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ABSTRACT Despite technological advances in diagnostic imaging, to distinguish the type of renal tumor
without performing a biopsy is still an unsolved challenge. In particular, this is even more striking in the case
of clear cell renal cell carcinoma and small oncocytomas. To tackle this problem, a fully automated tool is
proposed that can provide decision support for physicians to distinguish between these two types of masses
in the most critical cases. In this work three approaches for the development of this tool are implemented
and compared, specifically two approaches are based on the use of radiomic features and one on the use
of deep features. The nnU-net is exploited to achieve tumor segmentation necessary to obtain the different
types of features. The architectures are trained and tested by combining two different datasets, the public
dataset KiTS2019 and data from the Careggi University Hospital. The best method is able to obtain 73.77%
balanced accuracy, 94.59% sensitivity, 52.94% specificity and 86.84% accuracy.

INDEX TERMS Cancer classification, clear cell renal cell carcinoma, computer aided diagnosis, deep
learning, oncocytoma, radiomics.

I. INTRODUCTION
According to GLOBOCAN 2020 estimations, renal tumors
are among the most prevalent cancers in the world and reach
a mortality rate of 42% [1]. Renal tumor is a particular
type of kidney mass that can be either malignant or benign.
The majority of malignant renal tumors are RCC, a type of
malignant tumor (carcinoma) that originates from the glan-
dular epithelial cells of the kidney and has the potential to
invade the surrounding tissues tending to metastasize to other
anatomical sites [2], being the cause of 80% of renal cancer
deaths [3]. As for benign renal tumors, one of the most com-
mon is oncocytoma, which is characterized by the presence of
large cells with abundant eosinophilic granular cytoplasm [4].
Although oncocytoma does not entail long-term risks [5],
it accounts for approximately 16% of surgically removed
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renal masses [6] because of its high similarity to clear cell
RCC [7]. In fact, currently the standard procedure for the
treatment of renal tumor involves the use of diagnostic imag-
ing techniques to determine the presence of suspicious renal
masses and their characterization by analyzing the tissues
with visual inspection, comparing the mass-related parame-
ters obtainable from the diagnostic image (e.g., size, shape of
the mass, etc.) [8]. Unfortunately, distinguishing the nature of
a renal mass is a very complex task even for an experienced
physician due to the similarity between oncocytomas and
RCCs at the radiological imaging level [7]. Therefore, the
best current method to diagnose the nature of the tumor is
based on histological analysis of the tissue of the mass [9]
collected by biopsy after a radical nephrectomy of the kid-
ney containing the mass or a partial nephrectomy of the
tumor [10].

Renal tumors are abnormal growths that originate within
the kidney tissues and can be classified as either malignant
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(cancerous) or benign (non-cancerous). Malignant tumors,
such as renal cell carcinoma (RCC), have the ability to
invade surrounding tissues and metastasize, posing a sig-
nificant threat to the patient’s health. On the other hand,
benign tumors like oncocytomas are typically non-invasive
and do not spread to other organs. Distinguishing between
these tumor types solely based on diagnostic imaging tech-
niques can be challenging, as certain malignant and benign
tumors may exhibit similar radiological characteristics. This
highlights the importance of developing reliable methods for
classifying renal tumors based on imaging data, which could
provide valuable decision support for clinicians and lead to
more effective treatment strategies. Being able to detect a
renal tumor in advance and being able to classify it correctly
would be a crucial step, as it would allow the introduction
and use of medical procedures that can safeguard the patient’s
life and renal function [11]. In fact, when a mass is identified
with certainty as benign, the surgical solution can be avoided
and treatment involves continuous monitoring and control.
Therefore, it becomes strategic to be able to implement an
analysis tool, which can overcome these limitations. Given
the wide use of ML techniques in image analysis and their
evolution in the analysis of diagnostic images [12], [13], [14],
[15] the idea behind this work is to rely on these techniques
for the realization of this tool. ML procedures generally
change according to the type of available data. In particular,
for medical ML applications usually the available data can
be of two types: (i) clinical information, derived from routine
clinical examinations, e.g. blood tests and medical history,
(ii) information derived from diagnostic images, from spe-
cific clinical examinations, such as CT and MRI. With regard
to diagnostic images, there are various approaches and the
most common is based on identifying, by manual segmen-
tation, the areas of interest within the CT and extracting
from it specific features (e.g. texture, size, volume, etc.),
named radiomic features. In addition, there is also the possi-
bility of directly using diagnostic images with deep learning
algorithms to extract characteristic features, called deep fea-
tures. While the radiomic features are more interpretable, the
effort required in terms of segmentation is considerable and
the results can vary depending on how this is performed,
as proved in Kocak et al. [16].
This work aims to create a machine learning based tool

that can distinguish between benign and malignant tumors
by comparing radiomics and deep learning. The data used
for this purpose consists of a set of CTs from renal can-
cer patients. This paper proposes two approaches for the
classification of renal tumors, with a special focus on the
distinction between oncocytomas and clear cell RCCs, to pro-
vide an assisted diagnosis tool. The two approaches were
developed and compared, with the goal of creating a tool
that is generalizable, updateable with new data, and fully
automatic (without requiring manual segmentation of regions
of interest). The analysis and comparison of the results
were performed with great attention, trying to eliminate bias
caused by unbalanced data and incorrect readings of output

values. Moreover, the focus was on building an algorithm
that can extract both radiomic and deep features in a fully
automated framework, exploiting automatic CT segmentation
using a Convolutional Neural Network (CNN). The results
show that automatic segmentation can be used as a starting
point for the extraction of radiomic features for this type of
task, and that the deep features are sufficiently representative.
In particular, comparable results were obtained with the two
types of features, achieving an accuracy above 85% for both
methods.

II. RELATED WORKS
Various techniques have been developed to be able to distin-
guish malignant and benign renal tumors through the use of
ML-based techniques that have evolved over time along with
ML algorithms and their image processing capabilities [17],
[18], [19].

Early works in the literature with significantly relevant
results use radiomic features extracted directly from man-
ually segmented areas within diagnostic images such as
CT and MRI. Relying on the use of radiomic features,
in Raman et al. [20] starting from the CT slice on which the
size of the mass is largest, 5 to 10 slices were selected to
extract the features to be used with a random forest classifier
with the purpose of classifying various solid renal masses
(oncocytomas, ccRCC, cysts, and papillary RCC). In order to
identify the actual value of texture analysis, in Yu et al. [21]
radiomic features are extracted from 10 consecutive CT slices
to be used with a support vector machine classifier to analyze
the radiomic features related to each of the 10 slices with a
majority voting algorithm to decide the actual tumor class.
Kunapuli et al. [22] aim to investigate the usefulness of
relational statistical machine learning algorithms to differen-
tiate benign and malignant tumors, using radiomic features
extracted from CT, analyzing the slice in which the tumor
diameter is largest to obtain the two-dimensional features
and the entire volume to derive the three-dimensional ones.
Sun et al. [23] is among the first research for this specific
task to compare the ability in differentiating benign and
malignant solid renal masses of experienced radiologists and
machine learning algorithms trained on radiomic features
extracted from tumor CT byMCNemar test [24]. Unlike other
works, Hoang et al. [25], extracts radiomic features from
contrast-enhancedMRI images related to 3 consecutive slices
to differentiate various types of renal tumors, selected from
the section where the tumor area is largest, using them with
a random forest classifier. Other research [20], [21], [22],
[23], [25] follow a similar pipeline: manual segmentation
of the tumor within the diagnostic images by one or more
experts with an internal validation by another expert; feature
extraction; selection of the most relevant features using spe-
cific algorithms (e.g., recursive feature elimination); feature
processing, with the aim of normalizing the values (e.g.,
z-score normalization); classifier training; and finally, valida-
tion with algorithms specific to the identified method (k-fold
cross validation). Finally, one of the most recent works [26]
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TABLE 1. Comparison of state-of-the-art algorithms to distinguish malignant and benign renal tumors through the use of ML-based techniques.
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TABLE 1. (Continued.) Comparison of state-of-the-art algorithms to distinguish malignant and benign renal tumors through the use of ML-based
techniques.

extracts six radiomics texture-based features (mean, standard
deviation, mean value of positive pixels, entropy, asymmetry,
and kurtosis) from the ROI of a single-phase CT and use
them to train a random forest classifier to distinguish between
oncocytoma and ccRCC.

In recent years, thanks to the increase in computing power
due to the large-scale deployment and affordability of GPUs,
studies began to introduce the use of deep learning algorithms
using CNN capable of performing direct image processing.
Coy et al. [27] study the diagnostic value and feasibility
of a renal tumor classifier based on deep learning, taking
advantage of a CNN (Inception v3 [28]), and the four phases
of tumor CT. [29] introduces a mixed classifier that is divided
into three main branches: one using a logistic regression
classifier with radiomic features, and the other two using a
CNN (ResNet50 [30]) by taking as input an image related to a
slice of the tumor in which the three channels R, G, and B are
matched to the axial, sagittal, and coronal gray-scale slice in
which the tumor had the largest diameter, following the 2.5D
model [31]. Mahmud et al. [32] propose an approach that also
involves the use of deep learning models for automatic classi-
fication of tumor type, through use of the DenseAUXNet201
model that uses CT relative to the ROI of the kidney with
the tumor as input. According to one of the most recent
research [33], the authors apply a 3D deep learning network
(Res-UNet) to segment regions of the kidney and kidney
mass, followed by a dual-pathway classification network that
exploits local and global features to classify tumors by focus-
ing on the ROI of the whole kidney and tumor. A compact
view of the performance and methods found in the state of the
art can be seen in TABLE 1; the performances are given only
as a reference since the results are not directly comparable as
the used databases are different. For each paper is indicated
the used model or classifier, the addressed task, the type of
input, the amount of data, and a brief summary of how the
data were used and how the results were obtained (in cases
where a standard procedure was not followed). In addition,
the metrics obtained for each classifier are provided. For
consistency, only the results related to classifications that
involved oncocytomas and ccRCC are reported.

III. MATERIALS
In this work, a new framework for the study and anal-
ysis of diagnostic images for the classification of renal

tumors through the use of ML techniques was developed
and validated. Specifically, CTs of renal tumor patients
with proven histological findings were used, no other data
types are included in the study, and all data was pro-
vided or retrieved anonymized. It is important to point out
that CTs performed with contrast agents are multiphase,
i.e., multiple acquisitions are performed, up to a maxi-
mum of 4 phases for the kidney, depending on the time
elapsed since contrast agent injection: i) before the use
of contrast agent unenhanced phase, ii) after 30 seconds
corticomedullary (or arterial) phase, iii) after 90 seconds
nephrographic phase, iv) excretory phase. Given the possi-
bility of having multiple phases, it is necessary to keep in
mind that it is not always possible to have them all avail-
able, as they are acquired according to the clinics’ individual
protocols.

The information was retrieved from two different sources:
a private dataset from the (1) ‘‘Careggi’’ Florence Hospital
(Azienda Ospedaliera Universitaria Careggi - AOUC) [34];
a public dataset from the (2) the 2019 Kidney Tumor Seg-
mentation Challenge (kits2019) [35]. The data from AOUC
are related to 61 patients of which 29 with ccRCC and
34 having an oncocytoma, with one or more acquisition
phases and histological result. On the other hand, as for
the kits2019 data, these are publicly accessible [36], and
are related to 300 patients with at least one renal tumor,
in particular there is the CT of the arterial phase for each
patient, the histological result and some information about the
patients, e.g. if they are smokers, if they have other diseases,
if they have already had surgery, gender, more information
can be found online [37]. Details of the data available for this
study can be seen in Table 2.

To standardize the type of available data, the following
choices were made: (1) use only diagnostic images, dis-
carding any registry data, and the corresponding histologic
result as the ground truth. In particular for data from AOUC,
for patients in whom more than one acquisition phase was
present, the corticomedullary phase was chosen, being the
one known to be most used for diagnostic imaging in the
case of CT contrast enhanced; (2) only patients with a single
renal tumor of ccRCC or oncocytoma type were considered,
discarding any patients with multiple renal tumors or renal
tumors of different nature at the same time. As a result,
the final database comprises 271 patients. Fig 1 shows the
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TABLE 2. Dataset included in the study.

FIGURE 1. CT dataset composition derived from the union of AOUC and
KITS2019 data.

database information used in this study after appropriate
exclusions.

To help results reproducibility, a GitHub repository
has been created (https://github.com/maghero/KidneyTumor
Radiomics-DeepFeauters) containing the scripts used for data
processing, feature extraction, and model training and eval-
uation. Instructions and documentation are provided in the
repository.

IV. METHODS
At a general level, the structure of the implemented applica-
tion can be divided into twomodules: (i) the feature generator
that is in charge of creating, from the patients’ CTs, a database
of features extracted with specific algorithms; (ii) the classi-
fier in charge of distinguishing the type of the tumor by the
analysis of the extracted features.

In particular, in the feature generation process the extrac-
tion of two different types of features was implemented, one
based on statistical methods (radiomic features) and the other
based on deep learning (deep features). Finally, classification

algorithms of different nature were examined with the aim of
identifying the best performance for feature type.

In the following sections, the radiomic and deep feature
extraction methods are explained in detail, specifying with
which algorithm and techniques they were obtained and
how they were processed before being included in the final
database.

A. RADIOMIC FEATURES EXTRACTION – TYPE 1 FEATURES
The main goal of radiomics is to extract quantitative and
ideally reproducible features from diagnostic images, thereby
including complex patterns that are difficult to recognize or
quantify by the human eye [38]. Radiomic features represent
properties related to the characteristics of tissues and lesions
present in diagnostic images e.g., heterogeneity, shape, etc.,
and within a sufficiently large dataset these data turn out to
be minable, i.e., usable to uncover hidden patterns to discover
diseases or implement specific therapies.

Broadly speaking, radiomic features can be divided into
statistical features, e.g., histograms, texture analysis, anal-
ysis by parameterized models, analysis by transformations
(Fourier, Gabor, Haar, etc.), and shape-derived features,
which can be extracted either two- or three-dimensionally.

The commonly used procedure for radiomic feature extrac-
tion consists of the following steps: (1) deciding which is
the region or volume of interest (ROI) (2) segmentation –
manual or automated – of the area of interest within each
slice under consideration; (3) feature extraction using specific
algorithms; and (4) feature post-processing comprising one
or more of the existing feature processing techniques, e.g.,
feature harmonization, selection, and reduction [39]. After
these steps the features are ready to be used with a statistical
model to accomplish the required task.

Several strategies have been proposed to define the portion
of anatomy from which to extract radiomic features. In this
work the standard procedure that takes into account the whole
region is considered along with the strategy that uses only the
slice with maximum tumor size on the three CT planes.

In order to automatically identify and segment ROIs,
avoiding time-consuming and non-reproducible processes,
it was decided to use a deep learning algorithm.More in detail
using the nnU-Net framework [40] it is possible to use a 3D
U-Net with pre-trained weights able to obtain a dice score of
0.97 and 0.85 in the task of segmenting the kidney and the
kidney tumor.

Regardless of the procedure used to obtain radiomic fea-
tures, they must go through a pre-processing step before
they can be used. This consists of a normalization process
according to the following equation

Xnew =
X − µ

σ
(1)

in which the normalized value is obtained by dividing the sub-
traction between the original value (X) and the mean value of
the data (µ) by the value of the standard deviation of the data
(σ ). This is equivalent to performing a z-score normalization.

VOLUME 12, 2024 84245



R. Magherini et al.: Distinguishing Kidney Tumor Types

FIGURE 2. Deep feature extraction scheme: the input CT image is elaborated in patches using a nnU-Net
pretrained on the task of segmenting kidney and tumors, if in a patch is found the tumor then the
corresponding deep features are processed and saved.

To extract the radiomic features it has been exploited the
pyradiomics library [41], with which it was possible to extract
up to 120 different features given the specific ROI. These
features go fromfirst order features, to gray level-based, pass-
ing through the shape-based ones. In addition, given the high
number of extractable features, a feature selection algorithm,
namely recursive feature elimination (RFE), was applied to
reduce the number of features to be analyzed and consider
only the most significant ones. Specifically a variant of RFE
was used which exploits an SVM and has been shown to be
more efficient when analyzing biomedical data [42]. Forty-
one different sets of radiomics features were created selecting
from each case a number of features ranged from a minimum
of 5 to a maximum of 45.

B. DEEP FEATURES EXTRACTION - TYPE 2 FEATURES
Deep features correspond to the output of a layer belonging
to a deep neural network. The ‘‘depth’’ of these features will
depend solely on the depth level of the layer from which they
are extracted. ‘‘Depth’’ is directly proportional to the level
of detail and inversely proportional with generalizability;
therefore, the deeper the extracted features the greater the
level of detail of these features and the lower the level of
generalizability.

Taking into consideration the definition of deep features
and how they are obtained, it was considered as one of the
main strategic elements the choice of the deep neural network
to be used for feature creation. A network trained in a task
similar or at least related to the one addressed was selected
for this purpose. Considering the selection made to obtain
the radiomics features, it has been decided to use the same
framework and the 3D U-Net model that is already able
to identify and segment the kidney and the kidney tumors.
This capability allows to obtain deep features that should be
able to provide characteristic and specific details useful in
classifying the type of tumor. To use thismodel, it is necessary
to use the overall CT of the patient but do not need to be
trained.

The framework uses a patch-based approach to handle
inputs of any size, by dividing the input CT into multi-
ple patches. Each patch goes through several convolutional
blocks, each consisting of a 3 × 3×3 convolution with a
stride of 2 for downsampling, instance normalization, and a
leaky ReLU activation function. The patches reach a mini-
mum size of 4 × 4×4 with 320 feature maps at the lowest
point of the nnU-Net, which corresponds to the dimensions
of the depth, width, height, and number of feature maps
respectively. With the aim of identifying the most specific
features, the level chosen for feature extraction is the one
in which the achieved dimension is the smallest possible
and consequently the number of features is also the smallest
possible. By doing so, it is possible to obtain features for
each one of the patches and consequently for the entire CT.
Finally, by reverse mapping the patches using the final output
of the network (the segmentation of the tumor and kidney) all
features related to patches in which no parts of the tumor are
present are discarded, obtaining a final deep features matrix
labelled based on the type of the tumor contained in the origin
patch. The deep feature extraction procedure just described
can be seen in Fig 2.
After obtaining the deep feature matrices, there is still

a problem that needs to be solved, which stems from the
fact that the number of patches from which the features
are extracted can vary depending on the size of the tumor.
Therefore, thematrices have to be processed to obtain a single
vector of a fixed size that is independent of the size of the
CT input to the network. This processing consists of the
following steps for each CT: all the feature maps obtained
are flattened and concatenated into a single matrix of N rows,
where N is the number of valid patches. Then, a statistical
operation is applied to reduce the matrix into a single feature
vector of 20480 elements, which is used as input for a final
classifier.

C. CLASSIFICATION
At this stage, the previously generated data is divided to
form two sets, the training set (66,79%), and the testing set
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(33,21%). Themost common types of classifiers (random for-
est (RF), k nearest neighbor (K-NN), support vector machine
(SVM), artificial neural network (ANN)) were tested.

Concerning the parameters and variances of the classifiers,
for RF it was set an internal decision tree number of 1,000,
with a minimum number of splits of 2 and Gini impurity [43]
as the criterion for measuring the quality of splits. Consider-
ing K-NN the number of k neighbors varied between 2 and
8. For SVM it was decided to test the possible variants of
the kernels, namely linear, polynomial (by varying the degree
from 2 to 5), radial basis function, and sigmoid. Finally, with
regard to the artificial neural network an approach based on
the following thumb rule on the number of hidden nodes to
be used for this type of classifier was used:

Hiddennodes ≤
√
Inputnodes × Outputnodes (2)

With Inputnodes equal to the number of input features and
Outputnodes equal to 1. The number of internal nodes in
the network is limited to reduce the risk of overfitting the
model on the training set. Regarding the number of layers
and the distribution of these nodes, a trial-and-error strategy
was implemented, thanks to which it was possible to iden-
tify the best configuration taking into account the trade-off
between sensitivity and specificity while looking at the bal-
anced accuracy:

Sensitivy =
TP

TP+ FN
(3)

Specificity =
TN

TN + FP
(4)

Balanced Accuracy =
Sensitivity+ Specificity

2
(5)

With TP being the malignant tumors correctly classified,
TN the benign tumors correctly classified, FP the benign
tumors incorrectly classified, and FN the malignant tumors
incorrectly classified.

Table 3 provides a schematic of the strategies used for each
one of the classifiers considered. The selection of classifiers
and their parameter settings was based on common practices
and recommendations from the literature. By exploring a
diverse set of classifiers, including Random Forest, k-Nearest
Neighbors, Support Vector Machines, and Artificial Neural
Networks, we aimed to identify the most suitable approach
for the task of renal tumor classification based on the avail-
able features (radiomic and deep features). The specific
parameter settings for each classifier were chosen to cover
a range of reasonable values and configurations, while main-
taining computational feasibility.

The training and evaluation workflow followed the stan-
dard procedure. Once the various predictors were trained,
a statistical analysis of the metrics of interest was performed.
Specifically, the most common metrics, i.e. accuracy and
precision, were studied, and in addition, sensitivity and speci-
ficity were analyzed, as the former allows to get a sense of
the predictor’s ability to be able to correctly identify malig-
nant tumor [44], the latter refers to the classifier’s ability to

TABLE 3. Classifier parameters for the training phase.

correctly discard benign tumors. A sensitivity of 100 percent
ensures certainty in the case of negativity that a patient is
‘‘healthy’’, conversely a specificity of 100 percent in the case
of positivity ensures certainty that the patient is ‘‘sick’’. The
goal to be pursued in this study is to seek the best possible
trade-off between sensitivity and specificity while trying to
obtain a sensitivity that is as close to 100% as possible. This
means that the solution sought will have the fewest number
of malignant cases misclassified as benign at the expense of
benign cases identified as malignant. In other words, the goal
is not to misclassify a malignant case, since on a practical
level it would bring the greatest disadvantage to the patient.

V. RESULTS
The results obtained by the use of the described approaches
are presented below. All the numerical results refer to the
testing set. For the radiomic features, using the total tumor
segmentation, TABLE 4 shows the best results achieved by
each classifier, specifying the number of features selected by
RFE. It can be seen that K-NN, SVM, and RF have higher
sensitivity than ANN, reaching about 96%, but lower speci-
ficity, where only ANN reaches 58.82% with a sensitivity of
87.84%. The accuracy of the classifiers is similar, ranging
from 81% to 85%, and the precision is highest for ANN with
90%. The balanced accuracy is also highest for ANN with
73.31%.

Using only the segmentation of the largest slice in the three
dimensions, Table 5 shows the best results achieved by each
classifier. As in the previous case, K-NN, SVM, and RF have
higher sensitivity than ANN, with results from 87% to 95%.
For specificity, the maximum is 56.25% achieved by ANN.
The other metrics are not very different from each other, and
compared to the previous approach, there is a general decline
in performance, except for RF which improves slightly, but
still remains lower than the best model in the previous case.

For the deep features, Table 6 shows the results obtained
by each classifier. In this case, the sensitivity is above 94%
for KNN, RF, and ANN, the specificity peaks with ANN at
52.94%, and the accuracy and precision are between 78% and
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TABLE 4. Performance of the classifiers used with the radiomic features of the testing set, considering the approach with complete tumor segmentation.

TABLE 5. Performance of the classifiers used with the radiomic features of the testing set related to the approach with single slices of maximum area in
the three axes.

TABLE 6. Performance of classifiers using deep features obtained from the proposed approach.

TABLE 7. Best performance for each of the tested methods, selecting the
classifiers with the best-balanced accuracy for the three types of features
considered: for all three cases this was found to be the ANN classifier.

87% and between 85% and 90%, respectively. The balanced
accuracy is also highest for ANN with 73.77%.

VI. DISCUSSION
To further discuss the proposed solutions, TABLE 7
shows the best performance metrics of the classifiers, con-
sidering the trade-off between sensitivity and specificity, and
selecting the best classifiers based on the maximum value of
balanced accuracy.

From the table, we can compare the two solutions that
use radiomics: the use of all spatial information results in
increased performance for all metrics, especially sensitivity
and accuracy, with more than 6 percentage points for both
metrics. This result highlights the importance of features
derived from the entire tumor mass, which is lost in the sec-
ond radiomic approach where only the planar information is
considered. Comparing the results obtained by radiomic fea-
tures and deep features, we can note some important aspects:
i) considering the trade-off between sensitivity and speci-
ficity, the best-balanced accuracy, of 73.77%, is obtained by
the deep features, with a high sensitivity of 94.59% and a
moderate specificity of 52.94%. This is not the case in the
two previous cases, where the best sensitivity is 87.84% and
the best specificity is 58.82%. Therefore, considering the
balanced accuracy as a tool to balance the trade-off between
sensitivity and specificity, we have that the best approaches,
with comparable results, are the use of deep features and the
use of radiomic features extracted with the first approach.

Objective comparisons with other state-of-the-art
approaches are difficult to make due to the diversity of the
datasets used, both in terms of size and representation of the
tumor types. Another factor to consider is that the numerical
results in the state of the art, Table 1, can vary depending on
how the data were used. However, a recent study [32] used
the KiTS19 dataset so a comparison would be more valid,
given that a part of the dataset is the same, but it is also
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TABLE 8. Metrics of the best approaches in literature and of the best approach realized in this work.

possible to compare the results by checking if the final met-
rics follow a similar behavior, especially with the solutions
using a similar workflow to the one proposed. In Table 8,
the metrics for the most similar approaches are reported [26],
[27], [32] with the proposed solution ones to make a simpler
comparison. The table shows all the available metrics, and
it is possible to see how the behavior is similar between the
several methods, with sensitivity being the highest metric and
specificity the lowest. It is possible to see that looking to
the overall metrics the most difficult part of this task is to
identify correctly the benign cases, and when more effort is
spent in that way, like in the case of Miskin et al [26], the
other metrics are affected negatively. Also checking the case
that uses a subset of our dataset [32], it is possible to see
that if the focus is exclusively on the ccRCC cases the final
specificity is strongly penalized becoming quite useless for a
real scenario application. If we focus on the metrics that our
approach obtains it is possible to see how the sensitivity is
the second highest of the four, but it keeps a specificity that
is still above the 50% being also the second highest of the
shown solutions. Considering the idea of choosing one of the
possible alternatives as the best solution, it must be selected
one given the trade-off of the several pros and cons, given the
high rate of malignant cases, our solution could be selected
as the best one, but considering a more uniform distribution
the solution proposed by Miskin et al [26] could be picked,
but must be considered that it is directly comparable with our
results obtained in the case of using radiomics.

A major challenge that we faced during the training of the
classifiers was the imbalance of the available dataset, with the
number of ccRCC cases being about four times more than
the oncocytomas. We solved this problem by using appro-
priate weights for the elements belonging to the different
classes. One of the main future directions of this work is
to reduce this imbalance and increase the number of cases
as much as possible to make the results more statistically
significant. Moreover, with the introduction of new cases,
we expect that the deep features-based solution, which relies
on feature extraction exclusively based on deep learning,
will be able to generalize better across the two tumor types
and achieve higher performance than the current one. Other

future directions include extending this approach to a larger
number of renal tumor types, or using other variants of deep
neural networks that can identify other tumors. Additionally,
we can also consider combining radiomics with deep learning
approaches, or using approaches that require manual delin-
eation of the region of interest to apply convolutional neural
networks only on the marked input with the aim of directly
classifying the tumor type.

Another important aspect is the clinical focus. The
radiomic features are more suitable for clinical applications,
because they use well-established and interpretable meth-
ods that can reveal the tumor characteristics and behavior.
They can also be extracted from any CT scanner, without
needing specific hardware or software, which makes them
more accessible and adaptable. The deep features, however,
depend on the data quality and quantity for training the neural
network, and they are less transparent and explainable, which
may affect their clinical acceptance and trust. But this does
not mean that the deep features are not useful or promising.
They have performed similarly or better than the radiomic
features in some metrics, and they have the benefit of being
fully automated and data-driven, without requiring any prior
knowledge or assumptions. They can also capture more com-
plex and subtle patterns that the radiomic features may miss,
and they can be adjusted to different tasks and modalities by
changing the neural network. Therefore, we believe that the
deep features have great potential for clinical applications,
especially with more data and explainable methods.

While the obtained specificity of 52.94% is relatively low,
it is important to consider the trade-off between sensitiv-
ity and specificity in the context of this problem. A high
sensitivity, such as the 94.59% achieved by our method,
is crucial to minimize the risk of misclassifying malignant
tumors as benign, which could have severe consequences for
the patient. In a clinical setting, the proposed method could
be used as a decision support tool to assist radiologists and
clinicians in the initial assessment of suspected renal tumors.
Cases classified as malignant could be prioritized for further
investigation, while cases classified as benign could undergo
additional diagnostic procedures or closer monitoring. Ulti-
mately, the final diagnosis and treatment plan would still rely
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on a comprehensive evaluation of all available clinical data,
imaging findings, and potentially histopathological analysis.

It is important also to notice that combining datasets from
different sources could potentially create a larger bench-
mark dataset, there are several challenges that make this
task difficult in the context of medical imaging data. These
include strict data protection regulations, patient privacy
concerns, varying imaging protocols and acquisition param-
eters, and differences in inclusion/exclusion criteria and
patient demographics across datasets. Combining datasets
with such variations could introduce bias and inconsistencies,
potentially negatively impacting the performance of machine
learning models trained on the combined dataset. Given the
practical challenges and potential risks associated with com-
bining datasets from different sources, we decided to focus
on our institutional and public datasets in this study.

VII. CONCLUSION
This work aimed to build a machine learning based tool that
can provide support for medical diagnosis by comparing two
distinct types of features, radiomic and deep, obtained by
automated procedures. For the radiomic features, two state-
of-the-art methods were tested. For the deep features, a new
method of extraction from patient CTs was proposed, based
on the exclusive use of a deep neural network (nnU-net)
that can directly segment diagnostic images, minimizing the
human intervention required to identify regions of interest.
The comparison of the features was useful to understand the
feasibility and validity of the proposed method. The perfor-
mance of the features was evaluated using the most common
classification methods (RF, KNN, SVM, ANN). The results
showed that the radiomic features achieved better sensitivity
than ANN with RF, KNN, and SVM, but at the cost of lower
specificity. Therefore, considering balanced accuracy, ANN
was the best classifier for both types of features. Moreover,
when all the features were considered, ANN achieved the best
results with 73.77% balanced accuracy, 94.59% sensitivity,
52.94% specificity, and 86.84% accuracy. Based on these
results and considering that the deep features performed simi-
larly or better than the radiomic features, we can conclude that
the deep features obtained by the method presented in this
article are valid for differentiating renal tumors, especially
when only the CT of a patient with renal cancer is available.
This can be considered a very important aspect for future
works given the possibility and the potential to use only deep
features without the necessity of choosing specific radiomics
features, reducing the time needed to perform segmentation
of the ROI and avoiding the step of features selection.
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