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Toric Quasifolds

Elisa Prato∗

Quasifolds are a class of highly singular spaces. They are locally modeled by manifolds modulo the
smooth action of countable groups. If the countable groups happen to be all finite, then quasifolds
are orbifolds and if they happen to be all equal to the identity, they are manifolds. They were
first introduced in [25] in order to address, from the symplectic viewpoint, the longstanding open
problem of extending the classical constructions of toric geometry to those convex polytopes that
are not rational.

In order to clarify this last statement, let us begin by recalling what it means for a convex
polytope to be rational. It is well known that every convex polytope in (Rn)∗ can be written as
the bounded intersection of finitely many closed half–spaces:

∆ =
d⋂
j=1

{ µ ∈ (Rn)∗ | 〈µ,Xj〉 ≥ λj }, (1)

where X1, . . . Xd ∈ Rn, λ1, . . . , λd ∈ R, and d is the number of facets (codimension–one faces) of ∆
[31, Theorem 1.1]. It is not restrictive to assume that ∆ has full dimension n. We remark that the
vectors X1, . . . Xd are orthogonal to the facets of ∆ and inward–pointing. For brevity, we will be
referring to these vectors as normals for ∆. The polytope is then said to be rational if the normals
can be chosen inside of a lattice L ⊂ Rn. Rationality is a rather restrictive condition, and, in fact,
many interesting convex polytopes are not rational: take, for instance, the regular pentagon and
the regular dodecahedron.

Now, toric geometry, initiated by Demazure in [12], sets to associate with each rational con-
vex polytope a beautiful geometrical space with special torus symmetries. One of the remarkable
consequences of doing so is that the geometry of the space can be used to deduce combinatorial
information on the polytope and viceversa. The construction of toric spaces can be done from
different geometric perspectives: algebraic [13], complex [1, 10] and symplectic [11] 1. The crucial
fact to recall here is that these constructions always rely on the lattice L and on a set of primitive
normals in L. Evidently, for nonrational polytopes this setup is missing. The first step in gener-
alizing toric geometry to this case (see [25]) consists in replacing the lattice with a similar enough
object, which allows sufficient freedom to contain a set of normals for the polytope. The optimal

∗Partially supported by the PRIN Project “Real and Complex Manifolds: Topology, Geometry and Holomorphic
Dynamics” (MIUR, Italy) and by GNSAGA (INdAM, Italy).

1The starting point in the algebraic and complex category is actually, more generally, a fan instead of a polytope,
but the basic idea that follows applies verbatim (see [6]).
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choice turns out to be that of a quasilattice Q, namely the Z–span of a set of R–spanning vectors
of Rn. In the case of the regular pentagon, for example, one considers the Z–span of the fifth roots

0

1

2

3

4 4

0

1

2

3

Figure 1: The regular pentagon and the fifth roots of unity

of unity (see Figure 1). We thus have a new framework given by the triple

(∆, Q,normals in Q) (2)

and, once this has been fixed, the standard toric constructions can be extended. For polytopes
that are simple (meaning that each vertex is the intersection of exactly n facets), they give rise
to what we call toric quasifolds. This was done first in the symplectic category [25] and then,
jointly with Battaglia, in the complex/Kähler category [5]. The torus symmetries of the rational
case are replaced by the symmetries of a quasitorus: it is the abelian group Rn/Q, which is itself a
quasifold. Though not Hausdorff in general, toric quasifolds have beautiful atlases that generalize
the standard toric atlases of the rational case: each chart is the quotient of an open subset of
Cn ' R2n modulo the smooth action of a countable subgroup of the standard torus Rn/Zn.

Battaglia has extended both the symplectic and complex/Kähler constructions to completely
general convex polytopes, no longer necessarily simple; the resulting toric spaces are even more
singular, but they turn out to be stratified by toric quasifolds [3, 4].

It is interesting to remark that quasilattices are also crucial in the theories of nonperiodic tilings
(see [22] and [28, Chapter 2]). The pentagonal quasilattice above, for example, arises in relation
with Penrose tilings.

It is our goal here to illustrate toric quasifolds, and their atlases, by describing a number of
examples. We do so in the symplectic category, but of course everything can be reformulated in the
complex one. We begin with a 2–dimensional example that displays all of the main characteristics
of quasifolds: the quasisphere. We pass on to considering examples of dimension 4 and 6 that
came about by exploring the natural connection with Penrose and Ammann tilings. We then
briefly address the toric spaces corresponding to the regular convex polyhedra. We conclude with
a number of considerations.

For the formal definition of quasifold, we refer the reader to [25, 5]. The complex and symplectic
atlases for toric quasifolds are explicitly described in [5, proofs of Theorems 2.2 and 3.2].

From sphere to orbisphere to quasisphere

Quasispheres, introduced in [25], are generalizations of spheres and orbispheres, so we will begin
by recalling some relevant facts on the latter two.
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For any positive real number r, let B(r) ⊂ C be the open ball of center the origin and radius√
r. Consider, for any positive real number α, the group

Γα = { e2πikα ∈ S1 | k ∈ Z }.

Notice that Γα is the identity when α is an integer, it is finite for α rational, while it is countable
for α irrational. The group Γα acts on the ball B(r) by complex multiplication. For any z ∈ B(r),
we will denote by [z] ∈ B(r)/Γα the corresponding orbit.

The sphere

Let us write the 2 and 3–dimensional unit spheres as follows

S2 = { (z, x) ∈ C× R | |z|2 + x2 = 1 },

S3 = { (z, w) ∈ C2 | |z|2 + |w|2 = 1 }.

The surjective mapping

f : S3 −→ S2

(z, w) 7−→
(
2zw, |z|2 − |w|2

)
is known as the Hopf fibration. It is easily seen that the fibers of this mapping are given by the
orbits of the circle group

S1 = { e2πiθ | θ ∈ R }

acting on S3 by complex multiplication as follows:

e2πiθ · (z, w) =
(
e2πiθz, e2πiθw

)
.

Therefore S2 can be identified with the space of orbits S3/S1. Notice that the S1–orbits through
the points (0, 1) and (1, 0) of S3 correspond, respectively, to the south pole, S = (0,−1), and north
pole, N = (0, 1), of S2.

For each (z, w) ∈ S3, we denote by [z : w] ∈ S3/S1 ' S2 the corresponding orbit. Let us
describe the standard atlas of S2. Consider the covering given by the open subsets

US = { [z : w] ∈ S2 | w 6= 0 }

UN = { [z : w] ∈ S2 | z 6= 0 }.

As the notation suggests, the first is a neighborhood of the south pole S = [0 : 1], while the second
is a neighborhood of the north pole N = [1 : 0]. Finally, we have homeomorphisms:

B(1) −→ US

z 7−→
[
z :
√

1− |z|2
]

B(1) −→ UN

w 7−→
[√

1− |w|2 : w
]
.
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The orbisphere

This simple quotient construction can be extended to the orbifold setting as follows. Let p, q be
two relatively prime positive integers and consider the 3–dimensional ellipsoid

S3
p,q = { (z, w) ∈ C2 | p|z|2 + q|w|2 = pq }.

The circle group S1 acts on S3
p,q as follows:

e2πiθ · (z, w) =
(
e2πipθz, e2πiqθw

)
. (3)

Taking the space of orbits in this case yields the 2–dimensional orbifold S2
p,q = S3

p,q/S
1, called

orbisphere. It admits the two singular points S = [0 :
√
p] and N = [

√
q : 0].

Similarly to what we have done for the sphere, for each (z, w) ∈ S3
p,q, we denote by [z : w] ∈ S2

p,q

the corresponding orbit. We then consider the covering given by the two open subsets

US = { [z : w] ∈ S2
p,q | w 6= 0 }

UN = { [z : w] ∈ S2
p,q | z 6= 0 }.

The first is a neighborhood of the point S = [0 :
√
p], while the second is a neighborhood of the

point N = [
√
q : 0]. The mappings

B(q)/Γ 1
q
−→ US

[z] 7−→
[
z :
√
p− p

q |z|2
]

;

B(p)/Γ 1
p
−→ UN

[w] 7−→
[√

q − q
p |w|2 : w

]
are homeomorphisms, turning US and UN into orbifold charts.

The quasisphere

We now extend the construction even further. Let s, t be two positive real numbers with s/t /∈ Q
and consider the 3–dimensional ellipsoid

S3
s,t = { (z, w) ∈ C2 | s|z|2 + t|w|2 = st }.

Simply substituting p, q with s, t in (3), does not define an S1–action on S3
s,t: in fact, if you replace

θ by θ + h, where h is a non–zero integer, we have e2πi(θ+h) = e2πiθ but (e2πis(θ+h), e2πit(θ+h)) 6=
(e2πisθ, e2πitθ). The idea is to consider the irrational wrap on the standard two–torus instead:

N = { (e2πisθ, e2πitθ) ∈ R2/Z2 | θ ∈ R }.

The standard action of N on S3
s,t is now well defined and we take our quasisphere to be the space

of orbits S2
s,t = S3

s,t/N . This quotient is the simplest example of quasifold. It is wilder then the
sphere and orbisphere, in that it is not a Hausdorff topological space. However, quasisphere charts
are a straightforward and very natural generalization of the standard sphere and orbisphere charts.
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Exactly as done above, for each (z, w) ∈ S3
s,t, we denote by [z : w] the corresponding orbit. We

then consider the covering of S2
s,t given by the opens subsets

US = { [z : w] ∈ S3
s,t/R | w 6= 0 }

UN = { [z : w] ∈ S3
s,t/R | z 6= 0 }.

The first is a neighborhood of the point S = [0 :
√
s], while the second is a neighborhood of the

point N = [
√
t : 0]. They are each homeomorphic to the quotient of an open subset of C modulo

the action of a countable group. In fact, the mappings

B(t)/Γ s
t
−→ US

[z] 7−→
[
z :
√
s− s

t |z|2
]

B(s)/Γ t
s
−→ UN

[w] 7−→
[√

t− t
s |w|2 : w

]
are homeomorphims.
Remark. The sphere is the symplectic toric manifold corresponding to the unit interval, with
lattice Z and primitive normals X1 = 1, X2 = −1. The orbisphere, on the other hand, is the
symplectic toric orbifold corresponding to the same interval, with same lattice and normals X1 = q,
X2 = −p. Finally, the quasisphere is the symplectic toric quasifold corresponding to the same
interval, with quasilattice Q = sZ + tZ and normals X1 = t, X2 = −s. Wanting to consider a
rational polytope, such as the unit interval, in a nonrational setup may seem strange at first sight,
but in fact it is quite useful. We will see other instances of this in the next section. Also, the sphere
and orbisphere provide the simplest examples showing that the same polytope and (quasi)lattice
yield different symplectic toric spaces, if the normals are changed. The choice of normals within a
same quasilattice is in fact totally free, but sometimes a natural choice is dictated by the context.
This is actually the case for all of the examples that follow.

Quasifolds and nonperiodic tilings

Quasifolds corresponding to Penrose and Ammann tilings

The fact that quasilattices appear naturally in nonperiodic tilings lead us to explore, jointly with
Battaglia, the connection between toric quasifolds and Penrose and Amman tilings.

Penrose rhombus tilings are nonperiodic tilings that are composed by two different types of
rhombuses, thick and thin [24]. These rhombuses are simple convex polytopes and it is natural to
want to compute the corresponding toric quasifolds. The normals of each rhombus taken separately
actually span a lattice, so each of them is rational in its own right. However, if we want to treat
simultaneously all of the rhombuses of a given tiling, we need to consider a quasilattice: the
natural choice here is the pentagonal quasilattice that we introduced earlier, with normals the
relevant fifth roots of unity (see Figure 2). The generalized toric construction then yields a pair of
four–dimensional toric quasifolds, one for each different type of rhombus. They are both given by
a quotient of the type (S2(r)× S2(r))/Γ, where S2(r) denotes the 2–sphere of radius r and Γ is a
countable subgroup of the standard 2–torus. The radius r is (12

√
2 + φ)1/2 for the thick rhombus
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Figure 2: The Penrose rhombuses

and ( 1
2φ

√
2 + φ)1/2 for the thin one, where φ = 1+

√
5

2 is the golden ratio. The two quasifolds are
diffeomorphic but not symplectomorphic.

Something analogous happens for the three–dimensional generalization of this tiling due to
Ammann, which is composed by two different types of rhombohedrons, prolate and oblate [29].
Again, each rhombohedron is rational, but to treat them all of them simultaneously we need
to consider a quasilattice, known in crystallography as the face–centered icosahedral lattice. As
normals we choose the relevant generators. One then obtains a pair of six–dimensional symplectic
toric quasifolds, one for each type of rhombohedron. Similarly to what happens for the rhombus
tiling, they are given by (S2(r)×S2(r)×S2(r))/Γ, where Γ is a countable subgroup of the standard

3–torus. The radius r here is [2φ2(3− φ)]−
1
4 for the oblate rhombohedron and [2(3− φ)]−

1
4 for the

prolate one. Again, the two spaces here are diffeomorphic but not symplectomorphic.
As we have seen, the quasifolds for both Penrose rhombus tilings and Ammann tilings are global,

namely the quotient of a manifold modulo the action of a countable group.
Something entirely different happens for the kite and dart tiling [24]. First of all, the only tile

here that is convex, and therefore relevant to our discussion, is the kite. Moreover, the kite, unlike
the rhombuses and rhombohedrons, is actually nonrational. So there is no choice but to consider
a quasilattice, and the natural one happens to be, again, the pentagonal quasilattice; the normals
are, up to sign, the relevant fifth roots of unity (see Figure 3). Then the resulting toric quasifold
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Figure 3: The Penrose kite
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is not global. It is the four–dimensional quasifold given by

M =

{
(z1, z2, z3, z4) ∈ C4 |φ|z1|2 + |z2|2 + φ|z3|2 = φ|z2|2 + |z3|2 + φ|z4|2 = φ

}
{

exp (−s+ φt, s, t,−t+ φs) ∈ R4/Z4 | s, t ∈ R
} .

Let us describe one of its charts. Consider the open subset

Ũ =
{

(z2, z3) ∈ C2 | |z2|2 + φ|z3|2 < φ, φ|z2|2 + |z3|2 < φ
}

and the countable group

Γ =
{

(e2πiφh, e2πiφk) ∈ R2/Z2 | h, k ∈ Z
}
.

Then the mapping

Ũ/Γ −→ {[z1 : z2 : z3 : z4] ∈M | z1 6= 0, z4 6= 0}
[z2 : z3] 7−→

[√
φ− |z2|2 − φ|z3|2 : z2 : z3 :

√
φ− φ|z2|2 − |z3|2

]
is a homeomorphism.

Decomposing Penrose tiles and symplectic cutting

Decomposing Penrose tiles in half, yielding isosceles triangles as in Figure 4, is a very simple
geometrical operation that has important repercussions.

First of all, it is the first step of both the inflation and deflation procedures. In the case of
inflation, the triangles are appropriately combined to form a new tiling, whose tiles are rescaled
by a factor φ. In the case of deflation, the triangles are further decomposed into smaller ones to
yield the half–tiles of another tiling that is rescaled by a factor 1/φ. It is easy to see that these
operations are inverses of one another. We refer the reader to [2] for a detailed description in the
case of rhombus tilings.

Cutting kites in half can also be used to transform a kite and dart tiling into a rhombus tiling.
The triangles are appropriately combined with each other and possibly a dart, in order to form

Figure 4: Cutting Penrose tiles

thick and thin rhombuses (see [28] and Figure 5).
Now, the process of subdividing a simple convex polytope into two smaller ones corresponds, at

the (smooth) symplectic level, to the symplectic cutting operation, which was introduced by Lerman
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Figure 5: From a kite and dart tiling to a rhombus tiling

[20]. In the toric setting, the original manifold decomposes into two new ones, each corresponding
to one of the subdivided polytopes. The decomposition of Penrose tiles motivated us to extend
this operation to the simple nonrational toric case. We find, for example, that the toric quasifold
corresponding to each half–kite is given by{

(z1, z2, z3) ∈ C3 | |z1|2 + φ|z2|2 + φ|z3|2 = 1
}

{
(e2πis, e2πiφs, e2πiφ(s+k)) ∈ R3/Z3 | s ∈ R, k ∈ Z

} .
The regular convex polyhedra

The regular convex polyhedra are notable examples of convex polytopes and, as such, it is only
natural to want to understand what the corresponding toric spaces look like. The cube and the
regular tetrahedron are rational and simple, and yield smooth manifolds given, respectively, by
S2 × S2 × S2 and CP3. The other three each present their complexities. The regular octahedron
is rational but not simple, the regular dodecahedron is simple but not rational, while the regular
icosahedron is neither rational nor simple. The first yields a space that is stratified by manifolds,
the second yields a quasifold, while the third yields a space that is stratified by quasifolds; they
are described explicitly in joint work with Battaglia. The quasilattice for the dodecahedron is
known in physics as the simple icosahedral lattice while the one for the icosahedron is known as
the body–centered icosahedral lattice. The normals, here too, are chosen among the quasilattice
generators.

Final considerations

Quasifolds, nonperiodic tilings and quasicrystals

As we have shown, a number of interesting examples of toric quasifolds arise in connection with
nonperiodic tilings. There also appears to be a correspondence between some of the fundamental
operations in the two theories. We have seen, in fact, that decomposing convex Penrose tiles into
half corresponds to cutting the associated symplectic toric quasifolds. We expect, moreover, that
recombining these half–tiles, as needed for the inflation and deflation procedures, will correspond
to a nonrational generalization of the inverse operation of symplectic cutting, which is given, in
the smooth case, by the symplectic sum [14]. We believe that it would be interesting to pursue the

8



study of these connections even further. As a matter of fact, certain nonperiodic tilings have been
used as mathematical models for the theory of quasicrystals [28]; these are special materials that
were experimentally discovered by Shechtman et al. [27] that have discrete nonperiodic diffraction
patterns. Actually, the very existence of these materials had been predicted by Mackay in con-
nection with his studies of Penrose and Ammann tilings [22, 23]. Ultimately, it is quite possible
that toric quasifolds might contribute to their theoretical understanding. A first step would consist
in analyzing from the toric viewpoint other tilings (and their operations) that are relevant in this
respect. Significant (though not the only) examples would be Socolar’s octagonal and dodecagonal
tilings, which are used as a basis for a treatment of the elasticity of octagonal and dodecagonal
quasicrystals [30].

Combinatorial equivalence in toric geometry

By slightly perturbing the hyperplanes in (1), it can be shown that every simple or simplicial poly-
tope can be perturbed to a rational one that is combinatorially equivalent ([31, Proposition 2.17]).
In the simple case, these perturbations yield, at the toric level, interesting families of quasifolds.
For example, jointly with Battaglia and Zaffran, we have used one such perturbation to construct
a one–parameter family of toric quasifolds that generalize and contain Hirzebruch surfaces. This
perturbation property also holds true for any three–dimensional polytope, not necessarily simple
or simplicial [31, Corollary 4.8]. In greater dimensions, there are examples of polytopes for which
this does not happen. The first was found by Perles in the sixties and has dimension 8 (see [31,
Example 6.21] and [32]). As we have seen, from the toric viewpoint, these polytopes, being neces-
sarily nonsimple, yield spaces that are stratified by quasifolds. We believe it would be interesting
to study these stratified spaces and understand how their geometry is affected by the fact that the
corresponding polytopes cannot be deformed to rational ones within their combinatorial class.

Recent alternate approaches to nonrational toric geometry

In recent years, there has been a surge of interest in nonrational toric geometry, and several alternate
approaches to this subject have been introduced. It should be said, first of all, that toric quasifolds
can be thought of both as examples of stacks and of diffeological spaces. The stack approach to
nonrational toric geometry was espoused first by Hoffman–Sjamaar [16, 15] and then by Katzarkov
et al. [19]. Diffeological quasifolds, on the other hand, were studied jointly with Iglesias–Zemmour
in [17], providing an explicit link with non–commutative geometry [9]; applications of this viewpoint
to the toric setting are work in progress. Other recent points of view, due to Battaglia–Zaffran [7, 8],
Lin–Sjamaar [21], Ratiu–Zung [26], and Ishida et al. [18], involve foliations of smooth manifolds,
either in the complex or presymplectic setting. We would like to point out that most of the
alternate nonrational toric viewpoints are founded on variations on the theme of the fundamental
triple (2), beginning, first and foremost, with the quasilattice Q. In joint work with Battaglia
[6], we describe in detail how many of these different perspectives connect with each other and
with ours; a dictionary is provided, in the hope that it will provide clarity and facilitate future
interaction in the field.
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