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Abstract: Background: To date, no biomarkers are effective in predicting the risk of developing
immune-related adverse events (irAEs) in patients treated with immune checkpoint inhibitors
(ICIs). This study aims to evaluate the association between basal absolute eosinophil count (AEC)
and irAEs during treatment with ICIs for solid tumors. Methods: We retrospectively evaluated
168 patients with metastatic melanoma (mM), renal cell carcinoma (mRCC), and non-small cell lung
cancer (mNSCLC) receiving ICIs at our medical oncology unit. By combining baseline AEC with
other clinical factors, we developed a mathematical model for predicting the risk of irAEs, which we
validated in an external cohort of patients. Results: Median baseline AEC was 135/µL and patients
were stratified into two groups accordingly; patients with high baseline AEC (>135/µL) were more
likely to experience toxicity (p = 0.043) and have a better objective response rate (ORR) (p = 0.003).
By constructing a covariance analysis model, it emerged that basal AEC correlated with the risk of
irAEs (p < 0.01). Finally, we validated the proposed model in an independent cohort of 43 patients.
Conclusions: Baseline AEC could be a predictive biomarker of ICI-related toxicity, as well as of
response to treatment. The use of a mathematical model able to predict the risk of developing irAEs
could be useful for clinicians for monitoring patients receiving ICIs.

Keywords: immune checkpoint inhibitors; immunotherapy; immune-related adverse events; solid
tumors; absolute eosinophil count; biomarker

1. Introduction

Immune checkpoint inhibitors (ICIs) improve the outcomes of patients with different
types of cancers. However, not all patients respond to ICIs and these drugs are not devoid
of adverse events (AEs). Due to their non-specific T cell activation mechanism, the major
ICI toxicities are mediated by immunological and inflammatory tissue damage, collectively
referred to as immune-related adverse events (irAEs) [1,2]. IrAEs are recorded in 60–85%
of patients treated with anti-CTLA-4, in 57–85% of patients treated with anti-PD-1, and
in about 95% of patients who received a combined block of CTLA- 4 and PD-1 [3]. Most
irAEs are mild and can resolve spontaneously without treatment. However, more severe
irAEs may require corticosteroid or immunosuppressive therapy, lead to discontinuation
of therapy, and may increase mortality [4].
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In some reports, the occurrence of irAEs correlated with favorable survival, while
in others it did not [5–8]. To date, despite the wide use of ICIs for solid tumors and a
large number of ongoing studies, no well-recognized predictive factors of response to ICIs
have been identified, and there is a lack of information about clinical and blood markers
associated with the development of irAEs. Biomarkers that can identify patients at highest
risk of developing irAEs or lead to early detection of autoimmune toxicities could be
crucial for optimizing patient selection for ICIs, closely monitoring high-risk patients, and
early detection of irAEs [9,10]. Several potential baseline clinical–pathological risk factors
for severe irAEs have been proposed, including family history of autoimmune diseases,
tumor infiltration and location, previous viral infections such as HIV or hepatitis, and
the concomitant use of drugs with known autoimmune toxicities such as antiarrhythmics,
antibiotics, anticonvulsants, or antipsychotics [11]. Among the hematological biomarkers, a
high neutrophil-to-lymphocyte ratio (NLR) was associated with a lower risk of developing
irAEs in three retrospective studies [12–14] and a high baseline absolute lymphocyte count
(ALC) was shown to be associated with an increased risk of developing irAEs in a single-
center retrospective study [15]. In our study, an association between irAE ≥ 2 and a higher
absolute eosinophil count (AEC) was also noted [15]. Nakamura et al. proved that baseline
AEC > 240/µL was the most useful indicator to assess endocrine irAEs in patients with
metastatic melanoma (mM) treated with ICIs, and that a higher relative eosinophil count
(REC) after 1 month of therapy was significantly correlated with the occurrence of endocrine
irAEs [16]. In the study by Krishnan et al., patients who experienced eosinophilia during
treatment with ICIs were more likely to gain disease control and develop toxicity [17].
Other predictive biomarkers of toxicity investigated include subpopulations of lympho-
cytes [18–20], various cytokines, such as interleukin (IL) 6 and 17 [19,21,22], C-reactive
protein (CRP) [23,24], multiple chemokines [25], autoantibodies [26–31], single-nucleotide
polymorphisms (SNPs) [32,33], microRNA [34], the microbiome [19,35], and others [10].
However, none of these biomarkers are currently used in clinical practice to predict the risk
of irAEs.

Among the many factors under study, our interest has centered in on the role of
eosinophils. As already mentioned above, the role of this white blood cell subpopula-
tion as a potential cellular biomarker in cancer therapy has been highlighted in several
studies [15–17,36–43].

This study aims to evaluate the association between AEC at baseline and irAEs, and
to develop a mathematical model able to predict the risk of experiencing irAEs in patients
treated with ICIs. Mathematical modeling is a powerful tool for describing complex
biological systems and for examining the relative influence of various biological factors
on the overall dynamic. Our goal is to create a model using routinely available clinical
and blood parameters, in order to create a simple tool that can help clinicians in the
decision-making process of the best treatment, and in monitoring patients receiving ICIs.
To develop this model, we relied on retrospectively collected data from a monocentric
cohort of patients treated with ICIs and, subsequently, we validated it in a control cohort.

2. Materials and Methods

We conducted a single-center, observational, and retrospective study at the Medical
Oncology Unit, AOU Careggi, Firenze, Italy. The study included all cancer patients
receiving ICIs as per clinical practice from 2013, and the prevalence and type of irAEs and
the correlation with tumor response were evaluated.

The trial was examined and approved by the Regional Ethics Committee for Clinical
Trials of the Tuscany Region (protocol code “17332_oss”).

The patients were divided into three cohorts: RCC, melanoma, and NSCLC. All the
patients who received ICIs had stage IV disease.

For each cohort, we described the clinical–demographic data (age, sex), information
about therapy (therapeutic plan, mono or combo, therapy line, treatment duration, and
outcome), and toxicity severity (according to CTCAE version 4.03). The best response was
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defined based on RECIST ver. 1.1 as follows: complete response (CR) as disappearance
of all lesions; partial response (PR) as more than 30% decrease in the sum of the longest
diameter of lesions; progressive disease (PD) as more than 20% increase in the sum of the
longest diameter of lesions or appearance of new lesions; and stable disease (SD) as neither
sufficient reduction to qualify as PR nor sufficient increase to qualify as PD.

Based on this, we divided the patients into responders (CR, PR, and SD) and non-
responders (PD) to immunotherapy. We considered the baseline AEC (N◦/µL) in
all patients.

Therefore, combining AEC with important clinical factors, including age, site of tumor,
type of treatment, and toxicity, we developed a mathematical model to predict the risk
of irAEs. To evaluate its validity, we used three external cohorts of patients with mRCC,
mM, and mNSCLC who received ICIs as per clinical practice at the Medical Oncology
Unit of the University Hospital of Pisa and at the Translational Oncology Unit of Careggi
University Hospital. Multivariate logistic regression analyses were performed to explore
the independent predictors for irAEs, in terms of type and number of events.

2.1. Statistical Analysis

We calculated the mean and median baseline AEC in patients with and without irAEs:
the statistical comparison and the difference in the median between the two groups were
evaluated using the parametric t-test.

In addition, descriptive analysis was performed regarding the irAEs observed in
each cohort of patients affected by mRCC, mM, and mNSCLC. Statistical comparisons for
categorical variables (baseline AEC > 135/µL or AEC < 135/µL and occurrence or not of
all irAEs/ORR) were performed by contingency analysis with the χ2 test. All differences
were considered statistically significant at p < 0.05.

2.2. Mathematical Model

We carried out a statistical analysis, through the construction of indicators and models,
to explain the trend of toxicity, compared to the basal AEC.

3. Results
3.1. Patient Characteristics

Between April 2013 and May 2020, we enrolled 168 oncological patients treated
with ICIs at our medical oncology unit, AOU-Careggi (Florence): 43 (26.0%) with mRCC,
61 (36.0%) with mM, and 64 (38.0%) with mNSCLC. Patient demographic and clinical
characteristics are summarized in Table 1.

Median age of enrolled patients at time of diagnosis was 65 years, ranging from
30 to 92 years; 69% (n = 116) were male, and 31% (n = 52) female. Among all pa-
tients, 93 (55.4%) received nivolumab, 40 (23.8%) pembrolizumab, 13 (7.7%) ipilimumab,
12 (7.1%) atezolizumab, and lastly 10 patients (6%) received nivolumab plus ipilimumab.
Overall, 12 patients achieved CR (7.1%), 20 PR (11.9%), 50 SD (29.8%), and the remaining
86 experienced PD (51.8%). While almost half of patients (n = 86, 51.2%) were not respon-
sive to treatment (defined as patients who experienced PD as best response), the percentage
changed between different tumors: non-responders accounted for 58.1% (n = 25) of patients
with mRCC, 56.3% (n = 36) of patients with mNSCLC, and 41.0% (n = 25) of patients
with mM.
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Table 1. Patient characteristics.

Characteristics Total (n = 168) mRCC (n = 43) mM (n = 61) mNSCLC (n = 64)

Age—years

Median 65.38 63.58 65.39 66.56
Min–Max (30–92) (45–79) (30–92) (32–83)

Sex—n (%)

Male 116 (69%) 38 (81%) 43 (70%) 38 (59%)
Female 52 (31%) 8 (19%) 18 (30%) 26 (41%)

Treatment—n. (%)

Nivolumab 93 (55.4%) 33 (76.7%) 31 (50.8%) 29 (45.3%)
Pembrolizumab 40 (23.8%) 0 (0%) 17 (27.9%) 23 (35.9%)

Ipilimumab 13 (7.7%) 0 (0%) 13 (21.3%9 0 (0%)
Atezolizumab 12 (7.1%) 0 (0%) 0 (0%) 12 (18.8%)

Nivolumab + Ipilimumab 10 (6.0%) 10 (23.3%) 0 (0%) 0 (0%)

Outcome—n (%)

CR 12 (7.1%) 1 (2.3%) 7 (11.5%) 4 (6.3%)
PR 20 (11.9%) 6 (14.0%) 8 (13.1%) 6 (9.4%)
SD 50 (29.8%) 11 (25.6%) 21(34.4%) 18 (28.1%)
PD 86 (51.2%) 25 (58.1%) 25(41.0%) 36 (56.3%)

Responders—n (%)

Yes 82 (48.8%) 18 (41.9%) 36 (59.0%) 28 (43.8%)
No 86 (51.2%) 25 (58.1%) 25 (41.0%) 36 (56.3%)

irAE occurrence—n (%)

Pts without irAEs 55 (32.7%) 11 (25.6%) 18 (29.5%) 26 (40.6%)
Pts with irAEs 113 (67.3%) 32 (74.4%) 43 (70.5%) 38 (59.4%)

3.2. Immune-Related Adverse Events (irAEs) and Basal Absolute Eosinophil Count (AEC)

Of patients of our cohort, 67.3% (n = 113) experienced at least one irAE. We recorded a
total of 196 irAEs; the median number of irAEs per patient was 1.35 (range 0–8), and it was
lower for patients with mNSCLC compared to those with mRCC and mM (Table 2).

Table 2. Number and CTCAE grade of irAEs.

irAEs Overall (n = 196) mRCC (n = 63) mM (n = 70) mNSCLC (n = 63)

n. of irAEs

Mean (range) 1.35 (0–8) 1.60 (0–4) 1.48 (0–8) 1.05 (0–3)

CTCAE grade—n (%)

G1-G2 175 (89.2%) 53 (84.1%) 60 (85.7%) 62 (98.4%)
G3-G4 21 (10.8%) 10 (15.9%) 10 (14.3%) 1 (1.6%)

Eighteen patients (10.7%) developed G3-G4 (“serious”) irAEs for a total of 21 irAEs
while the total number of G1-G2 (“not serious”) irAEs was 175 (89.2%). In patients with
mRCC, we registered n = 10 (15.9%) G3-G4 irAEs. The classification by type of irAE is
reported in Supplementary Material Table S1. For each patient, we recorded the baseline
absolute eosinophil count (AEC) (Figure 1).
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Figure 1. Baseline absolute eosinophil count (AEC). 
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a greater probability of developing toxicity (p = 0.043) in the group with high basal AEC 
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Furthermore, the group with higher AEC was also positively associated with better 
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Figure 1. Baseline absolute eosinophil count (AEC).

Median baseline AEC was 135/µL (Table 3). The median varies in different tumors:
105/µL in mNSCLC, 140/µL in mM, and 150/µL in mRCC groups of patients. For those
who developed toxicity, the median AEC was higher than in patients who did not develop
toxicity (150/µL vs. 90/µL).

Table 3. Basal AEC in patients with irAEs and without irAEs.

Basal AEC–n/µL Total (n. 168) mRCC (n. 43) mM (n. 61) mNSCLC (n. 64)

Median 135.00 150.00 140.00 105.00
1st–3rd quartile 57.50–200.00 75.00–210.00 80.00–200.00 37.50–200.00

Basal AEC for Pts without irAEs–n/µL Total (n. 55) mRCC (n. 11) mM (n. 18) mNSCLC (n. 26)
Median 90.00 100.00 150.00 60.00

1st–3rd quartile 10.00–200.00 45.00–180.00 32.50–245.00 10.00–182.50
Basal AEC for Pts with irAEs–n/µL Total (n. 113) mRCC (n. 32) mM (43) mNSCLC (38)

Median 150.00 160.00 140.00 145.00
1st–3rd quartile 80.00–207.00 100.00–222.50 80.00–190.00 82.50–200.00

Patients were divided in two groups based on the median basal AEC: one group with
AEC > 135/µL and the other with <135/µL. We found a significant statistical difference
between the two groups when related to irAE development: there was an association with
a greater probability of developing toxicity (p = 0.043) in the group with high basal AEC
(>135/µL).

Furthermore, the group with higher AEC was also positively associated with better
outcome in terms of objective response rate (ORR) (p = 0.003). ORR percentages are
summarized in Table 4.

Table 4. ORR according to RECIST criteria 1.177 and basal AEC.

ORR
n = 168

AEC < 135/mL
n (%)

AEC > 135/mL
n (%)

CR 5 (2.9%) 7 (4.1%)
PR 6 (3.5%) 14 (8.3%)
SD 18 (10.7%) 32 (19.0%)
PD 50 (29.7%) 36 (21.4%)
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3.3. Mathematical Model for Prediction of Risk of irAEs

To corroborate the correlation between basal AEC values and risk of toxicity for
patients treated with ICIs, we developed a covariance analysis model, with two explanatory
variables (age and baseline AEC), a quadratic term (basal AEC), three factors (treatment,
site, and toxicity), and one interaction (between age and treatment), as reported in Tables 5
and 6. The summary table of the breakdown of variability data is given in Table 7.

Table 5. Analysis model of covariance.

Variance Df Sum Sq Mean Sq F-Value p-Value

variable X1 = age 1 5.7040 5.704000 7.177439 0.00819033
variable X2 = AEC 1 1.1600 1.160000 1.459648 0.22885028

X2 1 6.8610 6.861000 8.633312 0.00381203
Factor P = site 2 6.6530 3.326500 4.185791 0.01698731

Factor T = treatment 4 14.6320 3.658000 4.602923 0.00154665
Factor A = toxicity 1 129.1830 129.183000 162.553141 0.00000000

Interaction X1 and T 4 12.1910 3.047750 3.835035 0.00533404
error 153 121.5910 0.794712

Table 6. Proposed covariance analysis model to predict the toxicities as a function of the
baseline AEC.

Yi = µkht[i] +β1 xi1 +β2 xi2 +β3 xi2
2 +γt[i] xi1 +εi

Yi = µ +πk[i] +αh[i] +θt[i] +β1 xi1 +β2 xi2 +β3 xi2
2 +γt[i] xi1 +εi

µ = 0.2688, π = site, α = toxicity, θ = treatment, β1 = −0.0035, x1= age, β2 = 0.0016, X2 = basal AEC, β3 = 3.4860E−06,
X2

2 = basal AEC 2, γt[i] xi1 + εi= interaction between age and treatment.

Table 7. Summary table of the decomposition of the variability data.

Parameter Estimate Standard Error

µ 0.2688 0.5418
π0 0.0000
π1 −0.0432 0.2131
π2 −0.4373 0.2185
θ0 0.0000
θ1 3.4730 0.9020
θ2 −1.1820 1.4280
θ3 1.1750 2.6080
θ4 −1.4930 1.7700
α0 0.0000
α1 1.8850 0.1519
β1 −0.0035 0.0079
β2 0.0016 0.0012
β3 3.4860 1.8660
γ0 0.0000
γ1 −0.0444 0.0132
γ2 0.0144 0.0224
γ3 −0.0157 0.0392
γ4 0.0239 0.0257

The estimated values of the parameters have the task of providing us with predictions
relating to the response variable “toxicity” by intervening in the explanatory variables. In
addition to the estimate of the parameters, the table provides the estimate of the respective
standard deviations, which indicates the variability of the parameters considering the
universe of the samples.

The proposed model fits with the sequence of data (as can be observed from the
values from the F significance tests with the respective p-values reported in Table 1 in
the Materials and Methods section); for this reason, it is possible to explain the trend of
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the phenomenon studied and to obtain reliable prediction of toxicity based on basal AEC.
Moreover, AEC values registered in patients treated with ICIs are able to precisely define
the risk of occurrence of irAEs (p < 0.01) as per the mathematical model reported above,
confirming the AEC value prediction ability.

Finally, we validated the proposed model in an independent cohort of oncological
patients (n = 43) treated with ICIs: 13 (30.2%) at the Medical Oncology Unit of the University
Hospital of Pisa with mM, and 30 at the Translational Oncology Unit of Careggi University
Hospital, of which 21 (48.8%) had mNSCLC and 9 (21.0%) had mRCC.

4. Discussion

ICIs are becoming the standard of care for many different cancers [1,44]. It is well
known that ICIs can cause peculiar immunologic toxicities called irAEs. The mechanism of
ICIs enhances the activity of T cells against antigens present both in tumors and healthy
tissues and increases the level of pre-existing autoantibodies and inflammatory mediators,
leading to a series of irAEs [45]. IrAEs are usually mild and, when rapidly recognized and
treated, patients can often continue immunotherapy. On the other hand, severe irAEs can
be life-threatening, therefore biomarkers able to predict irAE onset are crucial. However,
research on the mechanisms of irAEs is still in the early stage, and there are no recognized
biomarkers able to predict the development. Recently, the use of baseline blood cell counts
used as biomarkers has been growing as they are easy, affordable, accessible, and usually
routinely requested in clinical practice [46,47].

The relationship between eosinophil count and toxicity has not been widely researched
yet. It has been suggested that AEC in patients with mM is associated with both the re-
sponse to treatment with ICIs as well as the risk of developing irAEs. This is because
eosinophils may have antitumoral effects in the tumor microenvironment by promoting
NK cell and T cell recruitment and direct cytotoxicity by production of granzymes and
other cytotoxic proteins [47]. A similar report highlighted that patients experiencing treat-
ment toxicity were more likely to have eosinophilia during the course of treatment [17].
Interestingly, Jodai et al. reported that the interaction between PD-1 receptors with both
programmed cell death receptor ligand 1 (PD-L1) and PD-L2 on lung dendritic cells
might explain the mechanism of eosinophilic pneumonia: the binding of PD-1 to PD-
L2 on the dendritic cells may activate pulmonary inflammation induced by Th2 cells
which produces interleukin (IL) 4, 5, and 13, eventually resulting in eosinophilic acti-
vation [48]. Furthermore, another paper showed that a baseline feature of a high AEC
(≥0.125 × 109 cells/L) was associated with an increased risk of ICI pneumonitis in patients
with NSCLC [49].

As described in previous studies, eosinophils play both regulator and effector roles
in multiple immune functions, such as activation of T cells by carrying out antigen-
presenting functions and attraction of tumor-specific CD8+ T cells [43,47]. Preclinical
data evidenced that eosinophils regulate pulmonary T cell responses [50]. These evidences
show that eosinophils are closely related to the occurrence of immune pneumonitis in
ICI-treated patients.

With the present study, we aimed to explore the correlation between AEC and occur-
rence of irAEs in a cohort of patients affected by solid tumors and treated with ICIs. We
found that there is an association between basal AEC > 135/µL and risk of irAEs.

Furthermore, we also noticed a positive correlation between baseline AEC and out-
come: patients with basal AEC > 135/µL showed a higher ORR. Clinically, tumor-associated
eosinophilia has been reported in many studies to be correlated to a good prognosis, for
example, in gastrointestinal cancers, head and neck cancer, bladder cancer, and prostate
cancer. The role of activated eosinophils in directing the immune response mediated by
CD8+ T cells was detected in a recent study; moreover, eosinophils also contribute to modi-
fying the tumor microenvironment and improving vascularization. All these mechanisms
are known to promote tumor regression and survival [43].
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The relationship between AEC and immunotherapy response has been studied, es-
pecially in melanoma and NSCLC. A baseline signature of low LDH, absolute monocyte
counts (AMCs), high AEC, Tregs, and relative lymphocyte counts (RLCs) is associated with
favorable outcome following ipilimumab in patients with mM [36]. Another clinical study
showed that both absolute and relative eosinophil counts were significantly associated
with improved OS in patients with mM treated with ipilimumab [37]. In a retrospective
study of patients with mM treated with ipilimumab, there was an increase in AEC after
the first ipilimumab infusion in responding patients compared to non-responders [42].
Similar results were found in patients with mRCC and mNSCLC treated with nivolumab.
For patients with mRCC, a higher (>4.2) baseline neutrophil–lymphocyte ratio (NLR) was
associated with an increased risk of progression, whereas a higher (>0.1 k/uL) baseline
AEC was associated with a lower risk of progression [38]. In mNSCLC, a low absolute
neutrophil count (ANC), high absolute count of lymphocytes (ALC), and high AEC were
significantly and independently associated with both better progression-free survival and
overall survival [39].

As an additional step, we tried to build a model to predict toxicity based on our
results. In the present study, we developed a mathematical model able to define the risk
of developing irAEs in patients treated with ICIs depending on age, AEC, treatment, and
tumor location. In the era of personalized oncology, prediction models are becoming
increasingly useful instruments in clinical practice. As we move towards clinical oncology
in which we want to carefully individualize treatment, care, and monitoring as much as
possible, it is imperative to collect information on an individual’s risk profile. Prediction
tools for chemotherapy toxicity have been reported [51,52] but models for predicting the
risk of developing irAEs in immunotherapy are not yet published.

Our model integrates variables such as AEC, age, drugs, and tumor type and could
be a useful tool to determine baseline risk of toxicity. This information can be used in
the decision-making process, especially for fragile patients. With regard to toxicity, a
basal value of AEC > 135 µL would suggest the importance of closer monitoring of the
patient due to a higher risk of developing an irAE. In addition, an early toxicity assessment,
provided by our model, could be associated with better treatment adherence and outcomes.

There are a number of limitations in the current study that need to be addressed. The
main limitations are the retrospective design of the study and the small sample size. A
further limitation is the selection of patients, which is more selective in clinical trials, due to
inclusion and exclusion criteria, than in real-life clinical practice. In addition, we analyzed
a non-homogeneous cohort in terms of tumor types (mRCC, mM, and mNSCLC) and
treatments (different single ICIs or combinations of ICIs). Owing to the inherent potential
biases of our analysis, these results can only be viewed as a hypothesis generator and
should be confirmed in future prospective studies.

Conversely, the strength of this research is the external validation of the model. Despite
its shortcomings, our model allowed the development of a system for identifying patients
at high risk prior to starting immunotherapy. Prospective external validation is also
being planned.

5. Conclusions

In our experience, baseline AEC is suggested to be a predictive biomarker of ICIs
related toxicity and response to immunotherapy. The possibility to use a mathematical
model to predict the risk of onset of irAES could be useful to individualize treatments, and
to monitor patients during therapy, to achieve the best compliance and adherence to ICIs
and to better manage adverse events.
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