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Abstract We present the exact form of the spin polarization vector and the spin density matrix of massive and massless free particles
of any spin and helicity at general global equilibrium in a relativistic fluid with non-vanishing thermal vorticity, thus extending the
known expression at the linear order. The exact form is obtained by means of the analytic continuation of the relativistic density
operator to imaginary thermal vorticity and the resummation of the obtained series. The phenomenological implications for the
polarization of the � hyperon in relativistic heavy-ion collisions are addressed.

1 Introduction

Following the evidence of spin polarization of the� hyperon [1], spin physics in relativistic heavy ion collisions has become a very
active research field both at the experimental [2–7] and theoretical level [8–16] (see [17] for a recent review).

At local thermodynamic equilibrium in a relativistic fluid, spin polarization turns out to be a function of the gradients of the
thermo-hydrodynamic fields, particularly the gradient of the four-temperature vector β which is related to proper temperature and
four-velocity of the fluid by βμ � (1/T )uμ. The gradients of β include an anti-symmetric part called thermal vorticity � :

�μν � −1

2
(∂μβν − ∂νβμ), (1)

and a symmetric part called thermal shear. It has been recently found out that the thermal shear induces a significant polarization
in relativistic nuclear collisions [18–22]. At global equilibrium, however, thermal shear vanishes because the field β must become
a Killing vector [23, 24], and only a constant thermal vorticity survives.

For a spin-1/2 free Dirac field, the expression of the spin polarization vector at the leading order in thermal vorticity was derived
in [25]:

Sμ(p) � − 1

8m
εμνρσ pσ

∫
d
 · p�νρnF (1 − nF )

∫
d
 · p nF , (2)

where

nF � 1

exp(β · p − ζ ) + 1
, (3)

is the Fermi-Dirac distribution function and ζ � μ/T is the ratio between the chemical potential and the temperature. The integrals
in (2) must be performed over the freeze-out hypersurface in relativistic heavy ion physics. The equation (2) was confirmed in other
derivations [20, 26, 27] and it is a good approximation for small values of� . Yet, very little is known about higher-order terms, not
even at global equilibrium where thermal vorticity is a constant.

In this work, we obtain the exact expression of the spin density matrix and spin polarization vector of massive and massless free
fields of any spin at general global equilibrium with non-vanishing thermal vorticity, by means of the analytic continuation of the
density operator proposed in refs. [28, 29]. We will first derive those expressions for free Dirac fermions by using the covariant
Wigner function formalism, thereafter showing that they are a special case of a more general formula applying to any spin. Finally,
we compare the newly found expressions to the linear approximation (2) which is commonly used in phenomenological studies,
in order to assess the impact of higher-order corrections in thermal vorticity for the spin polarization measurements in relativistic
heavy ion physics.
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1.1 Notations

We use the natural units, with � � c � K � 1. The Minkowskian metric tensor g is diag(1, −1, −1, −1) and repeated indices
are assumed to be saturated; for the Levi-Civita symbol, we use the convention ε0123 � 1. Three vectors are denoted with bold
symbols, for example v. This notation corresponds to the contravariant space components of the corresponding four-vector, such
that vμ � (v0, v). Unit vectors are denoted with a small upper hat, e.g. p̂. The notation a ·b is sometimes used for the scalar product
of four-vectors and X : Y for the double contraction of tensors, i.e. X : Y � XμνYμν .

Operators in Hilbert space will be denoted by a wide upper hat, e.g. Ĥ , except the Dirac field operator which is denoted by a �.
The symbol Tr will stand for the trace over the Hilbert space of quantum states, while tr is the trace over a finite-dimensional vector
space. We will use the notation 〈•〉 � Tr(ρ̂ •) for thermal expectation values, ρ̂ being the density operator.

2 Spin and helicity in quantum field theory

In a quantum relativistic framework, the spin polarization vector is defined as the expectation value of the Pauli-Lubanski (PL)
operator [30]:

̂μ � −1

2
εμνρσ Ĵνρ P̂σ , (4)

where Ĵμν and P̂μ are the angular momentum-boost and the four-momentum operators respectively. From the Lie algebra of the
Poincaré group, it follows that the PL operator fulfills these relations:

[̂μ, P̂ν] � 0, (5a)

[̂μ, ̂ν] � −iεμνρσ ̂ρ P̂σ , (5b)

̂ · P̂ � 0. (5c)

The restriction of the PL operator to the one-particle states with definite momentum |p〉 is defined as ̂(p):

̂μ(p) � −1

2
εμνρσ Ĵνρ pσ . (6)

This operator generates the so-called little group of p, that is the group of Lorentz transformation leaving pμ invariant, and plays a
crucial role in the definition of the spin and helicity operators. We first notice that, due to Eq. (5c), ̂(p) can be decomposed along
the directions perpendicular to pμ. Such decomposition is different for massive and massless states, because in the latter case pμ is
orthogonal to itself.

In the massive case one can define a p-dependent spin operator:

Ŝμ(p) � ̂μ(p)

m
. (7)

Due to equation (5c), and since pμ is time-like, the decomposition of the spin operator can be made along three orthogonal,
normalized space-like vectors nμi (p), such that ni (p) · p � 0 and ni · n j � −δi j . These vectors, along with p, make a momentum-
dependent orthogonal basis of the Minkowski space-time. For a particle at rest, we have p � (m, 0, 0, 0) and we define the ni to
coincide with the conventional basis vector ei . In this special frame, vectors will be denoted by Gothic letters, i.e. pμ � (m, 0, 0, 0)
- which will be henceforth referred to as standard vector - and ni � ei . Furthermore, a so-called standard Lorentz transformation
[p] is introduced, which transforms the conventional basis to the particle basis. Explicitly:

pμ � [p]μνp
ν , nμi (p) � [p]μνn

ν
i .

The decomposition of the spin operator along the tetrad {p, n1, n2, n3} reads:

Ŝμ(p) �
3∑

i�1

Ŝi (p)nμi (p) =⇒ Ŝi (p) � −Ŝ(p) · ni (p). (8)

It is well known that the components Ŝi (p) fulfill a SO(3) Lie algebra and are related to the generators of rotations. Particularly:

Ŝi (p) � Ĵ
i
, (9)

Ĵ
i

being the i-th (contravariant) component of the angular momentum operator.
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In a statistical system, the mean spin polarization vector of a massive particle with momentum p can be obtained with the formula
[31]:

Sμ(p) �
3∑

i�1

[p]μi tr
(
�(p)DS(Ji )

)
, (10)

where DS(Ji ) is the i-th generator of the rotation group in the spin S representation and tr denotes the trace on the (2S+1)-dimensional
spin space. The matrix �(p) is the spin density matrix and in a quantum field theoretical framework reads:

�sr (p) �
Tr

(
ρ̂ â†

r (p)̂as(p)
)

∑
l Tr

(
ρ̂ â†

l (p)̂al (p)
) � 〈̂a†

r (p)̂as(p)〉
∑

l 〈̂a†
l (p)̂al (p)〉 , (11)

where â†
s (p) and âs(p) are the creation and annihilation operators for particles with momentum p and spin (helicity) s.

For light-like states, the decomposition of the PL operator is different and the formula (10) no longer holds. The four-momentum p
can be included in a non-orthonormal basis of Minkowski space-time defined by the tetrad {p, q , n1, n2}, where q is a light-like vector
not orthogonal to p and n1, 2 are two normalized space-like vectors orthogonal to p, q and to each other (i.e., ni (p) · p � ni (p) ·q � 0,
ni (p) · n j (p) � −δi j ). Similarly to the massive case, these vectors can be written as Lorentz-transformed of a basis of standard
vectors. They are, for some κ > 0:

pμ � (κ , 0, 0, κ), qμ � (κ , 0, 0, −κ), n
μ
i � δ

μ
i .

Likewise, a standard Lorentz transformation [p] is introduced (a typical choice being a boost along the z direction followed by a
rotation around the k̂ × p̂ axis), turning the standard basis into the particle basis:

pμ � [p]μνp
ν , qμ � [p]μνq

ν , nμi (p) � [p]μνn
ν
i .

Taking into account ̂(p) · p � 0, the component of the PL vector operator restricted to single particle states along qμ vanishes and
one has:

̂μ(p) � ĥ(p)pμ + ̂1(p)nμ1 (p) + ̂2(p)nμ2 (p). (12)

Using equations (5), it is possible to show that the components of the above decomposition obey the following commutation rules:

[̂h(p), ̂1(p)] � î2(p), (13a)

[̂h(p), ̂2(p)] � −î1(p), (13b)

[̂1(p), ̂2(p)] � 0. (13c)

This is the algebra of the euclidean group in two dimensions, ISO(2). The algebra is semi-simple, including an abelian sub-algebra
generated by ̂1, 2(p). It is well known that actual physical states are such that:

̂1(p)|p〉 � ̂2(p)|p〉 � 0. (14)

A straightforward consequence of (14) is that the only physically relevant component of the PL vector is ĥ(p) and a basis of the
Hilbert space can be chosen using the common eigenvectors of ĥ(p) and P̂μ:

P̂μ|p, h〉 � pμ|p, h〉, (15a)

ĥ(p)|p, h〉 � h|p, h〉. (15b)

The eigenvalue of the ĥ(p) operator is referred to as the helicity of the particle. Due to the topology of the Lorentz group, helicity
can only be integer or half-integer, and it is also known that helicity-S massless states only exhibit the two extremal helicity states,
S and −S [32]. Contracting the Eq. (12) with q, it can be realized that the helicity operator can be written as:

ĥ(p) � ̂(p) · q
p · q � − 1

2p · q ε
μνρσ Ĵνρ pσqμ.

For a single relativistic particle we thus have, if ρ̂ is the single-particle density operator:

μ(p) �
∑

h

〈p, h|̂μ(p)ρ̂|p, h〉 � pμ
∑

h

h〈p, h|ρ̂|p, h〉 � pμ
∑

h

h�(p)hh , (16)
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where we used the decomposition (12) and the Eq. (14). The sum in Eq. (16), as it is known, has just two terms, i.e. h � −S and
h � S. In a statistical system, the mean polarization vector of a particle with momentum p is obtained from the Eq. (12) with the
spin density matrix:

�(p)hh � 〈̂a†
h(p)̂ah(p)〉

∑
l�±S 〈̂a†

l (p)̂al (p)〉 , (17)

which can be interpreted as the fraction of particles with helicity h. Altogether, the mean PL vector reads:

μ(p) � pμ
∑

h�±S h〈̂a†
h(p)̂ah(p)〉

∑
l�±S 〈̂a†

l (p)̂al (p)〉 . (18)

3 Spin polarization of Dirac fermions and the Wigner function

The Wigner function is a useful tool in spin polarization studies. For a non-interacting Dirac field, either massive or massless, the
Wigner function is defined as [23]:

W (x , k) � − 1

(2π )4

∫
d4y e−ik·y Tr

(
ρ̂ : �

(
x − y

2

)
�

(
x +

y

2

)
:
)

,

where the colons imply normal ordering, � is the Dirac field operator (the Dirac adjoint being � � �†γ 0) and ρ̂ is the density
operator. Notice that the pseudo-momentum k is not in general on-shell. In fact, depending on k, it is possible to decompose the
Wigner function into particle, antiparticle, and spacelike components, denoted as W+, W− and WS respectively:

W (x , k) � W+(x , k)θ (k2)θ (k0) + W−(x , k)θ (k2)θ (−k0) + Ws(x , k)θ (−k2).

Since the definition of the Wigner function, as well as the plane wave expansion of the non-interacting Dirac field, are the same for
massive and massless particles, some properties of the Wigner function are common to the two cases. For instance, it can be shown
that:

kμ∂μW±s(x , k) � 0. (19)

The above equation implies that, provided that some boundary conditions are fulfilled, kμW±s(x , k) can be integrated over any
hypersurface, and the result is independent thereof. This property makes it possible to define an on-shell Wigner function, denoted
as w(p) [31]. Focusing on the particle component, one has:

1

2ε
δ(k0 − ε)w+(k) �

∫
d
μk

μW+(x , k), (20)

and, after using the plane wave expansion of the Dirac field, explicit integration leads to:

w+(p) � 1

2

∑

h,l

〈̂a†
l (p)̂ah(p)〉uh(p)ūl (p). (21)

A derivation of the formula connecting the mean spin polarization vector to the Wigner function in the massive case was presented
in ref. [31]. Using the normalization of the spinors, ūs(p)ur (p) � 2mδrs , one gets:

Sμ(p) � 1

2

∫
d
 · p tr(γ μγ5W+(x , p))
∫

d
 · p tr(W+(x , p))
, (22)

where in heavy-ions applications the integral is computed over the freeze-out hypersurface. In fact, the derivation of a formula
such as (22) does not trivially extend to the massless case, the reason being that ūs(p)ur (p) � 0. In this case, using the relation
ūs(p)γ μur (p) � 2pμδrs , it is easy to see:

tr(w+(p)γ μ) � 1

2

∑

h

〈̂a†
l (p)̂ah(p)〉tr(uh(p)ūl (p)γ μ) � 1

2

∑

hl

〈̂a†
l (p)̂ah(p)〉ūl (p)γ μuh(p) � pμ

∑

h

〈̂a†
h(p)̂ah(p)〉, (23)

where the cyclicity of the trace has been used. Notice how this trace is just the denominator of the formula (17) multiplied by pμ.
Therefore, the denominator of Eq. (17) can be obtained by contracting the (23) with any vector v, provided that it is not orthogonal
to p. However, any four-vector v can be decomposed along the basis {p, q , n1, n2}, as we have seen in Sect. 2:

vμ � vp p
μ + vqq

μ + vi n
μ
i .
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Equation (23) implies that only the component of vμ along qμ is relevant to invert Eq. (23), as it is the only one contributing to the
product v · p. Therefore, we can choose conveniently v � q to find:

∑

h

〈̂a†
h(p)̂ah(p)〉 � tr(w+(k)/q)

p · q . (24)

With the same steps of the derivation of the Eq. (23), it can be shown that:

tr(w+(p)γ μγ5) � 2pμ
∑

h

h〈̂a†
h(p)̂ah(p)〉,

where we used the equation γ5uh(p) � 2huh(p), notably applying to massless fermions. By contracting with q the above equation
and using the (24), the equation (18) can be rewritten as:

μ(p) � pμ

2

tr(/qγ5w+(p))

tr(w+(p)/q)
,

and, by using the Eq. (20):

μ(p) � pμ

2

∫
d
 · p tr(/qγ 5W+(x , p))
∫

d
 · p tr(W+(x , p)/q)
. (25)

This formula is the corresponding of (22) for massless particles and it is the final result of this section. It should be emphasized
that, in spite of its appearance, the Eq. (25) does not depend on the particular vector q chosen; this dependence cancels out, though
not manifestly, if the same q is used in the numerator and the denominator. We point out that the result (25) differs from others in
literature [33] in that the polarization vector is manifestly parallel to the four-momentum.

4 Exact spin polarization of Dirac fermions

In a previous paper of ours [29] we derived the exact form of the Wigner function of free Dirac fermions in global equilibrium with
non-vanishing thermal vorticity. We are now in a position to use that result to calculate the exact expression of the spin polarization
vector of Dirac fermions under those conditions.

To begin with, we make a brief recap of the key concepts of global thermodynamic equilibrium in quantum relativistic statistical
mechanics. The density operator corresponding to the most general global equilibrium allowed by special relativity reads:

ρ̂ � 1

Z
exp

[

−b · P̂ +
� : Ĵ

2
+ ζ Q̂

]

, (26)

where the operators P̂ , Ĵ and Q̂ are the four-momentum, the angular momentum-boost, and the charge operators. The Lagrange
multipliers bμ and �μν are a constant vector and a constant anti-symmetric tensor respectively. Together, they define the four-
temperature βμ as the Killing vector:

βμ � bμ +�μνxν . (27)

The four-temperature naturally identifies a hydrodynamic frame (defining a four-velocity uμ � Tβμ, being T � 1/
√
β2 the proper

temperature). The additional Lagrange multiplier ζ is the ratio of the chemical potential and the proper temperature, ζ � μ/T , and
it is constant at global equilibrium. The tensor � is the thermal vorticity, since from the Eq. (27) one readily obtains the (1). The
thermal vorticity can be decomposed in two space-like vectors by using the four-velocity of the fluid:

�μν � εμνρσwρuσ + αμuν − ανuμ,

where:

wμ � −1

2
εμνρσ�νρuσ , αμ � �μνuν . (28)

The general expressions of wμ and αμ can be obtained from the above definition and the (1); at global equilibrium they reduce to
the ratio of the angular velocity ωμ and the four-acceleration Aμ with the proper temperature T . Explicitly, one has:

wμ � ωμ

T
, αμ � Aμ

T
. (29)

A method to calculate the expectation values with the density operator (26) was proposed in refs. [28, 29]. The idea is to analytically
continue the density operator (26) to imaginary vorticity, i.e. setting � �→ −iφ, and to make an analytic continuation back to
real thermal vorticity after the analytic results in φ are obtained. With this technique, expectation values are expressed as series
of functions and the analytic continuation to real thermal vorticity generally requires an intermediate operation that we dubbed as
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analytic distillation. Yet, in the case of the spin density matrix and the spin polarization vector, we will see that analytic distillation
is not necessary and the analytic continuation can be done straightforwardly.

The expectation value of the quadratic combination of creation and annihilation operators with the analytically continued density
operator reads [29]:

〈̂a†
s (p)̂at (p

′)〉 � 2ε′
∞∑

n�1

(−1)2S(n+1)δ3(�np − p′)D(W (�n , p))tse
−b̃·∑n

k�1�
k penζ . (30)

In the above series, we have tacitly introduced � as a notation for the Lorentz transformation � � exp[−iφ : J/2], while b̃(φ) is
given by:

b̃μ(φ) �
∞∑

k�0

1

(k + 1)!
φμν1

φν1
ν2
. . . φ

νk−1
νk bνk . (31)

The Eq. (30), which applies to both massive and massless particles, involves the representation of the transformation W (�, p) �
[�p]−1�[p], where [p] is the standard Lorentz transformation mapping the conventional basis to particle basis, that is pμ � [p]μνpν

as defined in Sect. 2. The transformation W (�, p) belongs to the little group of the standard vector p, that is, it leaves p invariant.
For massive spin-S states, D(W (�, p)) is an element of the S-irreducible representation of the rotation group SO(3), D(W (�,
p)) � DS(W (�, p)), and W (�, p) is thus commonly known as Wigner rotation. In fact, as a consequence of (14), in the massless
case the transformation W (�, p) is a composition of a rotation with a Lorentz transformation, but its representation reduces to a
phase factor [32]:

D(W (�, p))rs � exp[i sϑ(�, p)]δrs , (32)

where r and s can only be ±S, being S the helicity of the particle. The sum over n in Eq. (30) can be interpreted as the quantum
statistics expansion, whose first term n � 1 is the Boltzmann statistics contribution [28].

Using Eq. (30), the particle component of the analytically continued Wigner function for Dirac fermions appearing in Eqs. (22)
and (25) can be obtained [29]:

W+(x , k) � 1

(2π)3

∫
d3 p

2ε

∞∑

n�1

(−1)n+1e−b̃(φ)·∑n
k�1�

k penζ e−i x ·(�n p−p)enζ exp

(

−in
φ : 


2

)

(m + /p)δ4
(

k − �n p + p

2

)

, (33)

where /p � pμγ μ, γ μ being the gamma matrices and 
μν � (i/4)[γ μ, γ ν] is the generator of Lorentz transformations in the Dirac
representation. The Wigner function for massless fermions is simply obtained by setting m � 0 in the Eq. (33).

Plugging the Eq. (33) in the (22) one can obtain the spin polarization vector of massive Dirac fermions. In view of the relation
(19), it is possible to compute the integral in Eq. (22) over a constant-time hypersurface t � t0, obtaining:

Sμ(p) � 1

2m

∑∞
n�1(−1)n+1e−b̃(φ)·∑n

k�1�
k penζ tr(γ μγ5 exp[−inφ : 
/2]/p)δ3(�n p − p)

∑∞
n�1(−1)n+1e−b̃(φ)·∑n

k�1�
k penζ tr(exp[−inφ : 
/2])δ3(�n p − p)

. (34)

The above expression is the ratio of two series of δ-functions, which appears daunting. This is not surprising, though, as the Eq. (22),
as well as (25), was originally derived from the spin density matrix (11), whose definition is based on 〈̂a†

s (p)̂at (p)〉. These expectation
values read, according to the Eq. (30):

〈̂a†
s (p)̂at (p)〉 � 2ε

∞∑

n�1

(−1)2S(n+1)δ3(�np − p)DS(W (�n , p))rse
−b̃·∑n

k�1�
k penζ ,

and they vanish unless �n p � p. This relation is fulfilled for specific n 
� 1 or if �p � p. In the latter case, the equation
holds ∀n, whereas if the equation is solved for n 
� 1 and given p, � would be a discrete transformation, which would make the
analytic continuation impossible; therefore, we will focus on the case �p � p. This constraint requires � to belong to the little
group of p, i.e. the group of transformations leaving p invariant. By using the exponential parametrization of the Lorentz group,
� � exp[−iφ : J/2], and expanding for infinitesimal φ:

exp[−iφ : J/2]p � p =⇒ φμν pν � 0, (35)

being (Jμν)ρσ � i(δρμgνσ − δρν gμσ ). The general solution of Eq. (35) can be expressed in terms of an auxiliary vector ξμ:

ξρ � − 1

2m
ερμνσ φμν pσ . (36)

In this case, it can be shown that:

φμν � εμνρσ ξρ
pσ
m

, φ : φ � −2ξ2, φ : φ̃ � 0, (37)

123
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where the tensor φ̃ is the dual of φ:
φ̃μν � 1

2
εμνρσ φρσ .

Notice that, since ξ · p � 0 and p is time-like, ξ is a space-like vector and −ξ2 > 0. If �p � p, it turns out that all the δ functions
in the Eq. (34) reduce to δ3(0) that simplifies in the ratio, leaving:

Sμ(p) � 1

2m

∑∞
n�1(−1)n+1e−b̃(φ)·∑n

k�1�
k penζ tr(γ μγ5 exp[−inφ : 
/2]/p)δ3(0)

∑∞
n�1(−1)n+1e−b̃(φ)·∑n

k�1�
k penζ tr(exp[−inφ : 
/2])δ3(0)

� 1

2m

∑∞
n�1(−1)n+1e−b̃(φ)·∑n

k�1�
k penζ pν tr(γ μγ5 exp[−inφ : 
/2]γ ν)

∑∞
n�1(−1)n+1e−b̃(φ)·∑n

k�1�
k penζ tr(exp[−inφ : 
/2])

. (38)

This formula coincides with Eq. (9.6) reported in [29], although its derivation was not carried out in detail. The constraint �p � p
implies more simplifications, particularly:

b̃(φ) ·
n∑

k�1

�k p � nb̃(φ) · p � n
∞∑

k�0

1

(k + 1)!
pμ(φμα1

φα1
α2
. . . φ

αk−1
αk︸ ︷︷ ︸

k times

)bαk � nb · p, (39)

where the definition (31) and Eq. (35) have been used. Thanks to Eqs. (37), especially φ : φ̃ � 0, also the traces in the equation (38)
take a simpler form (calculations are reported in appendix A):

tr(exp[−inφ : 
/2]) �4 cos

(
n

2

√
φ : φ

2

)

, (40a)

tr(γ νγ μ exp[−inφ : 
/2]) �4gμν cos

(
n

2

√
φ : φ

2

)

+ 4φμν
sin

(
n
2

√
φ:φ

2

)

√
φ:φ

2

, (40b)

tr(γ νγ μγ5 exp[−inφ : 
/2]) �4i φ̃μν
sin

(
n
2

√
φ:φ

2

)

√
φ:φ

2

. (40c)

By plugging the above traces and the Eq. (39) into the (38) we obtain:

Sμ(p) � i φ̃μν pν

2m
√−ξ2

∑∞
n�1(−1)n+1e−nb·p+nζ sin

(
n
√−ξ2/2

)

∑∞
n�1(−1)n+1e−nb·p+nζ cos

(
n
√−ξ2/2

) .

Both series in the above equation are convergent ∀φ ∈ R and b · p > ζ . Expanding φ̃, the summation yields:

Sμ(p) � iεμνρσ φρσ pν

4m
√−ξ2

sin
(√−ξ2/2

)

cos
(√−ξ2/2

)
+ e−b·p+ζ

, (41)

which is an analytic function in φ.
The Eq. (41) can be analytically continued to real thermal vorticity. Introducing the vector:

θμ � − 1

2m
εμνρσ�νρ pσ , (42)

the mapping φ �→ i� implies ξ �→ iθ . Notice that, the vector θμ is just the ratio between the local angular velocity seen by the
particle (p/m replacing u in Eq. (28)) and the temperature. Therefore, the continuation of Eq. (41) reads:

Sμ(p) � − 1

4m
εμνρσ�νρ pσ

1√−θ2

sinh
(√−θ2/2

)

cosh
(√−θ2/2

)
+ e−b·p+ζ

. (43)

The polarization vector can also be expressed solely in terms of θμ, yielding a more suggestive expression:

Sμ(p) � 1

2

θμ√−θ2

sinh
(√−θ2/2

)

cosh
(√−θ2/2

)
+ e−b·p+ζ

� 1

2
θ̂μP1/2

(√
−θ2, b · p − ζ

)
. (44)
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The above equation has been written such that the factor 1/2 is the spin of the particle, the vector θ̂μ � θμ/
√−θ2 provides the

direction of Sμ(p), while its magnitude is determined by the weight function:

P1/2(x , y) � sinh(x/2)

cosh(x/2) + e−y
. (45)

where x � √−θ2 and y � b · p − ζ . Note that, since the polarization vector of a spin-S particle is defined as:

Pμ � Sμ

S
,

the function P1/2 is in fact the polarization itself. The function P1/2 monotonically increases in both arguments for x ≥ 0, and it is
bounded in the interval 0 ≤ P1/2 ≤ 1 at it should. Its limiting values are:

lim
x→∞ P1/2(x , y) � 1, P1/2(x , y) � x

2
(1 − nF (y)) for x � 1 (46)

with nF (y) � [exp(y) + 1]−1 as in (3). Therefore:

lim√−θ2→∞
Sμ(p) � 1

2

θμ√−θ2
, (47a)

Sμ(p) � θμ

4
(1 − nF (b · p − ζ )), if

√
−θ2 � 1. (47b)

Recalling the definition of θμ, Eq. (42), it can be seen that the second limit agrees with the Eq. (2) in the case of global equilibrium.
Besides, Eq. (47a) shows that, for an infinitely large vorticity, particles become fully polarized in the direction of θ .

It is worth discussing in more detail the obtained results. A crucial role in the determination of the exact formula of the spin
polarization vector has been played by the constraint�p � p, equivalent to φμν pν � 0, which has been used to determine the form
of the imaginary vorticity φμν in the Eq. (37). Nevertheless, it should be emphasized that, after the analytic continuation φ � i� of
the Eq. (41) to the final (43), such constraint does not extend to� . Otherwise stated, the continuation of φ to real thermal vorticity
does not bring the constraint along.

It should also be emphasized that our obtained expression of the spin polarization vector has the correct bound of polarization,
given by the Eq. (47a). This is an important point, as a violation of the unitarity bound of polarization was noted in ref. [9] where
the spin polarization vector was calculated at all orders in thermal vorticity in the Boltzmann limit. The violation was attributed to
a problem in the ansatz of the Wigner function used in the derivation. Indeed, it can be shown that the violation also appears in the
single quantum relativistic particle framework [31] if the constraint φμν pν � 0 is neglected before the analytic continuation to real
thermal vorticity.

4.1 Massless Dirac fermions

We can now move to the case of the massless Dirac field. Using the Eq. (25) and the exact Wigner function of Dirac fermions (33)
with m � 0 and ζ � 0, and calculating the integrals in Eq. (25) over a constant-time hypersurface, one finds:

μ � pμ

2

∑∞
n�1(−1)n+1e−b̃(φ)·∑n

k�1�
k ptr(/qγ5 exp[−inφ : 
/2]/p)δ3(�n p − p)

∑∞
n�1(−1)n+1e−b̃(φ)·∑n

k�1�
k ptr(/q exp[−inφ : 
/2]/p)δ3(�n p − p)

. (48)

The constraint �p � p implies φμν pν � 0, just like in the massive case. Indeed, as it is shown in appendix B, the most general
decomposition of an anti-symmetric tensor solving Eq. (35) for a light-like p is:

φμν � εμνρσ
hρ pσ
p · q , hμ � −1

2
εμνρσ φνρqσ . (49)

with h · q � 0. All the traces in the Eq. (48) can be simplified much like in the massive case. Indeed, it can be shown that:

φ : φ � 2η2, φ : φ̃ � 0, (50)

where we have defined:

η � h · p
q · p � φ̃μνqμ pν

p · q � 1

2(p · q)
εμναβφαβ pνqμ. (51)

Since φ : φ̃ � 0, the identities (40) hold, and taking into account the Eq. (39) we have:

μ(p) � pμ

2|η|
i φ̃αβqα pβ

p · q
∑∞

n�1(−1)n+1e−nb·p sin(n|η|/2)
∑∞

n�1(−1)n+1e−nb·p cos(n|η|/2) .

The above series converges for b · p > 0, and the summation yields:
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μ(p) � pμ

2

iη

|η|
sin(|η|/2)

cos(|η|/2) + e−b·p � pμ

2

i sin(η/2)

cos(η/2) + e−b·p ,

where in the last step we have used the parity of the trigonometric functions.
The latter result can be readily continued to real thermal vorticity. Introducing:

H � �̃μνqμ pν
p · q � 1

2(p · q)
εμναβ�αβ pνqμ, (52)

and realizing that φ �→ i� implies η �→ i H , one finds:

μ(p) � − pμ

2

sinh(H/2)

cosh(H/2) + e−b·p . (53)

The Lorentz scalar H can be written in a way which is independent of q by breaking manifest covariance. Since q � (κ , 0, 0, −κ)
is the parity conjugate of p and [p]μνpν � pμ � (ε, p), where ε � ‖p‖ is the energy, it can be readily shown that:

qμ � [p]μνq
ν � κ2(1/ε, −p/ε2).

Therefore:

H � 1

2(p · q)
εμναβ�αβ pνqμ � 1

4κ2 ε
0nαβ�αβ pnq0 +

1

4κ2 ε
m0αβ�αβ p0qm � 1

2ε
ε0nαβ�αβ pn ,

for the combinations where p and q both have a space index vanish due to εmnαβ pnqm � −εmnαβ pn pm � 0. Defining:

ϕn � −1

2
εnαβ0�αβ , p̂ � p

ε
.

we obtain:

H � − 1

2ε
ε0nαβ�αβ pn � 1

ε
ϕn pn � −ϕ · p̂. (54)

We can finally rewrite the PL vector for massless particles using ϕ as:

μ(p) � pμ

2
P1/2

(
ϕ · p̂, b · p),

where we made use of the function P1/2 defined in Eq. (45). The limits of very large and very small thermal vorticity, are easily
obtained from (46):

lim|ϕ·p̂|→∞
μ(p) � pμ

2
sgn(ϕ · p̂),

μ(p) � pμ

4
ϕ · p̂(1 − nF (b · p)), if

∣
∣ϕ · p̂∣

∣ � 1.

5 Particles with any spin

The previous results can be extended to particles of any spin S. For this purpose, since we are working at global equilibrium, the
spin density matrix can be used in the first place without introducing the covariant Wigner function. Still, the calculation requires
the analytic continuation of the density operator to imaginary thermal vorticity. Using the definition (11) and the exact expression
of 〈̂a†

s (p)̂ar (p′)〉 at general global equilibrium, equation (30), one finds:

�rs(p) � 〈̂a†
s (p)̂ar (p)〉

∑
t 〈̂a†

t (p)̂at (p)〉 �
∑∞

n�1(−1)2S(n+1)e−b̃·∑n
k�1�

k penζ Drs(W (�n , p))δ3(�n p − p)
∑∞

n�1(−1)2S(n+1)e−b̃·∑n
k�1�

k penζ tr[D(W (�n , p))]δ3(�n p − p)
.

According to the discussion in Sect.4, the Dirac δ-function constrains the tensor φ such that the equation�p � p is fulfilled, hence
φμν pν � 0. Therefore all the Dirac δ-functions boil down to a common divergent factor δ3(0) in the numerator and the denominator,
similarly to Eq. (38), and so:

�rs(p) �
∑∞

n�1(−1)2S(n+1)e−nb·penζ Drs(W (�n , p))
∑∞

n�1(−1)2S(n+1)e−nb·penζ tr[D(W (�n , p))]
, (55)

where we have set −b̃ · ∑n
k�1�

k p � nb · p according to the Eq. (39). Using the above equation, one can determine the exact form
at global equilibrium of spin related observables, such as the polarization vector or the spin alignment parameter, for both massive
and massless particles of any spin. In what follows, we will confine ourselves with the spin vector, tackling the massive and massless
case separately.
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5.1 Massive particles

The first step to derive the spin density matrix and the spin polarization vector, both for massive and massless particles, is to determine
the Wigner rotation for Lorentz transformations � in the little group of p; this calculation is carried out in the appendix C.

For massive particles, this Wigner rotation turns out to be:

DS(W (�, p)) � exp
[
−iξ0 · DS(J)

]
, (56)

where ξμ0 � [p]−1μ
ν ξν � (0, ξ0) and J is the three-vector of the generators of SO(3). The time-component of ξ0 vanishes because

ξ0 · p � ξ · p � 0. The Eq. (56) shows that the Wigner rotation corresponds to a rotation of an angle
√

ξ0 · ξ0 � √−ξ · ξ around

the axis ξ̂0 � ξ0/
√

ξ0 · ξ0. Using this result, the Eq. (55) reduces to:

�(p) �
∑∞

n�1(−1)2S(n+1)e−nb·penζ e−inξ0·DS (J)

∑∞
n�1(−1)2S(n+1)e−nb·penζ tr

(
e−inξ0·DS (J)

) .

The spin polarization vector can be readily found from the above equation using the Eq. (10):

Sμ(p) �
3∑

i�1

[p]μi tr
(
�(p)DS(Ji )

)
�

3∑

i�1

[p]μi

∑∞
n�1(−1)2S(n+1)e−nb·penζ tr

(
e−inξ0·DS (J)DS(Ji )

)

∑∞
n�1(−1)2S(n+1)e−nb·penζ tr

(
e−inξ0·DS (J)

) . (57)

Developing the expression (57) requires some intermediate steps. We can calculate the trace in the denominator by choosing the z
axis along ξ0 so that DS(J3) is diagonal:

tr
(

e−inξ0·DS (J)
)

�
S∑

k�−S

e−ik n
√

−ξ2 ≡ χ S
n

(√
−ξ2

)
. (58)

Besides:

tr
(

e−inξ0·DS (J)DS(Ji )
)

� i

n

∂

∂ξ i0

tr
(

e−inξ0·DS (J)
)

� i

n

ξ0
i

√−ξ2

∂χ S
n

∂
√−ξ2

,

where we used ξ2
0 � −ξ2, that follows from Lorentz invariance. The standard boost in Eq. (10) is such that

∑3
i�1[p]μiξ0

i � ξμ,
hence the polarization vector (57) becomes:

Sμ(p) � iξμ
√−ξ2

∑∞
n�1(−1)2S(n+1)(1/n)e−nb·penζ ∂χ S

n

∂
√

−ξ2

∑∞
n�1(−1)2S(n+1)e−nb·penζ χ S

n

(√−ξ2
) . (59)

The series can be rewritten using the Eq. (58):
∞∑

n�1

(−1)2S(n+1)e−nb·penζ χ S
n

(√
−ξ2

)
�

∞∑

n�1

S∑

k�−S

(−1)2S(n+1)e−nb·p+nζ−ik n
√

−ξ2 �
S∑

k�−S

1

eb·p−ζ+ik
√

−ξ2 − (−1)2S
,

∞∑

n�1

(−1)2S(n+1)e−nb·penζ
1

n

∂χ S
n

∂
√−ξ2

�
∞∑

n�1

(−1)2S(n+1)e−nb·p+nζ
S∑

k�−S

−ike−ik n
√

−ξ2 �
S∑

k�−S

−ik

eb·p−ζ+ik
√

−ξ2 − (−1)2S
,

where, in both cases, the finite sum over k was exchanged with the series in n.
After having resummed the series in n, the analytic continuation is readily done by just mapping φ �→ i� and ξ �→ iθ . Therefore,

the spin polarization vector for a massive spin-S particle and for real thermal vorticity reads:

Sμ(p) � θμ√−θ2

∑S
k�−S k

[
eb·p−ζ−k

√−θ2 − (−1)2S
]−1

∑S
k�−S

[
eb·p−ζ−k

√−θ2 − (−1)2S
]−1 . (60)

The above formula shows that the spin polarization vector at global equilibrium can be expressed as a finite sum of Fermi-Dirac or
Bose-Einstein distributions functions, depending on the spin, where

√−θ2 acts as a sort of chemical potential. It can be checked
that this expression reduces to (34) for S � 1/2. We can also write the spin polarization vector extending Eq. (44) and introducing
the polarization function PS for spin-S fields:

Sμ(p) � S
θμ√−θ2

PS
(√

−θ2, b · p − ζ
)

, PS
(√

−θ2, b · p − ζ
)

� 1

S

∑S
k�−S k

[
eb·p−ζ−k

√−θ2 − (−1)2S
]−1

∑S
k�−S

[
eb·p−ζ−k

√−θ2 − (−1)2S
]−1 . (61)
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In the limit of small
√−θ2, the Eq. (60) can be approximated by:

Sμ(p) � θμ(1 + (−1)2SnF/B (b · p − ζ ))

∑S
k�−S k

2

∑S
k�−S 1

� θμ
S(S + 1)

3
(1 + (−1)2SnF/B (b · p − ζ )),

with nF being the Fermi-Dirac distribution, Eq. (3), and nB (b · p − ζ ) � [exp(b · p − ζ ) − 1]−1 is the Bose-Einstein distribution.
The above result is in agreement with the known linear approximations in thermal vorticity [34].

We can also check the limit of Boltzmann statistics. Since the sum over n corresponds to the quantum statistics expansion, the
Boltzmann case is obtained retaining the n � 1 term in the series. It is straightforward to see that, after mapping ξ �→ iθ , Eq. (59)
yields:

Sμ(p) � θμ√−θ2

χ ′
1

(√−θ2
)

χ1

(√−θ2
) ,

where with χ ′ we denote the derivative of χ with respect to
√−θ2. This expression is formally the same as that in refs. [35, 36]

obtained for a rotating fluid.

5.2 Massless particles

In the massless case, due to Eq. (14), the “Wigner rotation” appearing in (55) is just the Eq. (32):

D(W (�, p))hk � eiϑ(�, p)kδhk ,

where h, k can only be +S or −S. The derivation of the angle ϑ associated to a transformation � such that �p � p is reported in
appendix C; the result is:

ϑ(�, p) � h · p
q · p � η

where η was defined in Eq. (51).
Now we can obtain the spin density matrix and the spin polarization vector. From Eq. (55) one has:

�hk(p) �
∑∞

n�1(−1)2S(n+1)e−nb·peinηhδhk∑∞
n�1(−1)2S(n+1)e−nb·p2 cos nη

, (62)

whence, by using the Eq. (16), the spin polarization vector is obtained:

μ(p) � pμ
∑

h�±S

h�hh � i pμS

∑∞
n�1(−1)2S(n+1)e−nb·p sin(nη S)

∑∞
n�1(−1)2S(n+1)e−nb·p cos(nη S)

,

where it has been taken into account that h, k can only take on values ±S, with S � 1/2, 1, 3/2 . . . denoting the magnitude of the
helicity of the particle. The above series can be straightforwardly resummed, yielding:

μ(p) � i pμS
sin(η S)

cos(η S)− (−1)2Se−b·p .

This result can be continued to real thermal vorticity. Mapping φ �→ i� and η �→ i H we have:

μ(p) � −pμS
sinh(S H)

cosh(S H)− (−1)2Se−b·p � pμS
sinh

(
S ϕ · p̂)

cosh
(
S ϕ · p̂) − (−1)2Se−b·p , (63)

where in the last step we have used Eq. (54). The Eq. (63) reproduces Eq. (53) for S � 1/2.

6 Application to � polarization in heavy ion collisions

In relativistic heavy ion collisions, the theoretical estimates of the spin polarization vector of spin 1/2 hyperons are obtained at
linear order in thermal vorticity, see Eq. (2). Even though it is known that thermal vorticity is generally � 1 throughout the freeze-
out hypersurface [21] at high energy, it would be important to have a quantitative assessment the accuracy of this approximation.
Indeed, we are in a position to provide such an assessment by comparing the exact formula of the spin polarization vector at global
equilibrium - that is with constant thermal vorticity - with its linear approximation.

We can focus on the relative difference between the exact vorticity-induced spin vector Eq. (44) and its linear approximation
(47b) in global equilibrium. As the direction of the spin vector is given by θμ in both formulae, the relative difference is the same
for all components and reads:
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Fig. 1 The behaviour of the relative difference between the exact polarization vector and the linear approximation as a function of vorticity, temperature and
energy and chemical potential for b · p � ε/T

Fig. 2 The components of the polarization vector along the angular momentum, P J , and the beam axis, Pz , are shown as functions of the azimuthal angle φ
in the left and right panels respectively. They are calculated at freeze-out in Au-Au collisions at

√
sNN � 30 (upper panels) and

√
sNN � 200 GeV (lower

panels)

�
(√

−θ2, b · p − ζ
)

� 1

P1/2

(√−θ2, b · p − ζ
)

(

P1/2

(√
−θ2, b · p − ζ

)
−

√−θ2

2
(1 − nF (b · p − ζ ))

)

.

In Fig. 1 we show� in terms of its arguments, having set b · p � ε/T . It can be seen that, even for
√−θ2 ∼ 1, the relative difference

is less than 10%.
At local equilibrium, thermal vorticity� can be promoted to a local variable, i.e.� � � (x). Extending the formula (2) by using

the Eq. (44), the spin polarization vector of the � induced by thermal vorticity at freeze-out turns out to be:

Sμ(p) � − 1

4m
εμνρσ pσ

∫
d
 · p nF�νρ P1/2

(√−θ2, ε−μT
)
/
√−θ2

∫
d
 · p nF . (64)

It should be emphasized that the above expression is not the exact spin vector at local equilibrium, as the contributions from thermal
shear as well as from dissipative corrections and higher-order derivatives of the thermodynamic fields are not included. Nevertheless,
the formula (64) resums all the terms involving thermal vorticity and it is certainly a better approximation than (2).
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We have evaluated the Eq. (64) by performing 3 + 1D hydrodynamic simulation of Au-Au collisions at
√
sNN � 30 and√

sNN � 200 GeV with centrality 10 − 60% by using the code vHLLE [37] for the hydrodynamic evolution and the integration
over the freeze-out hypersurface. An averaged entropy density profile, generated by GLISSANDO v.2.702 [38], is used as initial
state. Only particles with zero rapidity have been taken into account.

Figure 2 shows the comparison between (64) and the Eq. (2), the former being labelled as “Exact” and the latter as “I◦ order”.
In particular, as it is customary, we study the azimuthal dependence Pz and P J , which are the projections of the polarization vector
along the beam and the angular momentum directions respectively. We remind the reader that the polarization vector of Dirac
fermions is twice the spin vector, Pμ � 2Sμ.

Figure 2 confirms the expectations from Fig. 1, as the difference between the exact polarization and the linear approximation is
tiny for the physical value of thermal vorticity in relativistic heavy ion collisions at 30 <

√
sNN < 200 GeV. It is possible that at

lower energy, where thermal vorticity is larger [39–43], such corrections may play a more significant role.

7 Summary and conclusions

To summarize, we have derived the analytic formulae of the exact spin polarization vector and spin density matrix for massive and
massless free fields at general global equilibrium with non-vanishing thermal vorticity. Our formulae are effectively a resummation
of all higher-order corrections in thermal vorticity to the spin polarization vector and the spin density matrix. Furthermore, the
unitary polarization bound is fulfilled.

We have developed the basic tools to study the polarization of massless particles, expressing the mean Pauli-Lubanski vector in
terms of the spin density matrix and, for spin-1/2 particles, of the Wigner function. In agreement with the expectation, the mean
Pauli-Lubanki vector is parallel to the four-momentum of the particle.

We have studied the phenomenological implications of the improved formulae showing that the higher-order corrections to the
spin polarization vector in thermal vorticity contribute marginally to the local polarization for 30 <

√
sNN < 200 GeV. For collisions

with
√
sNN ∼ 3 − 7 GeV, where the vorticity is larger, they might be more significant.
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Appendix A: Traces

To compute the traces appearing in Eqs. (34) and (48), we resort to the techniques used in ref. [44]. First, we define the auxiliary
variables:

z � φ : φ

2
+ i
φ : φ̃

2
, z̄ � φ : φ

2
− i
φ : φ̃

2
, (A1)

where φ̃ is the dual of φ:

φ̃μν � 1

2
εμνρσ φρσ .

It is possible to show that the following identities hold [44]:

tr(
μν(φ : 
)2k+1) � (φμν + i φ̃μν)zk + (φμν − i φ̃μν)z̄k ,

tr(γ5

μν(φ : 
)2k+1) � (φμν + i φ̃μν)zk − (φμν − i φ̃μν)z̄k ,

tr(
μν(φ : 
)2k) � 0,
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tr(γ5

μν(φ : 
)2k) � 0.

The above equations allow us to determine the traces involved in the calculations of Sect. 4. For example one has:

tr(exp[−inφ : 
/2])) �
∞∑

k�0

nk(−i)k

2kk!
φμν tr(
μν(φ : 
)k−1)

�
∞∑

k�−1

n2k+2(−i)2k+2

22k+2(2k + 2)!
φμν tr(


μν(φ : 
)2k+1)

�
∞∑

k�−1

n2k+2(−i)2k+2

22k+1(2k + 2)!
(zk+1 + z̄k+1)

� 2 cos

(
n
√
z

2

)

+ 2 cos

(
n
√
z̄

2

)

.

Similarly:

tr(γ5 exp[−inφ : 
/2])) � 2 cos

(
n
√
z

2

)

− 2 cos

(
n
√
z̄

2

)

,

tr(
μν exp[−inφ : 
/2]) � −i(φμν + i φ̃μν)
sin

(√
z/2

)

√
z

− i(φμν − i φ̃μν)
sin

(√
z̄/2

)

√
z̄

,

tr(γ5

μν exp[−inφ : 
/2]) � −i(φμν + i φ̃μν)

sin
(√

z/2
)

√
z

+ i(φμν − i φ̃μν)
sin

(√
z̄/2

)

√
z̄

.

These formulae hold for any φ, and in the general z and z̄ are complex numbers. However, the cases of interest are always such that
φ : φ̃ � 0 and z � z̄ � φ : φ/2, see for instance Eqs. (37) and (50).

For z � z̄ the above traces simplify, and one has:

tr(exp[−inφ : 
/2])) � 4 cos

(
n
√
z

2

)

,

tr(γ5 exp[−inφ : 
/2])) � 0,

tr(
μν exp[−inφ : 
/2]) � −2iφμν
sin

(√
z/2

)

√
z

,

tr(γ5

μν exp[−inφ : 
/2]) � 2φ̃μν

sin
(√

z/2
)

√
z

.

Writing the product of two gamma matrices in terms of their commutator and anticommutator, [γ μ, γ ν] � −4i
μν and {γ μ,
γ ν} � 2gμν respectively, we have:

tr(γ νγ μ exp[−inφ : 
/2]) � gμν tr(exp[−inφ : 
/2]) + 2i tr(
μν exp[−inφ : 
/2]),

tr(γ νγ μγ5 exp[−inφ : 
/2]) � gμν tr(γ5 exp[−inφ : 
/2]) + 2i tr(
μνγ5 exp[−inφ : 
/2]),

and finally we find:

tr(exp[−inφ : 
/2])) �4 cos

(
n
√
z

2

)

, (A3a)

tr(γ νγ μ exp[−inφ : 
/2]) �4gμν cos

(
n
√
z

2

)

+ 4φμν
sin

(√
z/2

)

√
z

, (A3b)

tr(γ νγ μγ5 exp[−inφ : 
/2]) �4i φ̃μν
sin

(√
z/2

)

√
z

, (A3c)

which are precisely the identities (40).

Appendix B: Little group for massless particles

In this section, the form of the tensor φ fulfilling φμν pν � 0 for a light-like momentum p is obtained. To begin with, we find the
most general decomposition of an anti-symmetric tensor using the the basis {p, q , n1, n2}, with p2 � q2 � 0, which has been
introduced in Sect. 2. It can be shown that two vectors h and y exist, with h · q � 0 and y · p � 0, such that:
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φμν � εμνρσ
hρ pσ
p · q + yμqν − yνqμ.

Their existence can be proved by inverting the above relation. Indeed, contracting φμν with pν and taking into account that y · p � 0:

φμν pν � yμ p · q ⇒ yμ � φμν pν
p · q ,

what is consistent with the requirement y · p � 0. Furthermore, if h · q � 0:

εμναβφ
μνqα � εμναβε

μνρσ hρ pσ
p · q qα � −2(δραδ

σ
β − δρβδσα )hρ

pσqα

p · q � 2hβ ,

which leads to:

hμ � −1

2
εμνρσ φνρqσ ,

which is again consistent with the requirement h · q � 0.
Using the above decompostion, the solution of φμν pν � 0 simply yields y � 0, which implies that the little group of massless

particles is generated by tensors φ parametrized as:

φμν � εμνρσ
hρ pσ
p · q ,

with h · q � 0, that is the Eq. (49).

Appendix C: The little-group transformations with �p � p

Our goal is to calculate the Wigner rotation, for massive and massless particles, for Lorentz transformations such that�p � p. For
this set of transformations, the Wigner rotation can be written as follows:

W (�, p) � [�p]−1�[p] � [p]−1�[p] � exp

[

−i
φμν

2
[p]−1 Jμν[p]

]

� exp

[

−i
φ0μν

2
Jμν

]

, (C1)

where we have used the condition �p � p, the transformation rules of the generators Jμν , and denoted

φ0μν � φρσ [p]ρμ[p]σν .

For massive particles, using the parametrization (37) and the properties of the Levi-Civita symbol, one has:

φ0μν � φρσ [p]ρμ[p]σν � 1

m
ερσλτ [p]ρμ[p]σν[p]λλ′ [p]ττ ′
︸ ︷︷ ︸

�εμνλ′τ ′

[p]−1λ
′
α[p]−1τ

′
γ ξ
α pγ � 1

m
εμνρσ ξ0

ρpσ , (C2)

where ξμ0 � [p]−1μ
νξ
ν , the vector ξ being defined by (36), and pμ � [p]−1μ

ν p
ν . Plugging this expression in (C1) and going to the

representation DS of the rotation group, one obtains:

DS(W (�, p)) � exp

[

−i
φ0μν

2
DS(Jμν)

]

� exp[−iξ0 · DS(J)],

which gives Eq. (56).
We now move to the massless case. Similarly as in (C2) and using the parametrization (49), the tensor φ0 reads:

φ
μν
0 � 1

p · qε
μνρσhρqσ ,

where hμ � [p]−1μ
νh
ν , the vector h being defined in (49). Using (C1) and the decomposition (49):

W (�, p) � exp

[

−i
φ0 : J

2

]

� exp

[

−i
h ·(p)

q · p
]

� exp

[

i
h · p
q · ph(p) + i

h · n1

q · p 1(p) + i
h · n2

q · p 2(p)

]

.

The generator h(p) coincides with J3 (see Sect. 2). Since, according to the algebra (13), the commutator between h and 1, 2 can
be written in terms of 1, 2, it can be realized that the Baker-Cambpell-Haussdorf formula for the factorization of exponentials of
operators implies the existence of a1, a2 such that:

exp

[

i
h · p
q · ph(p) + i

h · n1

q · p 1(p) + i
h · n2

q · p 2(p)

]

� exp[ia11(p) + ia22(p)] exp

[

i
h · p
q · ph(p)

]

,
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The representation of such transformation onto the Hilbert space of on-shell states (see Sect. 2) is such that the first exponential is
the identity due to (14), and only the rightmost exponential contributes. We thus have Eq. (32) with:

ϑ(�, p) � h · p
q · p � h · p

q · p � η

where we used the definition (51).
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