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Abstract
Nonparametric estimators of a regression function with circular response and Rd -
valued predictor are considered in thiswork. Local polynomial estimators are proposed
and studied. Expressions for the asymptotic conditional bias and variance of these
estimators are derived, and some guidelines to select asymptotically optimal local
bandwidth matrices are also provided. The finite sample behavior of the proposed
estimators is assessed through simulations, and their performance is also illustrated
with a real data set.
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1 Introduction

New challenges on regression modeling appear when trying to describe relations
between variables and some of them do not belong to an Euclidean space. This is
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Nonparametric multiple regression estimation for circular response 651

the case for regression problems where some or all of the involved variables are cir-
cular ones. The special nature of circular data (points on the circumference of the
unit circle; angles in T = [0, 2π)) relies on their periodicity, which requires ad hoc
statistical methods to analyze them. Circular statistics is an evolving discipline, and
several statistical techniques for linear data now may claim their circular analogues.
Comprehensive reviews on circular statistics (or more general, directional data) are
provided in Fisher (1995), Jammalamadaka and SenGupta (2001) or Mardia and Jupp
(2000). Some recent advances in directional statistics are collected in Ley and Verde-
bout (2017). Examples of circular data arise in many scientific fields such as biology,
studying animal orientation (Batschelet 1981), environmental applications (SenGupta
and Ugwuowo 2006) or oceanography (as in Wang et al. 2015, among others). When
the circular variable is supposed to vary with respect to other covariates and the goal is
to model such a relation, regression estimators for circular responses must be designed
and analyzed.

Parametric regression approaches were originally considered in Fisher and Lee
(1992) and Presnell et al. (1998), assuming a parametric (conditional) distribution
model for the circular response variable. In this scenario, Euclidean covariates are
supposed to influence the response via the parameters of the conditional distribution
(e.g., through the location parameter, as the simplest case, or through location and
concentration, if a von Mises distribution is chosen). Following the proposal in Pres-
nell et al. (1998), Scapini et al. (2002) analyzed the orientation of two species of sand
hoppers, considering parametric multiple regression methods for circular responses.
A parametric multiple circular regression problem was also studied in Kim and Sen-
Gupta (2017), considering the functional relationship between a multivariate circular
dependent variable and several circular covariates. Further, a multiple angular regres-
sion model for both angular and linear predictors was studied by Rivest et al. (2016).
Maximum likelihood estimators for the parameters were derived for some von Mises
error structures.

Beyond parametric restrictions, flexible approaches are also feasible in this con-
text, just imposing some regularity conditions on the regression function, but avoiding
the assumption of a specific parametric family for both the regression function and
the conditional distribution. Nonparametric estimators of the regression function con-
sidering a model with a circular response and a single real-valued covariate were
introduced in Di Marzio et al. (2013). The authors proposed smooth estimators for
the regression function which are defined as the inverse tangent function of the ratio
between two sample statistics, obtained as weighted sums of the sines and the cosines
of the response observations, respectively. Specifically, they considered local constant
and local linear weights.

The problem of nonparametrically estimating the conditional mean direction of a
circular random variable, given a Rd -valued covariate, is considered in this work. If
the relation between both variables is viewed from a model-based approach, then our
proposal aims to estimate the usual target regression function, given by the inverse
tangent function of the ratio between the conditional expectations of the sine and
cosine of the response variable. Our proposal considers two regression models for
the sine and cosine components, which are indeed regression models with real-valued
responses and d-dimensional covariates. Then, nonparametric estimators for the cir-
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cular regression function are obtained as the inverse tangent function of the ratio of
local polynomial estimators for the two regression functions of the sine and cosine
models, respectively. The estimators obtained with this proposal generalize to both
higher dimensions and higher polynomial degrees the proposals in Di Marzio et al.
(2013). The approach of considering two flexible regression models for the sine and
cosine components has been also explored in Jammalamadaka and Sarma (1993),
where the objective is the estimation of the regression function in a model with cir-
cular response and circular covariate. In this case, the conditional expectations of the
sine and the cosine of the response are approximated by trigonometric polynomials
of a suitable degree. A similar approach has been also considered in Di Marzio et al.
(2014), where the problem of nonparametrically estimating a regression function with
spherical response and spherical covariate is addressed as a multi-output regression
problem. In this case, each Cartesian coordinate of the spherical regression function
is separately estimated.

This paper is organized as follows. In Sect. 2, the regression models for the sine and
cosine components of the response are presented, jointly with a multiple regression
model for the circular variable. Assuming that all these models simultaneously hold,
certain relations between the first- and second-order moments of the involved errors
are established. In Sect. 3, the nonparametric estimators of the regression function
are proposed. Sections 3.1 and 3.2 contain the Nadaraya–Watson (NW) and local
linear (LL) versions of these estimators, respectively, and include expressions for their
asymptotic biases and variances. A local polynomial-type estimator with a general
degree p, for the case of univariate predictor, is also analyzed in Sect. 3.3. The finite
sample performance of the estimators is assessed through a simulation study provided
in Sect. 4. Finally, Sect. 5 shows a real data application about sand hoppers orientation.

The proofs of all the theoretical results, along with some additional simulations
experiments, are collected in the accompanying Supplementary Material.

2 Regressionmodels for circular response

In this section, we will establish the rationale behind our estimation proposal. First,
we will motivate the construction of our estimators, based on the expression of the
conditional mean direction of a circular variable Θ given a d-dimensional covariate
X. Then, we will explain how our proposal can be related to a classical model-based
approach, where the circular response variable admits a representation in terms of a
regression function over the covariates plus a circular error term.

2.1 A general approach based on the conditional expectation

Let {(Xi ,Θi )}ni=1 be a random sample from (X,Θ), where Θ is a circular random
variable taking values on T = [0, 2π), and X is a random variable with density f
supported on D ⊆ Rd . The dependence relation of Θ on X can be modeled by the
conditional mean direction of Θ given X which, at a point x ∈ D, is given by:
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Nonparametric multiple regression estimation for circular response 653

m(x) = atan2[m1(x),m2(x)], (1)

where m1(x) = E[sin(Θ) | X = x], m2(x) = E[cos(Θ) | X = x] and the function
atan2(y, x) returns the angle between the x-axis and the vector from the origin to
(x, y). With this formulation, m1 and m2 can be regarded as the regression functions
of two regression models, respectively, having sin(Θ) and cos(Θ) as their responses.
Specifically, we assume the models:

sin(Θi ) = m1(Xi )+ ξi , i = 1, . . . , n, (2)

and
cos(Θi ) = m2(Xi )+ ζi , i = 1, . . . , n, (3)

where the ξi and the ζi are independent error terms, absolutely bounded by 1, satisfying
E(ξ | X = x) = E(ζ | X = x) = 0. Additionally, for every x ∈ D, set s21 (x) =
Var(ξ | X = x), s22 (x) = Var(ζ | X = x) and c(x) = E(ξζ | X = x).

Considering models (2) and (3), a whole class of kernel-type estimators for m(x)
in (1), can be defined replacing in its expression the unknown functions m1(x) and
m2(x) by suitable local polynomial estimators as follows:

m̂H(x; p) = atan2[m̂1,H(x; p), m̂2,H(x; p)], (4)

where for any integer p ≥ 0, m̂1,H(x; p) and m̂2,H(x; p) denote the pth-order local
polynomial estimators (with bandwidth matrix H) of m1(x) and m2(x), respectively.
The special cases p = 0 and p = 1 yield a NW (or local constant)-type estimator and
a LL-type estimator of m(x), respectively.

It should be noted that models (2) and (3) can also be regarded as the components
of a vector-valued regression model for the Cartesian coordinate representation of the
circular response Θ . Hence, taking the representation of the circular response as the
unit vector [cos(Θ), sin(Θ)], these models amount to a regression model for vector-
valued responsewhose error term is a random vector having zero conditional mean and
conditional covariance matrix with diagonal entries s22 (x) and s

2
1 (x), and off-diagonal

entries both equal to c(x). In this case, the dependence relation of [cos(Θ), sin(Θ)]
on X can be modeled by the solution of the following minimization problem:

arg min
u∈R2:||u||=1

E{||[cos(Θ), sin(Θ)] − u||2 | X = x},

where || · || stands for the Euclidean norm. The solution of this problem is given by
the vector

{||[m2(x), m1(x)]||}−1[m2(x), m1(x)],

and its polar coordinate representation coincides with m(x) as given in (1).
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2.2 Amodel-based approach for polar representation

When trying to describe the relation between Θ and X, apart from the approach
described in the previous section, we can also focus directly on the polar coordi-
nate representation of the response. With this perspective, using the random sample
{(Xi ,Θi )}ni=1 , we assume the regression model:

Θi = [m(Xi )+ εi ](mod 2π), i = 1, . . . , n, (5)

where mod stands for the modulo operation, and εi , i = 1, . . . , n, is an independent
sample of a circular variable ε, satisfying E[sin(ε) | X = x] = 0 and having finite
concentration. In this setting, the circular regression function m in model (5) can
be defined as the minimizer of the risk function E{1 − cos[Θ − m(X)] | X = x},
which is the analogue of the L2 risk. The minimizer of this cosine risk is given by (1).
The assumption that model (5) simultaneously holds with the vector-valued regression
model presented in the previous section leads to certain relations between the variances
and covariances of the errors in models (2), (3) and (5), as will be described below.

Set ℓ(x) = E[cos(ε) | X = x],σ 2
1 (x) = Var[sin(ε) | X = x],σ 2

2 (x) = Var[cos(ε) |
X = x] and σ12(x) = E[sin(ε) cos(ε) | X = x]. Then, using the sine and cosine
addition formulas in model (5), it follows that, for i = 1, . . . , n:

sin(Θi ) = sin[m(Xi )] cos(εi )+ cos[m(Xi )] sin(εi ) (6)

and
cos(Θi ) = cos[m(Xi )] cos(εi ) − sin[m(Xi )] sin(εi ). (7)

Hence, defining f1(x) = sin[m(x)] and f2(x) = cos[m(x)] and applying conditional
expectations in (6) and (7), it holds that:

m1(x) = f1(x)ℓ(x) and m2(x) = f2(x)ℓ(x). (8)

Note that f1(x) and f2(x) correspond to the normalized versions ofm1(x) andm2(x),
respectively. Indeed, taking into account that f 21 (x) + f 22 (x) = 1, it can be easily
deduced that ℓ(x) = [m2

1(x) + m2
2(x)]1/2. Hence, under model (5), ℓ(x) amounts

to the mean resultant length of Θ given X = x, which, taking into account that
E[sin(ε) | X = x] = 0 is assumed, also corresponds to the mean resultant length of ε

given X = x.
In addition, if models (2) and (3) simultaneously hold with model (5), equating

expressions (2) and (6), and (3) and (7), and using (8), the errors in models (2) and (3)
can be written as:

ξi = f1(Xi )[cos(εi ) − ℓ(Xi )] + f2(Xi ) sin(εi ) i = 1, . . . , n (9)

and
ζi = f2(Xi )[cos(εi ) − ℓ(Xi )] − f1(Xi ) sin(εi ) i = 1, . . . , n, (10)
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which satisfy that E(ξ | X = x) = E(ζ | X = x) = 0. Then, the assumption that
model (5) holds leads to a special case of error structure in models (2) and (3). As a
consequence, the following explicit expressions for the conditional variances of the
error terms involved in models (2) and (3), in terms of the conditional variances and
covariance of the Cartesian coordinates of ε, can be obtained:

s21 (x) = f 21 (x)σ
2
2 (x)+ 2 f1(x) f2(x)σ12(x)+ f 22 (x)σ

2
1 (x), (11)

s22 (x) = f 22 (x)σ
2
2 (x) − 2 f2(x) f1(x)σ12(x)+ f 21 (x)σ

2
1 (x), (12)

as well as for the covariance between the error terms in (2) and (3):

c(x) = f1(x) f2(x)σ 2
2 (x) − f 21 (x)σ12(x)+ f 22 (x)σ12(x) − f1(x) f2(x)σ 2

1 (x). (13)

3 Properties of kernel-type estimators

Asymptotic (conditional) bias and variance of the estimator given in (4) are derived
in this section. We will focus on the cases in which p = 0 and p = 1. The asymptotic
properties of the corresponding NW and LL estimators of m j (x), j = 1, 2, are firstly
recalled just considering that models (2) and (3) hold. These results are then used to
obtain the asymptotic properties of the estimator presented in (4) with polynomial
degrees p = 0 and p = 1. When model (5) holds simultaneously with (2) and (3),
some simplifications for the asymptotic bias and variance expressions can be obtained.
Nevertheless, general results just assuming that (2) and (3) hold can be easily recovered
from the stated theorems. Finally, asymptotic properties of local polynomial estimators
with a higher-order p and D ⊆ R are also studied.

In what follows, ∇g(x) and Hg(x) will denote the vector of first-order partial
derivatives and theHessianmatrix of a sufficiently smooth function g at x, respectively.
Moreover, for a vector u = (u1, . . . , ud)T and an integrable function g, the multiple
integral

∫ ∫
. . .

∫
g(u)du1du2 . . . dud will be simply denoted as

∫
g(u)du. Finally,

for any matrix A, AT, |A| and tr(A) denote its transpose, determinant and trace,
respectively.

3.1 Nadaraya–Watson-type estimator

Considering models (2) and (3), local constant estimators for the regression functions
m j , j = 1, 2, at a given point x ∈ D ⊆ Rd , are, respectively, defined as:

m̂ j,H(x; 0) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∑n
i=1 KH(Xi − x) sin(Θi )∑n

i=1 KH(Xi − x)
if j = 1,

∑n
i=1 KH(Xi − x) cos(Θi )∑n

i=1 KH(Xi − x)
if j = 2,

(14)
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where, for u ∈ Rd , KH(u) = |H|−1K (H−1u) is the rescaled version of a d-variate
kernel function K , and H is a d × d bandwidth matrix. The estimator m̂H(x; 0) of
m(x), obtained by plugging (14) in (4), corresponds to the multivariate version of the
local constant estimator proposed in Di Marzio et al. (2013).

Next, the asymptotic conditional bias and variance expressions for m̂H(x; 0) are
derived. First, using asymptotic theoretical results for the multivariate NW estimator
(Härdle andMüller 2012), the asymptotic conditional bias and variance of m̂ j,H(x; 0),
for j = 1, 2, are obtained. These preliminary results, along with the covariance
between m̂1,H(x; 0) and m̂2,H(x; 0), are collected in Proposition 1. The following
assumptions on the design density, the kernel function and the bandwidth matrix are
required.

(A1) The design density f is continuously differentiable at x ∈ D, and satisfies
f (x) > 0. Moreover, s2j and all second-order derivatives of the regression
functions m j , for j = 1, 2, are continuous at x ∈ D, and s2j (x) > 0.

(A2) The kernel K is a spherically symmetric density function, twice continuously
differentiable and with compact support (for simplicity with a nonzero value
only if ∥u∥ ≤ 1). Moreover,

∫
uuTK (u)du = µ2(K )Id , where µ2(K ) ̸= 0

and Id denotes the d × d identity matrix. It is also assumed that R(K ) =∫
K 2(u)du < ∞.

(A3) The bandwidth matrix H is symmetric and positive definite, with H → 0 and
n|H| → ∞, as n → ∞.

In assumption (A3), H → 0 means that every entry of H goes to 0. Notice that,
since H is symmetric and positive definite, H → 0 is equivalent to λmax(H) → 0,
where λmax(H) denotes the maximum eigenvalue of H. |H| is a quantity of order
O

[
λdmax(H)

]
since |H| is equal to the product of all eigenvalues of H.

Proposition 1 Given the random sample {(Xi ,Θi )}ni=1 from (X,Θ) supported on D×
T, assume models (2) and (3). Under assumptions (A1)–(A3), if x is an interior point
of the support of f , then, for j = 1, 2,

E[m̂ j,H(x; 0) − m j (x) | X1, . . . ,Xn] =
1
2
µ2(K )tr[H2Hm j (x)]

+µ2(K )

f (x)
∇Tm j (x)H2∇ f (x)

+oP [tr(H2)],

Var[m̂ j,H(x; 0) | X1, . . . ,Xn] =
R(K )s2j (x)

n|H| f (x) + oP

(
1

n|H|

)
,

Cov[m̂1,H(x; 0), m̂2,H(x; 0) | X1, . . . ,Xn] =
R(K )c(x)
n|H| f (x) + oP

(
1

n|H|

)
.

Now, using Proposition 1, the following theorem provides the asymptotic condi-
tional bias and the asymptotic conditional variance of m̂H(x; 0).
Theorem 1 Given the random sample {(Xi ,Θi )}ni=1 from (X,Θ) supported on D×T,
assume models (2), (3) and (5) hold. Under assumptions (A1)–(A3), the asymptotic
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conditional bias of estimator m̂H(x; 0), at a fixed interior point x in the support of f ,
is given by:

E[m̂H(x; 0) − m(x) | X1, . . . ,Xn] =
1
2
µ2(K )tr[H2Hm(x)]

+ µ2(K )

ℓ(x) f (x)
∇Tm(x)H2∇(ℓ f )(x)

+oP [tr(H2)]

and its asymptotic conditional variance is:

Var[m̂H(x; 0) | X1, . . . ,Xn] =
R(K )σ 2

1 (x)
n|H|ℓ2(x) f (x) + oP

(
1

n|H|

)
.

Remark 1 Notice that the assumption that models (2) and (3) hold enable the defi-
nition of local estimators for m1(x) and m2(x), respectively, and then the definition
of estimators of m(x) having the form in (4). The further assumption that (5) holds
lead to a special case where some simplifications in both the conditional bias and the
conditional variance of the estimators are possible. In particular, as pointed out before,
under model (5), in virtue of Eqs. (6) and (7), it holds that

[m2
1(x)+ m2

2(x)]1/2 = ℓ(x).

Further, if models (2), (3) and (5) simultaneously hold, due to the error structure in
(9) and (10), and using (11), (12) and (13), it also holds that

m2
1(x)s

2
2 (x)+ m2

2(x)s
2
1 (x) − 2m1(x)m2(x)c(x)

m2
1(x)+ m2

2(x)
= σ 2

1 (x). (15)

Results for the asymptotic bias and the asymptotic variance for the more general
setting where just models (2) and (3) hold can be recovered by using the results of the
above theorem with [m2

1(x)+m2
2(x)]1/2 in place of ℓ(x), in both the bias and variance

expressions, and the left-hand side of (15) in place of σ 2
1 (x) in the variance expression.

Remark 2 Note that both the asymptotic conditional bias and the asymptotic condi-
tional variance of m̂H(x; 0) share the form of the corresponding quantities for the NW
estimator of a regression function with real-valued response. In the asymptotic bias
expression, both the gradient and the Hessian matrix ofm refer to a circular regression
function. In addition, under the assumption that models (2), (3) and (5) simultane-
ously hold, the asymptotic conditional variance depends on the ratio σ 2

1 (x)/ℓ
2(x),

accounting for the variability of the errors in model (5), which is related by (15) to the
covariance and the variances of the error terms in models (2) and (3).

From Theorem 1, it is possible to derive the asymptotic (conditional) mean squared
error (AMSE) of m̂H(x; 0), defined as the sum of the square of the main term of the
bias and the main term of the variance,
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AMSE[m̂H(x; 0)] =
{
1
2
µ2(K )tr[H2Hm(x)] +

µ2(K )

ℓ(x) f (x)
∇Tm(x)H2∇(ℓ f )(x)

}2

+ R(K )σ 2
1 (x)

n|H|ℓ2(x) f (x)

= 1
4
µ2
2(K )tr2

(
H2

{
1

ℓ(x) f (x)
[∇(ℓ f )(x)∇Tm(x)

+∇m(x)∇T(ℓ f )(x)] +Hm(x)
})

+ R(K )σ 2
1 (x)

n|H|ℓ2(x) f (x) . (16)

An asymptotically optimal local bandwidth matrix for m̂H(x; 0) can be selected
by minimizing (16) with respect to H. Using Proposition 2.6 of Liu (2001), it can be
obtained that this optimal local bandwidth is:

Hopt(x) = h∗(x)
[
B̃(x)

]−1/2

=
[

R(K )σ 2
1 (x)

ndµ2
2(K ) f (x)

|B̃(x)|1/2
]1/d+4

·
[
B̃(x)

]−1/2
, (17)

where

B̃(x) =
{
B(x) if B(x) is positive definite,
−B(x) if B(x) is negative definite,

with

B(x) = 1
ℓ(x) f (x)

[∇(ℓ f )(x)∇Tm(x)+ ∇m(x)∇T(ℓ f )(x)] +Hm(x).

Note that in the expression ofHopt(x), the matrix B̃(x) determines the shape and the
orientation in the d-dimensional space of the covariate region which is used to locally
compute the estimates. Such data regions are ellipsoids in Rd , being the magnitude of
the axes controlled by B̃(x) . In the particular case ofH = hId , the estimator m̂H(x; 0),
with x being an interior point of the support, achieves an optimal convergence rate
of n−4/(d+4), which is the same as the one for the multivariate NW estimator with
real-valued response (Härdle and Müller 2012).

Despite deriving the previous explicit expression for the local optimal bandwidth
(17), its use in practice is limited by the dependence on unknown functions, such as
the design density f and the variance of the sine of the errors σ 2

1 (x). In addition,
when the goal is to reconstruct the whole regression function and the focus is not only
set on a specific point, it is more usual in practice to consider a global bandwidth
for the estimation. An asymptotically optimal global bandwidth matrix H could be
obtained by minimizing a global error measurement (such as the integrated version of
theAMSE).Again, thiswill depend on unknowns, leading to a non-trivial optimization
problem, not being possible to obtain a closed-form solution. Alternatively, a suitable
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adapted cross-validation criterion can be used to select the bandwidth matrix. This is
indeed the bandwidth selection method employed in our numerical analysis and our
real data application. More details will be provided in Sect. 4.

3.2 Local linear-type estimator

Similarly to the case when p = 0, the local linear case, corresponding to p = 1, is
considered. Specifically, for models (2) and (3), the LL estimators of the regression
functions m j , j = 1, 2, at x ∈ D, are defined by:

m̂ j,H(x; 1) =

⎧
⎨

⎩

eT1 (X T
xWxX x)

−1X T
xWxS if j = 1,

eT1 (X T
xWxX x)

−1X T
xWxC if j = 2,

(18)

where e1 is a (d + 1) × 1 vector having 1 in the first entry and 0 in all other
entries, X x is a n × (d + 1) matrix having (1, (Xi − x)T) as its i th row, Wx =
diag{KH(X1 − x), . . . , KH(Xn − x)}, S = (sin(Θ1), . . . , sin(Θn))

T and C =
(cos(Θ1), . . . , cos(Θn))

T.
Using asymptotic results for the multivariate local linear estimator (Ruppert and

Wand 1994), the asymptotic conditional bias and variance of m̂ j,H(x; 1), j = 1, 2,
can be obtained. These expressions, along with the covariance between m̂1,H(x; 1)
and m̂2,H(x; 1), are provided in the following result.

Proposition 2 Given the random sample {(Xi ,Θi )}ni=1 from (X,Θ) supported on D×
T, assume models (2) and (3). Under assumptions (A1)–(A3), if x is an interior point
of the support of f , then, for j = 1, 2,

E[m̂ j,H(x; 1) − m j (x) | X1, . . . ,Xn] =
1
2
µ2(K )tr[H2Hm j (x)]

+oP [tr(H2)],

Var[m̂ j,H(x; 1) | X1, . . . ,Xn] =
R(K )s2j (x)

n|H| f (x) + oP

(
1

n|H|

)
,

Cov[m̂1,H(x; 1), m̂2,H(x; 1) | X1, . . . ,Xn] =
R(K )c(x)
n|H| f (x) + oP

(
1

n|H|

)
.

The estimator m̂H(x; 1)ofm(x), obtained byplugging (18) in (4), corresponds to the
multivariate version of the local linear estimator proposed in Di Marzio et al. (2013).
The following theorem provides the asymptotic conditional bias and the asymptotic
conditional variance of m̂H(x; 1).

Theorem 2 Given the random sample {(Xi ,Θi )}ni=1 from (X,Θ) supported on D×T,
assume models (2), (3) and (5) hold. Under assumptions (A1)–(A3), the asymptotic
conditional bias of estimator m̂H(x; 1), with x being a fixed interior point in the support
of f , is given by:
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E[m̂H(x; 1) − m(x) | X1, . . . ,Xn] =
1
2
µ2(K )tr[H2Hm(x)]

+µ2(K )

ℓ(x)
∇Tm(x)H2∇ℓ(x)+ oP [tr(H2)]

and its asymptotic conditional variance is:

Var[m̂H(x; 1) | X1, . . . ,Xn] =
R(K )σ 2

1 (x)
n|H|ℓ2(x) f (x) + oP

(
1

n|H|

)
.

Remark 3 Notice that the same comments included in Remark 1 also apply for Theo-
rem 2.

Remark 4 Estimators m̂H(x; 0) and m̂H(x; 1) have the same leading terms in their
asymptotic conditional variances, while their asymptotic conditional biases, also being
of the same order, have different leading terms. In particular, the main term of the
asymptotic conditional bias of m̂H(x; 1) does not depend on the design density, f .
Moreover, as a consequence of its definition, the LL-type estimator, differently from
the NW-type one, automatically adapts to boundary regions, in the sense that for
compactly supported f , the asymptotic conditional bias has the same order both for
the interior and for the boundary of the support of f (Ruppert and Wand 1994).

Remark 5 For d = 1, asymptotic results for estimators having the same form as the
univariate version of estimator (4) with p = 0 and p = 1, are provided in Di Marzio
et al. (2013). Despite they used slightly different formulations for their nonparametric
estimators, their results, at interior points, can be directly comparedwith those obtained
in Theorems 1 and 2. This correspondence is immediately clear for the asymptotic
bias terms. For the asymptotic variance, the equivalence between the expressions can
be obtained considering the relations between the variance of the error term in model
(5) with the variance of the error terms in models (2) and (3), as stated in (15).

As a consequence of Theorem 2, and similarly to the NW case, an asymptotically
optimal local bandwidth can also be obtained for m̂H(x; 1), which coincides with (17),
but taking B(x) = ℓ−1(x)[∇ℓ(x)∇Tm(x)+ ∇m(x)∇Tℓ(x)] +Hm(x).

3.3 Higher-order polynomials

Asymptotic theory on local polynomial estimators (Fan and Gijbels, 1996) can be
used to generalize the previous results to the case of an arbitrary polynomial degree
p. Similar arguments to those used to prove Theorems 1 and 2, can be applied to
derive that the conditional bias of the pth-order polynomial-type estimator given in
(4) will be of order OP {[tr(H2)](p+1)/2}. Moreover, if p is even, f has a continuous
derivative in a neighborhood of x, and x is an interior point of the support of the design
density f , then the bias will be of order OP {[tr(H2)](p/2+1)}. Here, as in Ruppert and
Wand (1994), we will only focus on the case d = 1 to analyze asymptotically the
nonparametric regression estimator given in (4) for p > 1. In particular, the pth

123



Nonparametric multiple regression estimation for circular response 661

degree local polynomial estimators for m j , j = 1, 2, at x ∈ D ⊆ R, are:

m̂ j,h(x; p) =

⎧
⎨

⎩

eT1 (X T
x,pW xX x,p)

−1X T
x,pW xS if j = 1,

eT1 (X T
x,pW xX x,p)

−1X T
x,pW xC if j = 2,

(19)

where, in this case, e1 is a (p + 1) × 1 vector having 1 in the first entry and zero
elsewhere,X x,p is for n × p matrix with the (i, k)th entry equal to (Xi − x)k−1, and
W x is a diagonal matrix of order n with (i, i)th entry equal to Kh(Xi − x), where
Kh(u) = 1/hK (u/h), being K a univariate kernel function, and h the bandwidth or
smoothing parameter. In this univariate framework, the pth degree local polynomial-
type estimator ofm at x , denoted by m̂h(x; p), has the same expression as the one given
in (4), but using estimators m̂ j,h(x; p), j = 1, 2, defined in (19), as the arguments of
the atan2 function.

Let K(p) be the equivalent kernel function defined in Lejeune and Sarda (1992),
which is a kernel of order p + 2 when p is even and of order p + 1 otherwise. Let
µ j (K(p)) and R(K(p))denote themoment of order j and the roughness of K(p), respec-
tively. Under suitable adaptations of assumptions (A1)–(A3) to the univariate case and
using asymptotic results for local polynomial estimators of an arbitrary order p, the
asymptotic conditional bias and variance of m̂ j,h(x; p), j = 1, 2, can be obtained.
In the following theorems, we derive the asymptotic bias and variance expressions of
m̂h(x; p), x ∈ D, only for p = 2 and p = 3. However, following similar arguments,
these results could be extended with tedious calculations for higher-order polynomial
degrees. It should be noted that for local polynomial regression in an Euclidean con-
text, Fan and Gijbels (1996) recommended the use of polynomial orders p = 1 or
p = 3.

Theorem 3 Let {(Xi ,Θi )}ni=1 be a random sample from (X ,Θ) supported on D ×T,
with D ⊆ R, assume models (2), (3) and (5) hold (with d = 1), and let x be an interior
point of the support of the design density f . Under assumptions (A1)–(A3) (adapted
for d = 1) and assuming that m j , j = 1, 2, admits continuous derivatives up to order
four in a neighborhood of x, then,

E[m̂h(x; 2) − m(x) | X1, . . . , Xn] =
h4µ4(K(2)) f (1)(x)

3! f (x) [m(3)(x)+ a(x)]

+h4µ4(K(2))

4! [m(4)(x)+ b(x)] + oP
(
h4

)

and

Var[m̂h(x; 2) | X1, . . . , Xn] =
R

(
K(2)

)

nhℓ2(x) f (x)
σ 2
1 (x)+ oP

(
1
nh

)
,
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where

a(x) = 2ℓ(2)(x)m(1)(x)+ 4ℓ(1)(x)m(2)(x)
ℓ(x)

+m(2)
2 (x)m(1)

1 (x) − m(2)
1 (x)m(1)

2 (x)+ 2ℓ(1)
2
(x)m(1)(x)

ℓ2(x)

and

b(x) = 2ℓ(3)(x)m(1)(x)+ 6ℓ(1)(x)m(3)(x)+ 6ℓ(2)(x)m(2)(x)
ℓ(x)

+2m(3)
2 (x)m(1)

1 (x) − 2m(3)
1 (x)m(1)

2 (x)
ℓ2(x)

+6ℓ(1)
2
(x)m(2)(x)+ 6ℓ(1)(x)ℓ(2)(x)m(1)(x)

ℓ2(x)
.

Theorem 4 Let {(Xi ,Θi )}ni=1 be a random sample from (X ,Θ) supported on D ×T,
with D ⊆ R, assume models (2), (3) and (5) hold (with d = 1), and let x be an interior
point of the support of the design density f . Under assumptions (A1)–(A3) (adapted
for d = 1) and assuming that m j , j = 1, 2, admits continuous derivatives up to order
five in a neighborhood of x, then,

E[m̂h(x; 3) − m(x) | X1, . . . , Xn] =
h4µ4(K(3))

4! [m(4)(x)+ b(x)] + oP
(
h4

)

and

Var[m̂h(x; 3) | X1, . . . , Xn] =
R

(
K(3)

)

nhℓ2(x) f (x)
σ 2
1 (x)+ oP

(
1
nh

)
.

Remark 6 Similar comments to those included in Remark 1 can be considered for
Theorems 3 and 4.

4 Simulation study

In order to illustrate the performance of the estimators proposed in Sect. 3, a simulation
study considering different scenarios and model (5) is carried out for d = 2 (that is,
considering a circular response and a bidimensional covariate). For each scenario, 500
samples of size n (n = 64, 100, 225 and 400) are generated on a bidimensional regular
grid in the unit square considering the following regression models, for i = 1, . . . , n:

M1. Θi = [atan2(6X5
i1 − 2X3

i1 − 1,−2X5
i2 − 3Xi2 − 1)+ εi ](mod 2π),

M2. Θi = [acos(X5
i1 − 1)+ 3

2
asin(X3

i2 − Xi2 + 1)+ εi ](mod 2π),
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Fig. 1 Illustration of model generation (model M1: top row; model M2: bottom row) on a 15 × 15 grid.
In left panels, regression functions evaluated at the grid points. In center panels, independent errors from
a von Mises distribution with zero mean and concentration κ = 5, for model M1, and κ = 15, for model
M2. In right panels, random response variables obtained by adding the two previous plots

where {(Xi1, Xi2)}ni=1 denotes a sample of the bidimensional covariateX = (X1, X2),
and the circular errors εi are drawn from a von Mises distribution vM(0, κ) with
different values of κ (5, 10 and 15).

Figure 1 shows two realizations of simulated data (model M1 in top row and model
M2 in bottom row). In both cases, the sample size is n = 225. Left plots show the
regression functions evaluated in the regularly spaced sample {(Xi1, Xi2)}ni=1. Central
panels present the random errors generated from a von Mises distribution with zero
mean direction and concentration κ = 5, for model M1, and κ = 15, for model M2.
Right panels show the values of the response variables, obtained adding regression
functions and circular errors. It can be seen that the errors in the top row, corresponding
to κ = 5, present more variability than the ones generated with κ = 15.

Numerical and graphical outputs summarize the finite sample performance of NW-
and LL-type estimators in the different scenarios. The bandwidth matrix is chosen by
cross-validation, selecting H that minimizes the function:

CV(H) =
n∑

i=1

{
1 − cos

[
Θi − m̂(i)

H (Xi ; p)
]}

,

where m̂(i)
H (·; p) stands for the NW-type estimator (p = 0) or the LL-type estimator

(p = 1), computed using all observations except (Xi ,Θi ). Taking into account the type
of regression functions considered inmodelsM1andM2and to speedup the computing
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Table 1 Average error (over 500
replicates) of the CASE given in
(20), for regression model M1,
using NW- and LL-type
estimators

κ n NW LL

HCV HCASE HCV HCASE

5 64 0.0610 0.0152 0.0672 0.0147

100 0.0280 0.0111 0.0358 0.0100

225 0.0124 0.0066 0.0158 0.0051

400 0.0075 0.0047 0.0091 0.0033

10 64 0.0094 0.0092 0.0071 0.0066

100 0.0102 0.0072 0.0055 0.0043

225 0.0065 0.0042 0.0028 0.0026

400 0.0042 0.0029 0.0019 0.0016

15 64 0.0182 0.0072 0.0201 0.0056

100 0.0091 0.0054 0.0110 0.0041

225 0.0046 0.0032 0.0050 0.0021

400 0.0032 0.0023 0.0029 0.0014

Errors are generated from a von Mises distribution with different con-
centration parameters (κ = 5, 10, 15). Bandwidth matrix is selected
by cross-validation,HCV. Additionally, results when using the optimal
bandwidth HCASE are also included

times, in this simulation study, the bandwidth matrix is restricted to be diagonal with
possibly different elements. A multivariate Epanechnikov kernel is considered for
simulations.

Table 1 shows, for model M1 and in the different scenarios, the average (over the
500 replicates) of the circular average squared error (CASE), defined as (Kim and
SenGupta 2017):

CASE[m̂H(·; p)] =
1
n

n∑

i=1

{
1 − cos

[
m(Xi ) − m̂H(Xi ; p)

]}
, (20)

with p = 0 (NW) and p = 1 (LL), when H is selected by cross-validation. For
comparative purposes, the diagonal optimal bandwidth matrix HCASE minimizing
(20) (obtained by intensive search) is also computed. The corresponding averages of
the minimum values of the CASE are also included in Table 1. It can be seen that the
average errors decrease when the sample size increase, and it is smaller for the LL-type
estimator for most of the scenarios. Additionally, as expected, results are generally
better when the error concentration gets larger. Average errors of the CASE for model
M2 are shown in Table 2.

Numerical outputs are completed with some additional plots. As an illustration of
the correct performance of NW- and LL-type estimators, Fig. 2 shows the theoretical
regression functions for models M1 and M2 (left panels) and the corresponding aver-
age, over 500 replicates, of the estimates, using the specific scenarios considered in
Fig. 1 (NW and LL estimates in the center and right panels, respectively). Notice that,
for comparison purposes, the theoretical regression functions are plotted in a 100×100
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Table 2 Average error (over 500
replicates) of the CASE given in
(20), for regression model M2,
using NW- and LL-type
estimators

κ n NW LL

HCV HCASE HCV HCASE

5 64 0.0638 0.0303 0.0684 0.0209

100 0.0330 0.0239 0.0369 0.0154

225 0.0190 0.0158 0.0170 0.0089

400 0.0141 0.0120 0.0102 0.0061

10 64 0.0297 0.0184 0.0315 0.0118

100 0.0181 0.0151 0.0172 0.0091

225 0.0131 0.0106 0.0085 0.0054

400 0.0109 0.0086 0.0054 0.0038

15 64 0.0198 0.0139 0.0206 0.0088

100 0.0138 0.0116 0.0118 0.0068

225 0.0114 0.0087 0.0061 0.0041

400 0.0100 0.0075 0.0041 0.0029

Errors are generated from a von Mises distribution with different con-
centration parameters (κ = 5, 10, 15). Bandwidth matrix is selected
by cross-validation,HCV. Additionally, results when using the optimal
bandwidth HCASE are also included

regular grid of the explanatory variables (the same grid where the estimations were
computed). Plots in the top row present the results for the data generated from model
M1 and those in the bottom row for model M2. Although both estimators have a
similar and correct behavior, the LL-type estimator seems to show a slightly better
performance, at least, for these samples. More reliable comparisons between NW- and
LL-type estimators can be performed computing the circular bias (CB), the circular
variance (CVAR) and the circular mean squared error (CMSE) for both estimators, in
a grid of values of the explanatory variables. These quantities, at a point x, are defined
as:

CB[m̂H(x; p)] = E{sin[m̂H(x; p) − m(x)]}, (21)

CVAR[m̂H(x; p)] = E{1 − cos[m̂H(x; p) − µ(x;p)]}, (22)

CMSE[m̂H(x; p)] = E{1 − cos[m(x) − m̂H(x; p)]}, (23)

where µ(x;p) in CVAR denotes the circular mean of m̂H(x; p). Notice that, using
Taylor expansions, Eqs. (21), (22) and (23) are equivalent to the Euclidean versions
of these expressions (Kim and SenGupta 2017).

Figures 3 and 4 show, in the scenarios considered in Fig. 1, the CB, CVAR and
CMSE computed in a 100 × 100 regular grid of the explanatory variables, when
using NW (top row) and LL (bottom row)-type estimators, for models M1 and M2,
respectively. The expectations in (21), (22) and (23) are approximated by the averages
over the 500 replicates generated. It can be seen that the NW-type estimator (p = 0)
provides larger biases and smaller variances than the LL-type estimator (p = 1) in
both settings. However, the CMSE is smaller for the LL fit in most of the grid points.
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Fig. 2 Theoretical regression function (left), jointly with the average, over 500 replicates, of NW (center)
and LL (right)-type estimates, using the specific scenarios considered in Fig. 1, for model M1 (top row)
and model M2 (bottom row)

Similar results for the CB, CVAR and CMSE for both estimators were obtained in
other scenarios.

5 Real data example

A real data example is presented in order to illustrate the application of the proposed
estimators. Based on the simulation study, where the LL-type estimator presented a
slightly better performance than theNWone, just results corresponding to m̂H(x; 1) are
provided for real data. Orientations of two species of sand hoppers (Talorchestia brito
and Talitrus saltator) on the Zouara beach in northwestern Tunisia are considered.
Following the proposal in Presnell et al. (1998), these observations were analyzed
in Scapini et al. (2002). They used a parametric approach that assumes a projected
normal distribution for the scape directions and the corresponding parameters (circular
mean and mean resultant vector) depend on the explanatory variables through a linear
model.We refer to Scapini et al. (2002) andMarchetti and Scapini (2003) for details on
the experiment, a thorough data analysis and sound biological conclusions. Dealing
with the same data set, in Marchetti and Scapini (2003), the authors conclude that
the orientation is different for the two sexes (males and females) and they explicitly
mention that nonparametric smoothers are flexible tools that may suggest unexpected
features of the data. So, the illustration with our proposal is a first attempt to analyze
this data set with nonparametric tools in order to check how orientation (in degrees)
behaves when temperature (in Celsius degrees) and (relative) humidity (in percentage)
are included as covariates. For illustration purposes, only observations corresponding
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Fig. 3 Circular bias (left), circular variance (center) andCMSE (right) surfaces formodelM1 for a 100×100
regular grid, using NW (top row) and LL (bottom row) fits. n = 225 and von Mises errors with zero mean
and κ = 5
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Fig. 4 Circular bias (left), circular variance (center) andCMSE (right) surfaces formodelM2 for a 100×100
regular grid, using NW (top row) and LL (bottom row) fits. n = 225 and von Mises errors with zero mean
and κ = 15
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Fig. 5 Observed orientation of male (left) and female (right) sand hoppers as a function of temperature and
relative humidity

to (relative) humidity values larger than 45% are considered in this analysis. The
corresponding data sets are plotted in Fig. 5 (males in the left panel and females in the
right panel), being the sample sizes n = 330 and n = 404, for male and female sand
hoppers, respectively.

Figure 6 shows the LL-type estimates for male (left) and female (right) mean
orientations, considering temperature (horizontal axis) and relative humidity (vertical
axis) as covariates. Note that measurements of temperature and humidity are the same
for males and females, given that these values correspond to experimental conditions.
In this example, unlike in the simulation experiments, the CV bandwidth matrix has
been searched in the family of the symmetric and definite positive full bandwidth
matrices, using an optimization algorithm based on the Nelder–Mead simplex method
described in Lagarias et al. (1998). Using the initial bandwidth matrix Hinit = 1.5 ·
diag

{
σ̂X1 , σ̂X2

}
, the algorithm converged to

Hm
CV =

[
2.7781 0.0001
0.0001 15.2529

]
,

for males, and to

H f
CV =

[
4.0930 −0.0009

−0.0009 13.1937

]
,
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Fig. 6 Estimates of the mean orientation of males (left) and females (right) sand hoppers, considering a
LL-type estimator with a cross-validation bandwidth matrix. Horizontal axis: temperature, in ◦C. Vertical
axis: relative humidity, in percentage

for females, where σ̂X1 and σ̂X2 denote the sample standard deviations of the covariates
X1 = “temperature” and X2 = “humidity,” respectively. As in the previous section,
a multivariate Epanechnikov kernel is considered. Note that the estimation grid of
explanatory variables on which the estimates of the mean were computed was con-
structed by overlying the survey values of temperature and humidity with a 100×100
grid and, then, dropping every grid point that did not satisfy one of the following two
requirements: (a) it is within 15 “grid cell length” from an observation point, or (b) the
calculation for the estimates of the sine and cosine components at that grid point uses
a smoothing vector that is sufficiently stable. Both requirements are admittedly some-
what arbitrary, but they represent a compromise between coverage over the region
of interest and ability to avoid singular design matrices. Even with these restrictions,
some of the estimates for low temperature values (around 20 ◦C) seem to be spuri-
ous, specially in the case of male individuals. This can be due to data sparseness or a
boundary effect, two well-known situations where kernel-based smoothing methods
may present certain drawbacks. Trying to avoid some of these problems and taking
into account that there are repeated values of the covariates, additional estimates have
been obtained after jittering the original data (the corresponding plots are not shown),
obtaining estimates that follow similar patterns to those shown in Fig. 6. The mean
direction followed by male and female sand hoppers is different for some temperature
and humidity conditions. Seaward orientation was roughly 7π/4, so it can be seen
that females are more seaward oriented than males, specially for mid to low values of
temperature.

6 Discussion

Nonparametric estimation of the conditional mean direction (or the regression func-
tion, from a model-based approach) of a circular random variable, given a Rd -valued
covariate, is studied in this paper. Our proposal considers kernel-based approaches,
with special attention on NW- and LL-type estimators in general dimension, and for
higher-order polynomials in the one-dimensional case. Asymptotic conditional bias
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and variance are derived and the performance of the estimators is assessed in a simu-
lation study.

For practical implementation, the selection of a d-dimensional bandwidth matrix
is required. In the regression Euclidean context, the bandwidth selection problem
has been widely addressed in the last decades (see, for example, Köhler et al. 2014,
where a review on bandwidth selection methods for kernel regression is provided).
More related to the topic of the present paper, a rule-of-thumb and a bandwidth rule
for selecting scalar or diagonal bandwidth matrices for the multivariate local linear
regression estimator with real-valued response and Rd -valued covariate is derived in
Yang and Tschernig (1999). Also in this setting, in González-Manteiga et al. (2004), a
bootstrap method to estimate the mean squared error and the smoothing parameter for
the multidimensional regression local linear estimator is proposed. However, in the
framework of nonparametric regression methods for circular variables, the research
on bandwidth selection is very scarce or nonexistent. Our practical results are derived
with a cross-validation bandwidth given that, up to our knowledge, there are no other
bandwidth selectors available in this context. The design of alternative procedures to
select the bandwidth matrix for the estimators studied in this paper based, for example,
on bootstrap methods are indeed of great interest. This problem is out of the scope of
the present paper, but it is an interesting topic of research for a future study.

Once the problem of including a Rd -valued covariate for explaining the behavior
of a circular response is solved, it seems natural to think about the consideration of
covariates of different nature. Since the proposed estimator is constructed by con-
sidering the atan2 of the smooth estimators of the regression functions for the sine
and cosine components of the response, an adaptation of our proposal for different
types of covariates implies the use of suitable weights. For instance, if a spherical
(circular, as a particular case) or a mixture of spherical and real-valued covariates are
considered to influence a circular response, weights for estimating the sine and cosine
components could be constructed following the ideas in García-Portugués et al. (2013)
for cylindrical density estimation. If a categorical covariate is included in the model,
a similar approach to the one in Racine and Li (2004) or in Li and Racine (2004)
could be also followed. In all these cases, bandwidth matrices should be selected, and
cross-validation techniques could be applied.

The results obtained in Theorems 3 and 4 can be extended to an arbitrary dimension
d of the space of the covariates by using the asymptotic properties for m̂ j,H(x; p),
provided in Gu et al. (2015), who considered the leading term of the bias and the
variance of the multivariate local polynomial estimator of general order p. Results
on the asymptotic distribution of the multivariate local polynomial estimator (for
a general p) is also provided in Gu et al. (2015). The joint asymptotic normality of
m̂1,H(x; p) and m̂2,H(x; p) can be used to derive, via the delta-method, the asymptotic
distribution of statisticswhich can be expressed in terms of m̂1,H(x; p) and m̂2,H(x; p).
For example, a suitable adaptationofProposition3.1 of Jammalamadaka andSenGupta
(2001) can be used to derive the limiting distribution of the tangent of m̂H(x; p).

In our scenario, data generated from the regression model are assumed to be
independent.However, inmany practical situations, this assumption does not seem rea-
sonable (e.g., data area collected over time or space). The simple construction scheme
behind the proposed class of estimators makes possible to easily obtain asymptotic

123



Nonparametric multiple regression estimation for circular response 671

properties in more general frameworks. As an example, when data are not indepen-
dent but are realizations of stationary processes satisfying some mixing conditions,
the results provided in Masry (1996) can be used. It should be also noted that, when
the data exhibit some kind of dependence, although the expression for the estimator
will be the same, this structure will affect the estimator variance and should be taking
into account to select properly the bandwidth parameter, as in Francisco-Fernandez
and Opsomer (2005).
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