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A B S T R A C T   

John Aitchison revolutionised in 1982 our way of approaching geochemical data focusing on their relative na-
ture. In this perspective, the investigation of single variables is meaningless due to the entangled structure that 
links all the parts of a composition. Starting from that time, several developments have characterized the debate 
within the scientific community, both from the applied and the theoretical point of view. The consequence was 
that the number of papers where compositional data are consistently and coherently managed increased expo-
nentially. The exploratory phase of compositional data is a very important step in data analysis and modeling. It 
not only helps to clarify the available sample data structure but also determines the base to develop models to 
predict time and space changes. Real chemical data along the course of the river Tevere (Tiber) (Italy) and its 
tributaries are taken to illustrate how compositional techniques help explore compositions and detect patterns 
and outliers in the data.   

1. Introduction 

Scientists confronted with the need to investigate environmental is-
sues or the geological evolution of a certain region proceed in general to 
design a sampling campaign that involves mainly geochemical elements. 
Soon they have to handle the fact that this type of data is not suitable for 
standard statistical analysis, as many techniques designed for real 
random variables, especially those involving correlations or co-
variances, are prone to deliver spurious results. Here we pretend to 
guide the reader through all the initial steps in a statistical analysis of 
compositional data. 

For illustration, standard compositional techniques are used to 
explore geochemical water data sampled along the Tevere River (Tiber) 
and its tributaries in central Italy. The catchment drains an area of 
17,375 km2 and presents high hydrogeological and morphological het-
erogeneity associated with significant anthropogenic inputs. The ques-
tion to be addressed is to determine geochemical changes in the water 
along the catchment divided into four sections or sub-basins (Gozzi 
et al., 2020, 2021). The choice of the sub-basins was guided by the 
drainage network structure and by the different outcropping lithology. 

The very basics of compositional data analysis are assumed to be 
known by the reader, including the Euclidean space structure of the 

simplex that gives rise to the Aitchison geometry as defined in Paw-
lowsky-Glahn and Egozcue (2001). Concepts like compositional 
perturbation and powering, closure operation, and subcomposition are 
used in the manuscript. Their definitions and interpretations can be 
found in many papers and books. Here we recommend Pawlowsky- 
Glahn et al. (2015); Boogaart and Tolosana-Delgado (2013); Egozcue 
and Pawlowsky-Glahn (2019); Filzmoser et al. (2012) among many 
others. 

2. The data and research questions 

The data consist of N = 222 samples, made of NHT = 96 corre-
sponding to the high Tevere (HT), NMT = 33 to the medium Tevere 
(MT), NNE = 42 to the Nera sub-basin, and NLT = 51 to the lower Tevere 
(LT). The data were collected during two campaigns in 2017 (160 
samples) and 2018 (62 samples). A detailed geological context of the 
Tevere-Nera basin and a study of the 2017 data are presented in Gozzi 
et al. (2019). Fig. 1 shows the sampling locations within the 4 sub- 
basins. 

Beyond the metadata, each observation consists of a composition of 
D = 9 dissolved ions in mg/L (HCO3

− , F− , Cl− , NO3
− , SO4

2− , Ca2+, 
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Mg2+, Na+, K+). These ions are denoted without the charge signs along 
the remainder of the article to simplify the notation. Additionally, the 
following geochemical parameters are also reported: height in m over 
sea level (h); water temperature in degrees Celsius (T); pH; conductivity 
(CND, μS/cm); redox potential (Eh, mV). 

The purpose of these campaigns was mainly exploratory to investi-
gate, in a first attempt, water-rock interaction processes in a catchment 
that had received very little attention in the past. However, research 
questions are of utmost importance to guide both the sampling design 
and the consequent analysis (Gozzi and Buccianti, 2022). Recall that a 
preliminary step in any data analysis should be to identify which is the 
sample space of the data. This is always an assumption since there are 
multiple choices. One important criterion for selecting an appropriate 
sample space is the fact that research questions need to be answered 
within the framework of the sample space. For instance, if differences (in 
mean) between sub-basins are of interest, a difference between samples 
and a distance between them needs to be selected. In the present case, 
this is readily done by assuming that the concentrations of reported ions 
are compositions and that the data follow the Aitchison Geometry of the 
simplex (Pawlowsky-Glahn and Egozcue, 2001). Then, the difference 
between compositions is assumed to be the negative perturbation 
(Aitchison, 1982), and the distance the Aitchison's one (Aitchison, 
1992). Also, the sample space of co-variables like the height or elevation 
h of the sample point must be decided. Here, h was taken as a real 
random variable, that is, the differences are computed by subtraction 
like in h2 − h1, and the distance is then d(h1, h2) = ∣h2 − h1∣. However, 

there are other possibilities; for instance, since heights are positive, it 
can be assumed that the sample space is the positive half-axis of real 
space and the distance between two heights is ∣ln(h2) − ln(h1)∣. The 
consequence of this assumption would be that the difference of 1 cm in 
the low course of the river is much more important than the difference of 
1 cm in the high course of the river. 

3. Exploratory analysis 

In most statistical analyses, the first step is to have a quick look at the 
available data. The goals of this are multiple, from detecting errors and 
missing data, or showing main features, up to distributional character-
istics of the variables, including their relationships if any. The particular 
characteristics of compositional data impose also special ways to explore 
the data. One important characteristic of CoDa is that the values of the 
components are not fully meaningful unless some reference is given. In 
our case, the measurement of an ion like e.g. Ca in mg has a meaning 
when referred to a liter (L), i.e. when the units are expressed as mg/L. 
However, note that in most cases the reference liter (L) is fictitious since 
it was not measured but idealized in a calibration process. In composi-
tional analysis, the possible references are the other components, called 
parts, of the composition. This is attained by considering the ratios be-
tween parts. For instance, the dimensionless ratio HCO3/Ca does not 
need the liter as a reference as it cancels out in the ratio. This turns the 
univariate summary of parts of little use. Even so, a quantile exploration 
of the parts can be useful for detecting the presence of zeros, errors, and 

Fig. 1. Map showing the Tevere River basin along with sampling points locations within the 4 sub-basins.  
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missings. Table 1 shows a quantile table for the water composition (four 
sub-basins together). 

In the standard multivariate exploration of real random variables, it 
is customary to compute the arithmetic average, variance, standard 
deviation, and correlation of the variables. For CoDa, these parameters 
are almost meaningless. As mentioned, relevant information is in ratios 
between parts. After averaging parts, a ratio of averages may have an 
undesirable behavior. Additionally, the correlations between parts have 
been recognized as spurious since they change in an uncontrolled way 
when changing subcomposition (Chayes, 1971; Aitchison, 1986). 

These problems with the standard exploratory tools for real multi-
variate data require specific procedures for CoDa. The first tools needed 
are the compositional alternatives to the arithmetic averages, dispersion 
measures, and correlation for real variables which are discussed in 
Section 3.1. Section 3.2 examines the compositional sample of ion 
concentrations to detect outliers and treat them statistically. 

3.1. Center, variation array and PIP-table 

The compositional alternative to the sample mean or average for real 
variables is the center of the data. It is estimated as the compositional 
average 

Cen[X] =
1
N
⊙ ⊕

N

i=1
xi = C (gm(X1) , gm(X2) ,…, gm(XD) ), (1)  

where xi are the compositional observations (rows), and N is the sample 
size. The ⊕ denotes repeated compositional perturbation along the 
sample and ⊙ denotes powering. The columns of the data set, called 
parts, are denoted by Xj. Taking closure, C , is optional as proportional 
compositions are equivalent (Aitchison, 1992; Barceló-Vidal and Mar-
tín-Fernández, 2016). In the case where the parts are concentrations in 
mg/L, suppressing the closure gives the center in mg/L; alternatively, 
taking closure gives the mean proportions of ions considered. Table 2 
shows the center of the sample and its change when 6 outliers are 
removed (see Section 3.2). Table 2 allows us to compare centers in 
different sub-basins. Some differences are apparent. For instance, LT 
exhibits the highest concentrations of HCO3, NO3, Cl, and K, thus sug-
gesting agricultural activity and alteration of rocks as corresponds to the 
low course of a river in a populated region. However, comparisons of 
centers expressed in mg/L are not easy. It is better to compute the 
Aitchison distances between compositional centers of sub-basins 
(Table 3). It is clear that the center of LT (cenLT) is the most distant 
from the overall center of the sample (cenallb) and also from other sub- 
basins. On the other hand, the centers of MT and NE (cenMT, cenNE) 
appear as equally distant from the cenallb although they are different 
themselves. Aitchison distances depend on the subcomposition where 
they are computed, but they are dominant. The smaller the sub-
composition, the smaller the interdistances (Aitchison et al., 2000); in 
the present example comparisons may change, for instance, if HCO3 and 
Cl are not included. 

In order to compute distances between compositions, like the 
mentioned centers, there are several ways. One of them is to compute 

the centered log-ratio of the D-part compositions x = (x1, x2,…, xD)

y = clr(x) =
(

ln
x1

gm(x)
, ln

x2

gm(x)
,…, ln

xD

gm(x)

)

,

and then, the Euclidean distance between the clr’s, which is equal to the 
Aitchison distance. For instance, the Aitchison distance between cenHT 
and cenLT is 

da(cenHT, cenLT) = de(clr(cenHT) , clr(cenLT) ),

where de is the ordinary Euclidean distance in the real space. The clr 
transformation of compositions is useful for several CoDa computations. 
This is the case of the centers (Eq. 1). The clr of the center is the arith-
metic average of the clr’s of the sample. Recovering the center from its 
clr is achieved taking exponential, 

x = clr− 1(y) = C exp(y),

where the closure is again optional. Particularly, if all the compositions 
are given as mg/L, then the result of the exponential is also in mg/L. 

The statistical analysis of these centers is based on the Aitchison 
distances and leads to analyses as presented in Section 4. Also com-
parisons of mean ilr-coordinates are useful for understanding which are 
the differences of centers between sub-basins (see Section 3.4). 

The standard exploratory analysis of multivariate data includes a 
description of the co-variability of variables. This is done through the 
covariance and/or correlation matrices. In Compositional Data Analysis 
(CoDA) these tools are known to be spurious (Aitchison, 1986) since the 
entries of these matrices change depending on the subcomposition 
considered or the units in which the composition is expressed. 

In Aitchison (1986) the variation matrix is proposed as a represen-
tation of the second-order variability of the compositional sample. For a 
D-part composition, the (i, j)-th entry of the variation (D,D)-matrix, T, is 

τij = Var
(

ln
Xi

Xj

)

, i, j = 1, 2,…,D,

where Xi, and Xj are the respective compositional variables, here called 
parts. The variation matrix T is symmetric and has zeros in its diagonal. 
The smaller is τij, the closer to proportionality are the parts Xi and Xj. 
Conversely, if τij is large, the log-ratio ln

(
Xi/Xj

)
contributes largely to 

the variability of the sample. Related to these facts, the total variance of 
the compositional sample is defined as 

TotVar(X) =
1

2D
∑D

i=1

∑D

j=1
τij =

∑D

j=1
Var
(
clrj(X)

)
, (2)  

where Xj is the j-th part (column) of the compositional sample X. Table 4 
shows the upper triangle of T for the ion concentrations of the Tevere 
basin. The minimum entry is τHCO3 ,Ca = 0.08 thus suggesting some as-
sociation or proportionality between HCO3 and Ca that finds a 
geochemical explanation in the common source of these species from 
carbonatic lithology. 

Table 1 
Univariate quantiles (mg/L) for ion concentration (parts). There is no zero concentration. Maxima can take values as large as 100 times the median value (e.g. Cl), 
suggesting the presence of outliers, special sampling conditions, or even errors. There are no missing values.  

q-prob. min 0.01 0.05 0.25 median 0.75 0.95 0.99 max 

HCO3  161.04  172.15  205.40  256.20  307.75  356.91  497.27  860.16  3101.24 
F  0.04  0.05  0.07  0.11  0.18  0.34  1.01  2.28  2.90 
Cl  3.57  4.30  5.97  9.53  15.58  27.55  118.42  530.94  1173.28 
NO3  0.01  0.02  0.07  0.95  3.09  6.33  15.05  28.46  33.16 
SO4  3.16  4.24  7.50  25.35  42.39  66.03  215.76  514.96  1569.29 
Ca  38.24  43.52  55.62  75.83  90.36  110.53  164.86  354.63  585.69 
Mg  1.12  1.87  4.97  11.94  16.93  22.60  45.28  84.76  420.72 
Na  2.16  2.34  3.50  8.88  18.56  33.04  94.72  427.64  747.64 
K  0.01  0.01  0.87  1.58  2.42  4.26  19.12  46.99  90.63  
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From their introduction in Aitchison (1986) the entries of the vari-
ation array have been recognized as measures of association between 
parts, a sort of alternative to correlation. However, normalization seems 
to be convenient to maintain the values within (0, 1) and to remove the 
effect of the total variance of the sample. Several indexes of association 
between parts have been proposed, but most of them depend on the 
selected subcomposition, thus preventing their use to examine the 
relation between parts (in our case chemical elements) (Egozcue and 
Pawlowsky-Glahn, 2023). In the latter reference, a proportionality index 
of parts (PIP) is proposed. It is based on the variation array but removes 
the effect of the total variance and maintains the subcompositional 
invariance and the range of values within (0, 1). Its expression is 

PIPij =
1

1 +
̅̅̅̅̅τij

√ .

The values of the PIP matrix are shown in the lower triangle of 
Table 4. The larger PIPs are in boldface on pale-red background thus 
pointing out which are the largest associations. The largest PIP corre-
sponds to HCO3 and Ca, although the value 0.78 suggests a weak rela-
tion. Moreover, HCO3 appears also weakly linked to Mg (PIP 0.65), and 
Mg and Ca (PIP 0.64) seem also weakly associated, suggesting an asso-
ciation between the three elements. Geochemical experience indicates 

that this result can be due to the alteration of carbonate rocks, such as 
limestones or dolostones, where the cited elements are contained in 
minerals, often in a proportional way. On the other side, the values of 
PIP under discussion come from the overall Tevere basin. Since sub- 
basins have different behaviors, the mentioned associations could be 
stronger for individual sub-basins. This is not the case, only in the LT 
sub-basin does the PIP between HCO3 and Ca rise up to 0.82, which is 
still a weak association. This confirms that the weathering of carbonate 
rocks is a fundamental process affecting the dynamic of the water of the 
catchment. 

3.2. Outliers 

The univariate analysis of parts of a composition, in our case con-
centrations of dissolved ions, does not give reliable clues about outliers 
since CoDa is multivariate by nature. In Fig. S.1 univariate candidate 
outliers appear out of the boxplot whiskers. The maxima of all ion 
concentrations correspond to multivariate candidate outliers. However, 
the second maxima, which are also univariate candidates, were not 
detected using multivariate techniques. For instance, the second 
maximum of Cl and also that of Na, are not considered multivariate 
outliers. Recall that the compositional information is in the ratios be-
tween the parts and they involve more than a single ion. The detection of 
outliers can follow two different ways: one based on metadata and 
sampling characteristics and the statistical detection and treatment. The 
second way is generally based on the assumed multivariate distribution 
of data and leads to robust statistics. The first campaign of our data was 
analyzed using robust statistics in Gozzi et al. (2019) and the interested 
reader is redirected to this reference. Here, the analysis is a mixture of 
data analysis and the corresponding metadata. 

A preliminary inspection for multivariate outliers was carried out by 
computing Mahalanobis distance to the center of the data (see e.g. 
Filzmoser et al., 2018, ch. 5). Table S.1 shows the position of the data 
points considered candidates to be multivariate outliers, their Mahala-
nobis distance to the center, and the χ2 probability assuming a multi-
variate normal distribution for the coordinates (see Sections 3.3 and 
3.4). 

In the case of the Tevere basin, 6 outliers were considered. The initial 
clue to detect them was the form biplot (see Section 3.3) in Fig. S.2 
(Supplementary material) where those 6 data points appeared separated 
from the cloud of the sample. Examining the data set, the mentioned 
data points correspond to samples at the upper part of the river, placed 
in sub-basins HT and NE. They are characterized by low ratios of K to 
other ions. These data points were then diagnosed as potential outliers 
by using the Mahalanobis distance to the center. They are identified in 
Table S.1 of the Supplementary material. These data points have been 
removed from the analysis and are only used in Fig. S.2. 

3.3. Form and covariance biplots 

In multivariate real data analysis, Principal Component Analysis 
(PCA) (e.g. Jolliffe (2002)) plays an important role. It allows the 
determination of orthogonal directions of maximum variation such that 

Table 2 
Centers of ion composition (mg/L). First row: complete sample before removal of outliers. Subsequent rows, all sub-basins jointly, and sub-basins separately after 
removal of outliers.  

ion (mg/L) HCO3 F Cl NO3 SO4 Ca Mg Na K 

compl.sample 312.06 0.21 18.31 2.14 43.69 94.07 16.18 17.89 2.57 

after removal outliers HCO3 F Cl NO3 SO4 Ca Mg Na K 

all sub-basins 311.38 0.21 18.73 2.18 43.56 94.30 16.08 18.22 3.00 
High Tevere (HT) 303.39 0.14 13.63 1.53 35.19 87.18 15.78 15.07 2.12 
Medium Tevere (MT) 295.92 0.24 24.82 2.24 90.14 108.89 19.82 28.98 3.79 
Nera (NE) 296.27 0.17 12.34 1.39 29.07 92.53 11.59 8.470 1.80 
Low Tevere (LT) 350.69 0.50 38.47 5.82 54.91 100.44 18.79 34.67 7.23  

Table 3 
Aitchison distances between the center of all sub-basins (cenallb) and the sub- 
basins HT, MT, NE, LT, after removal of outliers.   

cenallb cenHT cenMT cenNE 

cenHT  0.43    
cenMT  0.66  0.81   
cenNE  0.66  0.62  1.16  
cenLT  1.04  1.45  1.29 1.52  

Table 4 
Upper triangle: variation matrix for all sub-basins after removing outliers. 
Lower triangle: PIP for all sub-basins after removing outliers. No strong asso-
ciation is detected, although weak associations of HCO3 with Ca and Mg, and Cl 
with Na are suggested (colored cell and bold case). 
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the corresponding coordinates are uncorrelated. These techniques are 
not directly applicable to CoDa as the variables at play are not real 
random variables. Their sample space is not the whole real space but a 
subset of the same. In our case, concentrations in mg/L cannot be 
negative, the information is in the ratios between them, and the sum of 
ratios is almost meaningless. Attending to the characteristics of CoDa, 
Aitchison (1983) applied PCA to the clr thus proposing what is known as 
CoDa-PCA. It provides three important tools for the analysis of CoDa: 
principal components which are real orthogonal coordinates for CoDa 
(ilr/olr, isometric and orthonormal log-ratio coordinates); an analysis of 
the variability in the sample; and a method to orthogonally project data 
in a lower dimension (dimension reduction) like in biplots (Gabriel, 
1971; Gower and Hand, 1996). The CoDa-biplot takes advantage of the 
latter to project the ilr coordinates into two (or three) dimensions, jointly 
with the clr variables. 

The procedure to obtain CoDa-PCA and its corresponding biplots is 
the following. As a first step, the clr of the compositional data is 
computed and then centered. This is equivalent to a double centering of 
the logarithm of data. Denote this matrix cclr(X). The second step is the 
singular value decomposition (svd) of cclr(X). It consists of the matrix 
decomposition 

cclr(X) = UΛV⊤,V⊤V = ID,UU⊤ = IN , (3)  

where Λ is a (D,D) diagonal matrix containing the singular values 
(λ1, λ2,…, λD− 1, λD), the last of them being zero, i.e. λD = 0. The (N,D)
matrix U contains the standardized coordinates of the data points, 
frequently called scores. The (D,D) matrix V, is an orthogonal matrix, as 
indicated in Eq. (3). The rows of the matrix cclr(X) add to zero since they 
are clr of the centered data. This causes that λD = 0. The consequence of 
this is that the three matrices in Eq. 3 can be reduced by one dimension, 
so that U, Λ and V have dimensions (N,D − 1), (D − 1,D − 1), (D,D − 1), 
respectively, after removing the singular value λD = 0. The notation for 
these reduced versions is maintained as U, Λ, and V. 

The interpretation of Eq. (3) is relevant. The columns of V, frequently 
called loadings, are the clr of D − 1 orthogonal compositions which 
constitute an orthogonal basis of the simplex. They are ordered so that 
λ1 ≥ λ2 ≥ …λD− 1. Consequently, the (N,D − 1) matrix UΛ are the 
orthogonal coordinates of the data points (ilr) expressed in the basis 
defined by V and ordered in decreasing variance. In Section 3.4 these 
kinds of coordinates are called ilr/olr (isometric/orthogonal log-ratio 
coordinates). The svd of cclr(X) is a change of representation of the 
observed compositions, from a clr representation (non-orthogonal) to a 
new one where the coordinates are orthogonal, i.e. in right angles. 

Another important point of Eq. (3) is that it is perturbation invariant, 
that is U, Λ, V do not change when the compositional observations are 
perturbed, for instance, by changing the units from mg/L to meq/L, mol/ 
L or to proportions. 

After Eq. (3), the orthogonal projection of observations into a 
reduced dimension space is possible. In fact, retaining only two (or 
three) columns of V, the observed compositions are projected into a 
plane (or a three-dimensional space) and the retained coordinates can be 
plotted accordingly. Also, the unitary vectors in the columns of V, pro-
jected as the observations, can be plotted in the same graph. This kind of 
plot is called form biplot (Aitchison and Greenacre, 2002). Fig. 2 shows 
the form biplot of observed data (outliers removed; see Fig. S.2 including 
removed outliers). The main indicator of the quality of the projection is 
the fraction of the total variance retained by the two (or three) com-
ponents. If only two principal components are retained, the proportion 
of explained variance (in percent) is 

λ2
1 + λ2

2
∑D− 1

i=1
λ2

i

⋅100 .

The origin of the red rays represents the data center. The red rays 
correspond to the compositions of the orthonormal basis (norm equal to 

1). If these vectors were perfectly projected on the biplot they would 
have unitary length, that is the rays would reach the unitary circle (in 
grey). A short ray points out that the corresponding composition of the 
basis is poorly captured by the projection which is dominated by the 
longer rays. In Fig. 2 the ray labeled F (hardly visible) is the worst 
represented vector and the ray labeled NO3 is the best represented. The 
projection explains only 66.2 % of the total variance and, consequently, 
our observations can be considered as suggestions but not concluding. 

Moreover, since the points are the orthogonal projections of the 
observations onto the biplot, this is the best way of looking at the points 
in two dimensions. Also, the distances between points are the best ap-
proaches to the Aitchison distance between points. Although biplots are 
not a tool for distinguishing clusters or populations, Fig. 2 shows that the 
sub-basin LT (violet) is shifted to the upper-right of the plot relative to 
the other sub-basins, thus suggesting that the center of LT can be 
considered different to that of other sub-basins. 

The form-biplot is an orthogonal projection of the data illustrated 
with the rays indicating the loadings of the elements of the basis. 
However, when one is interested in the relations between elements, it is 
preferable to use the alternative normalization of the biplot called 
covariance-biplot (Aitchison and Greenacre, 2002). In this representa-
tion, the points are directly the coordinates in the score matrix U and the 
rays are the projections of the compositions whose clr are the columns 
VΛ, that is the vector of the basis elongated by the singular values which 
are proportional to the standard deviation of the corresponding clr 
component. 

However, the main elements in the CoDa-biplot are the segments that 
link two vertices of rays, called links for simplicity. The length of the 
links is proportional, up to the projection, to the standard deviation of 
the log-ratio of the two parts involved. Therefore, again up to the pro-
jection, these lengths are proportional to the square roots of the ele-
ments in the variation matrix. In Fig. 3, the links between HCO3-Ca and 
Cl-Na are the shortest ones, coinciding with the smallest values in the 
variation matrix (Table 4, upper triangle). As mentioned previously, low 
values in the variation matrix or large values in the PIP indicate possible 
proportionality between the parts. 

Another important feature in the covariance-biplot is the long links 
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Fig. 2. Form biplot of observed data. Colors indicate the sub-basins, HT sky- 
blue, MT blue, NE yellow, LT violet. The grey circle is the unit circle. For 
interpretation of principal axes see Table 5. (For interpretation of the references 
to colour in this figure legend, the reader is referred to the web version of 
this article.) 
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approximating the standard deviation of the corresponding log-ratio, 
that is, they represent the main sources of variation in the sample. In 
Fig. 3, attention can be paid to anions like NO3 and SO4, whose link is 
almost parallel to the first principal axis. One can assume that NO3 is 
associated with anthropogenic origin whereas SO4 can also come from 
geologic sources (e.g., evaporites) (Taussi et al., 2022). Then, this link 
(and the first principal coordinate) can be interpreted as related to more 
or less presence of human activities. Also interesting is the link between 
anions Cl and HCO3, almost parallel to the second principal coordinate. 
The relative abundance of anion Cl, quite associated with cation Na, can 
be attributed to dissolved salt from rocks or more probably to seawater 
intrusions in the low basins or to rain near the coastal areas. Conversely, 
HCO3 is attributable to the alteration of carbonate rocks, more active in 
the north and east parts of the catchment (HT and especially NE). This is 
a possible interpretation of the second principal coordinate. The fact 
that the two links are almost orthogonal can be interpreted as that the 
process of rock alterations and the process of anthropogenic activities 
are approximately uncorrelated, meaning that, up to the projection, the 
log-ratio Cl over HCO3 is approximately uncorrelated to the log-ratio 
NO3 over SO4. 

Many details are difficult to detect in the biplots, especially if the 
number of parts is large. The study of loadings can elucidate the hidden 
questions. Table 5 shows the loadings corresponding to the biplot in 
Fig. 3. 

For instance, one can realize that the third principal coordinate is 
driven by the presence of F and K as opposed to all the others, which is 
not clear in the two first principal coordinates. This means that the third 
principal component describes the contribution of volcanic sources 
along the whole basin. Also, the eighth principal component (PC8), has a 
low variance, meaning that the log-contrast it represents is approxi-
mately constant along the sample. This fact can be due to the charac-
teristics of the sample, but also to some geologic features. For instance, 
the anion HCO3 is contrasted with the cation Ca, thus suggesting the 
stoichiometric equilibrium of the dissolution of minerals contained in 
carbonate rocks. 

3.4. Coordinates and CoDa dendrogram 

After Pawlowsky-Glahn and Egozcue (2001) and Billheimer et al. 
(2001) the simplex was structured as a Euclidean space. Therefore, 
D-part compositions can be represented using Cartesian orthogonal co-
ordinates with respect to an orthonormal basis made of compositions e1, 
e2, …, eD− 1, such that ‖ ei‖a = 1 and 

〈
ei, ej

〉

a = 0 when i ∕= j. The Aitch-
ison norm, ‖ ⋅‖a, and inner product 〈⋅, ⋅〉a are easily computable from the 
clr of the compositions. If x and y are D-part compositions, then 

‖ x‖a =‖ clr(x)‖e, 〈x, y〉a = 〈clr(x) , clr(y) 〉e,

where the subscripts e mean ordinary Euclidean functions. Once again 
the clr representation is a powerful tool to operate within the Aitchison 
geometry. In this framework any D-part composition x can be expressed 
as a linear combination of the elements of the basis 

x = ⊕
D− 1

i=1
x*

i ⊙ ei, x*
i = 〈x, ei〉a = 〈clr(x) , clr(ei) 〉e.

The coefficients x*
i are the ilr coordinates of x with respect to the 

element of the basis ei, i = 1,2,…,D − 1. 
In summary, the ilr coordinates grouped in x* can be computed as 

x* = VΤ log(x),VΤ V = ID− 1, (4)  

where V is a (D,D − 1)-matrix whose rows are clr(ei) and, therefore, 
adding to 0. 

The previous Section 3.3, shows the usefulness of representing CoDa 
in coordinates, particularly, orthogonal principal coordinates. However, 
principal coordinates are data-driven and not designed for easy solving 
of research questions. The ilr coordinates (Egozcue et al. (2003), also 
known as olr after Martín-Fernández (2019)) can be designed by the user 
according to his/her needs. The procedure to this end is called Sequential 
Binary Partition (SBP) (Egozcue and Pawlowsky-Glahn, 2005, 2006). It 
consists of a partition of the composition into two groups of parts, and 
then each group of the first partition is split into two groups. This pro-
cedure is iterated until all groups contain only one part, which is 
attained after D − 1 partitions. The selection of the groups in each 
partition is arbitrary. The k-th partition is associated with an ilr 
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Fig. 3. Covariance biplot of observed data. Colors indicate the sub-basins, HT 
sky-blue, MT blue, NE yellow, LT violet. The vertices of rays represent the 
clr-variables. For interpretation of principal axes see Table 5. Attention should 
be paid to the links between rays of clr-variables in covariance biplots. Points, 
although colored, are neither filled nor profiled, thus focusing on the rays and 
links. (For interpretation of the references to colour in this figure legend, the 
reader is referred to the web version of this article.) 

Table 5 
Loadings corresponding to the CoDa-PCA in Figs. 2 and 3. The last row contains 
the percent of total variance retained by each principal coordinate. Vectors 
along axes are linear combinations of logs of parts whose coefficients are the 
loadings in the respective column. Cells with loadings larger than 0.40 in ab-
solute value are colored. The two first columns (PC1,PC2) define the axes in 
Figs. 2 and 3. 
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coordinate whose expression is 

bk = B(x+k/x− k) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
n+kn− k

n+k + n− k

√

ln
gm(x+k)

gm(x− k)
, k = 1, 2,…,D − 1, (5)  

where x+k, x− k are the groups of parts marked with +1 and -1 respec-
tively in the k-th partition, i.e. those assigned to the first and second 
subgroup in this step (see Table 6), and n+k, n− k are the number of parts 
in those groups; gm(⋅) denotes the geometric mean of the argument. All 
bk in Eq. (5) are balances (Egozcue and Pawlowsky-Glahn, 2005), that is 
a normalized log-ratio of geometric means of two non-overlapping 
groups of parts. The value of the square root is the normalizing con-
stant so that it corresponds to a unitary vector of the basis of the simplex, 
thus making the magnitudes of the balances comparable. 

The SBP shown in Table 6 could have been obtained from the sub-
jective criterion of the analyst. The first partition step separates F and K 
from the rest of the ions since it is assumed that the main source of these 
elements is volcanic rocks. The third partition step, labeled pb1, sepa-
rates NO3 the only element associated with anthropic activities. The next 
step, labeled pb4, separates SO4 from the remaining elements but there is 
no clear reason for that except to facilitate interpretation of the next 
steps. These steps try to group Cl-Na and HCO3 with Ca-Mg. The selec-
tion of signs in a partition step is irrelevant, it is only associated with a 
change of orientation of an axis. 

However, the SBP in Table 6 was obtained using the principal balances 
(PB) technique (Martín-Fernández et al., 2018). It tries to approximate 
the principal coordinates (CoDa-PCA) by balances, like in Eq. (5). The 
first PB (labeled in Table 6 as pb1) has the largest variance within the set 
of PBs. Next PBs, being orthogonal to the first one, have maximum 
variance, and so on up to the (D − 1)-th PB. Labels in Table 6 indicate the 
decreasing order of variance of those PBs. 

A way of visualizing the SBP used to obtain coordinates is the CoDa- 
dendrogram. It represents the SBP as a dendrogram showing the parti-
tions as in Fig. 4 (look at the tree in black). 

Taking advantage of the dendrogram, the sample mean and variance 
of the balance coordinates can be represented on it. Each horizontal bar 
is assumed to have an equal length, in Fig. 4 they are scaled to the 
segment ( − 6, 6). Vertical lines are anchored in them at the value of the 
sample mean of the corresponding balance-coordinate. In black, the 
balance corresponds to the overall sample, and, in different colors, the 
balances are those of the different sub-basins thus comparing the mean 
value of the balance coordinate in sub-basins. Note that the mid-point of 
the bar is the zero of the coordinate balance, and the more right 
anchoring, the more positive is the mean value of the balance. The 
length of vertical bars corresponds to the sample variance of the corre-
sponding coordinate balance in the overall sample (black) and colors for 
the sub-basins. Since 

TotVar(X) =
∑D− 1

j=1
Var
(
ilrj(X)

)
, (6)  

is a decomposition of the total variance into orthogonal components, the 
lengths of vertical bars in the CoDa-dendrogram represent such a 
decomposition of the total variance for the overall basin (black) and 
each of the sub-basins (colour). 

Fig. 4 immediately reveals that the balances B(Cl/Na) and B(HCO3/

Ca) have low variance (short vertical bars) suggesting an association 
between involved elements (see also Table 4). Balance B(NO3/

HCO3,Cl,SO4,Ca,Mg,Na) (labeled pb1 in Table 6) is identified as having 
the largest sample variance. Again, the coherent behavior of Cl,Na and 
Ca,Mg is related to a geochemical affinity in natural processes and the 
source. On the other hand, the balance B(NO3/

HCO3,Cl,SO4,Ca,Mg,Na) appears to link different processes, natural 
and anthropic, often working on different scales, thus explaining the 
higher variability (mixing of processes and sources). 

An interesting feature of the CoDa-dendrogram is the visualization of 
differences between centers of sub-basins taking into account the 
respective variabilities. For instance, the mentioned B(NO3/

HCO3,Cl,SO4,Ca,Mg,Na) differentiates the center of LT in front of 
other sub-basins whose values are hardly different. This confirms the 
larger relative abundance of NO3 in sub-basin LT. Balance 
B(F,K/all other parts), labeled pb3, presents a similar situation, a larger 
relative abundance of F and K in LT compared to other sub-basins. The 
only balance that seems to distinguish (in mean) the four sub-basins is 
B(Cl,Na/HCO3,Ca,Mg) (pb2). However, this observation should be 
tinged or modulated by observing the variances in sub-basins. These 
variances in LT and NE are large and distinguishing them from other 
sub-basins can be non-significant. Contrarily, the variance in sub-basins 
HT and MT are smaller and the mean balance can be considered 
different. An analysis of variance reveals that the sample means of this 
balance in HT and MT cannot be considered equal (p-value 2.05e-05). 
See also boxplots comparing the four sub-basins in the Supplementary 
materials Fig. S.3. 

Table 6 
Each column represents a partition into two groups of parts, one group is labeled 
as +1 and the other one with -1; parts that do not participate in the partition are 
labeled 0. The rows n+ and n− are the number of parts labeled with 1 and -1 
respectively in each partition. In the row labeling the sequence of partitions pb is 
principal balance and the number is the order in decreasing variance.   

pb3 pb5 pb1 pb4 pb2 pb7 pb6 pb8 

HCO3 +1 0 − 1 +1 +1 0 − 1 +1 
F − 1 +1 0 0 0 0 0 0 
Cl +1 0 − 1 +1 − 1 +1 0 0 
NO3 +1 0 +1 0 0 0 0 0 
SO4 +1 0 − 1 − 1 0 0 0 0 
Ca +1 0 − 1 +1 +1 0 − 1 − 1 
Mg +1 0 − 1 +1 +1 0 +1 0 
Na +1 0 − 1 +1 − 1 − 1 0 0 
K − 1 − 1 0 0 0 0 0 0 
n+ 7 1 1 5 3 1 1 1 
n− 2 1 6 1 2 1 2 1  

K F

S
O
4

N
a C
l

C
a

H
C
O
3

M
g

N
O
3

Fig. 4. CoDa-dendrogram for the Tevere basin (black tree) corresponding to 
the SBP coded in Table 6. HT sub-basin in sky-blue; MT in blue; NE in yellow 
and LT in violet. (For interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of this article.) 
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4. Are the mean compositions of sub-basins equal? 

The comparison of the four sub-basins has been stated as a research 
question. This comparison can be studied from different perspectives. 
The first way can be the comparison of the compositional centers, re-
ported in Table 2, and of the Aitchison distances between them, which 
are listed in Table 3. Although these Tables suggest some differences 
between centers, a statistical contrast is necessary. The problem can be 
translated into a standard one in real multivariate statistics making use 
of the principle of working in coordinates (Mateu-Figueras et al., 2011), 
that is, translate the centers into ilr-coordinates, for instance, those used 
in the CoDa-dendrogram (Fig. 4) and, then, proceed as in standard 
multivariate statistics. The first step is to perform a MANOVA (Sierra 
et al., 2017). It confirms that there are significant differences between 
the centers (Pillai statistics p-value < 10− 7), but this only confirms what 
was clear from the exploratory analysis. The corresponding post-hoc 
tests only check which ilr-coordinates are different for each sub-basin. 
This was shown graphically in Fig. 4. The main inconvenience is that 
this depends on the selection of the ilr-coordinates. What is needed is to 
know which are the characteristics of compositions that differentiate 
sub-basins. These characteristics should be simple expressions that 
admit simple interpretations. These functions should be scale invariant 
and hence log-contrasts are candidates. Preferably, they should be 
sparse, that is, involving only a few elements. The simplest expressions 
fulfilling these conditions are the pairwise log-ratios or sparse balances. 
In this way, the goal is to identify balances involving few elements, able 
to discriminate between two sub-basins. This can be achieved using 
procedures like selbal (Rivera-Pinto et al., 2018). 

Table 7 shows the balance that best discriminates the first sub-basin 
from the second one (balance larger than or equal to the threshold). The 
accuracy of the classifier is quantified by ROC-AUC (Receiver Operating 
Curve-Area Under Curve) (Fawcett, 2006). The ROC-AUC takes values 
between 0 and 1. A large value, close to 1, indicates a nearly perfect 
separation of the two groups. 

The main advantage of the discrimination by a balance is that it al-
lows an easy interpretation of differences between sub-basins. In fact, 
the species involved in the balances highlight the lithological differences 
of the four sub-basins. In particular, the HT sub-basin seems to be well 
discriminated from MT and NE by the relative increase in Na compared 
to the other species considered in the balances (B(Na,Ca/HCO3), 
B(Cl/Na)). This could be linked to the greater contribution in Na from 
the upper part of the catchment due to silicate weathering reactions. LT 
is distinguished by elements that typically derive from water-rock 
interaction processes with potassic and ultrapotassic volcanic com-
plexes, whereas those related to the weathering of carbonate rocks are 
characteristic of NE. 

5. Is there any relation between height and ion composition? – 
Regression 

This question can be answered from different points of view but 
regression is the more intuitive one. Even so, one can think of predicting 
the height of the sample from the composition of ions, or vice-versa 

taking the composition as a response and trying to predict it from the 
height. For simplicity, we have only considered the height, but other 
covariates could be included in the analysis, for instance, pH and/or 
conductivity. 

5.1. Height as a response in regression 

Taking height, h, as a response from the composition can be tackled 
by a simple multiple regression. In this case, the principal balance- 
coordinates computed following the SBP in Table 6 can be taken as 
covariates. There are other alternatives, for instance, the principal co-
ordinates obtained in the CoDa-PCA whose loadings are shown in 
Table 5. In any case, attention is restricted to linear models like 

h = β0 + β1

(
∑D

i=1
αilogXi

)

= β0 + β1ϕ(x),
∑D

i=1
αi = 0 , (7)  

where the condition on the αis assures that the predictor is scale 
invariant and the D parts Xi represent the observed concentration of ions 
dissolved in water (Aitchison and Bacon-Shone, 1999). The predictor is a 
log-contrast of the composition, a scale-invariant linear combination of 
the logs of the parts. When the regression is based on coordinates, such 
as ilr or principal coordinates, the αi coefficients are obtained by 
combining the coefficients of the coordinates x* (Eq. 4) times the esti-
mated regression coefficients. 

Table 8 shows the results for different approaches. The row general is 
obtained by regressing h on all principal balances coded in Table 6. The 
R2 = 0.59 is not a high one, thus indicating that the model shows a trend 
more than a prediction of h. A regression using the CoDa-principal 
components gives exactly the same result. This is due to the invari-
ance of regression models under rotation of orthogonal axes. However, 
this general model lacks easy interpretability as all ions are involved 
with different coefficients. Significance tests allow the removal of some 
principal balances (pb3, pb5, pb7, pb8), but this does not improve inter-
pretability. An important simplification is obtained by forcing sparsity, 
making some of the coefficients αi to be equal to zero. There are pro-
cedures that force this simplification, see for instance Shi et al. (2016) 
using the Lasso techniques (Tibshirani, 1996). In particular, using the 
method called elastic-net proposed in Susin et al. (2020), the result in 
the row elastic net is obtained. Note that, at a very low cost in R2, two 
zeros are introduced in the regression model (for logMg and logK). This 
simplifies the model but still seven ions, with different weights, partic-
ipate in the predictor. A further simplification consists of making the 
ϕ(x) in Eq. (7) to be a balance (Eq. 5), that is, the coefficients αi attain 
only three different values: 0, a negative value for those elements in the 
denominator of the balance and another positive for the elements in the 
numerator. Based on expert knowledge, the following balance including 
only anions was selected 

ϕ(x) = B(HCO3/Cl NO3 SO4) =

̅̅̅
3
4

√

log
HCO3

(Cl NO3 SO4)
1/3 ,

and the result is in the row user. There is a new reduction of R2 to 0.54 
but this is a price compensated by a clear increase of interpretability. 
The data, classified by sub-basins, and the regression line are shown in 
Fig. 5, where it is clear that the regression model only points out a trend 
with the height. 

There are also some procedures to select a balance automatically. 
Here the selbal method (Rivera-Pinto et al., 2018) was used. The balance 
selected is in this case B(HCO3/Cl), which increases interpretability to a 
maximum but R2 is now reduced to 0.34. 

5.2. Composition as a response in regression 

Predicting an ion composition of D = 9 parts on the height of the 
sample is a hopeless task unless there are strong associations between 

Table 7 
Discriminating balance between two sub-basins. The threshold is the value of the 
balance that best separates the two sub-basins. ROC-AUC is a measure of accu-
racy in the prediction of the first sub-basin by the value of the balance over the 
threshold.  

Sub-basins Balance Threshold ROC-AUC 

HT MT B(Na,Ca/HCO3) − 1.388  0.855 
HT NE B(Cl/Na) 0.262  0.835 
HT LT B(F,Cl/HCO3) − 3.819  0.882 
MT NE B(HCO3,Cl/Na,K) 2.377  0.923 
MT LT B(SO4/Cl) 0.678  0.859 
NE LT B(HCO3/F,Na,K,Mg) 4.021  0.873  
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the elements, that in this case were not detected (see Table 4). The more 
flexible and easy-to-understand procedure consists of expressing the 
composition in orthogonal coordinates and then regressing these co-
ordinates on the covariates, in this case only h (Egozcue et al., 2012). 
The orthogonality of the coordinates allows us to reduce the problem to 
fit D − 1 simple regressions which can be fitted independently. Although 
this is an advantage, this independent fitting makes the model depen-
dent on the particular ilr-coordinates chosen. 

In our case, we can represent the observed composition of ions by the 
principal balance coordinates defined by the SBP coded in Table 6. 
These coordinates are balances, and they are regressed only on height h, 
although other covariables could be added. The least squares regression 
models are 

pbi = βi0 + βi1h+ εi, i = 1, 2,…,D − 1, (8)  

where εi are residuals whose sum of squares is to be minimized. As ex-
pected, most of these regressions are not significant and all of them have 
small R2. The best fit corresponds to pb3 = B(F,K/all other) (R2 =

0.3266, p-value < 10− 5, β̂31 = 0.0027, β̂30 = 0.8137). Although, the 
regressions in Eq. (8) do not contribute much to the knowledge about the 
relation between h and the observed composition, the regression of pb3 
still provides some interpretation. R2 is the fraction of variance of pb3 
explained by h. Also, the fact that β31 < 0 is rejected to be null, suggests 
that pb3 = B(F,K/all other) is influenced positively by height h, that is, 
there is some weak evidence that relative to other elements, the geo-
metric mean of F and K increases with h. That can be interpreted as that 
the volcanic contributions vaguely increase with h. 

However, any function of the composition can be regressed on 
covariates like h or the pH. For instance, any balance, appearing in an 
SBP can be taken as a response to a regression. The only condition is that 
results are interpretable and therefore sensible for the research. 

6. How do samples cluster according to their ion composition? 

Unsupervised cluster analysis (Kozak and Scaman, 2008) can give 
several different results depending on the clustering method and the pre- 
processing of the data set. Consequently, the question in the title has 
multiple answers. First of all, not all the information in the data set 
provides the same information for clustering, in our case it depends on 
the subcomposition chosen for clustering samples. The whole available 
composition of ions is here taken as a reference but, if the sub-
composition (F,K) is alternatively considered, one can expect substan-
tially different results. 

In order to answer the posed question, it seems appropriate to pro-
vide some preliminary information, for instance, the compositional 
centers of the data in each sub-basin (Table 2). This suggests the use of a 
k-means method (Emre Celebi et al., 2013) to obtain a clustering ac-
cording to the ion composition. To carry out the cluster analysis using 
compositional data some previous steps are required since most avail-
able software requires real data and a distance or similarity for real data. 
Therefore, the first step should be expressing the compositional data as 
real data. This can be achieved in several ways, for instance, represent 
the data in ilr coordinates like those obtained as principal balances 
(contrast matrix coded in Table 6), or as clr, which allows the compu-
tation of the Aitchison distance as a Euclidean distance. In the case of k- 
means cluster analysis, the initial centers of the four clusters should also 
be provided in the chosen representation of the data, that is in ilr co-
ordinates or in clr representation. Then, one can proceed to any cluster 
analysis that uses Euclidean distances. 

Fig. 6 shows different clustering results of the data set. In the right 
panel, the sampling points are colored as the sub-basins in Fig. 1 (sky- 
blue for HT, blue for MT, yellow for NE, and violet for LT). Additionally, 
samples taken at elevations higher than 500 m are marked with a red 
square. In the middle panel, the same points are colored as the clusters 
obtained using k-means. The colors are assigned as the initial centroids 
proposed. The right panel shows the hierarchical cluster obtained for 4 
groups, colored as the previous similar groups. 

Comparing the left and middle panels in Fig. 6, the first observation 
is that the sub-basin MT (medium Tevere) is blurred and merged with 
the other groups. That is, the geographic characterization of MT does not 
correspond to the ion composition. This is in accordance with the fact 
that MT is highly geologically heterogeneous compared to the other sub- 
basins, which instead are marked by well-defined lithological differ-
ences. A second observation is that violet points, originally assigned to 
LT (lower Tevere) and associated with a larger anthropogenic influence, 
extend to other sub-basins that also have such influence. Finally, the 
changes of group corresponding to samples over 500 m show an erratic 
behavior, probably due to pristine waters mainly influenced by the rock 
composition of the bed of the current or to the effects of local springs. 

More difficult is the comparison of the left panel and the right one in 
Fig. 6. Although the shape of sub-basin cluster LT is still identifiable, 
other groups are mixed, thus supporting the idea that cluster analysis 
can result differently depending on methods and procedures. 

7. There are no zeros in this data set. What can be done if zeros 
are present? 

In fact, the data set of ions dissolved in the Tevere basin waters does 

Table 8 
Estimated αi i = 1, 2,…,D coefficients in Eq. (7). Column R2 is the determination coefficient in the regression. Rows correspond to different degrees of simplification of 
the predictor. See the text for an explanation.  

Log-contrast HCO3 F Cl NO3 SO4 Ca Mg Na K R2 

General  63.715  − 33.499  − 17.679  − 43.529  − 58.830  127.271  6.936  − 56.393  12.009  0.59 
Elastic net  93.996  − 18.919  − 44.746  − 43.364  − 50.563  97.624  0  − 34.028  0  0.59 
User  54.168  0  − 18.056  − 18.056  − 18.056  0  0  0  0  0.54 
Selbal balance  123.88  0  − 123.88  0  0  0  0  0  0  0.34  
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Fig. 5. Scatterplot of height of sampling points with the balance 
B(HCO3/Cl,NO3 SO4). Points are colored according to the sub-basin in which 
they were collected. The regression line (red) is also shown. (For interpretation 
of the references to colour in this figure legend, the reader is referred to the web 
version of this article.) 

J.J. Egozcue et al.                                                                                                                                                                                                                               



Journal of Geochemical Exploration 258 (2024) 107385

10

not contain any zero. This is not the most frequent situation, especially if 
trace elements are included in the reported sample. Zeros in composi-
tional samples are so frequent that some researchers focus their research 
in order to include zeros as regular compositional data (e.g Butler and 
Glasbey, 2008; Tsagris, 2021). However, the log-ratio approach to CoDa 
does not accept zeros as compositional parts and considers them as 
irregular data. The reason is the definition of CoDa as positive data with 
relative scale, better than the old definition of vectors adding to a con-
stant. Certainly, zero is not relative to anything. 

In geochemistry most occurrences of zeros are due to values under 
the detection limit of measurement devices, thus they can be considered 
as censored data when the detection limit is known. In order to 
demonstrate the case of data under detection limit and their possible 
treatment, artificial zeros are created in the reference data set. This was 
done assuming that F has detection limit dl(F) = 0.0999 and dl(NO3) =

0.57 (mg/L). This generates 42 artificial zeros in F and 37 artificial zeros 
in NO3. See the artificial zero pattern in Supplementary material, Fig. 
S.5. 

The ideal situation to afford the treatment of zeros is to know the 
sampling distribution which allows to establish the likelihood of un-
known parameters given the data (including the zeros). Since this is not 
the case, a substitution of zero data should be used. Depending on the 

hypothesis, the substitution is carried out using different methods. Two 
of them were selected (Palarea-Albaladejo and Martín-Fernández, 2013; 
Palarea-Albaladejo and Martín-Fernández, 2015). The first one assumes 
that the sampling probability distribution of the concentration of the 
element containing a zero is a log-normal distribution (LN). Then a value 
under dl is simulated according to LN. The second method assumes that 
the compositional sample is normal in the simplex (Mateu-Figueras 
et al., 2013; Pawlowsky-Glahn et al., 2015). The normal model of the ilr 
coordinates allows prediction of the values under dl using the EM- 
method (Dempster et al., 1977); the resulting algorithm is named log- 
ratio EM or lr-EM (Palarea-Albaladejo and Martín-Fernández, 2015). 

Both procedures, LN and lr-EM, were applied to substitute the arti-
ficial zeros. Fig. 7 shows a projection on the plane of the two principal 
balances pb1 = B(NO3/HCO3,SO4,Ca,Mg,Na) and pb5 = B(Mg/
HCO3,Ca) of the original data (circled points colored by sub-basins). 
Also, substituted zeros are shown as red squares for the LN procedure 
and red triangles for lr-EM. A red line joins the original data that was 
artificially made zero with the LN substitution and the lr-EM substitution 
(see also another projection in the Supplementary material Fig. S.6). 

The sampling points that were transformed into artificial zeros in the 
left-hand side of Fig. 7 are shifted right after the substitution of zeros, 
both using LN or lr-EM procedures. These points correspond to zeros 
created in NO3. Also, most artificial zero points placed at the lower part 
of Fig. 7 (corresponding to zeros in F) are shifted down after replacing 
zeros. The most extreme shifts are due to the fact that the assumptions 
for the substitution are not fulfilled. For instance, the LN substitution is 
based on the log-normal distribution of the elements. However, these 
hypotheses are rejected using the original data (Supplementary mate-
rials Fig. S.7). However, note that, in a standard situation, these hy-
potheses are hardly checked as, obviously, the true values are not 
known. 

8. Software 

Computations and figures were elaborated using R (R Development 
Core Team, 2004). Particularly, the following list of tasks use R- 
packages:  

• Zero pattern and substitutions: R-package zCompositions (functions: 
zPatterns, multLN, lrEM) (Palarea-Albaladejo and Martín-Fernández, 
2015).  

• CoDa-dendrogram, ilr coordinates, variation array and Mahalanobis 
distances: R-package compositions (functions: CoDaDendrogram, 
MahalanobisDist) (Boogaart et al., 2009; Boogaart and Tolosana- 
Delgado, 2008).  

• Principal balances: R-package coda.base by Comas-Cufí, (function: 
pb.basis), URL: https://CRAN.R-project.org/package=coda.base . 

Fig. 6. Left: sample points classified by sub-basins (see Fig. 1). Middle: sample points clustered using K-means; initial centroids equal to centers in the four sub-basins 
(see Table 2). Right: sample points classified by hierarchical cluster (four groups), using the Aitchison distance and Ward's method. Points with red square markers 
have heights higher than 500 m. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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Fig. 7. Comparison of zero substitutions. Original data set, black circles. 
Random Log-Normal substitution, red squares. Log-ratio EM substitution, red 
triangles. Red lines join the original data point, Random Log-Normal, and log- 
ratio EM substitutions. (For interpretation of the references to colour in this 
figure legend, the reader is referred to the web version of this article.) 
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• Sparse regression: R-packages coda4microbiome and selbal (functions: 
coda glmnet, selbal.cv) (Susin et al., 2020; Rivera-Pinto et al., 2018).  

• CoDa-principal components and biplot: it was computed using the 
function svd (singular value decomposition) of the R-package base. 
However, the computation and plots can be carried out using the 
cited package compositions or robCompositions (Templ et al., 2011). 

9. Conclusions 

Many systems on the Earth shift abruptly from one given state to 
another when forced across a tipping point. Mass extinctions in eco-
systems represent a typical example, as well as the change in the hy-
drological cycle due to global warming that, with cascade effects, 
modify forest cover, land use, and climate. Predicting and possibly 
avoiding regime shifts depends on our capacity to analyze data, taking 
into account the relationships among different components. From this 
point of view, the analysis of single variables is not particularly infor-
mative in itself, if the complexity and non-linearity of the processes have 
to be taken into account. Moreover, if high-dimensional systems are 
investigated, and compositional data are part of the framework, the 
choice of the adequate sample space is fundamental to obtain relevant 
evaluations and predictions. In the realm of geochemistry, this holds 
particularly true, as the relationships among chemical constituents are 
typically analyzed by traditional binary or ternary diagrams, without 
consideration of the appropriate sample space. This work represents an 
updated guide for the proper use of consistent statistical methods 
applied to compositional data. The step-by-step application obtained for 
Tevere (Tiber) river water chemistry, following the concept of answering 
to research questions, has allowed highlighting interesting features of the 
behavior of chemical species, as well as of the sub-basins dominated by 
different lithology. With the development of Artificial Intelligence data 
are more and more considered as the “natural capital” and, conse-
quently, methods of data analysis should be up to the challenge. In this 
context, innovation in CoDA would represent an important turning 
point. 
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