x ) :=

∫
GT 2n
�

(x )

n∏
k=1

eαk (Type(z )2k−1−Type(z )2k )
∏

1≤i<2n
1≤j≤di/2e

dzi, j (1.43)
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for all x = (x1, . . . ,xn ) ∈ �
n such that x1 > · · · > xn > 0.

The same remarks hold as for standard Schur functions: if some of the inequalities in

x1 > · · · > xn > 0 are replaced with equalities, the integral in (1.43) vanishes; the roles of

the variables and the parameters are exchanged in the discrete and continuous case.

By Riemann sum approximation, continuous symplectic Schur functions are indeed

the continuous limit of their discrete analog:

spcont
α (x ) = lim

δ ↓0
δn

2 ∑
z ∈GT 2n

�
(x /δ )

n∏
k=1

eδαk (Type(z )2k−1−Type(z )2k )

= lim
δ ↓0

δn
2
sp bx /δ c

(
eδα1 , . . . , eδαn

)
.

By plugging formula (1.42) into the above limit, one can see that continuous symplectic

Schur functions also have a determinantal form:

spcont
α (x ) =

det
(
eα jxi − e−α jxi

)
1≤i, j≤n∏

1≤i<j≤n (αi − α j ) (αi + α j )
∏n

k=1 (2αk )
. (1.44)

Remark 1.12. When αi = α j for some i, j, the determinantal formulas (1.42) and (1.44)

are still valid in the limit as αi − α j → 0. For example one can use (1.36) to prove that,

when all αi ’s are equal to a given α , (1.44) reads as

spcont
(α, ...,α ) (x ) =

det
(
xn−ji (eαxi − (−1)n−je−αxi )

)
1≤i, j≤n

(2α )n (n+1)/2 ∏n
k=1 (k − 1)!

.

There is a symplectic Cauchy identity that pairs a symplectic Schur function with a

standard one [Sun90]:

∑
λ

spλ (p1, . . . ,pn ) sλ (q1, . . . ,qn ) =

∏
1≤i<j≤n (1 − qiqj )∏

1≤i, j≤n (1 − qipj ) (1 − qip
−1
j )
, (1.45)

where the sum is over all integer partitions λ of length at most n. Again, this identity is

true in the sense of formal power series, but has analytical meaning only when ���qip
±1
j

��� < 1
for all i, j (this in particular implies that ��qi �� < 1 for all i). Sundaram gave a bijective proof

of (1.37) based on an application of the Berele’s insertion algorithm [Ber86].

The analog of (1.45) for continuous symplectic Schur functions reads as∫
{x1> · · ·>xn>0}

spcont
α (x ) scont

−β (x )
n∏
i=1

dxi =
∏

1≤i<j≤n (βi + βj )∏
1≤i, j≤n (βi + α j ) (βi − α j )

, (1.46)

34



1. Combinatorics and special functions

where the parameters α and β satisfy<(βi ± α j ) > 0 for all i, j. It can be easily deduced

from (1.45) by se�ing pi := eδαi and qj := e−δ βj , le�ing δ ↓ 0, and using Riemann sum

approximations.

1.3 Whittaker functions

Whi�aker functions appear in many di�erent mathematical contexts, and have been

accordingly defined and used in various ways. They were first introduced by Edmund

T. Whi�aker [Whi03] as solutions to the so-called Whi�aker di�erential equation. In

modern analytic number theory, they play a central role in the area of automorphic forms

and L-functions. In this context, they come associated to a real reductive group, which

corresponds to GL2 (�) for the original Whi�aker functions. It was Jacquet [Jac67] who

first constructed, via a certain integral representation, Whi�aker functions associated to

higher rank groups.

In a representation theoretic se�ing, Konstant [Kos78] showed how Whi�aker func-

tions, viewed as solutions to a certain integrable system called quantum Toda la�ice and

associated with a real reductive Lie algebra, are connected to certain representations of

that algebra. Givental [Giv97] constructed solutions to the same quantum integrable

system via methods of quantum cohomology and mirror symmetry: more precisely, he

constructed GLn (�)-Whi�aker functions as integrals over a mirror family. This approach

was extended further for general classical groups by Gerasimov-Lebedev-Oblezin [GLO08;

GLO12].

A comprehensive summary of various realizations of Whi�aker functions can be found

in the survey paper [Lam13] and in the PhD thesis of Chhaibi [Chh13]: the first focuses on

algebraic, geometric and combinatorial aspects, while the second one gives a probabilistic

insight as well.

In this section we focus on Whi�aker functions associated to the Lie algebras gln and

so2n+1. In particular, we introduce their integral representations on triangular pa�erns

due to Givental [Giv97] and Gerasimov-Lebedev-Oblezin [GLO08; GLO12], and deal with

their most relevant aspects for our purposes. We will indi�erently talk about Whi�aker

functions associated to a given Lie group, e.g. GLn (�), or to the corresponding Lie algebra,

e.g. gln . However, we will tend to use more the former notation in the number theoretic

context of Appendix B, where we provide further information on the role of Whi�aker

functions in number theory.
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1.3. Whittaker functions

1.3.1 gln-Whittaker functions

Following [Giv97; GLO08; GLO12], we introduce gln-Whi�aker functions as integrals

on triangular arrays. Consider a triangular array

z = {zi, j : 1 ≤ j ≤ i ≤ n} (1.47)

of height n ≥ 1 with positive entries. Recall that if the entries are interlaced in the sense

of (1.3), such an array is known as a Gelfand-Tsetlin pa�ern. Even though in this context

we work with triangular arrays that are not required to satisfy the interlacing conditions,

we still define a potential on them that encourages interlacement:

E
4 (z) :=

n−1∑
i=1

i∑
j=1

(
zi+1, j+1

zi, j
+

zi, j

zi+1, j

)
. (1.48)

Whenever an interlacing condition is not satisfied, one of the ratios appearing above be-

comes larger than one, increasing the overall potential of the array. Figure 4 provides a

visual representation of (1.48).

We call i-th row of z the vector (zi,1, . . . , zi,i ) of all entries with first index equal to

i . Replacing the tropical operations (max,+) with the usual ones (+, ·) in (1.4), we define

the geometric type of z to be the vector gType(z) ∈ �n>0 whose i-th component is the ratio

between the product of the i-th row of z and the product of its (i − 1)-th row:

gType(z)i :=
∏i

j=1 zi, j∏i−1
j=1 zi−1, j

for i = 1, . . . ,n . (1.49)

Denoting by T4nS (x ) the set of all triangular arrays of height n with entries in S ⊆ � and

bo�om row equal to a given vector x ∈ �n , we now define the gln-Whi�aker functions

via the following integral representation:

Definition 1.13. The gln-Whi�aker function with parameter α = (α1, . . . ,αn ) ∈ �
n and

argument x = (x1, . . . ,xn ) ∈ �
n
>0 is given by

Ψ
gln
α (x ) :=

∫
T4n
�>0

(x )

n∏
k=1

gType(z)αkk exp
{
−E
4 (z)

} ∏
1≤i<n
1≤j≤i

dzi, j
zi, j
. (1.50)

For example, Ψgl1α (x ) = xα (no integration is involved), and

Ψ
gl2
(α1,α2)

(x1,x2) =

∫
�>0

zα1
(x1x2

z

)α2
exp

{
−
x2
z
−

z

x1

}
dz
z
. (1.51)
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The representation of gln-Whi�aker functions in Definition 1.13 has a recursive struc-

ture: se�ing Ψ
gl0
∅ (∅) := 1, it turns out that for all n ≥ 1, α ∈ �n and x ∈ �n>0

Ψ
gln
α (x ) =

∫
�
n−1
>0

Q
gln
αn (x ,u)Ψ

gln−1
α̃

(u)
n−1∏
i=1

dui
ui
, (1.52)

where α̃ := (α1, . . . ,αn−1) and the kernel is defined by

Q
gln
αn (x ,u) :=

( ∏n
i=1 xi∏n−1
i=1 ui

)αn n−1∏
i=1

exp
{
−
xi+1
ui
−
ui
xi

}
.

The following properties of gln-Whi�aker functions are straightforward consequences

of the definition:

• if c ∈ � and α + c stands for (α1 + c, . . . ,αn + c ), then

Ψ
gln
α+c (x ) =

( n∏
i=1

xi

)c
Ψ
gln
α (x ) ; (1.53)

• if s > 0, then

Ψ
gln
α (sx ) = s

∑n
i=1 αiΨ

gln
α (x ) ; (1.54)

• if we set yi := x−1
n−i+1 for 1 ≤ i ≤ n, then

Ψ
gln
−α (x ) = Ψ

gln
α (y) . (1.55)

Properly rescaled gln-Whi�aker functions yield continuous Schur functions, as the

next theorem states. Such a rescaling is strongly related to the tropicalization procedure

explained in subsection 1.1.3 and to the zero temperature limit that will be the subject of

appendix A.

Proposition 1.14. For all α ∈ �n and x ∈ �n we have that

lim
ε↓0

εn (n−1)/2Ψ
gln
εα

(
ex1/ε , . . . , exn/ε

)
= scont

α (x )1{x1> · · ·>xn } . (1.56)

Proof. For any index set I and array a = {ak : k ∈ I} ∈ �I and for all ε > 0, let us

set дε (a) := {eak /ε : k ∈ I} ∈ �I>0 as in subsection 1.1.3. In definition (1.50), we change
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variables by se�ing zi, j 7→ дε (zi, j ) for all 1 ≤ j ≤ i < n and obtain

Ψ
gln
εα (дε (x )) =

∫
T4n
�

(x )

n∏
k=1

gType(дε (z))
εαk
k exp

{
−E
4 (дε (z))

} ∏
1≤i<n
1≤j≤i

dzi, j
ε
.

Using definitions (1.49) and (1.4), one can verify that gType(дε (z))k = дε (Type(z)k ). Fur-

thermore, since exp{−дε (a)} = exp{−ea/ε }
ε↓0
−−−→ 1{a≤0} for all a , 0, we have that

exp
{
−E
4 (дε (z))

}
=

n−1∏
i=1

i∏
j=1

exp{−дε (zi+1, j+1 − zi, j )} exp{−дε (zi, j − zi+1, j )}

ε↓0
−−−→

n−1∏
i=1

i∏
j=1

1{zi+1, j+1≤zi, j ≤zi+1, j }
= 1GT4n

�
(x )

(z)

for a.e. z ∈ T4n
�

(x ). Notice that if x1 > · · · > xn is not satisfied, then the Lebesgue

measure of GT4n
�

(x ) vanishes. By dominated convergence, it follows that

εn (n−1)/2Ψ
gln
εα (дε (x ))

ε↓0
−−−→ 1{x1> · · ·>xn }

∫
GT4n
�

(x )

n∏
k=1

eαk Type(z )k
∏

1≤i<n
1≤j≤i

dzi, j .

The la�er integral defines the continuous Schur function on the right-hand side of (1.56).

A property that Whi�aker functions share with Schur functions is that they are in-

variant under the action of the corresponding Weyl group on the (spectral) parameters.

For the case gln , although not obvious from the definition, this means that Ψglnα (·) is sym-

metric w.r.t. (α1, . . . ,αn ).

As mentioned at the beginning of this section, Whi�aker functions are related to cer-

tain integrable systems called quantum Toda la�ices. Let us define the quantum Toda

hamiltonian associated to a Lie algebra g as

H
g :=

n∑
i=1

∂2

∂x2
i
− 2

∑
a

da e−〈a,x 〉 , (1.57)

where the sum is over a set of simple roots a ∈ �n of g, 〈·, ·〉 denotes the standard scalar

product in�n and da ’s are appropriate rational constants (see [GLO12] for details). Then

this operator is diagonalized by g-Whi�aker functions. Since the simple roots of gln are

ei − ei+1 for 1 ≤ i ≤ n − 1, where (e1, . . . ,en ) is the canonical basis of �n , the quantum
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Toda hamiltonian associated to gln (also called of type An−1) is given by

H
gln :=

n∑
i=1

∂2

∂x2
i
− 2

n−1∑
i=1

exi+1−xi .

It then turns out that the gln-Whi�aker function Ψ
gln
λ

(ex1 , . . . , exn ) in exponential coor-

dinates is eigenfunction of H gln with eigenvalue 〈λ,λ〉 =
∑n

i=1 λ
2
i . As eigenfunctions of

a self-adjoint operator, gln-Whi�aker functions come with a harmonic analysis, which is

summarized in the following

Theorem 1.15 ([STS94; KL01]). The integral transform

f̂ (λ) :=
∫
�
n
>0

f (x )Ψ
gln
λ

(x )
n∏
i=1

dxi
xi

defines an isometry from L2 (�n>0,
∏n

i=1 dxi/xi ) to L2
sym (i�

n , sn (λ) dλ), where i =
√
−1, L2

sym

denotes the space of square integrable functions that are symmetric in their variables, and

sn (λ) dλ :=
1

(2π i)nn!

∏
i,j

1
Γ(λi − λj )

n∏
k=1

dλk (1.58)

is the Sklyanin measure. Namely, for all f ,д ∈ L2 (�n>0,
∏n

i=1 dxi/xi ) it holds that∫
�
n
>0

f (x )д(x )
n∏
i=1

dxi
xi
=

∫
i�n

f̂ (λ)д̂(λ)sn (λ) dλ .

Notice that, using the functional equation for the gamma function and Euler’s re-

flection formula, one can show that the Sklyanin measure defined in (1.58) is a positive

measure on i�n .

As will be outlined in section B.1 of the appendix, certain integrals of Whi�aker func-

tions play an important role in the theory of automorphic L-functions. One such integral

formula pairs two gln-Whi�aker functions and is associated with L-factors of automor-

phic L-functions on GLn (�) × GLn (�). It was conjectured by Bump [Bum89] and proved

for the general n case by Stade [Sta02].

Theorem 1.16 (Bump-Stade identity). Let r > 0 and α , β ∈ �n such that<(αi + βj ) > 0
for all i, j. Then∫

�
n
>0

e−rx1Ψ
gln
α (x )Ψ

gln
β

(x )
n∏
i=1

dxi
xi
= r−

∑n
k=1 (αk+βk )

n∏
i, j=1

Γ(αi + βj ) . (1.59)
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A bijective proof of this identity was given in [COSZ14; OSZ14] via the use of the

geometric RSK correspondence introduced in subsection 1.1.2 - see Remark 2.1.

Since gln-Whi�aker functions scale to continuous Schur functions by Proposition 1.14,

an appropriate limit of (1.59) again yields the continuous Cauchy identity (1.38). This can

be verified by se�ing r = 1 and using (1.55) and (1.56); in this limiting procedure, the

exponential e−x1 in (1.59) converts into the condition xn > 0 which appears in the region

of integration of (1.38). The Bump-Stade identity is thus the analog of the Cauchy identity

in the se�ing of Whi�aker functions.

As we will recap in the introduction to chapter 2, Theorems 1.15 and 1.16 already

played an important role in the computation of the Laplace transform of the point-to-

point partition function of the log-gamma polymer. We will likewise use these tools to

study the log-gamma polymer in the point-to-line geometries (see section 2.2).

1.3.2 so2n+1-Whittaker functions

Similarly to the gln case, we will define so2n+1-Whi�aker functions as integrals on

half-triangular arrays. Such a definition was first given in [GLO08; GLO12], but also nat-

urally emerged in [Nte18] in the study of a system of interacting particles via intertwining

Markovian dynamics. Let us consider a half-triangular array

z = {zi, j : 1 ≤ i ≤ 2n , 1 ≤ j ≤ di/2e} (1.60)

of height 2n with positive entries. If the entries of z are interlaced in the sense of (1.39),

such an array is known as a symplectic Gelfand-Tsetlin pa�ern. In this context our arrays

are not required to satisfy the interlacing conditions but are still encouraged to do so

through the potential

E (z) :=
2n−1∑
i=1

di/2e∑
j=1

(
zi+1, j+1

zi, j
+

zi, j

zi+1, j

)
, (1.61)

where by convention zi, j := 1 if j > di/2e. See Figure 8 for an illustration of this potential.

We also make the analogous definitions as in the gln case. We call i-th row of z the

vector (zi,1, . . . , zi, di/2e ) of all entries with first index equal to i . We define the geometric

type of z to be the vector Type(z) ∈ �2n
>0 whose components are

gType(z)i :=
∏ di/2e

j=1 zi, j∏ d(i−1)/2e
j=1 zi−1, j

for i = 1, . . . , 2n . (1.62)
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Denoting by T 2n
S (x ) the set of all half-triangular arrays z of height 2n with entries in

S ⊆ � and (2n)-th row equal to a given vector x ∈ �n , we define the so2n+1-Whi�aker

functions via the following integral representation:

Definition 1.17. The so2n+1-Whi�aker function with parameter α = (α1, . . . ,αn ) ∈ �
n

and argument x = (x1, . . . ,xn ) ∈ �
n
>0 is given by

Ψ
so2n+1
α (x ) :=

∫
T 2n
�>0

(x )

n∏
k=1

(
gType(z)2k−1
gType(z)2k

)αk
exp

{
−E (z)

} ∏
1≤i<2n

1≤j≤di/2e

dzi, j
zi, j
. (1.63)

As an example, the so3-Whi�aker function is

Ψ
so3
α (x ) =

∫
�>0

(
z2

x

)α
exp

{
−

1
z
−
z

x

} dz
z
. (1.64)

Se�ing Ψ
so1
∅ (∅) := 1, for any n ≥ 1 the so2n+1-Whi�aker functions can be recursively

defined by

Ψ
so2n+1
α (x ) =

∫
�
n−1
>0

Q
so2n+1
αn (x ,u)Ψ

so2n−1
α̃

(u)
n−1∏
i=1

dui
ui
, (1.65)

where α̃ := (α1, . . . ,αn−1) and the kernel Qso2n+1
αn is given by

Q
so2n+1
αn (x ,u) :=

∫
�
n
>0

( ∏n
i=1v

2
i∏n

i=1 xi
∏n−1

i=1 ui

)αn n−1∏
i=1

exp
{
−
vi+1
ui
−
ui
vi
−
xi+1
vi
−
vi
xi

}

× exp
{
−

1
vn
−
vn
xn

} n∏
i=1

dvi
vi
.

Proposition 1.18. For all α ∈ �n and x ∈ �n we have that

lim
ε↓0

εn
2
Ψ
so2n+1
εα

(
ex1/ε , . . . , exn/ε

)
= spcont

α (x )1{x1> · · ·>xn>0} . (1.66)

Proof. Let us again set дε (a) := {eak /ε : k ∈ I} ∈ �I>0 for any index set I and array

a = {ak : k ∈ I} ∈ �I and for all ε > 0. In definition (1.63), we change variables by se�ing

zi, j 7→ дε (zi, j ) for all 1 ≤ i < 2n, 1 ≤ j ≤ di/2e and obtain

Ψ
so2n+1
εα (дε (x )) =

∫
T 2n
�

(x )

n∏
k=1

(
gType(дε (z))2k−1
gType(дε (z))2k

)εαk
exp

{
−E (дε (z))

} ∏
1≤i<2n

1≤j≤di/2e

dzi, j
ε
.

Similarly to the proof of Proposition 1.14, one can verify that gType(дε (z))k = дε (Type(z)k )
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1.3. Whittaker functions

for 1 ≤ k ≤ 2n and

exp
{
−E (дε (z))

} ε↓0
−−−→ 1

GT 2n
�

(x )
(z)

for a.e. z ∈ T 2n
�

(x ). Notice in particular that, in the la�er limit, the potential associated

to an inhomogeneous addend of (1.61) of the form 1/z2k−1,k converts into the “boundary

condition at the wall” z2k−1,k ≥ 0. Since the Lebesgue measure of GT 2n
�

(x ) vanishes

whenever the condition x1 > · · · > xn > 0 fails to hold, we conclude by dominated

convergence that

εn
2
Ψ
gln
εα (дε (x ))

ε↓0
−−−→ 1{x1> · · ·>xn>0}

∫
GT 2n
�

(x )

n∏
k=1

eαk (Type(z )2k−1−Type(z )2k )
∏

1≤i<2n
1≤j≤di/2e

dzi, j .

The la�er integral defines the continuous symplectic Schur function on the right-hand

side of (1.66).

We have seen that any symplectic Schur function spλ (a) is invariant under permu-

tations and multiplicative inversion of its variables ai ’s. Analogously, even though not

obvious from this definition, any so2n+1-Whi�aker function Ψ
so2n+1
α (·) is invariant under

permutations and change of sign of the parameters (α1, . . . ,αn ).

Let us now mention the interpretation of orthogonal Whi�aker functions in terms of

the quantum Toda la�ice, see (1.57). Since the simple roots of so2n+1 are ei − ei+1 for

1 ≤ i ≤ n − 1 and en , the quantum Toda hamiltonian associated to the Lie algebra so2n+1

(also called of type Bn) takes the form

H
so2n+1 :=

n∑
i=1

∂2

∂x2
i
− 2

n−1∑
i=1

exi+1−xi − e−xn .

Each so2n+1-Whi�aker function Ψ
so2n+1
λ

(ex1 , . . . , exn ) is then an eigenfunction of H so2n+1

with eigenvalue 〈λ,λ〉 =
∑n

i=1 λ
2
i .

We finally introduce an integral identity which pairs one so2n+1-Whi�aker function

with a gln-Whi�aker function and is associated with L-factors of automorphic L-functions

on SO2n+1 (�) ×GLn (�). It is of similar nature as the Bump-Stade identity (1.59), and was

proven by Ishii and Stade [IS13]. It will also play an important role in our polymer analysis,

in particular in section 2.2.

Theorem 1.19 (Ishii-Stade identity). Letα , β , ∈ �n , where<(βi ±α j ) > 0 for all i, j. Then

∫
�
n
>0

Ψ
so2n+1
α (x )Ψ

gln
−β

(x )
n∏
i=1

dxi
xi
=

∏
1≤i, j≤n Γ(βi + α j )Γ(βi − α j )∏

1≤i<j≤n Γ(βi + βj )
. (1.67)
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1. Combinatorics and special functions

Let us point out that the parametrization used for Whi�aker functions in [IS13] is

di�erent from ours. In section B.2 of the appendix we will show the relation between

such di�erent parametrizations and the equivalence between (1.67) and the corresponding

integral formula in [IS13].

Since so2n+1-Whi�aker functions scale to continuous symplectic Schur functions by

Proposition 1.18, it is easy to verify that an appropriate limit of (1.67) yields (1.46). There-

fore, we may consider the Ishii-Stade identity as the analog of the symplectic Cauchy

identity in the se�ing of Whi�aker functions.
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2

Log-gamma polymer models

Recall that a polymer partition function is a random variable of the form

Z :=
∑
π ∈Π

∏
(i, j )∈π

Wi, j ,

where Π is a given set of nearest neighbor directed paths on a finite la�ice I ⊂ �2
>0,

and W = {Wi, j : (i, j ) ∈ I} is an array of positive random weights. As explained in the

Introduction, Z is indeed the partition function of the random directed polymer model

associated to the given path geometry.

In this chapter, we apply the tools introduced in chapter 1 (in particular, the geomet-

ric RSK correspondence and Whi�aker functions) to study the log-gamma polymer par-

tition function in a few di�erent path geometries. In section 2.1 we express the Laplace

transforms of the point-to-line, the point-to-half-line and the restricted point-to-half-line

log-gamma polymer partition functions in terms of Whi�aker functions on both so2N+1

and glN . In section 2.2 we obtain contour integral formulas involving gamma functions,

in the point-to-line and point-to-half-line cases.

The techniques we are going to use are inspired by the analogous computations of

Corwin, O’Connell, Seppäläinen and Zygouras [COSZ14; OSZ14] for the point-to-point

log-gamma polymer model. We will then recall them here for convenience of the reader.

Denote by Zn,n the point-to-point polymer partition function associated with the set of

directed la�ice paths from (1, 1) to (n,n) on the la�ice {1, . . . ,n}2. Proposition 1.3-(i)

implies that, if we denote by T = {Ti, j : 1 ≤ i, j ≤ n} the image of the weight array

W = {Wi, j : 1 ≤ i, j ≤ n} under gRSK, the point-to-point partition function Zn,n coincides

with the bo�om-right entry Tn,n ofT . We then have that

�
[
e−rZn,n

]
=

∫
�
n2
>0

e−r tn,n�(T ∈ dt ) . (2.1)
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Assume now that the weights are independent and inverse-gamma distributed; more

precisely, given parameters α , β ∈ �n>0 such that αi − βj > 0 for all i, j, assume that

W −1
i, j ∼ Gamma(αi − βj , 1) for 1 ≤ i, j ≤ n. The joint distribution ofW is then given by

�(W ∈ dw ) =
n∏

i, j=1
w
−αi+βj
i, j e

− 1
wi, j

1�>0
(wi, j )

Γ(αi − βj )

dwi, j

wi, j

=



n∏
i=1

*.
,

n∏
j=1

wi, j
+/
-

−αi 



n∏
j=1

*
,

n∏
i=1

wi, j
+
-

βj 
exp



−

n∑
i, j=1

1
wi, j




n∏
i, j=1

1�>0
(wi, j )

Γ(αi − βj )

dwi, j

wi, j
.

Thanks to properties (ii), (iii), and (iv) of Proposition 1.3, we deduce from the above a

formula for the joint distribution ofT :

�(T ∈ dt ) =
n∏

i, j=1

1
Γ(αi − βj )

n∏
k=1

(
πn−k (t )

πn−k+1 (t )

)−αk (
πk−n (t )

πk−1−n (t )

)βk

× exp


−

1
t1,1
−

n∑
i, j=1

ti−1, j + ti, j−1

ti, j



1
�
n2
>0
(t )

n∏
i, j=1

dti, j
ti, j
,

where πk (t ) denotes the product of the k-th diagonal of t as in (1.10), and ti, j := 0 by

convention if (i, j ) < {1, . . . ,n}2. We now plug this expression into (2.1), integrating over

the strictly upper and lower triangular parts of t first, and then over the diagonal:

�
[
e−rZn,n

]
=

n∏
i, j=1

1
Γ(αi − βj )

∫
�
n
>0

n∏
i=1

dti,i
ti,i

e−r tn,n−1/t1,1

×

∫
�
n (n−1)/2
>0

∏
i<j

dti, j
ti, j

n∏
k=1

(
πn−k (t )

πn−k+1 (t )

)−αk
exp



−

∑
1<i≤j

ti−1, j

ti, j
−

∑
i<j

ti, j−1

ti, j




×

∫
�
n (n−1)/2
>0

∏
j<i

dti, j
ti, j

n∏
k=1

(
πk−n (t )

πk−1−n (t )

)βk
exp



−

∑
j<i

ti−1, j

ti, j
−

∑
1<j≤i

ti, j−1

ti, j



.

In the la�er formula, the second and the third integral turn out to be gln-Whi�aker func-

tions (see Definition 1.13) with parameters −α and β respectively and common argument

(tn,n , . . . , t1,1). Se�ing the la�er vector equal to x = (x1, . . . ,xn ), we see that the Laplace

transform of Zn,n can be expressed in terms of gln-Whi�aker functions as

�
[
e−rZn,n

]
=

n∏
i, j=1

1
Γ(αi − βj )

∫
�
n
>0

e−rx1−1/xnΨ
gln
−α (x )Ψ

gln
β

(x )
n∏
i=1

dxi
xi
, (2.2)

as established in [COSZ14; OSZ14].
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2. Log-gamma polymer models

Remark 2.1. Taking r → 0 in (2.2), the le�-hand side converges to 1, hence we obtain∫
�
n
>0

e−1/xnΨ
gln
−α (x )Ψ

gln
β

(x )
n∏
i=1

dxi
xi
=

n∏
i, j=1

Γ(αi − βj ) . (2.3)

Applying the change of variables xi 7→ (rxn−i+1)
−1 for 1 ≤ i ≤ n and using properties (1.54)

and (1.55) of gln-Whi�aker functions, one can show that (2.3) is equivalent to the Bump-

Stade identity (1.59).

Formula (2.2) can be turned into a contour integral formula [OSZ14]. To do this, one

first observes that the integral on the right-hand side is the L2 (�n>0,
∏n

i=1 dxi/xi )-inner

product† of the functions

f (x ) := e−rx1Ψ
gln
β

(x ) , д(x ) := e−1/xnΨ
gln
−α (x ) .

The aim is then to apply the gln-Whi�aker-Plancherel theorem 1.15. The gln-Whi�aker

transforms f̂ (λ) and д̂(λ) can be computed explicitly in terms of gamma functions using

the Bump-Stade identity (or its equivalent version (2.3) replacing β with λ, in the case of

д̂(λ)). The contour integral formula for the Laplace transform of Zn,n follows [OSZ14]:

�
[
e−rZn,n

]
=

∫
i�n

r−
∑n
i=1 (λi+βi )

n∏
i, j=1

Γ(λi + α j )Γ(λi + βj )

Γ(αi − βj )
sn (λ) dλ , (2.4)

being sn (λ) dλ the Skylanin measure (1.58).

2.1 Point-to-line polymers and Whittaker functions

In this section we consider the log-gamma polymer in three path geometries: point-

to-line, point-to-half-line and point-to-half-line restricted to a half-plane. We compute

the Laplace transforms of the corresponding partition functions at any even time 2N as

integrals of glN and so2N+1-Whi�aker functions.

In each case, we will first need to compute the joint law of the point-to-point partition

functions along a “fixed time” line (or half-line). This can be done by using the geometric

Robinson-Schensted-Knuth correspondence (gRSK) for polygonal arrays and its proper-

ties, discussed in subsection 1.1.2.

†It can be checked that f and д indeed belong to L2 (�n>0,
∏n

i=1 dxi/xi ).
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2.1. Point-to-line polymers and Whittaker functions

2.1.1 Point-to-line polymer

We define that the point-to-line polymer partition function at time N ∈ �>0 by

ZN :=
∑
π ∈ΠN

∏
(i, j )∈π

Wi, j , (2.5)

where ΠN is the set of directed paths from (1, 1) to the line {(m,n) : m + n = N + 1} (see

Figure 1a), and W = {Wi, j : (i, j ) ∈ IN } is an array of positive random weights on the

triangular la�ice

IN := {(i, j ) ∈ �2
>0 : i + j ≤ N + 1} . (2.6)

Notice that the point-to-line polymer partition function at time N can be wri�en as the

sum of all point-to-point partition functions with endpoint on the line {m + n = N + 1}:

ZN =
∑

m+n=N+1
Zm,n . (2.7)

We will show that, when the weights are inverse-gamma distributed with a certain

parametrization, the Laplace transform of Z2N can be essentially wri�en as an integral of

two orthogonal Whi�aker functions. We first provide a sketchy and intuitive argument,

which may also work as a quick recap of the proof. In principle, the Laplace transform

of Z2N is an integral w.r.t. the density of W = {Wi, j : (i, j ) ∈ I2N }. Now, we know from

Proposition 1.3-(i) that each point-to-point partition function Zm,n with m + n = 2N + 1
coincides with Tm,n , whereT is the image ofW under the gRSK correspondence. Thanks

to (2.7), we will then express the Laplace transform of Z2N as an integral w.r.t. the new

variables t = {ti, j : (i, j ) ∈ I2N } (i.e. w.r.t. the joint density of T , which can be computed

using the properties of gRSK, see the proof of Lemma 2.4). The integrand will contain

a rational part and an exponential one. The la�er will be a function of the potential

E (t ) defined in (1.11) and illustrated by the arrows of Figure 6a. The further change

of variables ti, j 7→ 1/ti, j for all (i, j ) will reverse all such arrows. Consider then the two

“half-triangular” arrays that the triangular array of Figure 6a is divided into by the main

diagonal {ti,i : 1 ≤ i ≤ N }, picturing to place a “wall” just below the antidiagonal line of

outer variables {tm,n : m + n = 2N + 1}: a�er reversing the arrows, they will essentially

have the same arrow diagram† as Figure 8. Rearranging the rational part of the integral,

we will then recognize two orthogonal Whi�aker functions corresponding to these two

†Figure 8 also shows arrows connecting the vertical wall with the array: these are missing in Figure 6a,
but they will be “constructed” ad hoc using another exponential function present in the integral, i.e. the one
that defines the Laplace transform as a functional of Z2N . On the other hand, the extra arrow at the top-
le� corner of Figure 6a can be ignored for the moment; it will give rise to the extra exponential in the final
integral (2.13).
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2. Log-gamma polymer models

half-triangular arrays (see Definition 1.17). The main diagonal of the array t will play

the role of the common bo�om row of the two half-triangular arrays, or equivalently the

common argument of the two Whi�aker functions: integrating it out essentially yields an

integral formula involving two orthogonal Whi�aker functions, see (2.13).

We adopt the following exactly solvable parametrization of the inverse-gamma vari-

ables for the point-to-line geometry:

Definition 2.2. Let N ∈ �>0, α , β ∈ �N>0, and γ ∈ �≥0. We define the (α , β ,γ )-log-

gamma measure on the la�ice I2N = {(i, j ) ∈ �
2
>0 : i + j ≤ 2N +1} to be the law of a family

of independent random variables {Wi, j : (i, j ) ∈ I2N } such that:

1
Wi, j

∼




Gamma(αi + βj + γ , 1) 1 ≤ i, j ≤ N ,

Gamma(αi + α2N−j+1, 1) 1 ≤ i ≤ N , N < j ≤ 2N − i + 1 ,

Gamma(β2N−i+1 + βj , 1) 1 ≤ j ≤ N , N < i ≤ 2N − j + 1 .

(2.8)

Remark 2.3. The choice of the parameters in Definition 2.2 is tailored so that it fits the

link between Whi�aker functions and gRSK. More specifically, this is due to property (ii)

in Proposition 1.3 and the presence of the geometric type in the integral representation of

Whi�aker functions, cf. Definitions 1.13 and 1.17. This will become clear in the proofs of

Lemmas 2.4 and 2.8 below. We have also included an extra parameter γ in the distribution

of the weightsWi, j for 1 ≤ i, j ≤ N . This might seem rather unnatural, but it will turn out

to be useful in the proof of Theorem 2.16 to obtain contour integral formulas. More specif-

ically, the Plancherel theorem for gln-Whi�aker functions can be applied in (2.39) thanks

to estimation (2.40), which in turn relies on the presence of the parameter γ in (2.13).

In next lemma, which is a modification of [NZ17, Thm 3.5] that accommodates the

extra parameter γ in Definition 2.2, we compute the joint law of all the point-to-point

partition functions at a fixed time horizon. Recall from subsection 1.1.2 that πk (t ) denotes

the product of the k-th diagonal of a polygonal array t , as in (1.10).

Lemma 2.4. For the (α , β ,γ )-log-gamma polymer, the joint distribution of the point-to-

point partition functions at time 2N is

�(Zm,2N−m+1 ∈ dym : m = 1, . . . , 2N ) =
1

Γα ,β,γ
Φα ,β,γ (y)1�2N

>0
(y)

2N∏
m=1

dym
ym
. (2.9)
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2.1. Point-to-line polymers and Whittaker functions

Here, the normalization constant Γα ,β,γ and the function Φα ,β,γ are given by

Γα ,β,γ :=
∏

1≤i, j≤N
Γ(αi + βj + γ )

∏
1≤i≤j≤N

Γ(αi + α j )Γ(βi + βj ) , (2.10)

Φα ,β,γ (y) :=
∫

T�>0
(y )

N∏
k=1

(
π2N−2k+1 (t )

2

π2N−2k+2 (t )π2N−2k (t )

)−αk ( π−2N+2k−1 (t )
2

π−2N+2k−2 (t )π−2N+2k (t )

)−βk
π0 (t )

−γ

× exp


−

1
t1,1
−

∑
(i, j )∈I2N

ti−1, j + ti, j−1

ti, j




∏
i+j≤2N

dti, j
ti, j
,

(2.11)

using the convention that ti, j := 0 when (i, j ) < I2N , and denoting by T�>0
(y) the set of

all arrays t = {ti, j : (i, j ) ∈ I2N } with entries in �>0 such that (t1,2N , t2,2N−1, . . . , t2N ,1) =

(y1, . . . ,y2N ) =: y.

Proof. The joint law of the triangular arrayW = {Wi, j : (i, j ) ∈ I2N } for the (α , β ,γ )-log-

gamma measure, according to Definition (2.2), is given by

�(W ∈ dw ) =
N∏

i, j=1

w
−αi−βj−γ
i, j

Γ(αi + βj + γ )

∏
1≤i≤N

N <j≤2N−i+1

w
−αi−α2N−j+1
i, j

Γ(αi + α2N−j+1)

×
∏

1≤j≤N
N <i≤2N−j+1

w
−β2N−i+1−βj
i, j

Γ(β2N−i+1 + βj )
exp



−

∑
(i, j )∈I2N

1
wi, j




∏
(i, j )∈I2N

1�>0
(wi, j )

dwi, j

wi, j
.

(2.12)

We now rewrite the above density in terms of the image array t = {ti, j : (i, j ) ∈ I2N } of w

under the gRSK bijection. Property (ii) of Proposition 1.3 yields

2N−k+1∏
j=1

wk, j =
π2N−2k+1 (t )

π2N−2k+2 (t )
,

2N−k+1∏
i=1

wi,k =
π−2N+2k−1 (t )

π−2N+2k−2 (t )

for 1 ≤ k ≤ 2N . The product of all wi, j ’s that are raised to the power −αk in (2.12) can be

wri�en as
2N−k+1∏

j=1
wk, j

k∏
i=1

wi,2N−k+1 =
π2N−2k+1 (t )

π2N−2k+2 (t )

π2N−2k+1 (t )

π2N−2k (t )
,

and similarly the product of all wi, j ’s that are raised to the power −βk can be wri�en as

2N−k+1∏
i=1

wi,k

k∏
j=1

w2N−k+1, j =
π−2N+2k−1 (t )

π−2N+2k−2 (t )

π−2N+2k−1 (t )

π−2N+2k (t )
.
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2. Log-gamma polymer models

By formula (1.17), the product of wi, j ’s that are raised to power −γ is
∏N

i, j=1wi, j = π0 (t ).

Using property (iii) of Proposition 1.3 for dealing with the exponential term in (2.12), and

property (iv) regarding the volume preserving property of the di�erential form, we obtain:

�(T ∈ dt ) =
1

Γα ,β,γ

N∏
k=1

(
π2N−2k+1 (t )

2

π2N−2k+2 (t )π2N−2k (t )

)−αk (
π−2N+2k−1 (t )

2

π−2N+2k−2 (t )π−2N+2k (t )

)−βk

× π
−γ
0 (t ) exp



−

1
t1,1
−

∑
(i, j )∈I2N

ti−1, j + ti, j−1

ti, j




∏
(i, j )∈I2N

1�>0
(ti, j )

dti, j
ti, j
.

Finally, by property (i) of Proposition 1.3, the point-to-point partition functions at time

2N coincide with the gRSK output variables indexed by outer indices, i.e. Zm,n = Tm,n for

m + n = 2N + 1. Therefore, the joint density of (Z1,2N ,Z2,2N−1, . . . ,Z2N ,1) at y ∈ �2N
>0 is

obtained by integrating the above over T�>0
(y): this yields (2.9).

We can now derive the Whi�aker integral formula for the Laplace transform of Z2N .

Theorem 2.5. The Laplace transform of the point-to-line partition function Z2N for the

(α , β ,γ )-log-gamma polymer can be wri�en in terms of orthogonal Whi�aker functions as

�
[
e−rZ2N

]
=
r
∑N
k=1 (αk+βk+γ )

Γα ,β,γ

∫
�
N
>0

e−rx1Ψ
so2N+1
α (x )Ψ

so2N+1
β

(x ) *
,

N∏
i=1

xi+
-

γ N∏
i=1

dxi
xi

(2.13)

for all r > 0, where Γα ,β,γ is defined by (2.10).

Proof. Since Z2N =
∑2N
m=1 Zm,2N−m+1, Lemma 2.4 implies that our Laplace transform can

be wri�en as the following integral over the variables tm,n ’s form + n = 2N + 1:

�
[
e−rZ2N

]
=

1
Γα ,β,γ

∫
�

2N
>0

e−r
∑2N
m=1 tm,2N−m+1 Φα ,β,γ

((
tm,2N−m+1

)2N

m=1

) 2N∏
m=1

dtm,2N−m+1

tm,2N−m+1
.

We next use (2.11) to express the density function above as an integral over the variables

ti, j ’s for i + j ≤ 2N :

�
[
e−rZ2N

]
=

1
Γα ,β,γ

∫
�

2N
>0

2N∏
m=1

dtm,2N−m+1

tm,2N−m+1
exp



−r

2N∑
m=1

tm,2n−m+1



×

∫
�
N (2N−1)
>0

n∏
k=1

(
π2N−2k+1 (t )

2

π2N−2k+2 (t )π2N−2k (t )

)−αk (
π−2N+2k−1 (t )

2

π−2N+2k−2 (t )π−2N+2k (t )

)−βk

× π0 (t )
−γ exp



−

1
t1,1
−

∑
i>1, j

ti−1, j

ti, j
−

∑
j>1,i

ti, j−1

ti, j




∏
i+j≤2N

dti, j
ti, j
,
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2.1. Point-to-line polymers and Whittaker functions

where the implicit range of indices is (i, j ) ∈ I2N .

We now define the new array of variables s = {si, j : (i, j ) ∈ I2N } by se�ing

ti, j =
1

rsi, j
for all (i, j ) ∈ I2N . (2.14)

Visually, this change of variables reverses the arrows in Figure 6a. Recall that the sum-

mands ti−1, j/ti, j and ti, j−1/ti, j of the functional E (t ) (as defined in (1.11)) are represented

as the arrows ti−1, j → ti, j and ti, j−1 → ti, j respectively in the figure. The change of vari-

ables (2.14) then transforms these ratios into si, j/si−1, j and si, j/si, j−1, which in turn can

be represented, by the same convention, as the arrows si, j → si−1, j and si, j → si, j−1.

Recalling (1.10) we obtain

(
π2N−2k+1 (t )

2

π2N−2k+2 (t )π2N−2k (t )

)−αk
= *

,

∏
j−i=2N−2k+1 t

2
i, j∏

j−i=2N−2k+2 ti, j
∏

j−i=2N−2k ti, j
+
-

−αk

= rαk *
,

∏
j−i=2N−2k+1 s

2
i, j∏

j−i=2N−2k+2 si, j
∏

j−i=2N−2k si, j
+
-

αk

= rαk
(

π2N−2k+1 (s )
2

π2N−2k+2 (s )π2N−2k (s )

)αk
.

Similarly, we have that

(
π−2N+2k−1 (t )

2

π−2N+2k−2 (t )π−2N+2k (t )

)−βk
= r βk

(
π−2N+2k−1 (s )

2

π−2N+2k−2 (s )π−2N+2k (s )

)βk
and π0 (t )

−γ = rNγ π0 (s )
γ . Moreover, the change of variables (2.14) preserves the volume:

dti, j
ti, j
=

dsi, j
si, j

for all (i, j ) ∈ I2N .

We thus obtain

�
[
e−rZ2N

]
=
r
∑N
k=1 (αk+βk+γ )

Γα ,β,γ

∫
�

2N
>0

2N∏
m=1

dsm,2N−m+1

sm,2N−m+1
exp



−

2N∑
m=1

1
sm,2N−m+1




×

∫
�
N (2N−1)
>0

N∏
k=1

(
π2N−2k+1 (s )

2

π2N−2k+2 (s )π2N−2k (s )

)αk (
π−2N+2k−1 (s )

2

π−2N+2k−2 (s )π−2N+2k (s )

)βk

× π0 (s )
γ exp



−rs1,1 −

∑
i>1, j

si, j

si−1, j
−

∑
j>1,i

si, j

si, j−1




∏
i+j≤2N

dsi, j
si, j
.

We now change the order in which variables are integrated in the above expression: we

first integrate over the two “half-triangular” arrays {si, j : i < j} and {si, j : j < i} into

which the whole triangular shape (see Figure 6a) is divided by the main diagonal; next,
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2. Log-gamma polymer models

we integrate over the diagonal variables s1,1, . . . , sN ,N . This yields:

�
[
e−rZ2N

]
=
r
∑N
k=1 (αk+βk+γ )

Γα ,β,γ

∫
�
N
>0

N∏
i=1

dsi,i
si,i

*
,

N∏
i=1

si,i+
-

γ

e−r s1,1

×

∫
�
N 2
>0

∏
i<j

dsi, j
si, j

N∏
k=1

(
π2N−2k+1 (s )

2

π2N−2k+2 (s )π2N−2k (s )

)αk

exp


−

N∑
m=1

1
sm,2N−m+1

−
∑

1<i≤j

si, j

si−1, j
−

∑
i<j

si, j

si, j−1




×

∫
�
N 2
>0

∏
j<i

dsi, j
si, j

N∏
k=1

(
π−2N+2k−1 (s )

2

π−2N+2k−2 (s )π−2N+2k (s )

)βk

exp


−

2N∑
m=N+1

1
sm,2N−m+1

−
∑
j<i

si, j

si−1, j
−

∑
1<j≤i

si, j

si, j−1



.

Comparing with Definition 1.17, we identify the second and the third integral in the

above formula as so2N+1-Whi�aker functions with parameters α and β respectively, both

evaluated in (s1,1, . . . , sN ,N ). Se�ing the la�er vector equal to x concludes the proof

of (2.13).

Remark 2.6. Take the limit r → 0 in (2.13): since �
[
e−rZ2N

]
→ 1 and r

∑N
k=1 (αk+βk+γ )

vanishes, we observe that the integral

∫
�
N
>0

Ψ
so2N+1
α (x )Ψ

so2N+1
β

(x ) *
,

N∏
i=1

xi+
-

γ N∏
i=1

dxi
xi

diverges for α , β ∈ �N>0 and γ ≥ 0. In particular, we cannot deduce any useful identity

from (2.13) in the r → 0 limit, contrary to the point-to-point case (see Remark 2.1).

2.1.2 Point-to-half-line polymer

We define the point-to-half-line polymer partition function at time N ∈ �>0 by

Zhalf
N :=

∑
π ∈Πhalf

N

∏
(i, j )∈π

Wi, j , (2.15)

where Πhalf
N is the set of directed paths starting from (1, 1) and ending on the half-line

{(m,n) : m + n = N + 1, m ≤ n} (see Figure 1b), andW = {Wi, j : (i, j ) ∈ Ihalf
N } is an array
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2.1. Point-to-line polymers and Whittaker functions

of positive random weights on the trapezoidal la�ice

I
half
N :=

{
(i, j ) ∈ �2

>0 : i + j ≤ N + 1, i ≤
N + 1

2

}
. (2.16)

The point-to-half-line polymer partition function at time N turns out to be the sum of all

point-to-point partition functions with endpoint on the half-line {m +n = N + 1, m ≤ n}:

Zhalf
N =

∑
m+n=N+1

m≤n

Zm,n . (2.17)

We will show that, when the weights are inverse-gamma distributed with a certain

parametrization, the Laplace transform of Zhalf
2N can be essentially wri�en as an integral

of the product of two Whi�aker functions associated to so2N+1 and glN respectively. The

idea behind the proof is the same as for the point-to-line partition function (see beginning

of subsection 2.1.1). The main di�erence here is that the Laplace transform of Zhalf
2N is an

integral over a trapezoidal array of variables as in Figure 1b, instead of a triangular array

as in Figure 1a. Such a trapezoidal array will be decomposed into a “half-triangular” part

(above the main diagonal) generating the so2N+1-Whi�aker function, and a triangular part

(below the diagonal) generating the glN -Whi�aker function.

Let us now fix the parametrization of the inverse-gamma weights. It is clear from

Definition (2.8) that the (α , β ,γ )-log-gamma measure, when restricted to the trapezoidal

la�ice Ihalf
2N , coincides with the (α , β + γ , 0)-log-gamma measure. For this reason, in this

subsection, we will assume without loss of generality that γ = 0, thus assigning the fol-

lowing measure to the weights:

Definition 2.7. Let N ∈ �>0 and α , β ∈ �N>0. We define the (α , β )-log-gamma measure

on the la�ice Ihalf
2N = {(i, j ) ∈ �2

>0 : i + j ≤ 2N + 1, i ≤ N } to be the law of a family of

independent random variables {Wi, j : (i, j ) ∈ Ihalf
2N } such that:

1
Wi, j

∼




Gamma(αi + βj , 1) 1 ≤ i, j ≤ N ,

Gamma(αi + α2N−j+1, 1) 1 ≤ i ≤ N , N < j ≤ 2N − i + 1 .
(2.18)

We first give an expression for the joint law of the point-to-point partition functions

on a half-line. Again, the proof will be based on Proposition 1.3.

Lemma 2.8. For the (α , β )-log-gamma polymer, the joint distribution of the point-to-point
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2. Log-gamma polymer models

partition functions on the half-line {i + j = 2N + 1, i ≤ j} is

�(Zm,2N−m+1 ∈ dym : m = 1, . . . ,N ) =
1

Γhalf
α ,β

Φhalf
α ,β (y)1�N>0

(y)
N∏

m=1

dym
ym
. (2.19)

Here, the normalization constant Γhalf
α ,β and the function Φhalf

α ,β are given by

Γhalf
α ,β :=

∏
1≤i, j≤N

Γ(αi + βj )
∏

1≤i≤j≤N
Γ(αi + α j ) , (2.20)

Φhalf
α ,β (y) :=

∫
Thalf
�>0

(y )

N∏
k=1

(
π2N−2k+1 (t )

2

π2N−2k+2 (t )π2N−2k (t )

)−αk (
πk−N (t )

πk−1−N (t )

)−βk

× exp


−

1
t1,1
−

∑
(i, j )∈Ihalf

2N

ti−1, j + ti, j−1

ti, j




∏
i+j≤2N
i≤N

dti, j
ti, j
,

(2.21)

using the convention that ti, j := 0 when (i, j ) < Ihalf
2N , and denoting by Thalf

�>0
(y) the set of all

arrays t = {ti, j : (i, j ) ∈ Ihalf
2N } with entries in �>0 such that (t1,2N , t2,2N−1, . . . , tN ,N+1) =

(y1, . . . ,yN ) =: y.

Proof. The joint law of the trapezoidal arrayW = {Wi, j : (i, j ) ∈ Ihalf
2N } for the (α , β )-log-

gamma measure, according to Definition (2.7), is given by

�(W ∈ dw ) =
N∏

i, j=1

w
−αi−βj
i, j

Γ(αi + βj )

∏
1≤i≤N

N <j≤2N−i+1

w
−αi−α2N−j+1
i, j

Γ(αi + α2N−j+1)

× exp


−

∑
(i, j )∈Ihalf

2N

1
wi, j




∏
(i, j )∈Ihalf

2N

1�>0
(wi, j )

dwi, j

wi, j
.

(2.22)

We now rewrite the above density in terms of the image array t = {ti, j : (i, j ) ∈ Ihalf
2N } of

w under the gRSK bijection. The powers of wi, j ’s are sorted out by noting that

2N−k+1∏
j=1

wk, j =
π2N−2k+1 (t )

π2N−2k+2 (t )
,

N∏
i=1

wi,k =
πk−N (t )

πk−1−N (t )
,

k∏
i=1

wi,2N−k+1 =
π2N−2k+1 (t )

π2N−2k (t )

for 1 ≤ k ≤ N , thanks to property (ii) of Proposition 1.3. Using property (iii) for dealing
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2.1. Point-to-line polymers and Whittaker functions

with the exponential term in (2.22), and property (iv) for the di�erential form, we obtain:

�(T ∈ dt ) =
1

Γhalf
α ,β

N∏
k=1

(
π2N−2k+1 (t )

2

π2N−2k+2 (t )π2N−2k (t )

)−αk (
πk−N (t )

πk−1−N (t )

)−βk

× exp


−

1
t1,1
−

∑
(i, j )∈Ihalf

2N

ti−1, j + ti, j−1

ti, j




∏
(i, j )∈Ihalf

2N

1�>0
(ti, j )

dti, j
ti, j
.

Finally, by property (i) of Proposition 1.3, the joint density of (Z1,2N ,Z2,2N−1, . . . ,ZN ,N+1)

at y ∈ �N>0 is obtained by integrating the above over Thalf
�>0

(y): this yields (2.19).

An adaptation of the proof of the analogous Theorem 2.5 for the point-to-line case

leads to the announced Whi�aker functions formula for the point-to-half-line partition

function.

Theorem 2.9. The Laplace transform of the point-to-half-line partition function Zhalf
2N for

the (α , β )-log-gamma polymer can be wri�en in terms of Whi�aker functions as

�

[
e−rZ

half
2N

]
=
r
∑N
k=1 (αk+βk )

Γhalf
α ,β

∫
�
N
>0

e−rx1Ψ
so2N+1
α (x )Ψ

glN
β

(x )
N∏
i=1

dxi
xi

(2.23)

for all r > 0, where Γhalf
α ,β is given by (2.20).

Proof. Given that Zhalf
2N =

∑N
m=1 Zm,2n−m+1, we have via Lemma 2.8 that

�

[
e−rZ

half
2N

]
=

1
Γhalf
α ,β

∫
�
N
>0

e−r
∑N
m=1 tm,2N−m+1 Φhalf

α ,β

((
tm,2N−m+1

)N
m=1

) N∏
m=1

dtm,2N−m+1

tm,2N−m+1
.

Using definition (2.21) of Φhalf
α ,β and performing the same change of variables ti, j = (rsi, j )

−1

for all (i, j ) ∈ Ihalf
2N as in the proof of Theorem 2.5, we obtain

�

[
e−rZ

half
2N

]
=
r
∑N
k=1 (αk+βk )

Γhalf
α ,β

∫
�
N
>0

N∏
m=1

dsm,2N−m+1

sm,2N−m+1
exp



−

N∑
m=1

1
sm,2N−m+1




×

∫
�
(3N 2

−N )/2
>0

N∏
k=1

(
π2N−2k+1 (s )

2

π2N−2k+2 (s )π2N−2k (s )

)αk (
πk−N (s )

πk−1−N (s )

)βk
× exp



−rs1,1 −

∑
i>1, j

si, j

si−1, j
−

∑
j>1,i

si, j

si, j−1




∏
i+j≤2N
i≤N

dsi, j
si, j
.

We now change the order in which variables are integrated in the above expression:
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we first integrate over the “half-triangular” array {si, j : i < j} and the triangular array

{si, j : j < i} into which the whole trapezoidal shape of Figure 1b is divided by the main

diagonal; next, we integrate w.r.t. the diagonal variables s1,1, . . . , sN ,N . This yields:

�

[
e−rZ

half
2N

]
=
r
∑N
k=1 (αk+βk )

Γhalf
α ,β

∫
�
N
>0

N∏
i=1

dsi,i
si,i

e−r s1,1

×

∫
�
N 2
>0

∏
i<j

dsi, j
si, j

N∏
k=1

(
π2N−2k+1 (s )

2

π2N−2k+2 (s )π2N−2k (s )

)αk

exp


−

N∑
m=1

1
sm,2N−m+1

−
∑

1<i≤j

si, j

si−1, j
−

∑
i<j

si, j

si, j−1




×

∫
�
N (N−1)/2
>0

∏
j<i

dsi, j
si, j

N∏
k=1

(
πk−N (s )

πk−1−N (s )

)βk
exp



−

∑
j<i

si, j

si−1, j
−

∑
1<j≤i

si, j

si, j−1



.

Comparing with Definition 1.17 and 1.13, we identify the second integral as an so2N+1-

Whi�aker function with parameter α , and the third integral as a glN -Whi�aker function

with parameter β , both evaluated in (s1,1, . . . , sN ,N ). Se�ing the la�er vector equal to x

concludes the proof of (2.23).

Remark 2.10. Take the limit r → 0 in (2.23): since�
[
e−rZ

half
2N

]
→ 1 and r

∑N
k=1 (αk+βk ) → 0,

we observe that the integral

∫
�
N
>0

Ψ
so2N+1
α (x )Ψ

glN
β

(x )
N∏
i=1

dxi
xi

diverges for α , β ∈ �N>0. This does not contradict Ishii-Stade identity, as in (1.67) the

parameters of the glN -Whi�aker function are required to have negative real part.

2.1.3 Restricted and symmetric point-to-line polymers

We now study the point-to-line polymer restricted to stay in a half-plane (in short

restricted point-to-line polymer), i.e. not allowed to go below the main diagonal. The re-

stricted point-to-line polymer partition function at time N ∈ �>0 is defined as

Z res
N :=

∑
π ∈Πres

N

∏
(i, j )∈π

Wi, j , (2.24)

where Πres
N is the set of directed paths starting from (1, 1) and ending on the half-line

{(m,n) : m +n = N + 1, m ≤ n} such that i ≤ j for all site (i, j ) of the path (see Figure 1c),
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and W = {Wi, j : (i, j ) ∈ Ires
n } is an array of positive random weights on the triangular

la�ice

I
res
N := {(i, j ) ∈ �2

>0 : i + j ≤ N + 1, i ≤ j} . (2.25)

For convenience’s sake, let us also define the restricted point-to-point polymer partition

function:

Z res
m,n :=

∑
π ∈Πres

m,n

∏
(i, j )∈π

Wi, j form ≤ n , (2.26)

where Πres
m,n is the set of directed paths from (1, 1) to (m,n) restricted to stay in the half-

plane {(i, j ) : i ≤ j}. It then turns out that the restricted point-to-line partition function is

the sum of the restricted point-to-point partition functions with endpoint on the half-line

{m + n = N + 1, m ≤ n}:

Z res
N =

∑
m+n=N+1

m≤n

Z res
m,n . (2.27)

We will show that, when the weights are inverse-gamma distributed with a certain

parametrization, the Laplace transform of Z res
2N can be essentially wri�en as an integral

of an so2N+1-Whi�aker function. Since the la�ice Ires
2N is not the index set of a Young

diagram, we cannot apply the gRSK correspondence, as defined in subsection 1.1.2, di-

rectly to such an array of weights. We will be working instead with a symmetric array, i.e.

W = {Wi, j : (i, j ) ∈ I2N } satisfyingWi, j =Wj,i for all (i, j ), as we will see that the restricted

and the symmetric polymers are closely connected. Indeed, one can easily convince one-

self that for each time a given restricted polymer path touches the main diagonal {i = j}

(including the starting point (1, 1)), the symmetric point-to-line polymer partition func-

tion counts the weight of that path twice†. Therefore, the symmetric point-to-line polymer

partition function can be expressed as a sum over restricted paths as:

Z
sym
2N =

∑
π ∈Πres

2N

2#{i : (i,i )∈π }
∏

(i, j )∈π

Wi, j =
∑

π ∈Πres
2N

∏
(i, j )∈π

(1 + δi, j )Wi, j . (2.28)

A similar reasoning leads to the conclusion that each symmetric point-to-point polymer

partition function can be expressed as a sum over restricted paths as:

Z
sym
m,n =

1
2

∑
π ∈Πres

m,n

∏
(i, j )∈π

(1 + δi, j )Wi, j form ≤ n . (2.29)

It follows from (2.28) and (2.29) that the partition functions of the symmetric and restricted

†This exact statement holds for the restricted polymer at even time 2N only. At an odd time 2N + 1, it
does not apply to the last element (N + 1,N + 1) of the main diagonal.
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2. Log-gamma polymer models

polymers are essentially the same, provided that the weights of the restricted polymer are

doubled on the diagonal. Let us clarify this in the following remark.

Remark 2.11. Consider a restricted polymer model on the la�ice Ires
2N , and a symmetric

polymer with the same weights above the diagonal (i < j) and halved weights on the

diagonal (i = j). Then:

(i) the partition functions of the restricted and symmetric point-to-line polymers coin-

cide, i.e. Z res
2N = Z

sym
2N ;

(ii) the partition functions of the restricted and symmetric point-to-point polymers co-

incide up to a factor 2, i.e. Z res
m,n = 2Z sym

m,n form ≤ n,m + n = 2N + 1.

We now see the exactly solvable distributions on restricted/symmetric arrays (one can

be deduced from the other via Remark (2.11)) that link to so2N+1-Whi�aker functions.

Definition 2.12. Let N ∈ �>0, α ∈ �N>0 and γ ∈ �≥0. We define the restricted (α ,γ )-

log-gamma measure on the la�ice Ires
2N := {(i, j ) ∈ �2

>0 : i + j ≤ 2N + 1, i ≤ j} to be the law

of a family of independent random variables {Wi, j : (i, j ) ∈ Ires
2N } such that

1
Wi, j

∼




Gamma(αi + γ , 1) 1 ≤ i = j ≤ N ,

Gamma(αi + α j + 2γ , 1) 1 ≤ i < j ≤ N ,

Gamma(αi + α2N−j+1, 1) 1 ≤ i ≤ N , N < j ≤ 2N − i + 1 .

(2.30)

We analogously define the symmetric (α ,γ )-log-gamma measure on the la�ice I2N :=
{(i, j ) ∈ �2

>0 : i + j ≤ 2N + 1} to be the law of a symmetric array {Wi, j : (i, j ) ∈ I2N } such

that the entries on and above the diagonal are independent and distributed as in (2.30),

except for the fact that the diagonal weights are halved, i.e.W −1
i,i ∼ Gamma(αi + γ , 1/2).

In next lemma we obtain the joint law of the point-to-point restricted polymer par-

tition functions at a fixed time. The proof is based on the analysis of the corresponding

symmetric polymer, and relies on the properties of gRSK acting on symmetric arrays - see

Proposition 1.4.

Lemma 2.13. For the restricted (α ,γ )-log-gamma polymer, the joint distribution of the

point-to-point partition functions at time 2N is

�(Z res
m,2N−m+1 ∈ dym : m = 1, . . . ,N ) =

1
Γres
α ,γ

Φres
α ,β (y)1�N>0

(y)
N∏

m=1

dym
ym
. (2.31)
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2.1. Point-to-line polymers and Whittaker functions

Here, the normalization constant Γres
α ,γ and the function Φres

α ,γ are given by

Γres
α ,γ :=

N∏
i=1

Γ(αi + γ )
∏

1≤i<j≤N
Γ(αi + α j + 2γ )

∏
1≤i≤j≤N

Γ(αi + α j ) , (2.32)

Φres
α ,γ (y) :=

∫
Tres
�>0

(y )

N∏
k=1

(
π2N−2k+1 (t )

2

π2N−2k+2 (t )π2N−2k (t )

)−αk
π0 (t )

−γ

× exp


−

1
t1,1
−

∑
(i, j )∈Ires

2N

ti−1, j + ti, j−1

ti, j




∏
i+j≤2N
i≤j

dti, j
ti, j
,

(2.33)

using the convention that ti, j := 0 when (i, j ) < Ires
2N , and denoting by Tres

�>0
(y) the set of

all arrays {ti, j : (i, j ) ∈ Ires
2N } with entries in �>0 such that (t1,2N , t2,2N−1, . . . , tN ,N+1) =

(y1, . . . ,yN ) =: y.

Proof. We work with the symmetric polymer. If W = {Wi, j : (i, j ) ∈ I2N } is distributed

according to the symmetric (α ,γ )-log-gamma measure (see Definition 2.12), the joint law

of its upper entries is

�(Wi, j ∈ dwi, j : i ≤ j ) =
N∏
i=1

w
−αi−γ
i,i

2αi+γ Γ(αi + γ )

∏
1≤i<j≤N

w
−αi−α j−2γ
i, j

Γ(αi + α j + 2γ )

×
∏

1≤i≤N
N <j≤2N−i+1

w
−αi−α2N−j+1
i, j

Γ(αi + α2N−j+1)
exp



−

N∑
i=1

1
2wi,i

−
∑
i<j

1
wi, j




∏
i≤j

1�>0
(wi, j )

dwi, j

wi, j
.

(2.34)

Let t be the image of w under gRSK, which is also symmetric by Proposition 1.4. Prop-

erty (ii) of Proposition 1.3 yields

2N−k+1∏
j=1

wk, j =
π2N−2k+1 (t )

π2N−2k+2 (t )
,

k∏
i=1

wi,2N−k+1 =
π2N−2k+1 (t )

π2N−2k (t )

for 1 ≤ k ≤ N . Using this and the symmetry of w , the product of all wi, j ’s raised to the

−αk in (2.34) can be wri�en as

2N−k+1∏
j=k

wk, j

k−1∏
i=1

wi,k

k∏
i=1

wi,2N−k+1 =

2N−k+1∏
j=1

wk, j

k∏
i=1

wi,2N−k+1 =
π2N−2k+1 (t )

π2N−2k+2 (t )

π2N−2k+1 (t )

π2N−2k (t )
.
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2. Log-gamma polymer models

By formula (1.17), the product of wi, j ’s raised to the power of −γ in (2.34) is

N∏
i=1

wi,i

∏
1≤i<j≤N

w2
i, j =

N∏
i, j=1

wi, j = π0 (t ) .

For dealing with the exponential term in (2.34), we use the symmetry of w and t and

property (iii) of Proposition 1.3 to see that

N∑
i=1

1
2wi,i

+
∑
i<j

1
wi, j
=

1
2

∑
(i, j )∈I2N

1
wi, j
=

1
2
E (t ) =

1
2t1,1

+
∑

1<i≤j

ti−1, j

ti, j
+

∑
i<j

ti, j−1

ti, j
.

Using the volume preserving property of the symmetric gRSK (see Proposition 1.4), we

thus obtain:

�(Ti, j ∈ dti, j : i ≤ j ) =
2−Nγ−

∑N
k=1 αk

Γres
α ,γ

N∏
k=1

(
π2N−2k+1 (t )

2

π2N−2k+2 (t )π2N−2k (t )

)−αk
π0 (t )

−γ

× exp


−

1
2t1,1

−
∑

1<i≤j

ti−1, j

ti, j
−

∑
i<j

ti, j−1

ti, j




∏
i≤j

1�>0
(ti, j )

dti, j
ti, j
.

The change of variables ti, j 7→ ti, j/2 for all i ≤ j cancels out the power of 2 and replaces

the term 1/(2t1,1) with 1/t1,1. Rewriting the sums inside the exponential above as a single

sum over Ires
2N (with the convention that ti, j := 0 when (i, j ) < Ires

2N ), we obtain:

�(2Ti, j ∈ dti, j : i ≤ j ) =
1

Γres
α ,γ

N∏
k=1

(
π2N−2k+1 (t )

2

π2N−2k+2 (t )π2N−2k (t )

)−αk
π0 (t )

−γ

× exp


−

1
t1,1
−

∑
(i, j )∈Ires

2N

ti−1, j + ti, j−1

ti, j




∏
i≤j

1�>0
(ti, j )

dti, j
ti, j
.

By property (i) of Proposition 1.3, the joint law of (2Z sym
1,2N , 2Z

sym
2,2N−1, . . . , 2Z

sym
N ,N+1) at y ∈

�
N
>0 is obtained by integrating the resulting expression over Tres

�>0
(y). Since 2Z sym

m,n = Z res
m,n

form ≤ n by Remark 2.11, our claim (2.31) follows.

Lemma 2.13 allows us to obtain our Whi�aker integral formula for the Laplace trans-

form of Z res
2N (or equivalently of Z sym

2N , as they coincide by Remark 2.11), which is stated in

next theorem. The proof is omi�ed as it follows the same steps as in Theorems 2.5 and 2.9.

Theorem 2.14. The Laplace transform of the point-to-line partition function for the re-

stricted (α ,γ )-log-gamma polymer can be wri�en in terms of orthogonal Whi�aker functions
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2.2. Point-to-line polymers and contour integrals

as

�
[
e−rZ

res
2N

]
=
r
∑N
k=1 (αk+γ )

Γres
α ,γ

∫
�
N
>0

*
,

N∏
i=1

xi+
-

γ

e−rx1Ψ
so2N+1
α (x )

N∏
i=1

dxi
xi

(2.35)

for all r > 0, where Γres
α ,γ is defined by (2.32).

2.2 Point-to-line polymers and contour integrals

Formulas (2.13) and (2.23) express the Laplace transforms of the point-to-line and the

point-to-half-line log-gamma polymer partitions functions, respectively, as integrals of

Whi�aker functions. In this section we rewrite such integrals as contour integrals of

gamma functions.

The integrals appearing in formulas (2.23) and (2.13) are analogous to the Bump-Stade

identity (1.59), where either one or both glN -Whi�aker functions are replaced with the

corresponding orthogonal ones. However, a closed formula in terms of products and ratios

of gamma functions for our integrals does not appear in the literature. We can still turn our

integrals into contour integrals of gamma functions using the glN -Whi�aker-Plancherel

theorem 1.15, combined with the Bump-Stade (1.59) and the Ishii-Stade (1.67) identities.

The key tool is the following lemma.

Lemma 2.15. The gln-Whi�aker isometry between the spaces L2 (�n>0,
∏n

i=1 dxi/xi ) and

L2
sym (i�

n , sn (λ) dλ) defined in Theorem 1.15 maps

(i) f (x ) := e−rx1Ψ
gln
α 7−→ f̂ (λ) := r−

∑n
i=1 (λi+αi )

∏
1≤i, j≤n

Γ(λi + α j )

for all r > 0 and α ∈ �n such that<(α j ) > 0 for all j;

(ii)
д(x ) := *

,

n∏
i=1

xi+
-

−s

Ψ
so2n+1
α (x ) 7−→ д̂(λ) :=

∏
1≤i, j≤n Γ(s − λi + α j )Γ(s − λi − α j )∏

1≤i<j≤n Γ(2s − λi − λj )

for all s ∈ � and α ∈ �n such that<(s ± α j ) > 0 for all j.

Proof. (i) Assuming that f is square-integrable, the Bump-Stade identity (1.59) implies

that f̂ is indeed the gln-Whi�aker transform of f . To prove that f belongs to the

space L2 (�n>0,
∏n

i=1 dxi/xi ), we will show instead the equivalent statement that f̂ is

in L2
sym (i�

n , sn (λ) dλ). It is clear that f̂ is a symmetric function, and has no poles,

thanks to the assumption that each α j has positive real part. Recalling the Stirling

approximation of the gamma function

��Γ(x + iy)�� ∼
√

2π ��y��x−
1
2 e−

π
2 |y | as ��y��→ ∞ , (2.36)
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we can compute the asymptotics of ��� f̂ (λ)
���
2
sn (λ) as ��λi �� → ∞ for 1 ≤ i ≤ n and

���λi − λj
��� → ∞ for all i < j (which is when sn (λ) has the worst diverging behavior).

Denoting by the symbol ∼ asymptotic behavior up to multiplicative constants and

powers, we have that

��� f̂ (λ)
���
2
sn (λ) =

r−2
∑
i <(αi ) ∏

i, j
���Γ(λi + α j )

���
2

(2π )nn!
∏

i,j
���Γ(λi − λj )

���
∼

∏
i, j e−π |λi |∏

i<j e−π
���λi−λj

���

= exp


−πn

∑
i

��λi �� + π
∑
i<j

���λi − λj
���


≤ exp



−π

∑
i

��λi ��


,

where for the last inequality we have used the following rough estimate:∑
i<j

���λi ± λj
��� ≤

∑
i<j

(��λi �� +
���λj

���
)
= (n − 1)

∑
i

��λi �� . (2.37)

This proves that ��� f̂ (λ)
���
2
sn (λ) is integrable on i�n .

(ii) Assuming the integrability properties, the fact that д̂ is indeed the gln-Whi�aker

transform of д follows from property (1.53) and Ishii-Stade identity (1.67). Therefore,

we can just reduce ourselves to prove that д̂ belongs to L2
sym (i�

n , sn (λ) dλ). Again, д̂ is

a symmetric function, and has no poles, thanks to the assumption that<(s ±α j ) > 0
for all j. Using (2.36) and (2.37), we compute the asymptotics (up to multiplicative

constants and powers) of ��д̂(λ)��2sn (λ) as ��λi �� → ∞ for all i and ���λi ± λj
��� → ∞ for all

i < j:

��д̂(λ)��2sn (λ)

=

∏
i, j

���Γ(s − λi + α j )Γ(s − λi − α j )
���
2

(2π )nn!
∏

i<j
���Γ(2s − λi − λj )

���
2 ∏

i,j
���Γ(λi − λj )

���
∼

∏
i, j e−2π |λi |∏

i<j e−π
���λi+λj

���e−π
���λi−λj

���

= exp


−2nπ

∑
i

��λi �� + π
∑
i<j

���λi + λj
��� + π

∑
i<j

���λi − λj
���


≤ exp



−2π

∑
i

��λi ��


,

which proves the integrability of ��д̂(λ)��2sn (λ) on i�n .

As a consequence of this lemma, we will prove the contour integral formulas for the

point-to-line and point-to-half-line log-gamma polymer partition functions, in subsec-

tion 2.1.1 and 2.1.2 respectively.
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2.2.1 Point-to-line polymer

In the following theorem we derive a contour integral formula for the Laplace trans-

form of the point-to-line log-gamma polymer partition function. The proof consists of

applying the Whi�aker-Plancherel theorem 1.15, in a two-step procedure, to the integral

of Whi�aker functions in (2.13).

Theorem 2.16. The Laplace transform of the point-to-line partition function Z2N for the

(α , β,γ )-log-gamma polymer is given by

�
[
e−rZ2N

]
=

1
Γα ,β,γ

∫
(ε+i�)N

sN (ϱ) dϱ
∫
(δ+i�)N

sN (λ) dλ r−
∑N
k=1 (λk+ϱk−αk−βk+γ )

×

∏
1≤i, j≤N Γ(λi + ϱ j + γ )Γ(λi + α j )Γ(λi − α j )Γ(ϱi + βj )Γ(ϱi − βj )∏

1≤i<j≤N Γ(λi + λj )Γ(ϱi + ϱ j )

(2.38)

for all r > 0, where Γα ,β,γ is the constant defined in (2.10), sN (λ) dλ is the Sklyanin measure

as in (1.58), and δ , ε are chosen so that δ > α j and ε > βj for all j. Furthermore, the multiple

contour integral in (2.38) is absolutely convergent.

Proof. The integral appearing in formula (2.13) can be wri�en as

∫
�
N
>0

e−rx1Ψ
so2N+1
α (x )Ψ

so2N+1
β

(x ) *
,

N∏
i=1

xi+
-

γ N∏
i=1

dxi
xi
=

∫
�
N
>0

f (x )д(x )
N∏
i=1

dxi
xi
, (2.39)

where

f (x ) := *
,

N∏
i=1

xi+
-

γ+ε

e−rx1Ψ
so2N+1
α (x ) , д(x ) := *

,

N∏
i=1

xi+
-

−ε

Ψ
so2N+1
β

(x ) .

By Lemma 2.15-(ii), since ε > βj > 0 for all j, д belongs to L2 (�N>0,
∏N

i=1 dxi/xi ) and

satisfies

д̂(ϱ) =

∏
1≤i, j≤N Γ(ε + ϱi + βj )Γ(ε + ϱi − βj )∏

1≤i<j≤N Γ(2ε + ϱi + ϱ j )

for all ϱ ∈ i�N (recall that Γ(z) = Γ(z)). On the other hand, applying Theorem 2.5 in the

case where α = β , γ is replaced with 2(γ + ε ) and r is replaced with 2r , we obtain that

∫
�
N
>0

��f (x )��2
N∏
i=1

dxi
xi
=

Γα ,α ,2(γ+ε )

(2r )2
∑N
k=1 (αk+γ+ε )

�

[
e−2r Z̃2N

]
< ∞ , (2.40)

where Z̃2N is the point-to-line partition function of the (α ,α , 2(γ + ε ))-log-gamma poly-

mer. This proves that f also belongs to L2 (�N>0,
∏N

i=1 dxi/xi ), so we can apply the glN -
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Whi�aker-Plancherel theorem to (2.39) and obtain:

∫
�
N
>0

*
,

N∏
i=1

xi+
-

γ

e−rx1Ψ
so2N+1
α (x )Ψ

so2N+1
β

(x )
N∏
i=1

dxi
xi

=

∫
(ε+i�)N

f̂ (ϱ − ε )

∏
1≤i, j≤N Γ(ϱi + βj )Γ(ϱi − βj )∏

1≤i<j≤N Γ(ϱi + ϱ j )
sN (ϱ) dϱ ,

(2.41)

a�er the change of variables ϱ 7→ ϱ − ε (notice that sN (ϱ − ε ) = sN (ϱ)). To compute

f̂ (ϱ − ε ), we first notice that by property (1.53)

f̂ (ϱ − ε ) =

∫
�
N
>0

*
,

N∏
i=1

xi+
-

γ+ε

e−rx1Ψ
so2N+1
α (x )Ψ

glN
ϱ−ε (x )

N∏
i=1

dxi
xi

=

∫
�
N
>0

[
e−rx1Ψ

glN
ϱ+γ+δ (x )

] 
*
,

N∏
i=1

xi+
-

−δ

Ψ
so2N+1
α (x )



N∏
i=1

dxi
xi
.

By Lemma 2.15, since γ ≥ 0, δ > α j > 0 and<(ϱ j ) = ε for all j, the two functions in the

square brackets belong to L2 (�N>0,
∏N

i=1 dxi/xi ), with glN -Whi�aker transforms given by

the same lemma. Applying the Whi�aker-Plancherel theorem again, we then obtain

f̂ (ϱ − ε ) =

∫
(δ+i�)N

r−
∑N
i=1 (λi+ϱi+γ )

∏
1≤i, j≤N Γ(λi + ϱ j + γ )Γ(λi + α j )Γ(λi − α j )∏

1≤i<j≤N Γ(λi + λj )
sN (λ) dλ ,

a�er the change of variables λ 7→ λ − δ . Plugging the la�er formula into (2.41) and

combining with (2.13) concludes the proof of (2.38).

Finally, we are going to show that the integral in (2.38) is absolutely convergent, so

that the order of integration with respect to λ and ϱ does not ma�er. Note first that the

integrand has no poles thanks to the choice of δ and ε . It is then su�icient to check the

integrability as ��Li ��, ��Ri �� → ∞ for all i and ���Li ± Lj
���,

���Ri ± R j
��� → ∞ for all i < j, where

L := =(λ) and R := =(ϱ). Using the asymptotics of the gamma function (2.36), we may

reduce ourselves to check that∏
i, j e−

π
2

���Li+Rj
���e−π |Li |e−π |Ri |∏

i<j e−
π
2

���Li+Lj
���e−

π
2

���Ri+Rj
���

∏
i,j

e
π
2

���Li−Lj
���e
π
2

���Ri−Rj
���

is integrable for (L,R) ∈ �2N . The la�er function equals eπ /2 raised to

−
∑
i, j

(���Li + R j
��� + 2��Li �� + 2��Ri ��

)
+

∑
i<j

(���Li + Lj
��� +

���Ri + R j
���
)
+

∑
i,j

(���Li − Lj
��� +

���Ri − R j
���
)
.

(2.42)
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At this stage, since the above expression is symmetric both w.r.t. the variables Li ’s and

w.r.t. the variables R j ’s, we may assume that

L1 ≥ L2 ≥ · · · ≥ LN and R1 ≤ R2 ≤ · · · ≤ RN .

This will then allow the bound∑
i,j

(���Li − Lj
��� +

���Ri − R j
���
)
= 2

∑
i<j

(Li − Lj + R j − Ri ) = 2
∑
i<j

���(Li + R j ) − (Ri + Lj )
���

=
∑
i, j

���(Li + R j ) − (Ri + Lj )
��� ≤

∑
i, j

���Li + R j
��� +

∑
i, j

���Ri + Lj
��� = 2

∑
i, j

���Li + R j
��� .

Using the la�er estimate and the one given in (2.37), we obtain

(2.42) ≤ −
∑
i, j

���Li + R j
��� − 2N

∑
i

(��Li �� + ��Ri ��) + (N − 1)
∑
i

(��Li �� + ��Ri ��) + 2
∑
i, j

���Li + R j
���

= (−2N + N − 1)
∑
i

(��Li �� + ��Ri ��) +
∑
i, j

���Li + R j
���

≤ (−N − 1)
∑
i

(��Li �� + ��Ri ��) + N
∑
i

��Li �� + N
∑
j

���R j
���

= −
∑
i

(��Li �� + ��Ri ��) ,

hence eπ /2 raised to (2.42) is integrable for (L,R) ∈ �2N as desired.

2.2.2 Point-to-half-line polymer

The proof of the contour integral formula for the Laplace transform of the point-to-

half-line partition function is simpler, as it requires to apply the Whi�aker-Plancherel

theorem only once.

Theorem 2.17. The Laplace transform of the point-to-half-line partition function Zhalf
2N for

the (α , β )-log-gamma polymer is given by

�

[
e−rZ

half
2N

]
=

1
Γhalf
α ,β

∫
(δ+i�)N

sN (λ) dλ r−
∑N
k=1 (λk−αk )

×

∏
1≤i, j≤N Γ(λi + α j )Γ(λi − α j )Γ(λi + βj )∏

1≤i<j≤N Γ(λi + λj )

(2.43)

for all r > 0, where Γhalf
α ,β is the constant defined in (2.20), sN (λ) dλ is the Sklyanin measure

as in (1.58), and δ is chosen so that δ > α j for all j.
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2. Log-gamma polymer models

Proof. Multiplying and dividing the integrand by (
∏N

i=1 xi )
δ and using property (1.53), we

can write the integral appearing in formula (2.23) as

∫
�
N
>0

e−rx1Ψ
so2N+1
α (x )Ψ

glN
β

(x )
N∏
i=1

dxi
xi
=

∫
�
N
>0

f (x )д(x )
N∏
i=1

dxi
xi
,

where

f (x ) := e−rx1Ψ
glN
β+δ (x ) , д(x ) := *

,

N∏
i=1

xi+
-

−δ

Ψ
so2N+1
α (x ) .

Applying now the isometry of Theorem 1.15 to the L2-inner product of f and д, whose

glN -Whi�aker transforms have been computed in Lemma 2.15, we obtain:

∫
�
N
>0

e−rx1Ψ
so2N+1
α (x )Ψ

glN
β

(x )
N∏
i=1

dxi
xi

=

∫
i�N

r−
∑N
i=1 (λi+βi+δ )

∏
1≤i, j≤N Γ(δ + λi + α j )Γ(δ + λi − α j )Γ(λi + βj + δ )∏

1≤i<j≤N Γ(2δ + λi + λj )
sN (λ) dλ .

Changing variables λ 7→ λ − δ and combining with (2.23), we obtain (2.43).
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3

Last passage percolation models

Recall from the Introduction that the last passage percolation (LPP) time is defined as

τ := max
π ∈Π

∑
(i, j )∈π

Wi, j ,

where Π is a given set of nearest neighbor directed paths on a finite la�ice I ⊂ �2
>0, and

W = {Wi, j : (i, j ) ∈ I} is an array of random waiting times.

In this chapter we study the LPP in the same point-to-line path geometries considered

in chapter 2 for the corresponding polymer models. We consider two di�erent distribu-

tions on the waiting times: geometric in section 3.1 and exponential in section 3.2. Via

the RSK correspondence we show that these models are exactly solvable, by expressing

the distribution function of the LPP time in terms of (discrete or continuous, standard

or symplectic) Schur functions. Finally, in section 3.3 we study the scaling limit of the

point-to-line and point-to-half-line exponential models.

The connection between geometric point-to-point LPP, RSK correspondence and Schur

functions goes back to Johansson [Joh00] and Baik-Rains [BR01a]. In the cited article,

Johansson also proved that the point-to-point LPP with i.i.d. geometric waiting times

converges, under appropriate rescaling, to the GUE Tracy-Widom distribution. We then

start by illustrating the point-to-point case, which will be a useful source of inspiration

and term of comparison for our point-to-line models (as it was for the polymer models,

see beginning of chapter 2). Let τn,n be the point-to-point LPP associated with the set

of directed paths starting at (1, 1) and ending at (n,n). Assume that the waiting times

W = {Wi, j : 1 ≤ i, j ≤ n} are non-negative integer-valued random variables. Then, by

Proposition 1.2, the RSK correspondence will map W to a pair (Z ,Z ′) of �≥0-Gelfand-

Tsetlin pa�erns with the same shape λ. Since τn,n coincides with the first part λ1 of the
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3.1. Geometric last passage percolation

partition λ by property (i) of the same proposition, we have that

�(τn,n ≤ u) =
∑
λ1≤u

�(sh(Z ) = sh(Z ′) = λ) (3.1)

for u ∈ �≥0. Assume now that the waiting times are independent andWi, j ∼ Geom(qipj )

for all i, j, where q = (q1, . . . ,qn ) and p = (p1, . . . ,pn ) are sets of parameters in (0, 1)n .

Namely, the joint distribution of the matrixW is given by

�(W = w ) =
n∏

i, j=1
(1 − qipj ) (qipj )

wi, j =

n∏
i, j=1

(1 − qipj ) *
,

n∏
i=1

q
∑n
j=1 wi, j

i
+
-

*.
,

n∏
j=1

p
∑n
i=1 wi, j

j
+/
-

for all w ∈ �n×n≥0 . By property (ii) of Proposition 1.2, the distribution that W induces on

the common shape of Z ′ and Z writes as

�(sh(Z ′) = sh(Z ) = λ) =
∑

z,z ′∈GT4n
�

(λ)

�(Z ′ = z ′ , Z = z)

=

n∏
i, j=1

(1 − qipj )
*..
,

∑
z ′∈GT4n

�
(λ)

n∏
i=1

q
Type(z ′)i
i

+//
-

*..
,

∑
z ∈GT4n

�
(λ)

n∏
j=1

p
Type(z )j
j

+//
-

=

n∏
i, j=1

(1 − qipj ) sλ (q) sλ (p) ,

where sλ is the Schur polynomial defined in (1.7). It follows from (3.1) that

�(τn,n ≤ u) =
n∏

i, j=1
(1 − qipj )

∑
λ1≤u

sλ (q) sλ (p) , (3.2)

where the sum is over all integer partition λ of length at most n and first part at most u.

Notice that (3.2) provides a (probabilistic) proof of the Cauchy-Li�lewood identity (1.37):

it su�ices to take the limitu → ∞ and observe that the le�-hand side tends to 1. A formula

such as (3.2) is useful because, due to the determinantal structure of Schur functions, it

can be turned into a Fredholm determinant amenable to asymptotic analysis.

3.1 Geometric last passage percolation

In section 2.1 we used the gRSK correspondence to express the distribution of polymer

partition functions in terms of Whi�aker functions. Here we carry out an analogous task

at a zero temperature level: namely, we use the RSK correspondence to express the distri-
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3. Last passage percolation models

bution of LPP times in terms of Schur functions. As in this section we work with geometric

waiting times, the resulting formulas are discrete, in the sense that they involve sums of

discrete Schur functions. Conversely, in the next section we will work with exponential

waiting times, hence our formulas will involve integrals of continuous Schur functions.

3.1.1 Point-to-line geometric model

The point-to-line LPP is defined as

τN := max
π ∈ΠN

∑
(i, j )∈π

Wi, j , (3.3)

whereΠN is the usual set of point-to-line directed paths, andW is a random array indexed

by the la�ice IN defined in (2.6) - see Figure 1a. Notice that the point-to-line LPP at

time N can be wri�en as a maximum of point-to-point LPPs with endpoint on the line

{m + n = N + 1}:
τN = max

m+n=N+1
τm,n . (3.4)

We will show in Theorem 3.2 that, when the waiting times are geometrically dis-

tributed with the special parametrization of Definition 3.1, the CDF of τ2N can be ex-

pressed as a sum of two symplectic Schur functions. Mutatis mutandis, the argument is

similar to the one used in positive temperature, see Lemma 2.4 and Theorem 2.5. Namely,

we use the RSK bijection and its properties, next we apply a further change of variables

that reverses the arrows in Figure 6a (in this context, it means that the inequalities that

the RSK output satisfies are reversed). The resulting array can be seen as a gluing of a

pair of symplectic Gelfand-Tsetlin pa�erns with common shape (being the main diagonal

of the array), which in turn generate the symplectic Schur functions.

Definition 3.1. Let N ∈ �>0, q,p ∈ (0, 1)N . We define the (q,p)-geometric measure

on the la�ice I2N to be the law of an array {Wi, j : (i, j ) ∈ I2N } of independent random

variables such that:

Wi, j ∼




Geom(qipj ) 1 ≤ i, j ≤ N ,

Geom(qiq2N−j+1) 1 ≤ i ≤ N , N < j ≤ 2N − i + 1 ,

Geom(p2N−i+1pj ) 1 ≤ j ≤ N , N < i ≤ 2N − j + 1 .

(3.5)

Theorem 3.2. The distribution of the point-to-line (q,p)-geometric LPP is given by

�(τ2N ≤ u) =

(∏N
k=1 qkpk

)u
cq,p

∑
λ1≤u

spλ (q)spλ (p) , (3.6)
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3.1. Geometric last passage percolation

where u ∈ �≥0, the sum is over all integer partition λ of length at most N and first part at

most u, and the normalization constant is

cq,p :=
∏

1≤i, j≤N

1
1 − qipj

∏
1≤i≤j≤N

1
(1 − qiqj ) (1 − pipj )

. (3.7)

Proof. IfW = {Wi, j : (i, j ) ∈ I2N } is distributed according to the (q,p)-geometric measure,

then

�(W = w ) =
1

cq,p

N∏
i=1

q
∑2N−i+1
j=1 wi, j

i p
∑i
j=1 w2N−i+1, j

i

N∏
j=1

p
∑2N−j+1
i=1 wi, j

j q
∑j
i=1 wi,2N−j+1

j

for w ∈ �I2N
≥0 . By Proposition 1.5, RSK can be seen as a bijection between arrays indexed

by I2N with non-negative integer entries, such that the output array satisfies the order-

ing (1.30). By property (ii) of that proposition, the distribution thatW induces on its RSK
imageT is then given by

�(T = t ) =
1

cq,p

N∏
i=1

q
σ2N−2i+1 (t )−σ2N−2i+2 (t )
i p

σ−(2N−2i+1) (t )−σ−(2N−2i ) (t )

i

×

N∏
j=1

p
σ−(2N−2j+1) (t )−σ−(2N−2j+2) (t )

j q
σ2N−2j+1 (t )−σ2N−2j (t )

j ,

where σk (t ) denotes the sum of the k-th diagonal of t as in (1.25). By equation (3.4) and

properties (i) and (iii) of Proposition 1.5, our CDF is given by

�
(
τ2N ≤ u

)
= �

(
τm,n ≤ u : m + n = 2N + 1

)
= �(Ti, j ≤ u : (i, j ) ∈ I2N )

and can be obtained by summing up �(T = t ) over all t ∈ �I2N
≥0 satisfying the order-

ing (1.30) and the additional condition that ti, j ≤ u for all (i, j ) ∈ I2N .

Let us now change variables, by se�ing zi, j := u − t2N+j−i, j and z ′i, j := u − tj,2N+j−i

for all 1 ≤ i ≤ 2N and 1 ≤ j ≤ di/2e. Notice that the variables zi, j ’s and z ′i, j ’s are

bounded between 0 and u, as all ti, j ’s are. The arrays z and z ′ just defined turn thus

out to be sympletic Gelfand-Tsetlin pa�erns of height 2N with a certain common shape

λ = u− (t1,1, . . . , tN ,N ), such that λ1 (and therefore all their entries) are not greater thanu.

One may be�er visualize this by looking at Figure 6a: all the arrows are reversed, because

the minus sign in the change of variables amounts to reversing all the inequalities; the

lower triangular part and the upper triangular part of the array correspond to z and z ′

respectively, and the main diagonal turns into the common shape λ. Denoting by ��zi �� :=
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3. Last passage percolation models

∑ di/2e
j=1 zi, j the sum of the i-th row of z (and analogously for z ′), we obtain that

cq,p · �(τ2N ≤ u)

=
∑
λ1≤u

∑
z ′,z ∈GT 2N

�
(λ)

N∏
i=1

q
u−|z ′2i−1 |+|z

′
2i−2 |

i p
−|z2i−1 |+|z2i |
i

N∏
j=1

p
u−���z2j−1

���+
���z2j−2

���
j q

−
���z
′
2j−1

���+
���z
′
2j

���
j

= *
,

N∏
k=1

qkpk+
-

u ∑
λ1≤u

∑
z ′∈GT 2N

�
(λ)

N∏
k=1

q
−Type(z ′)2k−1+Type(z ′)2k
k

∑
z ∈GT 2N

�
(λ)

N∏
k=1

p
−Type(z )2k−1+Type(z )2k
k

= *
,

N∏
k=1

qkpk+
-

u ∑
λ1≤u

spλ (q
−1
1 , . . . ,q

−1
N )spλ (p

−1
1 , . . . ,p

−1
N ) .

The la�er two equalities follow from the definitions of type (1.40) and symplectic Schur

function (1.41). Recalling from subsection 1.2.2 that symplectic Schur functions are in-

variant under multiplicative inversion of their arguments, we obtain (3.6).

We now make a comparison with the point-to-point LPP model with symmetry about

the antidiagonal, as it turns out to be intimately connected to the point-to-line model.

Let us denote by τ
-sym

n,n the point-to-point LPP from (1, 1) to (n,n) with waiting times

symmetric about the antidiagonal, i.e.Wi, j =Wn−j+1,n−i+1 for 1 ≤ i, j ≤ n. Because of the

symmetry constraint, at least one of the maximal paths† from (1, 1) to (n,n) is symmetric

about the antidiagonal; the waiting times collected along such a path will be all counted

twice (once above and once below the antidiagonal), except the one on the antidiagonal

itself. It easily follows that the -symmetric LPP with doubled weights on the antidiagonal

coincides with twice the point-to-line LPP, i.e. τ -sym
n,n = 2τn .

Baik-Rains [BR01a] and Forrester-Rains [FR07] studied the distribution of the geo-

metric point-to-point LPP where the matrix of waiting times is subject to certain sym-

metries, using the classical RSK acting on nonnegative integer matrices. They proved in

particular that, if the waiting times {Wi, j : i + j ≤ n + 1} on and above the antidiagonal

are independent and

Wi, j ∼




Geom(rirn−j+1) if i + j < n + 1 ,

2 · Geom(r 2
i ) if i + j = n + 1

†By maximal path we mean any of the allowed paths that maximizes the passage time. Notice that such
a path does not need to be unique.
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3.1. Geometric last passage percolation

for a set of parameters r := (r1, . . . , rn ) ∈ (0, 1)n , then

�
(
τ

-sym
n,n ≤ 2u

)
=

∏
1≤i≤j≤n

(1 − rir j )
∑
λ1≤u

s2λ (r ) (3.8)

for all nonnegative integer u, being 2λ = (2λ1, . . . , 2λn ) any partition with even parts.

Thanks to the connection between τ
-sym

n,n and τn outlined above, the above also equals

the distribution function � (τn ≤ u) of the point-to-line LPP τn with independent waiting

times distributed as Wi, j ∼ Geom(rirn−j+1) for i + j ≤ n + 1. If we then take n = 2N
to be even and replace (r1, . . . , r2N ) with (q1, . . . ,qN ,pN , . . . ,p1), the distribution on the

waiting times coincides with the (q,p)-geometric measure. We thus find another formula

for the point-to-line (q,p)-geometric LPP:

�
(
τ2N ≤ u

)
=

1
cq,p

∑
λ1≤u

s2λ (q1, . . . ,qN ,pN , . . . ,p1) , (3.9)

where cq,p is defined in (3.7). Our (3.6) involves a sum of the product between two symplec-

tic Schur functions, while Baik-Rains’s (3.9) shows a sum of one standard Schur function

parametrized by even partitions: these formulas are essentially di�erent, but still equiv-

alent. In particular, comparing them and recalling that Schur functions are symmetric in

their variables, we deduce that

∑
λ1≤u

s2λ (q1, . . . ,qN ,p1, . . . ,pN ) = *
,

N∏
k=1

qkpk+
-

u ∑
λ1≤u

spλ (q1, . . . ,qN )spλ (p1, . . . ,pN ) .

(3.10)

There are direct combinatorial/algebraic proofs of this nontrivial identity, which will be

the subject of future work.

3.1.2 Point-to-half-line geometric model

The point-to-half-line LPP is defined as

τ half
N := max

π ∈Πhalf
N

∑
(i, j )∈π

Wi, j , (3.11)

where Πhalf
N is the usual set of point-to-half-line directed paths, andW is a random array

indexed by the la�ice Ihalf
N defined in (2.16) - see Figure 1b. Notice that the point-to-half-

line LPP at time N can be wri�en as a maximum of point-to-point LPPs with endpoint on

74



3. Last passage percolation models

the half-line {m + n = N + 1, m ≤ n}:

τ half
N = max

m+n=N+1
m≤n

τm,n . (3.12)

If the waiting times are distributed according to the (q,p)-geometric measure as in

Definition 3.1 (restricted to the la�ice Ihalf
2N ), the CDF of τ half

2N is given by a sum of the

product between a symplectic and a standard Schur function:

Theorem 3.3. The distribution of the point-to-half-line (q,p)-geometric LPP is given by

�
(
τ half

2N ≤ u
)
=

(∏N
k=1 qkpk

)u
chalf
q,p

∑
λ1≤u

spλ (q1, . . . ,qN )sλ (p
−1
1 , . . . ,p

−1
N ) , (3.13)

where u ∈ �≥0 and the normalization constant is

chalf
q,p :=

∏
1≤i, j≤N

1
1 − qipj

∏
1≤i≤j≤N

1
1 − qiqj

. (3.14)

Proof. The proof is again based on Proposition 1.5 and follows the same steps as in The-

orem 3.2, so we only sketch it. Let W = {Wi, j : (i, j ) ∈ Ihalf
2N } be distributed according to

the (q,p)-geometric measure, i.e.

�(W = w ) =
1

chalf
q,p

N∏
i=1

q
∑2N−i+1
j=1 wi, j

i

N∏
j=1

p
∑N
i=1 wi, j

j q
∑j
i=1 wi,2N−j+1

j

for w ∈ �I
half

2N
≥0 . The distribution thatW induces on its RSK imageT is then given by

�(T = t ) =
1

chalf
q,p

N∏
i=1

q
σ2N−2i+1 (t )−σ2N−2i+2 (t )
i

N∏
j=1

p
σ−(N−j ) (t )−σ−(N−j+1) (t )

j q
σ2N−2j+1 (t )−σ2N−2j (t )

j .

We can obtain �(τ half
2N ≤ u) by summing up the probabilities computed above over all

t ∈ �
I

half
2N
≥0 satisfying the ordering (1.30) and the additional condition that ti, j ≤ u for all

(i, j ) ∈ Ihalf
2N . Let us now change variables, by se�ing z ′i, j := u−tj,2N+j−i for all 1 ≤ i ≤ 2N ,

1 ≤ j ≤ di/2e, and zi, j := u − tN+j−i, j for all 1 ≤ j ≤ i ≤ N . Thanks to the inequalities that

the ti, j ’s satisfy, the arrays z ′ and z just defined are Gelfand-Tsetlin pa�erns (sympletic

and standard respectively) with common shape λ = u − (t1,1, . . . , tN ,N ), such that λ1 ≤ u.
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We then obtain:

chalf
q,p · �(τ

half
2N ≤ u)

= *
,

N∏
k=1

qkpk+
-

u ∑
λ1≤u

∑
z ′∈GT 2N

�
(λ)

N∏
k=1

q
−Type(z ′)2k−1+Type(z ′)2k
k

∑
z ∈GT4N

�
(λ)

N∏
k=1

p
−Type(z )k
k

= *
,

N∏
k=1

qkpk+
-

u ∑
λ1≤u

spλ (q
−1
1 , . . . ,q

−1
N )sλ (p

−1
1 , . . . ,p

−1
N ) .

The claim follows from the fact that symplectic Schur functions are invariant under mul-

tiplicative inversion of their arguments.

3.1.3 Restricted point-to-line geometric model

The restricted point-to-line LPP is defined as

τ res
N := max

π ∈Πres
N

∑
(i, j )∈π

Wi, j , (3.15)

where Πres
N is the usual set of point-to-line directed paths restricted to stay in a half-plane,

andW is a random array indexed by the la�iceIres
N defined in (2.25) - see Figure 1c. Notice

that the restricted point-to-line LPP at time N can be wri�en as a maximum of restricted

point-to-point LPPs with endpoint on the half-line {m + n = N + 1, m ≤ n}:

τ res
N = max

m+n=N+1
m≤n

τ res
m,n . (3.16)

The point-to-line restricted LPP model is perfectly equivalent to the corresponding

symmetric model. Namely, τ res
N = τ

sym
N , where τ sym

N is the (usual, i.e. non-restricted) point-

to-line LPP on the la�ice IN with the same waiting times as τ res
N on and above the main

diagonal and symmetric waiting times below the diagonal (so that Wi, j = Wj,i for all

(i, j ) ∈ IN ). Similarly, the point-to-point restricted LPP model is perfectly equivalent† to

the corresponding symmetric model, i.e. τ res
m,n = τ

sym
m,n . Via this symmetrization argument,

we will show that, for a certain parametrization of the geometrically distributed environ-

ment, τ res
2N can be essentially expressed as a sum over partitions of one symplectic Schur

function indexed by that partition.

†Notice that, in zero temperature as opposed to the positive temperature se�ing (see subsection 2.1.3),
no modification of the weights on the diagonal nor multiplicative constants are required to pass from the
restricted to the symmetric model.
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Definition 3.4. Let N ∈ �>0 and q ∈ (0, 1)N . We define the restricted q-geometric

measure on the la�ice Ires
2N to be the law of an array {Wi, j : (i, j ) ∈ Ires

2N } of independent

random variables such that:

Wi, j ∼




Geom(qi ) 1 ≤ i = j ≤ N ,

Geom(qiqj ) 1 ≤ i < j ≤ N ,

Geom(qiq2N−j+1) 1 ≤ i ≤ N , N < j ≤ 2N − i + 1 .

(3.17)

Theorem 3.5. The distribution of the restricted point-to-line q-geometric LPP is given by

�
(
τ res

2N ≤ u
)
=

(∏N
k=1 qk

)u
cres
q

∑
λ1≤u

spλ (q1, . . . ,qN ) , (3.18)

where u ∈ �≥0 and the normalization constant is

cres
q :=

∏
1≤i≤N

1
1 − qi

∏
1≤i<j≤N

1
1 − qiqj

∏
1≤i≤j≤N

1
1 − qiqj

. (3.19)

Proof. Since the restricted and symmetric LPP models are perfectly equivalent, we can

work with the symmetric model and compute the CDF of τ sym
2N instead of τ res

2N . The distri-

bution of the symmetric array of waiting timesW is given by

�(W = w ) =
1
cres
q

N∏
i=1

q
∑2N−i+1
j=i wi, j

i

N∏
j=1

q
∑j−1
i=1 wi, j

j q
∑j
i=1 wi,2N−j+1

j

=
1
cres
q

N∏
i=1

q
∑2N−i+1
j=1 wi, j

i

N∏
j=1

q
∑j
i=1 wi,2N−j+1

j

for all symmetric w ∈ �I2N
≥0 . By Proposition 1.5 and 1.6, W induces on its RSK image T

the distribution

�(T = t ) =
1
cres
q

N∏
i=1

q
σ2N−2i+1 (t )−σ2N−2i+2 (t )
i

N∏
j=1

q
σ2N−2j+1 (t )−σ2N−2j (t )

j

for all symmetric t ∈ �
I2N
≥0 . The rest of the proof proceeds as in Theorem 3.2: the only

di�erence is that, a�er the change of variables, we can identify one symplectic Gelfand-

Tsetlin pa�ern (instead of two glued together), which generates a single symplectic Schur

function.

In the final discussion of subsection 3.1.1 we compared Baik-Rains’s formula for a
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-symmetrized point-to-point LPP model with our point-to-line formula. We address a

similar task here, comparing the point-to-point LPP model with symmetry about both

the antidiagonal and the diagonal with the intimately connected restricted point-to-line

model. Let us denote by τ -sym
2N ,2N the point-to-point LPP from (1, 1) to (2N , 2N ) with waiting

times symmetric about both the antidiagonal {i + j = 2N + 1} and the diagonal {i = j}.

Reasoning similarly as in subsection 3.1.1, one can see that the -symmetric LPP with

doubled weights on the antidiagonal coincides with twice the restricted/symmetric point-

to-line LPP, i.e. τ -sym
2N ,2N = 2τ res

2N .

Using the classical RSK acting on a doubly symmetric matrix, Baik-Rains [BR01a] and

Forrester-Rains [FR07] studied the -symmetric LPP with geometric waiting times. The

connection between τ -sym
2N ,2N and τ res

2N stated above permits rephrasing their result in terms

of the restricted point-to-line LPP in the q-geometric environment (see Definition 3.4):

�
(
τ res

2N ≤ u
)
=

1
cres
q

∑
λ1≤u

sλ (q1, . . . ,qN )sλ (q1, . . . ,qN , 1) (3.20)

for all nonnegative integer u, where cres
q is the same constant as in (3.19). Comparing our

formula (3.18), which involves one symplectic Schur function, with (3.20), which involves

two standard Schur functions, we deduce the identity

∑
λ1≤u

sλ (q1, . . . ,qN )sλ (q1, . . . ,qN , 1) = *
,

N∏
k=1

qk+
-

u ∑
λ1≤u

spλ (q1, . . . ,qN ) . (3.21)

Again, it is possible to prove the la�er identity via combinatorial/algebraic methods, with-

out resorting to indirect arguments based on la�ice path probabilistic models. We plan to

address this aspect in future work.

3.2 Exponential last passage percolation

In this section we analyze the same three LPP models as in section 3.1, but considering

exponential distribution on the waiting times instead of geometric. As mentioned in the

Introduction, the exponential LPP models are the most closely related to the totally asym-

metric simple exclusion process (TASEP); we now see explicitly how. Recall that TASEP is

a continuous time Markov process with state space {0, 1}�, interpreted as an interacting

particle system. Each η ∈ {0, 1}� can be viewed as a configuration of particles and holes

on the integer line: site i ∈ � is either occupied or empty according to whether η(i ) = 1
or η(i ) = 0. The dynamics works as follows: each particle independently, a�er a mean

one exponential time, jumps to the site immediately to the right, provided that the la�er
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site is vacant. Given an enumeration {pi }i ∈I of the particles, we denote byWi, j the time

that particle pi needs to wait to perform its j-th jump, once the site to its right becomes

vacant. Let also Ti, j be the time when particle pi performs its j-th jump starting from the

initial configuration, and set for convenience Ti, j = 0 if i < I or j < 1. The {Wi, j }i ∈I, j≥1

are i.i.d. mean one exponentially distributed variables, whereas the {Ti, j }i ∈I, j≥1 can be ex-

pressed as (deterministic) functionals of theWi, j ’s that depend on the initial conditions.

Such functionals can be defined via la�ice paths and link the TASEP with a given initial

condition to the LPP model with a corresponding path geometry. More precisely, certain

Ti, j ’s turn out to coincide with last passage times in an environment {Wi, j } of mean one

exponential waiting times, defined by just relabeling theWi, j ’s. In the following we will

state these analogies between the two models for the basic point-to-point case and for

the three path geometries we are concerned with. We will give recurrence relations for

the Ti, j ’s: solving these leads to closed expressions that, a�er relabeling the environment,

coincide with the LPP definitions. We will not go into the details of the relabeling; one

may convince oneself of the equivalence between the models by solving the first few re-

currence relations. We consider the following (deterministic) initial configurations for the

TASEP:

(i) Step initial configuration: η = 1�<0
. Let us enumerate the particles by saying that pi

is the particle that starts from −i , for all i > 0. Before particle pi is “ready” to perform

its j-th jump, with the site to its right empty, one needs to wait for pi to perform the

previous j − 1 jumps and for the next particle to the right pi−1 to perform j jumps.

This implies the recurrence relation

Ti, j = max(Ti, j−1,Ti−1, j ) +Wi, j , (3.22)

where the base cases are given by the convention that Ti, j = 0 for i = 0 or j = 0. For

example, T2,2 = W1,1 + max(W2,1,W1,2) +W2,2. The variable Ti, j coincides with a

point-to-point LPP time from (1, 1) to (i, j ).

(ii) Alternating initial configuration: η = 12�. Let pi be the particle that starts at site −2i
for all i ∈ �. In this situation, in order for a particle to be able to perform j jumps,

the next one to the right needs to perform j − 1 jumps only. Recursive relation (3.22)

is thus modified accordingly:

Ti, j = max(Ti, j−1,Ti−1, j−1) +Wi, j , (3.23)

with base cases given by the convention that Ti,0 = 0 for all i ∈ �. For example,

T1,2 = max(W1,1,W0,1) +W1,2. The time TN ,2N that particle pN takes to reach the
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origin† coincides with a point-to-line LPP from (1, 1) to the line {m + n = 2N + 1}.

(iii) Half-alternating initial configuration: η = 12�<0
. Let pi be the particle that starts at

site −2i for all i > 0. The recurrence relation is still given by (3.23), but only for

i > 1, with the convention that Ti, j = 0 for i = 0 or j = 0. For example, T2,3 =

max(W2,2 +W2,1,W2,2 +W1,1,W1,2 +W1,1) +W2,3. The time TN ,2N that particle

pN takes to reach the origin is now a point-to-half-line LPP from (1, 1) to the half-line

{m + n = 2N + 1, m ≤ n}.

(iv) Half-alternating initial configuration with absorbing site. We consider the same initial

configuration η = 12�<0
(and enumeration of particles) as in the previous case, but

with a slightly modified dynamics: we assume there is a “black hole” or “absorbing

site” at the origin, so that, when a particle jumps from −1 to 0, it simply disappears.

The recurrence relation is again given by (3.23) for i > 1, now with the convention

that Ti, j = 0 for i = 0 or j = 2i + 1. For example, T2,4 = max(W2,2 +W2,1,W2,2 +

W1,1,W1,2 +W1,1) +W2,3 +W2,4. The time TN ,2N that particle pN takes to be

absorbed at the origin is now a restricted point-to-half-line LPP from (1, 1) to the half-

line {m + n = 2N + 1, m ≤ n}.

A�er this digression about TASEP, let us now come to our analysis of the exponential

LPP models. We will see that, replacing the geometric distribution of section (3.1) with the

exponential distribution, our formulas will involve integrals of continuous Schur functions

instead of sums of (discrete) Schur functions. At this stage, we have three alternative ways

to study the exponential models:

(i) Via zero temperature limit from the results obtained for the log-gamma polymer. Un-

der this scaling, the inverse-gamma distribution converges to the exponential distri-

bution and the integrals of Whi�aker functions that appear in the log-gamma poly-

mer case (see section 2.1) converge to integrals of continuous Schur functions.

(ii) Directly via RSK, as we did for geometric LPP in section 3.1. Just notice that the contin-

uous se�ing requires to also use the volume preserving property of RSK (property (iv)

of Proposition 1.5), which is not necessary in the discrete se�ing.

(iii) Via exponential limit from the results obtained in geometric environment. Under this

scaling, the geometric distribution converges to the exponential distribution and the

sums of discrete Schur functions that appear in the geometric case (see section 3.1)

converge, via Riemann sum approximation, to integrals of continuous Schur func-

†Equivalently, this is the time that particle pN (or, by translation invariance of the model, any other
particle) takes to perform 2N jumps.
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tions.

Any of these methods can be used for any path geometry, so we will use a di�erent method

for each of our three models.

In this section we will also go one step further by turning each Schur functions’ for-

mula into a determinantal or Pfa�ian formula. This is motivated by the fact that in

section 3.3 we will carry out asymptotics of the point-to-line and point-to-half-line ex-

ponential LPP models. To obtain such determinantal and Pfa�ian formulas we will use

the determinantal structure of (continuous) Schur functions along with the following two

identities:

• Cauchy-Binet identity (whose integral formulation is due to Andréief [And86]): if ν

is a Borel measure on � and fj ,дj ∈ L
2 (�,ν ) for all 1 ≤ j ≤ N , then

1
N !

∫
�
N

det
(
fj (xi )

)
1≤i, j≤N

det
(
дj (xi )

)
1≤i, j≤N

N∏
i=1

ν (dxi ) = det
(
A(N )

)
, (3.24)

where A(N ) is the N × N matrix given by

A(N ) (i, j ) =

∫
�

fi (x )дj (x )ν (dx ) .

• de Bruijn identity [Bru55]: if ν is a Borel measure on � and φ j ∈ L2 (�,ν ) for all

1 ≤ j ≤ N , then

∫
{x1≤···≤xN }

det
(
φ j (xi )

)
1≤i, j≤N

N∏
i=1

ν (dxi ) = Pf
(
Φ(N )

)
, (3.25)

where Φ(N ) is a skew-symmetric matrix of order N or N + 1, according to whether

N is even or odd respectively, and is defined by

Φ(N ) (i, j ) :=




∫
�

2
sgn(y − x )φi (x )φ j (y)ν (dx )ν (dy) 1 ≤ i, j ≤ N ,∫

�

φi (x )ν (dx ) 1 ≤ i ≤ N , j = N + 1; N odd.

3.2.1 Point-to-line exponential model

In this section we will express the law of the point-to-line exponential LPP τ2N via zero

temperature limit from the corresponding log-gamma polymer model. Under this limit,

since orthogonal Whi�aker functions scale to continuous symplectic Schur functions (see
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Proposition 1.18), we will obtain from (2.13) an integral of two such Schur functions. Be-

fore deriving the CDF of τ2N via this rather indirect method, we show how to compute it

directly in the simplest example.

Example 3.6. Let us compute the CDF of τ2 =W1,1 + max
(
W1,2,W2,1

)
, whereWi, j ’s are

all independent and Exp(2γ ). It can be easily checked that max
(
W1,2,W2,1

) d
=W1,2 +

W2,1
2 ,

so that

τ2
d
=W1,1 +W1,2 +

W2,1

2
.

SinceW1,1 +W1,2 ∼ Γ(2, 2γ ) and
W2,1

2 ∼ Exp(4γ ) and they are independent, the density fτ2

of τ2 is given by the convolution of these two distributions:

fτ2
(x ) =

∫
�

fW2,1/2 (x − y) fW1,1+W1,2
(y) dy

=

∫
�

4γ e−4γ (x−y )1{x−y≥0}
(2γ )2

Γ(2)
ye−2γy1{y≥0} dy

= 1{x ≥0}
(
8γ 2xe−2γ x

− 4γ e−2γ x + 4γ e−4γ x
)
.

Integrating fτ2
from −∞ to u > 0, we obtain

�(τ2 ≤ u) = 1 − 4γue−2γu
− e−4γu . (3.26)

Let us pass to the general case now. We first outline how the zero temperature limit

works, i.e. how to pass from the polymer model to the corresponding LPP model; the

details of this argument are given in Appendix A. We start from the observation that, if

W (ε ) is inverse-gamma distributed with parameter εγ andW is exponentially distributed

with rate γ > 0, then

ε logW (ε ) ε↓0
−−−→W (3.27)

in distribution. For all ε > 0, let now Z (ε )
N be the point-to-line polymer partition function

with disorder given by independent weightsW (ε ) =
{
W (ε )

i, j

}
such that eachW (ε )

i, j is inverse-

gamma distributed with parameter εγi, j . We then have that

ε logZ (ε )
N

ε↓0
−−−→ τN

in distribution, where τN is the corresponding LPP with independent waiting timesW ={
Wi, j

}
such that Wi, j ∼ Exp(γi, j ) for all (i, j ). Up to some technicalities concerning the

convergence of the expectation, we can conclude that

�
[
exp

{
−e−u/εZ (ε )

N

}] ε↓0
−−−→ �(τN ≤ u) (3.28)
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for all u ∈ �. In other words, properly rescaling the Laplace transform of the log-gamma

polymer partition function yields the CDF of the corresponding exponential LPP.

From the argument above it is clear that, taking the zero temperature limit of our log-

gamma† polymer formula (2.13), we will be able to obtain the distribution of τ2N for the

following exponential environment.

Definition 3.7. Let N ∈ �>0, α , β ∈ �N>0. We define the (α , β )-exponential measure on

the la�ice I2N = {(i, j ) ∈ �
2
>0 : i + j ≤ 2N + 1} to be the law of an array {Wi, j : (i, j ) ∈ I2N }

of independent random variables such that:

Wi, j ∼




Exp(αi + βj ) 1 ≤ i, j ≤ N ,

Exp(αi + α2N−j+1) 1 ≤ i ≤ N , N < j ≤ 2N − i + 1 ,

Exp(β2N−i+1 + βj ) 1 ≤ j ≤ N , N < i ≤ 2N − j + 1 .

(3.29)

Theorem 3.8. The distribution of the point-to-line (α , β )-exponential LPP τ2N can be ex-

pressed in terms of continuous symplectic Schur functions as

�(τ2N ≤ u) =
e−u

∑N
k=1 (αk+βk )

kα ,β

∫
{0<xN < · · ·<x1<u }

spcont
α (x )spcont

β (x )
N∏
i=1

dxi , (3.30)

for all u > 0, where

kα ,β :=
∏

1≤i, j≤N

1
αi + βj

∏
1≤i≤j≤N

1
(αi + α j ) (βi + βj )

. (3.31)

We can further write (3.30) as a ratio of N × N determinants:

�
(
τ2N ≤ u

)
=

det
(
Hu (αi , βj )

)
1≤i, j≤N

det(C (αi , βj ))1≤i, j≤N
, (3.32)

where C (z,w ) := (z +w )−1 and

Hu (z,w ) := e−u (z+w )

∫ u

0
(ezx − e−zx ) (ewx

− e−wx ) dx .

The denominator in (3.32) is the so-called Cauchy determinant, which has a simple

closed form:

det(C (αi , βj ))1≤i, j≤N = det
(

1
αi + βj

)
1≤i, j≤N

=

∏
1≤i<j≤N (αi − α j ) (βi − βj )∏

1≤i, j≤N (αi + βj )
. (3.33)

†For the sake of simplicity we will take γ := 0 in Definition 2.2 of log-gamma measure.
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Notice that the right-hand side of (3.32) takes the form 0/0 whenever αi = α j or

βi = βj for some i , j. In such cases, the formula should be understood in the limit as

αi −α j → 0 or βi −βj → 0, analogously to the determinantal formulas for Schur functions

(see Remarks 1.9 and 1.12). For instance, it can be easily checked that (3.32) for N = 1 and

α1 = β1 = γ reduces to (3.26).

Proof. Since the inverse-gamma distribution scales to the exponential distribution in the

sense of (3.27), we can use (3.28) (see also Proposition A.2-(ii) for details) to compute

�(τ2N ≤ u). Namely, we just need to compute limε↓0�
[
exp

(
e−u/εZ (ε )

2N

)]
, where Z (ε )

2N is

the point-to-line (εα , εβ, 0)-log-gamma polymer partition function. Formula (2.13) with

γ = 0 yields

�
[
exp

(
−e−u/εZ (ε )

2N

)]
=

e−u
∑N
k=1 (αk+βk )

Γεα ,εβ,0

∫
�
N
>0

e−e−u/εx1Ψ
so2N+1
εα (x )Ψ

so2N+1
εβ (x )

N∏
i=1

dxi
xi
.

The integral can be rewri�en, changing variables xi 7→ exi /ε for 1 ≤ i ≤ N , as follows:

∫
�
N
>0

e−e−u/εx1Ψ
so2N+1
εα (x )Ψ

so2N+1
εβ (x )

N∏
i=1

dxi
xi

= ε−2N 2
∫
�
N

e−e(x1−u )/ε
εN

2
Ψ
so2N+1
εα

(
ex1/ε , . . . , exN /ε

)
εN

2
Ψ
so2N+1
εβ

(
ex1/ε , . . . , exN /ε

) N∏
i=1

dxi
ε

ε↓0
∼ ε−2N 2

−N
∫
{0<xN < · · ·<x1<u }

spcont
α (x )spcont

β (x )
N∏
i=1

dxi ,

where the asymptotics follow from the fact that e−e(x1−u )/ε ε↓0
−−−→ 1{x1<u } for all x1 , u and

Proposition 1.18. On the other hand, using the definition of Γεα ,εβ,0 given in (2.10) and

the asymptotics of the Gamma function near 0, we have:

Γεα ,εβ,0 =
∏

1≤i, j≤N
Γ(ε (αi + βj ))

∏
1≤i≤j≤N

Γ(ε (αi + α j ))Γ(ε (βi + βj ))
ε↓0
∼ ε−2N 2

−Nkα ,β .

Therefore, (3.30) easily follows from the combination of the foregoing formulas.
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We now further elaborate (3.30) by making use of the determinantal formula (1.44):

eu
∑N
k=1 (αk+βk )�(τ2N ≤ u)

=

∫
{0<xN < · · ·<x1<u }

det
(
eα jxi − e−α jxi

)
i, j

det
(
eβjxi − e−βjxi

)
i, j

kα ,β
∏

i<j (αi − α j ) (βi − βj )
∏

i≤j (αi + α j ) (βi + βj )

N∏
i=1

dxi

=
1

det(C (αi , βj ))i, j
1
N !

∫
(0,u )N

det
(
eα jxi − e−α jxi

)
i, j

det
(
eβjxi − e−βjxi

)
i, j

N∏
i=1

dxi

=
1

det(C (αi , βj ))i, j
det

(∫ u

0

(
eαix − e−αix

) (
eβjx − e−βjx

)
dx

)
i, j
,

where the implicit range for (i, j ) is 1 ≤ i, j ≤ N . In the la�er computation, we have

used: the fact that, by the alternating property of the determinant, the integral over {0 <
xN < · · · < x1 < u} is invariant by applying any permutation to the variables xi ’s; the

definition of kα ,β ; the expression (3.33) for the Cauchy determinant; and the Cauchy-

Binet identity (3.24) for the Lebesgue measure on the interval (0,u). We now use the

multilinearity of the determinant to finally obtain (3.32).

Remark 3.9. We have seen in the la�er proof that, thanks to the determinantal structure

of symplectic Schur functions and the Cauchy-Binet identity, (3.30) can be turned into the

determinantal formula (3.32). On the other hand, there is a standard way to associate the

density given by the product of two determinantal functions of the form det( fj (xi ))1≤i, j≤N
and det(дj (xi ))1≤i, j≤N to a determinantal point process (see e.g. [Joh06]). We might then

wonder if the product of two continuous symplectic Schur functions on the right-hand

side of (3.30) would be suitable to define a determinantal point process. However, no-

tice that such a product is not integrable on the domain {0 < xN < · · · < x1}, i.e. the

associated measure is infinite and cannot be renormalized. This is also reflected by the

presence, in front of the integral in (3.30), of an exponential factor depending on u, which

makes the formula converge as u → ∞. Consequently, there is no natural way to define

a determinantal point process in our case.

Of course, a similar remark holds for our symplectic Schur functions’ formula (3.6) in

the context of geometric LPP. Notice that, on the other hand, Baik-Rains’ formula (3.9) for

the same model defines a measure, whose density is given by one standard Schur function,

which can be renormalized and hence associated to a Pfa�ian point process.

Analogous remarks also hold in the other two path geometries, both for geometric

and exponential environment.
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3.2.2 Point-to-half-line exponential model

Here we express the law of the point-to-half-line exponential LPP τ half
2N in terms of an

integral of (the continuum version of) a symplectic Schur function and a standard Schur

function; this time we give a direct proof, using the RSK correspondence and its properties.

We still work with the (α , β )-exponential measure of Definition 3.7, but we restrict it to

the la�ice Ihalf
2N = {(i, j ) ∈ �2

>0 : i + j ≤ 2N + 1, i ≤ N } which the waiting times of the

point-to-half-line LPP τ2N lie on.

Theorem 3.10. The distribution of the point-to-half-line (α , β )-exponential LPP τ half
2N can

be expressed in terms of continuous Schur functions as

�(τ half
2N ≤ u) =

e−u
∑N
k=1 (αk+βk )

khalf
α ,β

∫
{0<xN < · · ·<x1<u }

spcont
α (x )scont

β (x )
N∏
i=1

dxi (3.34)

for all u > 0, where

khalf
α ,β :=

∏
1≤i, j≤N

1
αi + βj

∏
1≤i≤j≤N

1
αi + α j

. (3.35)

We can further write (3.34) as a ratio of N × N determinants:

�
(
τ half

2N ≤ u
)
=

det
(
Hhalf
u (αi , βj )

)
1≤i, j≤N

det(C (αi , βj ))1≤i, j≤N
, (3.36)

where C (z,w ) := (z +w )−1 and

Hhalf
u (z,w ) := e−u (z+w )

∫ u

0
(ezx − e−zx )ewx dx .

Notice again that, in case αi = α j or βi = βj for some i , j, (3.36) should be understood

in the limit as αi − α j → 0 or βi − βj → 0 respectively.

Proof. Let W = {Wi, j : (i, j ) ∈ Ihalf
2N } be distributed according to the (α , β )-exponential

measure, i.e.

�(W ∈ dw ) =
1

khalf
α ,β

N∏
i=1

e−αi
∑2N−i+1
j=1 wi, j

N∏
j=1

e−βj
∑N
i=1 wi, j e−α j

∑j
i=1 wi,2N−j+1

∏
(i, j )∈Ihalf

2N

dwi, j

for w ∈ �I
half

2N
≥0 . By Proposition 1.5 (notice that the volume preserving property (iv) also

needs to be used here), the distribution thatW induces on its RSK imageT is then given
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3. Last passage percolation models

by

�(T ∈ dt ) =
1

khalf
α ,β

N∏
i=1

e−αi [σ2N−2i+1 (t )−σ2N−2i+2 (t )]

×

N∏
j=1

e−βj [σ−(N−j ) (t )−σ−(N−j+1) (t )]e−α j [σ2N−2j+1 (t )−σ2N−2j (t )]
∏

(i, j )∈Ihalf
2N

dti, j

for all t ∈ �I
half

2N
≥0 satisfying the ordering (1.30).

By (3.12) and Proposition 1.5-(i), we can obtain �(τ half
2N ≤ u) by integrating the density

above over all t ∈ �I
half

2N
≥0 satisfying the ordering (1.30) and the additional condition that

ti, j ≤ u for all (i, j ) ∈ Ihalf
2N . Let us now change variables, by se�ing z ′i, j := u − tj,2N+j−i for

all 1 ≤ i ≤ 2N , 1 ≤ j ≤ di/2e, and zi, j := u − tN+j−i, j for all 1 ≤ j ≤ i ≤ N . Thanks to the

inequalities that the ti, j ’s satisfy, the arrays z ′ and z just defined are real Gelfand-Tsetlin

pa�erns (sympletic and standard respectively) with common shapex = u−(t1,1, . . . , tN ,N ),

such that x1 ≤ u. We then obtain:

�(τ half
2N ≤ u) =

e−u
∑N
k=1 (αk+βk )

khalf
α ,β

∫
{0≤xN ≤···≤x1≤u }

N∏
i=1

dxi

×

∫
GT 2N
�

(x )

∏
1≤i<2N

1≤j≤di/2e

dz ′i, j
N∏
k=1

eαk [Type(z ′)2k−1−Type(z ′)2k ]

×

∫
GT4N
�

(x )

∏
1≤j≤i<N

dzi, j
N∏
k=1

eβk Type(z )k .

The claim then follows from the fact that the second and the third integrals in the expres-

sion above are the desired continuous Schur functions, symplectic and standard respec-

tively, according to Definitions 1.8 and 1.11.

We omit the proof of (3.36), which uses the Cauchy-Binet identity in the same fashion

as in the proof of (3.32).

3.2.3 Restricted point-to-line exponential model

We finally study the restricted point-to-line exponential LPP model. We will prove

that the CDF of τ res
2N can be expressed in terms of an integral of one continuous symplectic

Schur function, this time by computing the scaling limit of the corresponding geometric

model of subsection 3.1.3.

The exactly solvable exponential distribution on the waiting times is as follows.
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3.2. Exponential last passage percolation

Definition 3.11. Let N ∈ �>0 and α ∈ �N>0. We define the α -exponential measure

on the la�ice Ires
2N := {(i, j ) ∈ �2

>0 : i + j ≤ 2N + 1, i ≤ j} to be the law of an array

{Wi, j : (i, j ) ∈ Ires
2N } of independent random variables such that:

Wi, j ∼




Exp(αi ) 1 ≤ i = j ≤ N ,

Exp(αi + α j ) 1 ≤ i < j ≤ N ,

Exp(αi + α2N−j+1) 1 ≤ i ≤ N , N < j ≤ 2N − i + 1 .

(3.37)

Theorem 3.12. The law of the restricted point-to-line α -exponential LPP τ res
2N is given by

�(τ res
2N ≤ u) =

e−u
∑N
k=1 αk

kres
α ,β

∫
{0<xN < · · ·<x1<u }

spcont
α (x )

N∏
i=1

dxi , (3.38)

for all u > 0, where

kres
α :=

∏
1≤i≤N

1
αi

∏
1≤i<j≤N

1
αi + α j

∏
1≤i≤j≤N

1
αi + α j

. (3.39)

We can further write (3.38) in a Pfa�ian form as

�(τ res
2N ≤ u) =

Pf
(
Φ(N )
u

)
Pf

(
S (N )

) , (3.40)

where matrices Φ(N )
u and S (N ) are skew-symmetric of order N or N + 1, according to whether

N is even or odd respectively, and are defined by

Φ(N )
u (i, j ) :=




∫ u

0

∫ u

0
sgn(y − x )φi (x )φ j (y) dx dy 1 ≤ i, j ≤ N ,∫ u

0
φi (x ) dx 1 ≤ i ≤ N , j = N + 1; N odd

having set φ j (x ) := α je
−uα j (eα jx − e−α jx ) for 1 ≤ j ≤ N , and

S (N ) (i, j ) :=



α j − αi

α j + αi
1 ≤ i, j ≤ N ,

1 1 ≤ i ≤ N , j = N + 1; N odd.

The denominator Pf
(
S (N )

)
in (3.40) is known as Schur Pfa�ian and, no ma�er the
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3. Last passage percolation models

parity of N , it has the following explicit evaluation:

Pf
(
S (N )

)
=

∏
1≤i<j≤N

α j − αi

α j + αi
. (3.41)

Notice that the ratio on the right-hand side of (3.40) takes the form 0/0 whenever

αi = α j for some i , j; in this case, the formula still makes sense in the limit as αi−α j → 0.

Proof. We will deduce (3.38) from (3.18) via exponential limit. Recall that, if X ∼ Exp(γ )

and X (δ )
∼ Geom(e−δγ ) for some fixed γ > 0 and for all δ > 0, then δX (δ ) δ ↓0

−−−→ X

in law. Therefore, if the law of W is α -exponential (see Definition 3.11) and the law

of W (δ ) is e−δα -geometric (see Definition 3.4), where e−δα := (e−δα1 , . . . , e−δαN ), then

δW (δ ) δ ↓0
−−−→ W in distribution. It follows from this observation and from formula (3.18)

for the restricted point-to-line geometric LPP that

�(τ res
2N ≤ u) = lim

δ ↓0
�

*.
,

max
π ∈Πres

2N

∑
(i, j )∈π

W (δ )
i, j ≤

u

δ
+/
-

= lim
δ ↓0

e−u
∑N
k=1 αk

cres
e−δα

∑
λ1≤u/δ

spλ
(
e−δα1 , . . . , e−δαN

)
,

where the sum is over integer partitions λ of length not greater than N and with first

part not greater than u/δ . Recalling the definitions of the normalization constants (3.19)

and (3.39), we see that

δN
2
+N cres

e−δα
δ ↓0
−−−→ kres

α .

On the other hand, using Definitions 1.10 and 1.11 of discrete and continuous symplectic

Schur functions, one can easily prove via Riemann sum approximation that

δN
2
+N

∑
λ1≤u/δ

spλ
(
e−δα1 , . . . , e−δαN

) δ ↓0
−−−→

∫
{0<xN < · · ·<x1<u }

spcont
−α (x )

N∏
i=1

dxi .

Formula (3.38) follows from these observations and the fact that spcont
−α = spcont

α .

For the proof of (3.40), we first rewrite (3.38) as

�(τ res
2N ≤ u) =

1

Pf
(
S (n)α

) ∫
{0≤x1≤···≤xN ≤u }

det(φ j (xi ))1≤i, j≤N
N∏
i=1

dxi ,

where φ j (x ) := α je
−uα j (eα jx −e−α jx ) for 1 ≤ j ≤ N . Here we have used the determinantal

form (1.44) of spcont
α , the change of variables xi 7→ xN−i+1 for 1 ≤ i ≤ N , the multilinear
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3.3. Scaling limits

and alternating properties of determinants, and the Schur Pfa�ian expression (3.41). Ap-

plying de Bruijn identity (3.25) for the Lebesgue measure on (0,u) to the integral above,

we finally obtain the numerator Pfa�ian in (3.40).

3.3 Scaling limits

The goal of this section is to carry out the asymptotic analysis of the point-to-line

and point-to-half-line exponential LPP models studied in subsections 3.2.1 and 3.2.2. Both

models are characterized by KPZ fluctuations of order N 1/3. In the scaling limit we obtain

Sasamoto’s formula [Sas05] for the GOE Tracy-Widom distribution and the one-point

marginal of the Airy2→1 process [BFS08], respectively.

The procedure we follow is typical of KPZ and random matrix models. We start from

formulas (3.32) and (3.36), which express the CDF of the corresponding LPP as a ratio of

N×N determinants, the denominator being of Cauchy type. The space�N on which these

determinants are taken is growing with N , so these formulas are not directly amenable

to asymptotic analysis in the large N limit. We then use the so-called Sylvester’s identity

and the closed form for the inverse of a Cauchy-type matrix to turn such formulas into

Fredholm determinants on L2 (�>0), with kernel expressed in the form of a contour inte-

gral. This L2 space is infinite-dimensional but fixed, in the sense that it does not depend

on N . One is thus reduced to compute the asymptotics of the kernel, which is a contour

integral whose integrand depends on N , via the steepest descent method. Finally, some

standard estimates permit deducing the convergence of the Fredholm determinants from

the convergence of their kernels.

In subsection 3.3.1 we present a general scheme to turn a ratio of determinants into

a Fredholm determinant. In subsection 3.3.2 we perform the steepest descent analysis of

a central integral. In subsections 3.3.3 and 3.3.4 we use these general tools to derive the

scaling limits of the point-to-line and point-to-half-line LPP models respectively.

3.3.1 From determinants to Fredholm determinants

In this subsection we present a general scheme to turn ratios of determinants, the

denominator being of Cauchy type as (3.33), into a Fredholm determinant. Such a scheme

has been already used in a similar fashion for example in [Joh01; Oko01; BG16], but we

adapt it here to our framework. Let us start by briefly recalling the notion of a Fredholm

determinant. Given a measure space (X,ν ), any linear operator K : L2 (X,ν ) → L2 (X,ν )
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3. Last passage percolation models

can be defined in terms of its integral kernel K (x ,y) by

(Kh) (x ) :=
∫
X

K (x ,y)h(y)ν (dy) , h ∈ L2 (X,ν ) .

The Fredholm determinant of K can then be defined through its series expansion:

det(I + K )L2 (X) := 1 +
∞∑
n=1

1
n!

∫
X
n

det(K (xi ,x j ))
n
i, j=1 ν (dx1) . . . ν (dxn ) , (3.42)

whenever the series converges. Denoting from now on by �>0 := {z ∈ � : <(z) > 0} the

complex right half-plane, we can state:

Theorem 3.13. Let

H (z,w ) := C (z,w ) − H (z,w ) , (3.43)

where C is the function

C (z,w ) =
1

z +w

and H is a holomorphic function in the region �>0 × �>0. For any choice of positive param-

eters α1, . . . ,αN , β1, . . . , βN , define the operator KN on L2 (�>0) through the kernel

KN (λ, ξ ) :=
1

(2π i)2

∫
Γ1

dz
∫
Γ2

dw e−λz−ξwH (z,w )
N∏

m=1

(z + βm ) (w + αm )

(z − αm ) (w − βm )
, (3.44)

where Γ1, Γ2 ⊂ �>0 are any positively oriented simple closed contours such that Γ1 encloses

α1, . . . ,αN and Γ2 encloses β1, . . . , βN . Then

det(H (αi , βj ))1≤i, j≤N

det(C (αi , βj ))1≤i, j≤N
= det(I − KN )L2 (�>0)

. (3.45)

Proof. For convenience, let us denote byC,H andH theN×N matrices (C (αi , βj ))1≤i, j≤N ,

(H (αi , βj ))1≤i, j≤N and (H (αi , βj ))1≤i, j≤N respectively. We then have:

det(H )

det(C)
= det

(
C
−1

(
C −H

))
= det

(
I − C−1

H
)
, (3.46)

where I is the identity matrix of order N . To invert C, we use Cramer’s formula:

C
−1 (i,k ) = (−1)i+k

det
(
C
(k,i )

)
det(C)

,

where C (k,i ) is the matrix of order N − 1 obtained from C by removing its k-th row and
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i-th column. In our case, both determinants in the above formula are of Cauchy type:

det(C) =
∏
l<m

(αl − αm )
∏
l<m

(βl − βm )
∏
l,m

(αl + βm )−1

det
(
C
(k,i )

)
=

∏
l<m
l,m,k

(αl − αm )
∏
l<m
l,m,i

(βl − βm )
∏
l,k
m,i

(αl + βm )−1 ,

where indices l andm run in {1, . . . ,N }. The inverse of C is thus readily computed:

C
−1 (i,k ) =

∏N
m=1 (αk + βm ) (βi + αm )

(αk + βi )
∏

m,k (αk − αm )
∏

m,i (βi − βm )
.

Writing 1
αk+βi

=
∫ ∞

0 e−(αk+βi )λ dλ, we obtain:

(
C
−1
H

)
(i, j ) =

N∑
k=1
C
−1 (i,k )H (k, j ) =

∫ ∞

0
f (i, λ)д(λ, j ) dλ ,

where for all λ > 0

f (i, λ) := e−βiλ
∏N

m=1 (βi + αm )∏
m,i (βi − βm )

, д(λ, j ) :=
N∑
k=1

e−αkλ
∏N

m=1 (αk + βm )∏
m,k (αk − αm )

H (αk , βj ) .

This proves that matrix C−1
H , viewed as a linear operator on�N , equals the composition

FG, where F and G are the linear operators

F : L2 (�>0) → �
N , φ 7→

[∫ ∞

0
f (i, λ)φ (λ) dλ

]N

i=1
,

G : �N → L2 (�>0) , (a(j ))Nj=1 7→

N∑
j=1

д(λ, j )a(j ) .

We note that these are well-defined operators, as f (i, ·) and д(·, j ) are square integrable

functions on �>0, for all i and j. We will next use Sylvester’s identity:

det(I + K1K2)L2 (X2)
= det(I + K2K1)L2 (X1)

(3.47)

for any operators K1 : L2 (X1) → L2 (X2) and K2 : L2 (X2) → L2 (X1) such that both sides

converge. By applying this identity, we obtain

det
(
I − C−1

H
)
�
N = det(I − FG )

�
N = det(I − KN )L2 (�>0)

, (3.48)
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where KN := GF is the operator on L2 (�>0) defined through the kernel

KN (λ, ξ ) :=
N∑

i,k=1
e−αkλ−βi ξH (αk , βi )

∏N
m=1 (αk + βm ) (βi + αm )∏

m,k (αk − αm )
∏

m,i (βi − βm )
. (3.49)

From the la�er formula, it is clear that |KN (λ, ξ ) | ≤ c1e−c2λ for all λ ∈ [0,∞), where the

positive constants c1 and c2 depend on N and on the parameters. Hadamard’s bound then

implies that

���det(KN (λi , λj ))
n
i, j=1

��� ≤ nn/2
n∏
i=1

c1e−c2λi .

It then follows from the series expansion (3.42) that

���det(I − KN )L2 (�>0)
��� ≤ 1 +

∞∑
n=1

nn/2

n!

(∫ ∞

0
c1e−c2λ dλ

)n
< ∞ ,

hence the right-hand side of (3.48) is indeed a converging Fredholm determinant. By

applying the residue theorem (recalling the assumption that H (z,w ) is holomorphic in

�>0×�>0), the double sum in (3.49) can be turned into a double contour integral, yielding

representation (3.44) for the kernel. By combining (3.46) and (3.48) we obtain (3.45).

Thanks to Theorem 3.13, the determinantal formulas (3.32) and (3.36) for the point-

to-line and point-to-half-line exponential LPP models will be turned into Fredholm deter-

minants. We will see this in details in subsections 3.3.3 and 3.3.4.

3.3.2 Steepest descent analysis

As announced in the previous subsection, the CDF of the point-to-line and point-to-

half-line LPP models will be expressed as Fredholm determinants on L2 (�>0) with kernels

of type (3.44). In the limit N → ∞ these kernels will converge, a�er rescaling, to expres-

sions involving Airy functions. In order to see this, one needs to perform the asymptotic

analysis of a few contour integrals via steepest descent. This procedure is very similar in

all cases, as it always involves the same functions. Therefore, we will carry it out in detail

only for one of such contour integrals, arguably the most archetypal one as it just ap-

proximates the Airy function. Other very similar steepest descent analyses are sketched

where needed, specifically in the proof of Theorem 3.20.

Let us first recall that the Airy function Ai has the following contour integral repre-

sentation:

Ai(x ) :=
1

2π i

∫ eiπ /3
∞

e−iπ /3
∞

exp
{
z3

3
− xz

}
dz , (3.50)
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where the integration path starts at infinity with argument −π/3 and ends at infinity with

argument π/3 (see for example the red contour in figure 9).

Proposition 3.14. For any fixed γ > 0 and f := 2/γ , let us define

JN (x ) := −
1

2π i

∫
Γ

e−z (f N+x )
[
γ + z

γ − z

]N
dz , (3.51)

where Γ ⊂ � is a positively oriented contour enclosing γ . Then, for all x ∈ �,

J̃N (x ) :=
3√2N
γ

JN *
,

3√2N
γ

x+
-

N→∞
−−−−−→ Ai(x ) . (3.52)

Proof. The proof is based on the steepest descent analysis of integral (3.51), which we

rewrite as

JN (x ) = −
1

2π i

∫
Γ

exp {F (z)N − xz} dz ,

being F (z) := log(γ + z) − log(γ − z) − f z. We need to compute the critical points of the

function F , whose first three derivatives are given by:

F ′(z) =
1

γ + z
+

1
γ − z

− f ,

F ′′(z) = −
1

(γ + z)2
+

1
(γ − z)2

,

F ′′′(z) =
2

(γ + z)3
+

2
(γ − z)3

.

The second derivative vanishes if and only if z = 0. As in the statement of the theorem, we

then set f := 2/γ , which is the only value of f such that the first derivative also vanishes

at z = 0. The first non-vanishing derivative of F at the critical point z = 0 is then the third

one. In particular, we have that

F (0) = F ′(0) = F ′′(0) = 0 , F ′′′(0) =
4
γ 3 ,

hence the Taylor expansion of F near the critical point is

F (z) =
2

3γ 3z
3 + R (z) , (3.53)

where R (z) = o(z3) as z → 0. Since the directions of steepest descent of F from z =

0 correspond to the angles ±π/3, we deform the positively oriented contour Γ into the

negatively oriented triangular pathTa with vertices 0, 2aeiπ /3 and 2ae−iπ /3 for some a > γ

94



3. Last passage percolation models

0

2aeiπ /3

2ae−iπ /3

aγ

Ta

C

Figure 9. The red pathC is involved in the integral representation of the Airy
function. The black contour Ta refers to the steepest descent analysis in the
proof of Proposition 3.14.

(so that the pole z = γ is still enclosed, see figure 9). This only implies a change of sign in

the integral, corresponding to the change of orientation of the contour. In fact, in order

to obtain the right estimates in the proof of Corollary 3.15, it is convenient to consider

an infinitesimal shi� of Ta , by se�ing the contour to be Ta + εγ/
3√2N , where ε > 0 is an

arbitrary constant. Moreover, we split the integral into two regions, i.e. a neighborhood of

the critical point, where the main contribution of the integral is expected to come from,

and its exterior (we choose the neighborhood to be a ball centered at εγ/ 3√2N with radius

γN −α , where α > 0 will be suitably specified later on):

JN (x ) = J in
N (x ) + J ex

N (x ) ,

where

J in
N (x ) :=

1
2π i

∫
Ta+

εγ
3√2N

exp {F (z)N − xz} 1{���z−εγ /
3√2N ���≤γ N

−α
} dz ,

J ex
N (x ) :=

1
2π i

∫
Ta+

εγ
3√2N

exp {F (z)N − xz} 1{���z−εγ /
3√2N ���≥γ N

−α
} dz .
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Let us first focus on the former integral and denote by C the piecewise linear path

going from the point at infinity with argument −π/3 to the origin to the point at infinity

with argument π/3 (see figure 9). We then have that

J in
N (x ) =

1
2π i

∫
C+ εγ

3√2N

exp
{

2N
3γ 3z

3
− xz + R (z)N

}
1{���z−εγ /

3√2N ���≤γ N
−α

} dz ,

where R (z) is defined by (3.53). If we now rescale both the integration variable and the

function J in
N by the factor 3√2N /γ , by se�ing z̃ := z 3√2N /γ and defining J̃ in

N as in (3.52), we

obtain:

J̃ in
N (x ) =

1
2π i

∫
C+ε

exp
{
z̃3

3
− xz̃ + R

(
γ

3√2N
z̃

)
N

}
1{
|z̃−ε | ≤ 3√2N 1/3−α } dz̃ . (3.54)

A standard estimate of the remainder in the Taylor expansion (3.53) yields

�����
R

(
γ

3√2N
z̃

)
N

�����
≤
m

4!

�����
γ

3√2N
z̃

�����

4
N ≤

m

4!

(
γN −α +

εγ
3√2N

)4
N

for ��̃z − ε �� ≤ 3√2N 1/3−α , where the constant m is the maximum modulus of F (4) in some

fixed neighborhood of the origin. If we take α > 1/4, the above expression vanishes as

N → ∞. If we further choose α < 1/3, the indicator function in (3.54) converges to 1,

yielding

exp
{
RN

(
γ

3√2N
z̃

)
N

}
1{
|z̃−ε | ≤ 3√2N 1/3−α } N→∞

−−−−−→ 1 . (3.55)

Since the argument of the points of C is ±π/3, we have that∫
C+ε

�����
exp

{
z̃3

3
− xz̃

}�����
��dz̃�� < ∞ ,

hence by dominated convergence

J̃ in
N (x )

N→∞
−−−−−→

∫
C+ε

exp
{
z̃3

3
− xz̃

}
dz̃ = Ai(x ) .

Observe that, varying ε , we have di�erent integral representations of the Airy function,

which are all equivalent thanks to (3.50).

To conclude the proof, it remains to show that

J̃ ex
N (x ) :=

3√2N
2π iγ

∫
Ta∩{ |z | ≥γ N

−α
}

exp


F

(
z +

εγ
3√2N

)
N − x

(
z +

εγ
3√2N

) 3√2N
γ




dz
N→∞
−−−−−→ 0 .
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3. Last passage percolation models

We may decompose the integration domain as

Ta ∩ {|z | ≥ γN
−α
} = V ∪ ON ∪V ∪ ON ,

whereV and ON are the vertical and oblique segments respectively given by

V :=
{
<(z) = a , 0 ≤ arg(z) ≤

π

3

}
, ON :=

{
γN −α ≤ |z | ≤ 2a , arg(z) =

π

3

}
,

andV and ON are their complex conjugates. We thus estimate

��� J̃
ex
N (x )��� ≤

L (Ta )
3√2N

2πγ
exp

{
max

[
GN

(
z +

εγ
3√2N

)
: z ∈ V ∪ ON ∪V ∪ ON

]}
, (3.56)

where L (·) denotes the length of a contour and

GN (z) := <[F (z)]N − x<(z)
3√2N
γ
.

Since

<[F (z)] = log
�����
γ + z

γ − z

�����
−

2
γ
<(z) ,

it is clear that GN (z) = GN (z). Therefore, it su�ices to bound the maximum of GN over

V and over ON . Since<(z) = a and a ≤ |z | ≤ 2a for z ∈ V , we have that

max
z∈V

GN

(
z +

εγ
3√2N

)
≤ −cN − xa

3√2N
γ
, (3.57)

where

c :=
2
γ
a − log

(
2a + εγ + γ

a − γ

)
. (3.58)

If we fix a large enough a such that c is positive, the maximum in (3.57) is asymptotically

bounded above by−cN and diverges to−∞. On the other hand, for all z such that arg(z) =
π/3, we have that

GN (z) =

[
1
2

log
γ 2 + γ |z | + |z |2

γ 2
− γ |z | + |z |2

−
|z |

γ

]
N − x

|z |

2

3√2N
γ
,

whose derivative w.r.t. the modulus is

d
d|z |

GN (z) = −
|z |2 (2γ 2 + |z |2)

γ (γ 4 + γ 2
|z |2 + |z |4)

N −
x 3√2N

2γ
.
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3.3. Scaling limits

A trivial estimate then gives

d
d|z |

GN (z) ≤ −
γN 1−2α (2γ 2 + γ 2N −2α )

(γ 4 + γ 2 (2a)2 + (2a)4)
−
x 3√2N

2γ
for z ∈ ON .

Since α < 1/3, no ma�er the sign of x , the above derivative is negative for N large enough,

soGN (z) is decreasing w.r.t. |z | in ON . By continuity, for N large,GN (z + εγ/ 3√2N ) is also

decreasing w.r.t. |z | in ON , hence

max
z∈ON

GN

(
z +

εγ
3√2N

)
= GN

(
γN −α eiπ /3 +

εγ
3√2N

)
=


log

������

1 + N −α eiπ /3 + ε (2N )−1/3

1 − N −α eiπ /3
− ε (2N )−1/3

������
− N −α −

2ε
3√2N


N − x

(
N −α

2
+

ε
3√2N

)
3√2N .

A�er a tedious computation, which uses the third order Taylor expansion of log(1+ δ ) as

δ → 0, we obtain that

max
z∈ON

GN

(
z +

εγ
3√2N

)
= −

2
3
N 1−3α + o(N 1−3α ) − x (2−2/3N 1/3−α + ε ) . (3.59)

Since α < 1/3, the la�er expression is asymptotic to −(2/3)N 1−3α and diverges to −∞.

Thanks to estimates (3.56), (3.57) and (3.59), we thus conclude that J̃ ex
N (x ) vanishes (at

least choosing a large enough a).

The proof of Proposition 3.14 directly provides a uniform bound on J̃N , which will turn

out to be useful in the next subsections.

Corollary 3.15. Let J̃N (x ) be defined as in (3.52) and s ∈ �. Then, there exist two positive

constants c1 and c2 such that

sup
N ∈�

��� J̃N (x )��� ≤ c1e−c2x ∀x ∈ [s,∞) .

Proof. Since by continuity the converging sequence J̃N (x ) is bounded uniformly in N on

any compact set, it su�ices to prove the claim for s = 0. The proof is then a straightforward

consequence of the estimates obtained in the proof of Proposition 3.14. Using the notation

adopted there, we will show that the uniform exponential bound is valid for both J̃ in
N and

J̃ ex
N , i.e. the contributions near and away from the critical point respectively. From (3.54)

and (3.55), it follows that for all x ∈ [0,∞)

sup
N ∈�

��� J̃
in
N (x )��� . e−εx

∫
C+ε

e<(z̃3)/3��dz̃�� ,
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3. Last passage percolation models

with ε chosen to be strictly positive. By definition of the contour C , the above integral

converges, providing the desired exponential bound for J̃ in
N . On the other hand, esti-

mates (3.56), (3.57) and (3.59) show that for all N ∈ � and x ∈ [0,∞)

��� J̃
ex
N (x )��� ≤



L (Ta )
3√2N

2πγ
e−min{cN , (2/3)N 1−3α

+o (N 1−3α ) }


e−x min{a 3√2N /γ ,2−2/3N 1/3−α
+ε }

≤ c ′e−x min{a 3√2/γ ,2−2/3
+ε } ,

where c is the constant (positive if a is chosen large enough) defined in (3.58), and c ′ is an

upper bound for the vanishing sequence inside the square bracket above. This provides

the desired exponential bound for J̃ ex
N .

3.3.3 Point-to-line and GOE Tracy-Widom

We will now specialize the results of sections 3.3.1 and 3.3.2 to study the scaling limits

of the exponential LPP models. We first analyze the point-to-line model, writing its CDF

as a Fredholm determinant.

Theorem3.16. The distribution of the point-to-line (α , β )-exponential LPP τ2N can be given

in terms of a Fredholm determinant as

�
(
τ2N ≤ u

)
= det(I − KN ,u )L2 (�>0)

, (3.60)

where KN ,u : L2 (�>0) → L2 (�>0) is the operator defined through the kernel

KN ,u (λ, ξ ) =
1

(2π i)2

∫
Γ1

dz
∫
Γ2

dw e−λz−ξw Hu (z,w )
N∏

m=1

(z + βm ) (w + αm )

(z − αm ) (w − βm )
. (3.61)

Here, Γ1, Γ2 ⊂ �>0 are any positively oriented simple closed contours such that Γ1 encloses

α1, . . . ,αN , Γ2 encloses β1, . . . , βN as well as the whole Γ1, and

Hu (z,w ) =
e−2uz

w − z
+

e−2uw

z −w
+

e−2u (z+w )

z +w
. (3.62)

Proof. The claim is an immediate consequence of the determinantal formula (3.32) and

Theorem 3.13. According to (3.43), function Hu in (3.61) is defined through the relation

Hu = C − Hu (using the notation of Theorem 3.8 for Hu ), i.e.

Hu (z,w ) =
1

z +w
− e−u (z+w )

∫ u

0
(ezx − e−zx ) (ewx

− e−wx ) dx .
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3.3. Scaling limits

If we assume† that Γ2 encloses Γ1 (so that z , w for all z,w), integrating the above expres-

sion yields (3.62).

Remark 3.17. As discussed in Remark 3.9, our formula (3.30) does not naturally lead to

a determinantal point process. Therefore, the kernel in (3.60) is not (naturally) associated

to a determinantal point process, and it might not even be positive. In fact, we will see in

next theorem that the limiting kernel is given by the Airy function, which is not always

positive.

We are now ready to derive the scaling limit of the point-to-line LPP with exponential

i.i.d. waiting times. We will prove that the fluctuations of τ2N are of order N 1/3 and its

the scaling limit is given by the GOE Tracy-Widom distribution. In particular, we will find

Sasamoto’s Fredholm determinant formula [Sas05] for the CDF of such a distribution:

F1 (s ) = det(I − K1)L2 ([s,∞)) (3.63)

for s ∈ �, where K1 is the operator on L2 ([s,∞)) defined through the kernel

K1 (λ, ξ ) :=
1
2

Ai
(
λ + ξ

2

)
. (3.64)

Theorem 3.18. If the waiting times are independent and exponentially distributed with rate

2γ , the limiting distribution of the point-to-line LPP τ2N is given, for r ∈ �, by

lim
N→∞

�

(
τ2N ≤

2N
γ
+ rN 1/3

)
= F1

(
21/3γr

)
. (3.65)

Proof. The starting point is the Fredholm determinant formula of Theorem 3.16. We

will first show the pointwise convergence of the kernel a�er suitable rescaling, and next

sketch the (standard) argument for the convergence of the Fredholm determinant. Set-

ting αm = βm = γ for allm, so that the waiting times are all exponential with rate 2γ (see

Definition 3.7), kernel (3.61) reads as

KN ,u (λ, ξ ) =
1

(2π i)2

∫
Γ1

dz
∫
Γ2

dw e−λz−ξw Hu (z,w )

[
(z + γ ) (w + γ )

(z − γ ) (w − γ )

]N
,

where Hu is given by formula (3.62). Our kernel is thus a sum of three double contour

integrals, each corresponding to one of the addends in (3.62). In the second one only, we

swap the two contours taking into account the residue at the pole w = z. We can then

†Notice that, by symmetry, the reverse inclusion would lead to the same result.
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3. Last passage percolation models

readily write the kernel as the sum of four terms:

KN ,u = K (1)
N ,u + K

(2)
N ,u + K

(3)
N ,u + K

(4)
N ,u ,

where the first one corresponds to the above mentioned residue:

K (1)
N ,u (λ, ξ ) := −

1
2π i

∫
Γ1

dz e−(2u+λ+ξ )z
[
γ + z

γ − z

]2N
, (3.66)

and the other three terms are

K (2)
N ,u (λ, ξ ) :=

1
(2π i)2

∫
Γ1

dz
∫
Γ2

dw e−λz−ξw
e−2uz

w − z

[
(z + γ ) (w + γ )

(z − γ ) (w − γ )

]N
, (3.67)

K (3)
N ,u (λ, ξ ) := K (2)

N ,u (ξ , λ) , (3.68)

K (4)
N ,u (λ, ξ ) :=

1
(2π i)2

∫
Γ1

dz
∫
Γ2

dw e−λz−ξw
e−2u (z+w )

z +w

[
(z + γ ) (w + γ )

(z − γ ) (w − γ )

]N
. (3.69)

Step 1: Main contribution in the kernel. The Airy kernel emerges from a rescaling

of K (1)
N ,u through Proposition 3.14, whereas the other terms turn out to be negligible under

the same rescaling, as we will see. From now on, fixing r ∈ � once for all, we will take

u to be uN := 2N /γ + rN 1/3, as in (3.65). Moreover, we denote by Ψ̃ the rescaling of any

function Ψ(λ, ξ ) by the factor 3√2N /γ :

Ψ̃(λ, ξ ) :=
3√2N
γ

Ψ *
,

3√2N
γ

λ,
3√2N
γ

ξ+
-
. (3.70)

By Proposition 3.14, K̃ (1)
N ,uN

has a non-trivial limit:

K̃ (1)
N ,uN

(λ, ξ ) = −
3√4N
3√2γ

1
2π i

∫
Γ1

dz exp


−z



2
γ

2N +
(
λ + ξ

3√2
+ 21/3γr

) 3√4N
γ






[
γ + z

γ − z

]2N

N→∞
−−−−−→ 2−1/3Ai

(
2−1/3 (λ + ξ ) + 21/3γr

)
.

We thus need to replace our whole kernel with its rescaling by the factor 3√2N /γ :

K̃N ,uN = K̃ (1)
N ,uN

+ K̃ (2)
N ,uN

+ K̃ (3)
N ,uN

+ K̃ (4)
N ,uN

.

This does not a�ect formula (3.60), as it just amounts to a change of variables in the

multiple integrals defining the Fredholm determinant expansion (see (3.42)), so that:

�
(
τ2N ≤ uN

)
= det(I − K̃N ,uN )L2 (�>0)

.
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3.3. Scaling limits

Step 2: Vanishing terms in the kernel. We will now show that all the remaining

terms K̃ (i )
N ,uN

(λ, ξ ) for i = 2, 3, 4 vanish, starting from K̃ (2)
N ,uN

(λ, ξ ). For this purpose, we

specify the contours appropriately. We choose Γ1 to be a circle of radius ϱ1 around γ ,

where 0 < ϱ1 < γ . Next, we choose Γ2 to be a semicircle of radius ϱ2 centered at δ ,

where 0 < δ < γ − ϱ1, composed by concatenating the segment δ + i[−ϱ2, ϱ2] and the

arc parametrized by δ + ϱ2eiθ for θ ∈ [−π/2,π/2]. It is clear that both contours lie in the

right half-plane and, for ϱ2 large enough, Γ2 encloses Γ1. Rescaling (3.67), se�ing u := uN ,

and using the fact that λ, ξ > 0 and δ ≤ <(z),<(w ) ≤ δ + ϱ2 for z ∈ Γ1 and w ∈ Γ2, we

estimate

���K̃
(2)
N ,uN

(λ, ξ )��� ≤
(2N )1/3

L (Γ1)L (Γ2)

γ (2π )2dist(Γ1, Γ2)
e−(λ+ξ )δ

3√2N /γ e(m1+m2)N+2 |r |(δ+ϱ2)N
1/3

≤ c e−(λ+ξ )δ
3√2/γ exp

{
(m1 +m2)N + 2|r |(δ + ϱ2)N

1/3 +
1
3

logN
}
.

(3.71)

In the first inequality, we have denoted by L (·) the length of a curve and by dist(·, ·)
the Euclidean distance in �. In the second inequality, c is a constant depending on the

parameters γ , δ , ϱ1 and ϱ2 only, whereasm1 andm2 are defined by

m1 := max
z∈Γ1

{
−

4
γ
<(z) + log

�����
z + γ

z − γ

�����

}
, m2 := max

w ∈Γ2
log

�����
w + γ

w − γ

�����
.

A trivial estimate yields

m1 ≤ −4
(
1 −

ϱ1
γ

)
+ log

(
1 + 2

γ

ϱ1

)
.

Now, the function

д(t ) := −4(1 − t ) + log
(
1 +

2
t

)
a�ains its minimum for t ∈ (0, 1) at t0 :=

√
3/2 − 1, with д(t0) < 0; hence, choosing

ϱ1 := t0γ , we have thatm1 < 0. On the other hand, we estimate

m2 ≤ max
<(w )=δ

log
�����
w + γ

w − γ

�����
+ max
|w−δ |=ϱ2

log
�����
w + γ

w − γ

�����
≤ log

γ + δ

γ − δ
+ log

ϱ2 + δ + γ

ϱ2 + δ − γ
.

We can now choose δ > 0 small enough and ϱ2 big enough such that m2 < −m1. It thus

follows that, for certain values of ϱ1, ϱ2 and δ , the quantity a�er the last inequality in (3.71)

decays exponentially with rate N , allowing us to conclude that K̃ (2)
N ,uN

(λ, ξ ) vanishes as

N → ∞, for all λ, ξ ∈ �>0. We remark that, in (3.71), the exponential containing variables

λ and ξ has not played any role so far, but will provide a useful estimate in the next step.
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Because of (3.68), we have that estimate (3.71) is exactly valid for K̃ (3)
N ,uN

(λ, ξ ) too, so

that this term also vanishes.

Finally, an estimate similar to (3.71) holds for K̃ (4)
N ,uN

(λ, ξ ): to see this, we make the

same contour choice as we made when showing that K̃ (2)
N ,uN

(λ, ξ ) vanishes. Rescaling (3.69)

and se�ing u := uN , a generous estimate yields

���K̃
(4)
N ,uN

(λ, ξ )��� ≤
(2N )1/3

L (Γ1)L (Γ2)

γ (2π )2dist(Γ1,−Γ2)
e−(λ+ξ )δ

3√2N /γ e(m1+m2)N+4 |r |(δ+ϱ2)N
1/3

≤ c ′e−(λ+ξ )δ
3√2/γ exp

{
(m1 +m2)N + 4|r |(δ + ϱ2)N

1/3 +
1
3

logN
}
,

(3.72)

where the constant c ′ depends on γ , δ , ϱ1 and ϱ2 only. We have already proved that

m1 +m2 < 0 for a certain choice of ϱ1, ϱ2 and δ , hence K̃ (4)
N ,uN

(λ, ξ ) also vanishes.

Step 3: Convergence of Fredholm determinants. In the first two steps, we have

proven that

lim
N→∞

K̃N ,uN (λ, ξ ) = 2−1/3Ai
(
2−1/3 (λ + ξ ) + 21/3γr

)
(3.73)

for all λ, ξ ∈ �>0. We now need to show the convergence of the corresponding Fredholm

determinants on L2 (�>0). The argument is standard, and based on the series expan-

sion (3.42) of the Fredholm determinant. Notice first that there exist two positive constant

c1 and c2 such that

sup
N ∈�

���K̃N ,uN (λ, ξ )
��� ≤ c1e−c2λ

for all λ, ξ ∈ �>0. The exponential bound for K̃ (1)
N ,uN

comes from Corollary 3.15, whereas

the estimates for the remaining terms directly follow from (3.71) and (3.72). Hadamard’s

bound then implies that

���det(K̃N ,uN (λi , λj ))
n
i, j=1

��� ≤ nn/2
n∏
i=1

c1e−c2λi .

It follows that

���det(I − K̃N ,uN )L2 (�>0)
��� ≤ 1 +

∞∑
n=1

1
n!

∫ ∞

0
· · ·

∫ ∞

0

���det(KN (λi , λj ))
n
i, j=1

��� dλ1 · · · λn

≤ 1 +
∞∑
n=1

nn/2

n!

(∫ ∞

0
c1e−c2λ dλ

)n
< ∞ .

These inequalities, apart from providing a further proof that the Fredholm determinants

of our kernels are well-defined, allow us to conclude, by dominated convergence, that

limit (3.73) still holds when passing to the corresponding Fredholm determinants on the
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3.3. Scaling limits

space L2 (�>0). A�er a rescaling of the limiting kernel by a factor 2−2/3, one can see that

the operator on L2 (�>0) defined through the kernel (λ, ξ ) 7→ 2−1/3Ai
(
2−1/3 (λ + ξ ) + s

)
has the same Fredholm determinant as the operator K1 on L2 ([s,∞)) defining the GOE

Tracy-Widom distribution F1 (s ) as in (3.63). This concludes the proof.

3.3.4 Point-to-half-line and Airy2→1

We now pass to the point-to-half-line exponential LPP model, again starting with the

Fredholm determinant formula.

Theorem 3.19. The distribution of the point-to-half-line (α , β )-exponential LPP τ half
2N can

be given in terms of a Fredholm determinant as

�
(
τ half

2N ≤ u
)
= det

(
I − Khalf

N ,u

)
L2 (�>0)

, (3.74)

where Khalf
N ,u : L2 (�>0) → L2 (�>0) is the operator defined through the kernel

Khalf
N ,u (λ, ξ ) =

1
(2π i)2

∫
Γ1

dz
∫
Γ2

dw e−λz−ξw Hhalf
u (z,w )

N∏
m=1

(z + βm ) (w + αm )

(z − αm ) (w − βm )
. (3.75)

Here, Γ1, Γ2 ⊂ �>0 are any positively oriented simple closed contours such that Γ1 encloses

α1, . . . ,αN , Γ2 encloses β1, . . . , βN as well as the whole Γ1, and

Hhalf
u (z,w ) =

e−u (z+w )

z +w
+

e−u (z+w )

z −w
+

e−2uz

w − z
. (3.76)

Proof. The claim follows from the determinantal formula (3.36) and Theorem 3.13. Func-

tion Hhalf
u in (3.75) is defined through the relation Hhalf

u = C −Hhalf
u (using the notation of

Theorem 3.10 for Hhalf
u ), i.e.

Hhalf
u (z,w ) =

1
z +w

− e−u (z+w )

∫ u

0
(ezx − e−zx )ewx dx .

If we assume that Γ2 encloses Γ1 (so that z , w for all z,w), integrating the above expression

yields (3.76).

Via the above Fredholm determinant formula, we can now derive the scaling limit of

the point-to-half-line LPP with exponential i.i.d. waiting times. We will prove that the

fluctuations of τ half
2N are of order N 1/3 and its the scaling limit is given by the one-point

marginal distribution F2→1 of the Airy2→1 process. The expression we will arrive at is the
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following [BFS08]:

F2→1 (s ) = det(I − K2→1)L2 ([s,∞)) (3.77)

for s ∈ �, where K2→1 is the operator on L2 ([s,∞)) defined through the kernel

K2→1 (λ, ξ ) :=
∫ ∞

0
Ai(λ + x )Ai(ξ + x ) dx +

∫ ∞

0
Ai(λ + x )Ai(ξ − x ) dx . (3.78)

Our result is consistent with the one obtained by Borodin-Ferrari-Sasamoto [BFS08] in

the analysis of the TASEP with half-alternating initial configuration, which is equivalent

to the point-to-half-line exponential LPP, as seen in the introduction to this section.

Theorem 3.20. If the waiting times are independent and exponentially distributed with rate

2γ , the limiting distribution of the point-to-half-line LPP τ half
2N is given, for r ∈ �, by

lim
N→∞

�

(
τ half

2N ≤
2N
γ
+ rN 1/3

)
= F2→1

(
2−1/3γr

)
.

Proof. In order to perform the asymptotics of formula (3.74) in the i.i.d. case, we set αm =

βm = γ for all m in the definition of (α , β )-exponential measure. Our kernel (3.75) thus

becomes

Khalf
N ,u = Khalf (1)

N ,u + Khalf (2)
N ,u + Khalf (3)

N ,u ,

where

Khalf (1)
N ,u (λ, ξ ) =

1
(2π i)2

∫
Γ1

dz
∫
Γ2

dw e−λz−ξw
e−u (z+w )

z +w

[
(z + γ ) (w + γ )

(z − γ ) (w − γ )

]N
,

Khalf (2)
N ,u (λ, ξ ) =

1
(2π i)2

∫
Γ1

dz
∫
Γ2

dw e−λz−ξw
e−u (z+w )

z −w

[
(z + γ ) (w + γ )

(z − γ ) (w − γ )

]N
,

Khalf (3)
N ,u (λ, ξ ) =

1
(2π i)2

∫
Γ1

dz
∫
Γ2

dw e−λz−ξw
e−2uz

w − z

[
(z + γ ) (w + γ )

(z − γ ) (w − γ )

]N
.

For the steepest descent analysis of the first two terms, we are going to adapt the

proof of Proposition 3.14, taking into account that we now have double contour integrals

instead of single ones. Noticing thatKhalf (1)
N ,u andKhalf (2)

N ,u only di�er for the sign in (z±w )−1,

we study both at the same time, denoting by K±N ,u either of them:

K±N ,u (λ, ξ ) :=
1

(2π i)2

∫
Γ1

dz
∫
Γ2

dw e−λz−ξw
e−u (z+w )

z ±w

[
(z + γ ) (w + γ )

(z − γ ) (w − γ )

]N
.

We replace the contour Γ1 withTR1
+ 2εγ/ 3√2N and the contour Γ2 withTR2

+ εγ/ 3√2N , for
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3.3. Scaling limits

some γ < R1 < R2 and ε > 0; here, as in the proof of Proposition 3.14,TR is the negatively

oriented triangular path with vertices 0, 2Reiπ /3 and 2Re−iπ /3. Notice that changing the

orientation of both paths does not yield any change of sign in the double contour integral;

moreover, the first contour is still enclosed by the second one, and the singularities at

(z ± w )−1 are not crossed by the deformed contours (the infinitesimal shi�s of TR1
and

TR2
are also done for this sake). Set now u = uN := 2N /γ + rN 1/3 and denote by Ψ̃ the

rescaling of any function Ψ(λ, ξ ) by the factor 3√2N /γ , as in (3.70). We can thus write

K̃±N ,uN (λ, ξ ) =
3√2N

γ (2π i)2

∫
TR1
+

2εγ
3√2N

dz
∫
TR2
+

εγ
3√2N

dw
eN F (z )−λr z

3√2N /γ eN F (w )−ξrw
3√2N /γ

z ±w
,

where λr := λ+ 2−1/3γr , ξr := ξ + 2−1/3γr , and F (z) := log(γ +z) − log(γ −z) − 2z/γ . Since

the main contribution in the integral is expected to come from z = w = 0, which is the

critical point of F , we split the above integral into the following sum:

K̃±N ,uN = K̃±, in, inN ,uN
+ K̃±, in,ex

N ,uN
+ K̃±,ex, in

N ,uN
+ K̃±,ex,ex

N ,uN
.

Here, the first superscript “in” (“ex”) indicates that the integration w.r.t. z is performed

only in the interior (exterior, respectively) of the ball {|z − 2εγ/ 3√2N | ≤ γN −α } for some

exponent α > 0 to be specified later on, while the second superscript “in” (“ex”) indicates

that the integration w.r.t.w is performed only in the interior (exterior, respectively) of the

ball {|w − εγ/ 3√2N | ≤ γN −α }. In K̃±, in, inN ,uN
, a�er the changes of variables z̃ := z 3√2N /γ and

w̃ := w 3√2N /γ , we obtain

K̃±, in, inN ,uN
(λ, ξ ) =

1
(2π i)2

∫
C+2ε

dz̃ exp
{
z̃3

3
− λr z̃ + R

(
γ

3√2N
z̃

)
N

}
1{
|z̃−2ε | ≤ 3√2N 1/3−α }

×

∫
C+ε

dw̃ exp
{
w̃3

3
− ξrw̃ + R

(
γ

3√2N
w̃

)
N

}
1
{ |w̃−ε | ≤ 3√2N 1/3−α

}

1
z̃ ± w̃

,

where C is the piecewise linear path going from e−iπ /3
∞ to the origin to eiπ /3

∞, and R is

the remainder defined by (3.53). The indicator functions clearly converge to 1 if α < 1/3.

As in the proof of Proposition 3.14, one can also show that the remainders, even when

multiplied by N , vanish uniformly for z̃, w̃ in the support of the integrand, if we choose

1/4 < α < 1/3. Applying dominated convergence, one can see that

lim
N→∞

K̃±, in, inN ,uN
(λ, ξ ) =

1
(2π i)2

∫
C+2ε

dz̃
∫
C+ε

dw̃
1

z̃ ± w̃
exp

{
z̃3

3
− λr z̃ +

w̃3

3
− ξrw̃

}
.

Using similar arguments as in the proof of Proposition 3.14, together with the bound

106



3. Last passage percolation models

|z ±w |−1
≤ 2 3√2N /(

√
3εγ ), one can see that the other terms K̃±, in,ex

N ,uN
, K̃±,ex, in

N ,uN
, and K̃±,ex,ex

N ,uN
vanish exponentially fast in the limit N → ∞. We thus have:

lim
N→∞

K̃half (1)
N ,uN

(λ, ξ ) =
1

(2π i)2

∫
C+2ε

dz̃
∫
C+ε

dw̃
1

z̃ + w̃
ez̃

3/3−λr z̃ew̃
3/3−ξr w̃ ,

lim
N→∞

K̃half (2)
N ,uN

(λ, ξ ) =
1

(2π i)2

∫
C+2ε

dz̃
∫
C+ε

dw̃
1

z̃ − w̃
ez̃

3/3−λr z̃ew̃
3/3−ξr w̃ .

We will now rewrite these expressions as integrals of Airy functions. In the first one, since

<(z̃ + w̃ ) > 0 for all z̃ and w̃ , we can make the substitution (z̃ + w̃ )−1 =
∫ ∞

0 e−(z̃+w̃ )x dx .

The resulting dz̃ dw̃ dx integral is absolutely convergent, hence Fubini’s Theorem can be

applied to obtain:

lim
N→∞

K̃half (1)
N ,uN

(λ, ξ ) =

∫ ∞

0

[
1

2π i

∫
C+2ε

ez̃
3/3−(λr+x )z̃ dz̃

] [
1

2π i

∫
C+ε

ew̃
3/3−(ξr+x )w̃ dw̃

]
dx

=

∫ ∞

0
Ai(λr + x )Ai(ξr + x ) dx ,

according to definition 3.50 of Airy function. In K̃half (2)
N ,uN

, we deform† the contourC +ε into

the straight line lε going from ε − i∞ to ε + i∞; since now<(z̃−w̃ ) ≥ ε > 0 for all z̃ and w̃ ,

we can make the substitution (z̃ −w̃ )−1 =
∫ ∞

0 e−(z̃−w̃ )x dx . The resulting dz̃ dw̃ dx integral

is absolutely convergent, hence Fubini’s Theorem can be applied to obtain:

lim
N→∞

K̃half (2)
N ,uN

(λ, ξ ) =

∫ ∞

0

[
1

2π i

∫
C+2ε

ez̃
3/3−(λr+x )z̃ dz̃

] [
1

2π i

∫
lε

ew̃
3/3−(ξr−x )w̃ dw̃

]
dx

=

∫ ∞

0
Ai(λr + x )Ai(ξr − x ) dx .

We remark that the second square bracket above is an Airy function as well, since the

path lε can be deformed back to a contour, like C + ε , whose arguments at∞ are ±π/3.

We finally notice that Khalf (3)
N ,uN

(λ, ξ ) equals exactly the term K (2)
N ,uN

(λ, ξ ) defined in the

proof of Theorem 3.18. Therefore, as we have already proved there, the rescaled version

K̃half (3)
N ,uN

(λ, ξ ) vanishes as N → ∞.

We conclude that, as a whole, our rescaled kernel has the following limit:

lim
N→∞

K̃half
N ,uN

(λ, ξ ) = K2→1 (λr , ξr ) = K2→1 (λ + 2−1/3γr , ξ + 2−1/3γr ) ,

where K2→1 is defined in (3.78). Using the key fact that all contours are chosen to have

positive distance from the imaginary axis (as in the analogous estimates obtained in Corol-

†A standard argument justifies this contour deformation.
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3.3. Scaling limits

lary 3.15 and in the proof of Theorem 3.18), one can show that there exist two positive

constants c1 and c2 such that, for all λ, ξ ∈ �>0,

sup
N ∈�

���K̃
half
N ,uN

(λ, ξ )��� ≤ c1e−c2λ .

The la�er bound provides, as in the third step of the proof of Theorem 3.18, the right esti-

mates for the series expansion of det
(
I − K̃half

N ,uN

)
L2 (�>0)

in order to justify its convergence.

The claim thus follows from the Fredholm determinant representation (3.77) of F2→1.
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Future plans and open problems

The following is a nonexhaustive list of possible future working plans on open prob-

lems that can be inferred from this thesis:

(i) The asymptotic analysis of the log-gamma polymer partition functions in the point-

to-line and point-to-half-line geometries, starting from the contour integral formu-

las (2.38) and (2.43). By KPZ universality, it is expected that the limiting distribu-

tions are GOE Tracy-Widom and Airy2→1 one-point marginal in the two geome-

tries respectively, as already proved in the zero temperature case (see Theorems 3.18

and 3.20). However, in that context the task was facilitated by the fact that the for-

mulas we obtained for the corresponding last passage percolation problems are inte-

grals of (symplectic) Schur functions, which have a natural determinantal structure;

thanks to this, it was possible to derive a Fredholm determinant formula, amenable to

asymptotic analysis. On the other hand, via a Bethe ansatz non-rigorous approach,

Grange [Gra17] obtained a conjectural Fredholm Pfa�ian formula for the Laplace

transform of the point-to-line log-gamma polymer, leading to the GOE Tracy-Widom

asymptotics. Our working plan is methodologically di�erent from this and more sim-

ilar to the one adopted in [BCR13] to study the point-to-point log-gamma polymer

free energy limiting distribution. Namely, comparing with the Fredholm determinant

formulas (3.60) and (3.74) obtained in the zero temperature case, we could make an

educated guess on Fredholm determinant formulas in positive temperature and show,

by means of algebraic manipulations, that they are equivalent to our contour integral

formulas.

(ii) A more extensive study of polymer and last passage percolation models for point-

to-half-line paths restricted to a half-plane, generalizing the results obtained in sec-

tions 2.1.3, 3.1.3 and 3.2.3. In particular, we may allow a pinning parameter in the

distribution of the weights lying on the diagonal “hard wall” that divides the two

half-planes. For the point-to-point case, this was already done in [OSZ14]. Com-

paring with the analogous results that were obtained in [BR01b] in the se�ing of
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increasing subsequences of random involutions constructed via Poisson points, dif-

ferent fluctuations and limiting distributions are expected, according to the intensity

of the pinning parameter: either di�usive fluctuations and Gaussian limiting distribu-

tion when the paths are almost forced to “stick” to the diagonal, or KPZ fluctuations

with Tracy-Widom type limiting distributions (GOE squared or GUE) otherwise. We

already have some partial results in this direction, leading to apparently new deter-

minantal formulas for the GOE squared and GUE Tracy-Widom distributions.

(iii) The construction of a symplectic Schur process. The positivity of Schur functions and

the classical Cauchy identity allow defining a Schur measure on partitions [Oko01],

which weights a partition λ proportionally to the product of two Schur functions

parametrized by λ. It is possible to generalize such a measure to a determinantal

process on partitions, called Schur process [OR03]. Inspired by our formula (3.6) for

the point-to-line geometric LPP in terms of symplectic Schur functions, one could

aim at constructing a symplectic Schur process on partitions. The first di�iculty is

that le�ing u to infinity in (3.6) does not provide a Cauchy-type identity, as the sum

diverges and the prefactor vanishes. In this direction, an alternative way to con-

struct such a process could be to start from a Cauchy identity for symplectic Schur

functions that can be found for example in [Sep16; WZJ16]. If via both routes it is

possible to extract a determinantal point process, then an interesting question would

be if these are the same or not. Furthermore, by analogy with Okounkov’s Schur mea-

sure [Oko01], Betea [Bet18] studied measures on partitions that are proportional to

the product between one symplectic (or orthogonal) Schur function and one standard

Schur function. It would be interesting to compare our point-to-half-line geometric

LPP formula (3.13) with Betea’s measures and find out if the la�er have any interpre-

tation in terms of LPP or related models.
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A

Zero temperature limit

We have briefly explained in the Introduction why the directed last passage percola-

tion (LPP) model is considered to be the zero temperature version of the directed polymer

partition function. Moreover, in section 3.2 we have derived the CDF of certain LPPs

in various point-to-line path geometries as a an appropriate scaling limit of the Laplace

transform of the corresponding polymer partition functions studied in section 2.1. In this

appendix we give the complete argument necessary to justify this procedure, called zero

temperature limit and already outlined at the beginning of section 3.2.

We first need the following technical lemma:

Lemma A.1. Let
{
Aδ

}
δ>0 be a collection of closed subsets of a Borel spaceX. Let

{
X (ε )

}
ε>0

andX beX-valued random variables, and let { fε }ε>0 and f be measurable functionsX → �.

Assume that:

(i) X (ε ) ε↓0
−−−→ X in distribution;

(ii) fε
ε↓0
−−−→ f uniformly in X \Aδ , for all δ > 0;

(iii) � (X ∈ Aδ )
δ ↓0
−−−→ 0;

(iv) �(X ∈ Df ) = 0, where Df ⊆ X is the set of discontinuity points of f .

Then fε
(
X (ε )

) ε↓0
−−−→ f (X ) in distribution.

Proof. By the Portmanteau theorem, it su�ices to show that

�
[
д ◦ fε

(
X (ε )

)] ε↓0
−−−→ � [д ◦ f (X )] (A.1)
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for all Lipschitz bounded function д : �→ �. Using the triangle inequality,

����
[
д ◦ fε

(
X (ε )

)]
− � [д ◦ f (X )]���

≤�
[���д ◦ fε

(
X (ε )

)
− д ◦ f

(
X (ε )

) ���1X\Aδ
(
X (ε )

)]

+ �
[���д ◦ fε

(
X (ε )

)
− д ◦ f

(
X (ε )

) ���1Aδ
(
X (ε )

)]
+

����
[
д ◦ f

(
X (ε )

)]
− � [д ◦ f (X )]���

≤ lд sup
x ∈X\Aδ

��fε (x ) − f (x )�� + 2 

д

∞ �
(
X (ε )

∈ Aδ
)
+

����
[
д ◦ f

(
X (ε )

)]
− � [д ◦ f (X )]��� ,

where lд is the Lipschitz constant of д. In the la�er expression, we will now take the limits

as ε ↓ 0 first, and as δ ↓ 0 next. By assumption (ii), the first addend goes to 0 as ε ↓ 0,

for any fixed δ > 0. By hypothesis (i) and the fact that Aδ is closed, the Portmanteau

theorem implies that

lim sup
ε↓0

�
(
X (ε )

∈ Aδ
)
≤ � (X ∈ Aδ )

for all δ > 0; taking now the limit as δ ↓ 0 and using (iii), we see that the second ad-

dend goes to 0 too. Finally, the continuous mapping theorem, along with assumptions (i)

and (iv), implies that f
(
X (ε )

) ε↓0
−−−⇀ f (X ); by the Portmanteau theorem, the third addend

goes to 0 as ε ↓ 0. Claim (A.1) follows.

Consider now a polymer partition function Z and a LPP τ on the same set of allowed

paths (see definitions (0.1) and (0.2)). Roughly speaking, next proposition states that, if

the environment of Z converges to the environment of τ under an appropriate scaling as

the “temperature” parameter ε vanishes, then in the same limit: (i) a rescaled Z converges

to τ in distribution, and (ii) a rescaled Laplace transform of Z converges to the CDF of τ .

Proposition A.2. Let Z (ε ) be any polymer partition function on a la�ice I with disorder

given by independent positive weightsW (ε ) = {W (ε )
i, j : (i, j ) ∈ I}, whose distributions depend

on a parameter ε > 0. Let τ be the LPP in the same path geometry with independent waiting

timesW = {Wi, j : (i, j ) ∈ I}. Assume that

ε logW (ε )
i, j

ε↓0
−−−→Wi, j (A.2)

in distribution for all (i, j ). Then:

(i) ε logZ (ε ) ε↓0
−−−→ τ in distribution;

(ii) �
[
exp

{
−e−u/εZ (ε )

}] ε↓0
−−−→ �(τ ≤ u) for all u ∈ � such that �(τ = u) = 0.

Notice that hypothesis (A.2) is valid in particular ifW (ε )
i, j = eWi, j /ε for all (i, j ). This triv-

ial case of the zero temperature limit was already explained in the Introduction, see (0.6).
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A. Zero temperature limit

Notice also that, if the waiting timesWi, j ’s are continuous random variables, besides

being independent, then τ is continuous as well and (ii) holds for all u ∈ �.

Proof. Both claims follow from Lemma A.1.

(i) Let X := �I , Aδ := ∅ for all δ > 0, X (ε ) := ε logW (ε ) = {ε logW (ε )
i, j : (i, j ) ∈ I},

X :=W and fε , f : �I → � defined by

fε (x ) := ε log *.
,

∑
π ∈Π

exp



1
ε

∑
(i, j )∈π

xi, j




+/
-
, f (x ) := max

π ∈Π

∑
(i, j )∈π

xi, j

for all x = {xi, j : (i, j ) ∈ I} ∈ �I . The whole array ε logW (ε ) , because of the hy-

potheses of convergence and independence of its entries, converges in distribution to

W ; therefore, condition (i) of the lemma holds. It is easy to prove that fε converges

to f uniformly in�I as ε ↓ 0, so condition (ii) is also satisfied. Condition (iii) trivially

holds because Aδ = ∅, and (iv) follows from the continuity of f . Lemma A.1 thus

implies that

ε logZ (ε ) = fε
(
ε logW (ε )

) ε↓0
−−−→ f (W ) = τ

in distribution.

(ii) Let now X := �, Aδ := [u − δ ,u + δ ] for all δ > 0, X (ε ) := ε logZ (ε ) , X := τ and

fε , f : �→ � defined by

fε (x ) := exp
{
−e(x−u )/ε

}
, f (x ) := 1(−∞,u] (x )

for all x ∈ �. Condition (i) of the lemma follows from what we have just proved. It is

easy to show that, for all δ > 0, fε converges to f uniformly inX\Aδ = �\[u−δ ,u+δ ],
so that condition (ii) holds. Since the waiting times are independent and continuous,

τ is continuous; it follows that

� (τ ∈ [u − δ ,u + δ ])
δ ↓0
−−−→ �(τ = u) = 0 ,

showing that condition (iii) holds. Finally, f is discontinuous in u, but �(τ = u) = 0
again because τ is a continuous random variable, so condition (iv) applies. Lemma A.1

thus implies that

exp
{
−e−u/εZ (ε )

}
= fε

(
ε logZ (ε )

) ε↓0
−−−→ f (τ ) = 1{τ ≤u }

in distribution. The collection of random variables
{
fε

(
ε logZ (ε )

)}
ε>0

is uniformly
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bounded by 1, hence uniformly integrable. Convergence in distribution along with

uniform integrability implies convergence of expectations, thus proving the claim.

114



B

Whittaker functions in number theory

Whi�aker functions on the groups GLn (�) and SO2n+1 (�) and certain integral iden-

tities involving them, such as the Bump-Stade identity (1.59) and the Ishii-Stade iden-

tity (1.67), play a major role in this thesis. We have introduced these functions in sec-

tion 1.3 and used them in our polymer analysis of chapter 2. In this appendix, we wish

to study a few aspects of Whi�aker functions from a number theoretic standpoint. In

section B.1 we motivate their appearance in number theory and the contextual study of

the integral identities mentioned above, focusing on the case GL2 (�). In section B.2 we

show the connection between our parametrization for Whi�aker functions, given in sec-

tion 1.3, and the one usually adopted by number theorists (in particular by Ishii and Stade

in [IS13]).

B.1 Maass forms and Whittaker functions on GL2(�)

In number theory, Whi�aker functions appear in the series expansion of certain auto-

morphic forms (more specifically, Maass forms). For the sake of conciseness and clarity,

we focus on GL2 (�) and review the theory of automorphic forms for this group, following

the exposition of [Gol06].

An automorphic form is a function that satisfies certain di�erential equations and in-

variance/periodicity conditions. A familiar example is given by the complex exponential

f (x ) := e2π ix , x ∈ �. It is an eigenfunction of the one-dimensional Laplacian, as it satis-

fies the di�erential equation d2f
dx 2 = −4π 2 f . It is also a periodic function, in the sense that

f (x + n) = f (x ) for all x ∈ � and n ∈ �. Such a periodicity condition, in particular, may

be rephrased as the invariance under the additive action of � on �. The notion of auto-

morphic form essentially arises when we instead consider the action of a general group

on a general topological space.
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B.1. Maass forms and Whittaker functions on GL2 (�)

In the case of automorphic forms for GL2 (�), the topological space one works with

is the complex upper-half plane � := {z = x + iy : x ∈ � , y > 0}, which can also be

realized as the set of GL2 (�)-matrices z =
[
y x
0 1

]
such that y > 0 and x ∈ �. Indeed,

the Iwasawa decomposition states that every д ∈ GL2 (�) can be wri�en as д = z · k · d ,

where z is a (uniquely determined) matrix as before, k is a 2 × 2 orthogonal matrix, and d

is a nonzero multiple of the 2 × 2 identity matrix (i.e. belongs to the center Z(GL2 (�)) of

GL2 (�)). Therefore, we can identify

� ≡ GL2 (�)/ [O2 (�) · Z(GL2 (�))] .

Consider now the continuous action† of the group SL2 (�) on � given by



a b

c d


z :=

az + b

cz + d
. (B.1)

It can be verified that SL2 (�) acts equivalently by matrix multiplication on the elements

of�, viewed in their matrix representation as le� cosets of O2 (�) · Z(GL2 (�)) in GL2 (�).

A Maass form for SL2 (�) is a smooth function f : �→ � that:

(i) is invariant under the action of SL2 (�) on �, i.e. f (д · z) = f (z) for all д ∈ SL2 (�)

and z ∈ �;

(ii) is an eigenfunction of the hyperbolic Laplacian

∆ := −y2
(
∂2

∂x2 +
∂2

∂y2

)
,

in particular it satisfies ∆f = ν (1 − ν ) f for some ν ∈ �;

(iii) has exponential decay as y → ∞.

The invariance by the action of
[ 1 n

0 1
]
∈ SL2 (�) guarantees that f (z + n) = f (z)

for all n ∈ �. Namely, f (x + iy) is a periodic function of x and can thus be expanded

in the Fourier series with coe�icients depending on y. Such coe�icients turn out to be

uniquely determined up to a multiplicative constant (multiplicity one property) and can

be evaluated explicitly in terms of Bessel functions, yielding the series representation:

f (z) =
∑

n∈�\{0}
a(n) ·W (z,ν ,n) , W (z,ν ,n) :=

√
2πy · Kν− 1

2
(2π |n |y) · e2π inx . (B.2)

Here, Kν is the Macdonald function (or modified Bessel function of the second kind), de-

†One can check that the right-hand side of (B.1) is indeed an element of �.
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fined by

Kν (x ) :=
1
2

∫ ∞

0
tν exp

{
−
x

2

(
t +

1
t

)} dt
t
. (B.3)

The functionW (z,ν ,n) is called, in this context, GL2 (�)-Whi�aker function of type ν asso-

ciated to then-th additive character e2π inx . Notice that the gl2-Whi�aker function defined

in subsection 1.3.1 (see (1.51)) can also be wri�en in terms of the Macdonald function as

Ψ
gl2
(α1,α2)

(x1,x2) = 2(x1x2)
(α1+α2)/2Kα2−α1

(
2
√

x2
x1

)
. (B.4)

It is then easy to check that the following equality links the two di�erently defined Whit-

taker functions:

W (iy,ν , 1) =
Ψ
gl2
(α1,α2)

(x1,x2)√
2xα1+α2+

1
2

1 x
α1+α2−

1
2

2

, (B.5)

if we set y = 1
π

√
x2
x1

and ν − 1
2 = α2 − α1.

The complex coe�icients a(n)’s occurring in the Fourier-Whi�aker expansion (B.2)

are conjectured to satisfy the growth condition a(n) = O (d (n)), where d (n) denotes the

number of divisors of n (Ramanujan-Petersson conjecture). Notice that the coe�icient

a(0) must be zero because a Maass form is required to have exponential decay as y → ∞.

Let us now define the L-function associated with a Maass form f by

Lf (s ) :=
∞∑
n=1

a(n)

ns
. (B.6)

From now on, as in the la�er definition, we will suppose that <(s ) is large enough so

that all series and integrals converge absolutely. Number theorists have been interested

in studying this function especially because, under certain conditions, it has an Euler

product representation, similar to the one of the Riemann zeta function:

Lf (s ) =
∏

p prime

(
1 −

a(p)

ps
+

1
p2s

)−1
.

For simplicity’s sake, let us suppose from now on that f is an even Maass form, i.e. the

coe�icients of its Fourier-Whi�aker expansion satisfy a(−n) = a(n) for all n ∈ �, so that

f (iy) = 2
∞∑
n=1

a(n) ·W (iy,ν ,n) = 2
∞∑
n=1

a(n) ·
√

2πy · Kν− 1
2
(2πny) . (B.7)
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In this case, it turns out that Lf satisfies the functional equation

Λf (s ) :=π−sΓ *
,

s + 1
2 − ν

2
+
-
Γ *

,

s − 1
2 + ν

2
+
-
Lf (s )

=Λf (1 − s ) .

(B.8)

The proof of (B.8), similar to Riemann’s original proof of the functional equation for the

zeta function, relies on the computation of the Mellin transform in y of f (iy):∫ ∞

0
ys f (iy)

dy
y
= 2

∞∑
n=1

a(n)

ns+
1
2

∫ ∞

0
ys ·W (iy,ν , 1)

dy
y

= 2−
1
2π−sLf

(
s +

1
2

)
Γ

(1 + s − ν
2

)
Γ

(s + ν
2

)
.

The first equality follows from the Fourier-Whi�aker expansion (B.7), the change of vari-

ablesy 7→ y/n in the integral, and the fact thatW (iy/n,ν ,n) = n−1/2W (iy,ν , 1); the second

equality follows from definition (B.6) and an explicit formula for the Mellin transform of

the Macdonald function in terms of Gamma functions. On the other hand, by defini-

tion of Maass form, f is invariant by the action of
[ 0 −1

1 0
]
∈ SL2 (�), i.e. f (iy) = f (iy−1).

This clearly implies that the Mellin transform of f is invariant under the transformation

s 7→ −s , from which the functional equation (B.8) follows. Notice that the function Λf (s )

defined in (B.8) is given by the L-function associated to f multiplied by a prefactor, usu-

ally called L-factor. As our computation shows, such an L-factor essentially corresponds to

the Mellin transform ofW (iy,ν , 1), which can be computed explicitly in terms of Gamma

functions. This observation points out the importance of the existence of explicit integral

identities involving Whi�aker functions in the theory of L-functions associated to Maass

forms.

The integral identities (1.59) and (1.67) that we have used within this thesis involve two

distinct Whi�aker functions instead of one. In the number theoretic se�ing, these have

arisen in the study of convolution L-functions of two Maass forms. The convolution L-

function associated with two Maass forms f andд for SL2 (�), of type ν and µ respectively

and with Fourier-Whi�aker coe�icients a(n)’s and b (n)’s respectively, is defined by

Lf ×д (s ) := ζ (2s )
∞∑
n=1

a(n)b (n)

ns
,

where ζ is the Riemann zeta function. By integrating f д against a particular Maass form

called Eisenstein series (whose functional equation was already known by other means),
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Rankin [Ran39a; Ran39b] and Selberg [Sel40] found a functional equation for Lf ×д :

Λf ×д (s ) :=Gν,µ (s )Lf ×д (s )

=Λf ×д (1 − s ) .
(B.9)

The L-factor Gν,µ (s ) is essentially given by the Mellin transform of the product of two

GL2 (�)-Whi�aker function of type µ and ν respectively:

Gν,µ (s ) := π−sΓ(s )
∫ ∞

0
ys−1W (iy,ν , 1)W (iy, µ, 1)

dy
y
,

and can be evaluated explicitly in terms of Gamma functions. Such a computation amounts

to the Bump-Stade identity (1.59) in the case n = 2. To see this, it su�ices to write down

the definition of Gamma function as an integral w.r.t. x1, change variable in they-integral

by se�ing y = 1
π

√
x2
x1

, and use (B.5):

Gν,µ (s ) = π
−s

∫ ∞

0

dx1
x1

e−x1xs1

∫ ∞

0

1
2

dx2
x2

(
1
π

√
x2
x1

)s−1 Ψ
gl2
(α1,α2)

(x1,x2)√
2x

s+1
2

1 x
s−1

2
2

Ψ
gl2
(β1,β2)

(x1,x2)√
2x

s+1
2

1 x
s−1

2
2

=
π 1−2s

4

∫ ∞

0

∫ ∞

0
e−x1Ψ

gl2
(α1,α2)

(x1,x2)Ψ
gl2
(β1,β2)

(x1,x2)
dx1
x1

dx2
x2

=
π 1−2s

4
Γ(α1 + β1)Γ(α2 + β1)Γ(α1 + β2)Γ(α2 + β2)

=
π 1−2s

4
Γ

(s + 1 − ν − µ
2

)
Γ

(s + ν − µ
2

)
Γ

(s − ν + µ
2

)
Γ

(s − 1 + ν + µ
2

)
.

Here, the choice of parameters αi and βi (i = 1, 2) is such that α1 + α2 = β1 + β2 = s/2,

α2 − α1 = ν − 1
2 , and β1 − β2 = µ − 1

2 . The third equality indeed corresponds to the

Bump-Stade identity for n = 2.

Maass forms for SLn (�) with n > 2 are defined on a generalized upper half-plane,

which only has a matrix realization but not a complex one: this makes their study consid-

erably more di�icult. However, the L-factor of the convolution L-function always turns

out to be essentially the Mellin transform of the product of two GLn (�)-Whi�aker func-

tions. This is essentially the number theoretic motivation for obtaining explicit integral

identities involving Whi�aker functions, such as (1.59) and (1.67).
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B.2 Ishii-Stade parametrization

The integral parametrization for Whi�aker functions used in number theory and in

particular by Ishhi and Stade [IS13] is di�erent from ours: in this subsection, we explain

their connection†, and then show the equivalence between (1.67) and the correspond-

ing integral formula in [IS13]. As it will become clear, for both gln and so2n+1 the two

parametrizations are linked via the change of variables

y1 :=
1
π

√
x2
x1
, . . . , yn−1 :=

1
π

√
xn
xn−1

, yn :=
1

π
√
xn
. (B.10)

Fora ∈ �n , set |a | := a1+ · · ·+an . The gln-Whi�aker functionŴ A
n,a indexed bya ∈ �n ,

according to the integral representation [IS13, Prop. 1.2], is defined as follows. For n = 2,

Ŵ A
2, (a1,a2)

(y1,y2) := 2y |a |/2
1 y |a |2 K a1−a2

2
(2πy1) , (B.11)

where K is the Macdonald function defined in B.3. Recursively, for all n ≥ 3,

Ŵ A
n,a (y) :=π−|a |/2

∫
�
n−1
+

Ŵ A
n−1, ã

(
y2

√
t2
t1
, . . . ,yn−1

√
tn−1
tn−2
,yn

1
√
tn−1

)
×

n−1∏
j=1

exp
(
− (πyj )

2tj −
1
tj

)
(πyj )

(n−j )a1
n−1 t

na1
2(n−1)
j

dtj
tj
,

(B.12)

where ã = (ã1, . . . , ãn−1) is defined by ãi := ai+1 +
a1
n−1 .

Proposition B.1. If ai = 2αn−i+1 for 1 ≤ i ≤ n, and x and y satisfy (B.10), then

Ŵ A
n,a (y) = π

−(n+1) |α |Ψ
gln
−α (x ) .

Proof. For n = 2, eq. (B.11) and the relations defining y and a in terms of x and α yield

Ŵ A
2, (a1,a2)

(y1,y2) = 2π−3 |α | (x1x2)
−|α |/2Kα2−α1

(
2
√

x2
x1

)
.

The desired identity for n = 2 then follows from (B.4).

Assume now that the result holds for n − 1. In light of (B.10) and a�er the change of

†In this se�ing, we strictly stick to the notation of [IS13]. Accordingly, we remark that the hat in Ŵ A
n,a

and Ŵ B
n,b does not denote any transform here.
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variables uj = tjx j+1 for 1 ≤ j ≤ n − 1 in the integral (B.12), we obtain

Ŵ A
n,a (y) =π

−|a |/2
∫
�
n−1
+

Ŵ A
n−1, ã

(
1
π

√
u2
u1
, . . . ,

1
π

√
un−1
un−2
,

1
π
√
un−1

)
×

n∏
i=1

x
−
a1
2

i

n−1∏
j=1

exp
(
−
uj

x j
−
x j+1

uj

)
u

na1
2(n−1)
j

duj
uj
.

Using the induction hypothesis and the property stated in (1.53), it is easy to see that

Ŵ A
n−1, ã

(
1
π

√
u2
u1
, . . . ,

1
π

√
un−1
un−2
,

1
π
√
un−1

)
= π−n |α |

( n−1∏
j=1

uj

)− αnn−1

Ψ
gln−1
−(α1, ...,αn−1)

(u) .

It follows that

Ŵ A
n,a (y1, . . . ,yn ) = π

−(n+1) |α |
∫
�
n−1
+

Ψ
gln−1
−(α1, ...,αn−1)

(u)

×

( ∏n
i=1 xi∏n−1
i=1 ui

)−αn n−1∏
j=1

exp
(
−
uj

x j
−
x j+1

uj

) duj
uj
.

Using the recursive relation (1.52), we get the desired identity for n.

The so2n+1-Whi�aker function Ŵ B
n,b indexed by b ∈ �n , according to the integral

representation [IS13, Prop. 1.3], is defined as follows. For n = 1,

Ŵ B
1,b1

(y1) := 2Kb1
(2πy1) . (B.13)

Recursively, for all n ≥ 2,

Ŵ B
n,b (y) :=

∫
�
n
+

∫
�
n−1
+

Ŵ B
n−1,b̃

(
y2

√
t2s2
t3s1
, . . . ,yn−1

√
tn−1sn−1
tnsn−2

,yn

√
tn
sn−1

)
×

n−1∏
j=1

[
exp

(
− (πyj )

2 tj

tj+1
sj −

1
sj

)
(tj+1sj )

bn
2

dsj
sj

]

× t
bn
1

n∏
j=1

[
exp

(
− (πyj )

2tj −
1
tj

)
(πyj )

bn
dtj
tj

]
,

(B.14)

where b̃ = (b1, . . . ,bn−1).

Proposition B.2. If bi = 2βi for 1 ≤ i ≤ n, and x ,y satisfy (B.10), then

Ŵ B
n,b (y) = Ψ

so2n+1
β

(x ) .
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Proof. For n = 1, we have indeed

Ŵ B
1,b1

(y1) = 2K2β1

(
2
√
x1

)
= Ψ

so3
β1

(x1) .

Here, the first equality follows from (B.13) and the relations defining y and b in terms of

x and β , whereas the second equality is deduced by combining (1.64) and (B.3).

Assume now that the result holds for n − 1. In light of (B.10) and a�er the changes of

variables vj = x j/tj for 1 ≤ j ≤ n and uj = vj+1sj for 1 ≤ j ≤ n − 1 in the integral (B.14),

we obtain

Ŵ B
n,b (y) =

∫
�
n
+

∫
�
n−1
+

Ŵ B
n−1,b̃

(
1
π

√
u2
u1
, . . . ,

1
π

√
un−1
un−2
,

1
π
√
un−1

) ( ∏n
j=1v

2
j∏n

j=1 x j
∏n−1

j=1 uj

)−bn2
×

n−1∏
j=1

[
exp

(
−
uj

vj
−
vj+1

uj

) duj
uj

] n∏
j=1

[
exp

(
−
x j+1

vj
−
vj

x j

) dvj
vj

]
.

Using the induction hypothesis and the fact that b = 2β , we see that the la�er expres-

sion coincides with Ψ
so2n+1
(β1, ...,βn−1,−βn )

(x ) (see recursive formula (1.65)), which in turn equals

Ψ
so2n+1
β

(x ) due to the invariance of so2n+1-Whi�aker functions under change of sign of the

parameters.

Now, the integral formula we are interested in is stated in [IS13, Thm. 3.2]:

2n
∫
�
n
+

( n∏
j=1

y jj

)s
Ŵ A

n,a (y)Ŵ
B
n,b (y)

n∏
j=1

dyj
yj
=

∏
1≤i, j≤n ΓR (s + ai + bj )ΓR (s + ai − bj )∏

1≤i<j≤n ΓR (2s + ai + aj )
,

where ΓR (z) := π−z/2Γ(z/2). Using the change of variables (B.10) and Propositions B.1

and B.2, the above formula can be easily rewri�en as

∫
�
n
+

( n∏
i=1

xi

)−s/2
Ψ
gln
−α (x )Ψ

so2n+1
β

(x )
n∏
i=1

dxi
xi
=

∏
1≤i, j≤n Γ(s/2 + αi + βj )Γ(s/2 + αi − βj )∏

1≤i<j≤n Γ(s + αi + α j )
.

Theorem 1.19 now follows by taking s = 0. Note that, in turn, the la�er identity can be

deduced by Theorem 1.19: indeed, the term (
∏n

i=1 xi )
−s/2Ψ

gln
−α (x ) is itself a gln-Whi�aker

function as a whole, because of (1.53).
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