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Metalloproteins play key roles across biology, and knowledge of their

structure is essential to understand their physiological role. For those met-

alloproteins containing paramagnetic states, the enhanced relaxation caused

by the unpaired electrons often makes signal detection unfeasible near the

metal center, precluding adequate structural characterization right where it

is more biochemically relevant. Here, we report a protein structure determi-

nation by NMR where two different sets of restraints, one containing

Nuclear Overhauser Enhancements (NOEs) and another containing Param-

agnetic Relaxation Enhancements (PREs), are used separately and eventu-

ally together. The protein PioC from Rhodopseudomonas palustris TIE-1 is

a High Potential Iron-Sulfur Protein (HiPIP) where the [4Fe-4S] cluster is

paramagnetic in both oxidation states at room temperature providing the

source of PREs used as alternative distance restraints. Comparison of the

family of structures obtained using NOEs only, PREs only, and the combi-

nation of both reveals that the pairwise root-mean-square deviation

(RMSD) between them is similar and comparable with the precision within

each family. This demonstrates that, under favorable conditions in terms

of protein size and paramagnetic effects, PREs can efficiently complement

and eventually replace NOEs for the structural characterization of small

paramagnetic metalloproteins and de novo-designed metalloproteins by

NMR.

Databases

The 20 conformers with the lowest target function constituting the final family obtained using

the full set of NMR restraints were deposited to the Protein Data Bank (PDB ID: 6XYV). The

20 conformers with the lowest target function obtained using NOEs only (PDB ID: 7A58) and

PREs only (PDB ID: 7A4L) were also deposited to the Protein Data Bank. The chemical shift

assignments were deposited to the BMRB (code 34487).

Introduction

Metalloproteins represent 40 to 47% of all known

enzymes [1,2] and, for all of them, the metal center(s)

are essential for catalysis, electron transfer, and metal

storage/transport, or they play a crucial role in

determining stability and structural properties [3–12].
Structural biologists are mainly interested in obtaining

detailed information in the proximity of the metal cen-

ter(s), where the biochemically relevant events occur.

Abbreviations

HiPIP, high potential iron-sulfur protein; HSQC, heteronuclear single quantum coherence; NOE, nuclear overhauser enhancement; NOESY,

nuclear overhauser enhancement spectroscopy; PRE, paramagnetic relaxation enhancement; RMSD, root-mean-square deviation.

3010 The FEBS Journal 288 (2021) 3010–3023 ª 2020 Federation of European Biochemical Societies

https://orcid.org/0000-0002-6746-8455
https://orcid.org/0000-0002-6746-8455
https://orcid.org/0000-0002-6746-8455
https://orcid.org/0000-0002-0312-7547
https://orcid.org/0000-0002-0312-7547
https://orcid.org/0000-0002-0312-7547
https://orcid.org/0000-0003-0526-6732
https://orcid.org/0000-0003-0526-6732
https://orcid.org/0000-0003-0526-6732
https://orcid.org/0000-0002-2392-6450
https://orcid.org/0000-0002-2392-6450
https://orcid.org/0000-0002-2392-6450
https://orcid.org/0000-0001-9882-9754
https://orcid.org/0000-0001-9882-9754
https://orcid.org/0000-0001-9882-9754
mailto:
mailto:
https://doi.org/10.2210/pdb7A58/pdb
https://doi.org/10.2210/pdb7A4L/pdb
http://crossmark.crossref.org/dialog/?doi=10.1111%2Ffebs.15615&domain=pdf&date_stamp=2020-11-23


NMR is a privileged approach for characterizing met-

alloproteins since it can provide the structure in solu-

tion at atomic resolution, information about the

amplitudes and time-scales of internal dynamics

[13–15], as well as hints on the electronic structure and

oxidation states of the metal center [16] in conditions

that mimic the physiological context. A significant part

of the metallo-proteome contains paramagnetic metal

ions. Their presence perturbs the chemical shift and

relaxation of NMR signals in ways that can be con-

verted into structural and dynamic information [17,18].

Early attempts to convert paramagnetic nuclear

relaxation rates in NMR restraints and include them

into solution structure protocols achieved the first

solution structures of paramagnetic proteins [19]. The

introduction of residual dipolar couplings (RDCs) aris-

ing from self-oriented paramagnetic proteins [20] com-

bined with pseudocontact shifts (PCS) and cross-

correlation rates (CCR) succeeded, in the case of cyto-

chrome c’, to obtain the first backbone structure of a

protein in the absence of NOE measurements [21] and,

at the same time, opened the possibility to use orienta-

tional restrains also in diamagnetic proteins. Nitroxide

radicals used as site-directed spin labels allowed the

conversion of Paramagnetic Broadening Effects into

distance restraints for large molecular weight proteins

[22]. This work led to the introduction of the ‘concept’

of Paramagnetic Relaxation as long-range restraints

for non-native metalloproteins and the acronym PRE

(Paramagnetic Relaxation Enhancements) was coined

[23]. Since they are long-range constraints, PREs are a

good alternative/complement to RDCs to obtain solu-

tion structures when NOES and scalar couplings are

unable/insufficient to define the structure. Extrinsic

paramagnetic centers can be attached via conjugation

to specific, solvent-exposed sites [24] and, indeed, the

use of PRE soon flourished. Macromolecular struc-

tures using PRE data have been characterized not only

for soluble proteins [23,25], but also for protein–pro-
tein [26–28] and protein–nucleic acid complexes

[29–31], membrane proteins [32], unfolded, or partially

unfolded states [33–36], proteins in living cells [37,38].

Also in solid state protein NMR spectroscopy, PREs

coupled with PCS [39,40] provided accurate solid state

structures in the absence of conventional distance or

dihedral angle restraints [41,42] as well as information

on the oligomerization interface of large membrane

proteins [43]. Actually, applications of PREs go

beyond their use as structural constraints for obtaining

‘static’ NMR structures: They may unravel structural

information on transient, invisible, intermediates [44]

and provide information on encounter complexes

[45–47], interdomain motions [48], transient protein

associations [49–51], nonspecific protein–DNA interac-

tions [52] and also in drug discovery [53–56].
However, several aspects, such as the accuracy of

PRE data [57] and the weak correlation observed

between distance derived PREs and those found in

crystallographic structures [58,59] deserve further

investigations. For example, it has been shown for lan-

thanide ions that magnetic anisotropy provides a sub-

stantial angular dependence of nuclear relaxation rates

[60,61]. Nonspecific intermolecular PREs and cross-

correlations between Curie Spin Relaxation and dipo-

lar spin–spin couplings [62,63] might be responsible for

the deviation of paramagnetic relaxation rates from

the r−6 dependency (r being the metal-to-nucleus dis-

tance) [58]. These factors limit the accuracy of PREs

especially at longer metal-to-proton distances; on the

other hand, at shorter metal-to-proton distances, the

paramagnetism-induced line broadening prevents the

detection of NMR signals limiting the information

available at the close proximity of the paramagnetic

center.

For the above reasons, small-sized metalloproteins

are interesting cases to study the behavior of paramag-

netic relaxation when the paramagnetic center is not

affected by local mobility and represents the crucial

part of the protein. Moreover, tailored experiments

increased the availability of PRE values also at shorter

metal-to-nucleus distances [64]. In these conditions,

PREs are usable not only as long-range restraints but

also as medium and short-range restraints. A [Fe4S4]
2+

cluster possesses a negligible magnetic anisotropy and

it is buried within the protein. This rules out the many

effects that give rise to relaxation anisotropy. There-

fore, PioC, a small (54 aa residues) HiPIP (High

Potential Iron Protein) from R. palustris TIE-1 repre-

sents a peculiar and interesting system to assess

nuclear relaxation properties, analyze the relative con-

tribution of NOE and PREs and discuss the use of

PREs as alternative to NOE for the portion of the

protein where the presence of paramagnetic metal ions

poses a challenge for the detection of classical struc-

tural restraints and even for signal detection [21].

The interplay between NOEs and paramagnetism-

based restraints has been addressed by many groups,

and there are many evidences of the fact that the

replacement of NOEs with other restraints is feasible,

when the alternative restraints considered, arise from

different complementary sources [65–68]. Sparse NOE

and chemical shifts can be used together with sophisti-

cated modeling methods to obtain well-defined solu-

tion structures [69,70]. Protein structures have also

been determined without NOEs using orientational

restraints from at least two full sets of RDC
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[21,71–73]. Tagging a protein with lanthanide ions at

four different sites succeeded to obtain a backbone

structure without NOEs [74], whereas the use of differ-

ent lanthanide ions on a single metal center required a

minimal number of NOEs to obtain a structure [75]. A

backbone structure was obtained using a combination

of PRE, RDC, PCS, CCR, and backbone NOEs,

which were used to properly define α helices [76]. Para-

magnetic Relaxation Enhancements (PRE) are dipole–-
dipole restraints, like NOEs. Therefore, if a sufficient

number of PRE restraints are available throughout the

entire protein, they should restrain the conformational

space with efficiency comparable to NOEs, even when,

like in a metalloprotein, the distance restraints all

involve a single point, that is, the native paramagnetic

center of the system. To explore these issues, the

NMR solution structure of the small iron–sulfur pro-

tein PioC from R. palustris TIE-1 [77] was pursued as

a paradigmatic challenge. PioC mediates the electron

transfer between the reaction center and the iron-oxi-

dase in the photoferrotrophic metabolism of R. palus-

tris TIE-1. It contains a [4Fe-4S] cluster with a very

high reduction potential (E0 = +450 mV vs SHE),

being stable in the [Fe4S4]
2+ oxidation state. With 54

amino acids, it is the smallest HiPIP ever isolated. Its

3D structure is unknown, but homology modeling with

other HiPIPs suggests that the protein has a compact

globular structure, characterized by the absence of

topologically relevant secondary structure elements; it

is instead predicted to be composed essentially by a

series of loops and turns wrapped around the [4Fe-4S]

cluster [78,79]. The electronic properties of [Fe4S4]
2+ in

HiPIPs have been studied in detail over the past

40 years [3,80-88]. The magnetic coupling within the

[4Fe-4S] cluster makes the electronic correlation times

of the individual iron ions much shorter than isolated

high spin Fe3+ or Fe2+ ion; nevertheless, paramagnetic

contributions to nuclear relaxation are significant for

nuclei within a 10 Å sphere from the cluster [89,90].

Therefore, PioC is a suitable system to address an

important issue for inorganic biochemistry: Is it possi-

ble to improve methods for measuring relaxation rates

in paramagnetic systems to the point that PREs can

be used as the sole source of restraints to define the

structure of a metalloprotein?

Results and Discussion

NMR experiments currently available for measuring
1H R1 and R2 rates [23,57] fail to provide PRE data

in the proximity of the paramagnetic center, where

many signals are broadened beyond detection. This

limits the use of PREs in metalloproteins, in which

the paramagnetic center is also the core of the pro-

tein. Recently, we developed experiments [64,91] that

provided accurate 1H R1 and R2 values in the range

50–500 s-1 and substantially improved the amount of

PRE restraints in the close proximity of the param-

agnetic center. Accurate measurements of both R1

and R2 rates are important to obtain reliable infor-

mation on the metal-to-proton distances and to use

PREs also as short-range restraints. A standard 15N

HSQC experiment on a PioC sample shows only 39

amide resonances out of expected 49 non-proline

residues. However, a 15N IR-HSQC-AP experiment,

specifically designed to observe fast relaxing reso-

nances, shows additional 10 resonances, demonstrat-

ing that all HN signals of PioC can be detected

(Fig. 1A).

The complete resonance assignment of the protein

was obtained combining the conventional approach

based on triple resonance experiments (Table S1) with

a non-systematic procedure using a combination of 1D

NOEs, 13C direct detection, double and triple reso-

nance experiments recorded with parameters optimized

à-la-carte (Table S2) [92]. These experiments provided

the complete NMR assignment of PioC (BRMB entry

34487) [93]. We assigned (excluding the N-ter Val 1)

100% of backbone 1HN,
13C, and 15N resonances,

98% of Hα, 86% and 91% of 1H and 13C side chains

atoms, respectively. However, even though the 1H res-

onance were almost completely assigned, 15N and 13C

HSQC-NOESY experiments at high magnetic field

gave only 344 meaningful NOEs, that without any

additional information on the [4Fe-4S] cluster binding

mode, were insufficient to obtain a converged struc-

ture. Three factors quench these NOE intensities: (i)

the small rotational correlation time (3.4 × 10−9 s,

from 15N relaxation); (ii) paramagnetic relaxation

affecting at least 50% of the protein; and (iii) the

absence of secondary structure elements, typical of

HiPIPs. We introduced the cluster into structure calcu-

lations: bond distances and angles defining the geome-

try of the cubane cluster, that are not accessible via

NMR, are given by introducing a special residue into

the CYANA library [94], as described in Supporting

Information. The introduction of the cluster gave

structures with backbone and heavy atoms RMSD of

1.27 � 0.20 Å and 1.95 � 0.20 Å. Indeed, the cluster

is the essential structural element to drive the fold of

the polypeptide chain.

Paramagnetic NMR experiments provided struc-

tural constraints for cluster-binding residues (through

coordinative or hydrogen bonds) crucial to define

their orientation: Cys βCH2 hyperfine shifts were

converted into four χ2 dihedral angle constraints
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defining the cluster binding topology according to a

procedure already described [95], seven crucial 1D

NOEs provided distances between Cys βCH2 and

neighboring residues (Fig. S1), large 15N contact

shifts, observed for Gln27, Val37, and Leu49 [93]

were taken as an evidence of three hydrogen bonds,

respectively, linking HN to the Sγ atoms of the

preceding (i-2 or i-3) cluster-bound cysteine residues

[96]. Only fourteen constraints of this type are avail-

able but they are extremely important to frame the

cluster within the protein and to provide restraints

where other experimental approaches fail to provide

information. These cluster-derived restraints are

shown in Fig. 1B. When also these constraints were

A B

Fig 1. (A) 500 MHz 298K, 15N- HSQC spectrum on PioC collected using the HSQC-AP experiment (blue), overlaid with a standard 15N

HSQC spectrum (red). Labeled signals are observable only in the HSQC-AP spectrum. Signals marked with asterisks are folded peaks

arising from side chains. (B) Cluster-derived NMR restraints: dihedral angles χ2 of cluster-bound Cysteines (black), hydrogen bonds between

HN residues and Sγ of Cysteines (red), 1H NOEs between well-resolved 1H βCH2 Cys resonances and surrounding protons (green).

Molecular graphics performed with UCSF Chimera, developed by the Resource for Biocomputing, Visualization, and Informatics at the

University of California, San Francisco, with support from NIH P41-GM103311.

Fig 2. Solution structure of PioC obtained using NOEs only (orange), the full set of NMR restraints (blue), PREs only (green). In all cases,

the families of 20 conformers were obtained from Torsion Angle Dynamics (CYANA2.1) and refinement using molecular dynamics (AMBER-

16 package). Residues 5–49 are shown. Molecular graphics performed with UCSF Chimera.
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included into structure calculation, a well-converged

structure was obtained (Fig. 2A), with backbone and

heavy atoms RMSD of 1.04 � 0.30 Å and

1.81 � 0.30 Å (residues 5–50).
We next considered the impact of PREs: To this

end, we collected R1 and R2 values of all amide pro-

tons using the 15N-IR-HSQC-AP (48 1H R1 values)

and the R2-weighted
15N-HSQC-AP experiments (50

1H R2 values) [64]. For non-exchangeable protons, a
13C-IR-HSQC-AP provided R1 values of 200 1H pro-

tons of backbone 1Hα and side chains. Finally, 1H and
13C resonances of cluster-bound Cys residues, identi-

fied and assigned using rapid recycling experiments,

provided thirteen R1 and R2 values from inversion

recovery and linewidth analysis of one dimensional 1H

and 13C experiments. Overall, 306 1H (amide protons

plus backbone 1Hα and aliphatic side chains) and 5
13C relaxation rates, amounting to ca. six rates per

residue, were measured (Table S3). The behavior of

HN, Hα, and Hβ rates is shown in Fig. 3 and points

out that about 60 % of signals are affected by the

paramagnetic center.

The R1,2para contributions are calculated according

to:

R1,2obs ¼R1,2diaþR1,2para (1)

For backbone atoms, R1,2dia (red lines in Fig. 3)

were estimated from averaged values of residues 4–7,
that do not belong to the flexible N-term loop (Fig.

S2) and are not affected by paramagnetism. For side

chains protons, the R1dia values were taken by consid-

ering for each type of proton, the average value

obtained by taking into account only values within

the standard deviation. Then, R1,2 para (blue his-

tograms in Fig. 3) are converted into distances (rMH)

according to the Solomon–Bloembergen equations

[97]

Fig 3. Longitudinal and transverse relaxation rates of amide and aliphatic protons. Horizontal red lines show the average diamagnetic values.

Blue histograms are rates converted into PRE values. Values of Hβ are out of scale (see Table S3).
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In the equations, we considered τc = 6 × 10−12 s,

arising from an estimated value of τe for each iron

ion, τr = 3 × 10−9 s obtained from 15N relaxation, and

S = 1, arising from the lowest excited state of the elec-

tron spin ladder of the [Fe4S4]
2+ cluster. Distances

obtained from eqs (2 and 3) were then converted into

upper limit distances (upl). For non-exchangeable pro-

tons, we obtained overall 122 upl. For amide HN reso-

nances, when R1 and R2 provided different upper

distance limits for the same 1HN proton, the upper

limit value was taken by considering the less restrictive

value among the two. In these cases, the upper limit

value was given a weighting factor 2. For the 49 non-

proline residues, 30 upper distance limits were used.

Since we do not have a priori the information on

which iron of the cluster is causing the dipole coupling

with each nucleus, in a first structure calculation all

PRE-based upper limit distance restraints were

assigned to the mass center of the cluster, rather than

to a specific iron ion of the cluster. This was obtained

by adding at the end of the protein sequence a special

linker made of 100 pseudo-residues called LL2. The

‘atoms’ of LL2 pseudo-residues have zero mass and

zero van der Waals radii, thus the linker can freely

pass through the structure during simulated annealing.

The last residue of the linker is an ION residue

(CYANA library) which has been subsequently linked

at fixed distances with the four iron ions and with the

four sulfur ions of the cluster, with van der Waals con-

tact taken to zero in order to avoid distortions or

additional contribution to the overall energy. In this

construct, the ION residue represents therefore the

mass center of the cubane. Additional 1.4 Å (where

1.4 Å is the distance between each iron and the mass

center of the cubane in the typical [4Fe-4S] structure)

was added to all upl values obtained from PREs and

all restraints were given to the center of mass of the

cubane. To perform the final refinement via AMBER,

for each PRE restraint the center of mass of the

cubane has been replaced with the closest iron ion of

the cluster as resulting from the structure obtained

with CYANA (or with the two closest iron ions when

ambiguous metal-to-proton distances occur) and the

upper limit distance taken from eqs (2 and 3).

Paramagnetic relaxation enhancements that are vio-

lated in a significant number of structures were criti-

cally analyzed, taking also into account the NOES. It

was found that, while no violations have been

observed for PREs obtained from non-exchangeable

protons, some of the PRE values of exchangeable HN

gave rise to consistent violations. Some of them are

due to local internal dynamics (15N relaxation shown

in Fig. S2). However, some of the R1 and R2 HN val-

ues belonging to the residues 5–20 (i.e., the N-terminal

part preceding the cluster-binding region) and to resi-

dues 42–44 (part of the long loop between Cys 34 and

Cys 47) showed consistent violations that are not

accounted by 15N relaxation. All these residues have

calculated iron-to-proton distances in the range

7–11 Å, while no violations were observed for HN dis-

tances in the range 4–7 Å. This effect is observed only

for exchangeable amide protons; indeed, aliphatic pro-

tons values were in very good agreement with the

structure also at distances > 10 Å. This suggests that

magnetic susceptibility anisotropy is not the only fac-

tor responsible for the deviation from eqs 2 and 3

[58,61], as also previously observed in Cu(II) proteins

[59]. Intermolecular effects and/or solute–solvent inter-
actions could be possible factors affecting the quantita-

tive analysis of HN relaxation rates. PREs giving rise

to consistent violations were excluded from structure

calculation. Overall, 175 PRE restraints were retained

from relaxation-rate data (Table S4), and the total

number of distance restraints (NOE and PRE) was

increased to 533. A summary of these restraints is

reported in Table S5.

R1 ¼ 2

15

μ0
4π

� �2 γ2Iμ2Bg2eS Sþ1ð Þ
r6MH

τc

1þðωI�ωSÞ2τ2c
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1þω2

I τ
2
c

þ 6τc

1þðωIþωSÞ2τ2c

 !
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The addition of relaxation-based NMR restraints

gave a more tightly converged NMR structure, with

backbone and side chain RMSD values of

0.62 � 0.11Å and 1.14 � 0.13Å, respectively (Fig. 2B).

PRE data improved the quality of the structure not

only in the proximity of the cluster, but throughout

the entire protein. The combination of both type of

restraints led to statistical parameters that are indica-

tive of a highly precise structure of a well-folded pro-

tein of small/medium size (Table S6). Finally, we

addressed the question of whether an NMR structure

obtained without NOEs is able to achieve good accu-

racy and precision. Figure 2C shows the family of

structures obtained without the 344 NOEs from 13C

and 15N-NOESY-HSQC experiments. The structure

has backbone and heavy atoms RMSD of

1.31 � 0.27Å and 2.00 � 0.32Å, respectively. The

overall precision is obviously lower than that obtained

with the full set of restraints and it is also lower than

that obtained with NOE-only, because of the lower

number of restraints, but still lies within an acceptable

structure quality range. The per-residue comparison of

backbone RMSD (Fig. 4A) shows that the family

obtained with the full set of restraints has always the

lowest RMSD (except Thr24), indicating that the com-

bination of NOEs and PREs improves the precision in

all the protein regions. PREs provide information

exactly were NOEs are missing, thus complementing

NOE data. In several protein regions, the NOE-only

family has an RMSD similar to the family obtained

with the full set of restraints, indicating that NOEs

drive the structure toward a minimum. Conversely, in

other protein regions, the precision is improved by the

use of PREs; in these regions, the structure quality is

A B

C

Fig 4. (A) per-residue RMSD values of the three different families. The relative contribution of the different set of constraints on a per-

residue basis is shown with the color code indicated in the Figure. (B) Superimposing of the most representative structures of each

ensemble obtained with different sets of constraints. Figure reports also pairwise backbone RMSD values. (C) Regions where the number

of PRE restraints exceeds that of long-range NOE restraints are shown in red and orange; regions were the opposite occurs are shown in

blue and light blue. Molecular graphics performed with UCSF Chimera.
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PRE driven. The loop surrounding the cluster and

containing Cys 22 and Cys 25 of the CXXC binding

motif in HiPIPs has a different trend. Here, the

RMSD values of the three families are similar and

higher than average values. This is the situation in

which, not only NOEs but also PREs are missing due

to the close proximity to the paramagnetic center.

Essentially, for this fragment the structure is given by

the cluster-binding topology, by the dihedral angles of

Cys bound residues, and by the hydrogen bonds iden-

tified by 15N contact shift. We can obtain clues on the

accuracy of the structures by comparing the most rep-

resentative structures of the three families: the PRE-

only, the NOE-only, and the full-set structures. As

shown in Fig. 4B, the pairwise RMSD between them

are all similar and comparable with the precision

within each family. The representative conformer

selected from the ensemble obtained with the full set

of restraints is, for most of the protein, in an average

position among the representative conformers of the

PRE-only and NOE-only ensemble. The PRE-only

structure ensemble is essentially the same, although

with a larger RMSD, as the one obtained with the full

set of restraints. Finally, Fig. 4C points out the rela-

tive impact of PREs vs long-range NOEs. As expected,

residues surrounding the cluster have a dominance of

PREs; however, also regions from a larger sphere,

such as stretch 10–13, experiences the contribution of

PREs. Noteworthy, an opposite behavior is observed

for the aromatic residue surrounding the cluster

Trp46, which experiences both NOEs and PREs. This

large hydrophobic residue has the role of maintaining

the hydrophobicity of the cluster and protecting it

from solvent accessibility. Therefore, it gives rise to

many long-range NOEs, extending from the close

proximity of the paramagnetic center to the diamag-

netic region.

Conclusions

Notwithstanding the exciting perspectives opened by

computational biologists [98–101], the quest for novel

experimental restraints remains of primary importance

for structural modeling. Up to date, a dense network

of NOEs has always been considered essential for

NMR structures, because restraints between residues

that are far apart in the primary sequence define the

relative orientation of different structural motifs [102].

Factors such as protein size, electronic correlation

times of metal ion(s) and internal mobility modulate

the interplay between paramagnetism-based and con-

ventional NMR restraints and their relative contribu-

tion to the final structure. The NMR structure of PioC

is a proof of concept that PREs may drive a solution

structure and eventually act as the sole source of

NMR restraints. When a protein is small enough to be

affected by paramagnetism in a large percentage, then

NOEs are not essential anymore, if relaxation rates are

measured virtually for all 1H spins. In PioC, the

[Fe4S4]
2+ cluster provides upper distance limits for

PREs up to 13 Å, while the average protein radius is

about 15 Å, thus being an ideal case for obtaining an

accurate and well-converged PRE-driven NMR struc-

ture. In this case, an extended network where all the
1H spins are linked to a single point (the metal center)

via long-range dipolar couplings can completely

replace a network of short-range dipole–dipole 1H-1H

couplings. The availability of PREs from aliphatic pro-

tons circumvent the lack of accuracy for long metal-

to-proton distances of exchangeable protons. This rep-

resents an opportunity for the characterization and

structural study of metallopeptides and de novo-de-

signed and bio-inspired metalloenzymes [103–105].
These results argue for the systematic use of PREs in

structure calculations of metalloproteins where metal

substitution is not possible since they provide distance

restraints in protein regions where NOEs are sparse

due to paramagnetism, and where most biochemically

relevant events occur.

Materials and methods

Protein expression and purification

E. coli BL21 DE3 cells were transformed with pET32h, a

plasmid containing the construct thioredoxin–6xHis–throm-

bin cleavage site–PioC, and with pDB1281, a plasmid that

carries the machinery for the assembly of iron–sulfur clus-

ters. Cells were grown in Luria-Bertani (LB) supplemented

with 100mg*dm-3 ampicillin and 35mg*dm-3 chlorampheni-

col until the OD600nm of 0.6 where they were induced

with 1.0 mM arabinose and 20 μM FeCl3 and 200 μM cys-

teine were added. Cells were again incubated until the

OD600nm of 1 and then harvested and washed in M9 mini-

mal media salts before resuspension in M9 minimal media.

Once re-suspended, cells were incubated for one hour

before induction with 0.5 mM IPTG. After 4 h, cells were

harvested by centrifugation and disrupted using a French

Press at 1000psi. The lysate was ultra-centrifuged at 204

709 g for 90 min at 4 °C to remove cell membranes and

debris, and the supernatant was dialyzed overnight against

50 mM potassium phosphate buffer pH 5.8 with 300 mM

NaCl before injection in a His-trap affinity column (GE

Healthcare, Carnaxide, Portugal). The fraction containing

Histag-PioC eluted with 250 mM imidazole and was incu-

bated overnight with Thrombin (GE Healthcare) for diges-

tion. The final purified PioC (His-tag free) was then
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concentrated from the flow through of a 2nd passage

through the His-trap column using an Amicon Ultra Cen-

trifugal Filter (Millipore, Darmstadt, Germany) with a

3kDa cutoff. The purity of PioC was confirmed by SDS/
PAGE with Blue Safe staining (NzyTech, Lisboa, Portugal)

and by UV-Visible spectroscopy. Three samples of PioC

were produced (unlabeled, single 15N-labeled, double 13C

&15N-labeled) and the expression and purification protocol

was identical throughout except in the addition of ammo-

nium sulfate (15N2, 99%) and [U-13C6] D-glucose in the M9

minimal media when labeling was required.

NMR experiments

All experiments were recorded using Bruker AVANCE-

NEO spectrometers, equipped with cryogenically cooled tri-

ple resonance inverse detection probeheads (CP-TXI),

except 13C-detected experiments, which were acquired at

176.05 MHz using a cryogenically cooled probehead opti-

mized for 13C direct detection (CP-TXO), and 1H experi-

ments which were recorded at 400 MHz using a room

temperature, selective 5mm 1H probe without pulsed field

gradients. All spectra were processed using the Bruker soft-

ware TopSpin. Standard radio frequency pulses and carrier

frequencies for triple resonance experiments were used. The

set of NMR experiments used for sequence specific assign-

ment, NOE collection, and 15N relaxation analysis is sum-

marized in Table S1. To identify signals affected by the

hyperfine interaction, tailored experiments were performed

[64,91,92]. Experimental parameters are summarized in

Table S2. Data analysis and resonances assignment were

performed using CARA 1.9 [106]. The complete assignment

has been submitted in BRMB entry 34487 [93].

Structure calculations

Structure calculations were performed with the program

CYANA 2.1 [107,108]. NOEs were analyzed and converted

into upper distance limits and used for manual structure

calculation in CYANA 2.1. Backbone dihedral angle con-

straints were derived from 15N, 13C’, 13Cα,13Cβ, and Hα
chemical shifts, using TALOS + and added as restraints.

All structure ensembles presented here were refined with

molecular dynamics using AMBER-16 [109] and force field

parameters for the 4Fe4S cluster as previously described

[110,111] and validated using PDBstat and PSVS programs

[112,113]. Detailed description of the methodology used for

structure calculation and refinement is reported in supple-

mentary material.
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