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Abstract: Osteoporosis is characterized by the alteration of bone homeostasis due to an imbalance
between osteoclastic bone resorption and osteoblastic bone formation. Estrogen deficiency causes
bone loss and postmenopausal osteoporosis, the pathogenesis of which also involves oxidative
stress, inflammatory processes, and the dysregulation of the expression of microRNAs (miRNAs)
that control gene expression at post-transcriptional levels. Oxidative stress, due to an increase in
reactive oxygen species (ROS), proinflammatory mediators and altered levels of miRNAs enhance
osteoclastogenesis and reduce osteoblastogenesis through mechanisms involving the activation of
MAPK and transcription factors. The present review summarizes the principal molecular mechanisms
involved in the role of ROS and proinflammatory cytokines on osteoporosis. Moreover, it highlights
the interplay among altered miRNA levels, oxidative stress, and an inflammatory state. In fact, ROS,
by activating the transcriptional factors, can affect miRNA expression, and miRNAs can regulate ROS
production and inflammatory processes. Therefore, the present review should help in identifying
targets for the development of new therapeutic approaches to osteoporotic treatment and improve
the quality of life of patients.
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1. Introduction

Bone remodeling is due to the highly regulated and coupled events of bone resorption
and bone formation in which old bone is removed and replaced with newly formed bone.
It occurs before birth and throughout life, and its role is to maintain bone strength and
mineral homeostasis [1]. Bone is a dynamic tissue, and bone remodeling is crucial not
only to replace primary with secondary bones, but also to repair skeleton microdamage
and ensure normal calcium homeostasis. Osteoclasts and osteoblasts are involved in
bone remodeling, and have the sequential function of resorbing old bone and forming
new bone through a well-coordinated mechanism regulated by different factors, such
as systemic hormones, local growth factors, cytokines, chemokines, adhesion molecules,
and extracellular matrix proteins [1]. These factors are secreted by bone surface cells and
produced by osteocytes located in the bone matrix, which represent the other cell type that,
together with bone lining cells, is involved in bone remodeling [2].

In particular, osteoblasts arise from bone-marrow-derived stromal cells (BMSCs),
pluripotent mesenchymal stem cells, with the ability to differentiate into chondrocytes and
adipocytes. The differentiation of BMSCs towards osteogenesis is regulated by several
bone morphogenetic proteins (BMPs) and Wnt signaling pathways [3] through the acti-
vation of β-catenin, which is stabilized by the parathyroid hormone involved in calcium
homeostasis [4]. Active osteoblasts synthetize and secrete Type I collagen (COLI), the
principal bone matrix protein and noncollagenous proteins, such as osteocalcin (OCN),
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osteopontin, and osteonectin, and are rich in alkaline phosphatase (ALP), a biomarker of
osteoblastic function that is very important in the mineralization of bone matrix [5,6]. In
addition, osteoblasts control osteoclastogenesis through both the Wnt signaling pathway,
and the secretion of osteoprotegerin (OPG) and the receptor activator of nuclear kB ligand
(RANKL). In fact, OPG downregulates osteoclastogenesis, while RANKL upregulates it [7].

Mature osteoclasts are multinucleate cells that derive from the monocyte/macrophage
lineage and through the fusion of mononuclear precursor cells. They adhere to the bone
matrix, polarize, and present on distinct plasma-membrane domains with different func-
tions. In particular, the ruffled border domain, located on the apical membranes, represents
the resorbing organ that allows for osteoclasts to degrade hydroxyapatite, the inorganic
component of the bone matrix, through the secretion of hydrochloric acid and proteases [8].
RANKL binds to its receptor activator of nuclear kB (RANK), located on the surface of
osteoclastic precursors, and induces their differentiation. This does not occur when RANKL
binds to its soluble receptor OPG. For this reason, the ratio of OPG/RANKL is an index of
the degree of differentiation of osteoclasts and is essential for the dynamic balance of bones
in the body [8].

Osteocytes derive from mature matrix-producing osteoblasts, are embedded in bone,
play a chief role in maintaining the correct biomechanical property of bone tissue, and
present dendritic processes through which they communicate with adjacent osteocytes
and other cells on the bone surface. Some important signals that regulate osteoblastic and
osteoclastic activity start from osteocytes. In fact, they secrete sclerostin to inhibit Wnt
signaling pathway, involved in bone formation, and RANKL, which induces osteoclastic
differentiation, in osteoblasts. In addition, osteocytes produce OPG that, by competing with
RANKL for binding to the RANK receptor, suppresses osteoclastic activity. The expression
of genes related to mineralization and phosphate metabolism also occurs in osteocytes
that produce fibroblast growth factor 23 (FGF23), a phosphaturic hormone involved in
the regulation of phosphate homeostasis and bone mineralization [9]. In the presence of
microdamage, osteocytes undergo apoptosis, which triggers signals that promote the local
recruitment of osteoclasts and their activity in repairing bone damage. This is explained by
considering that apoptotic osteocytes do not produce OPG, but can stimulate neighboring
viable osteocytes to produce RANKL [10]. Moreover, apoptotic osteocytes produce high-
mobility group box protein 1, which can enhance the RANKL/OPG ratio, and increase the
production of interleukin (IL)-6 and tumor necrosis factor-alpha (TNFα) in BMSCs [11].
However, osteocytes can also undergo autophagy, which, under stress conditions, allows
for the elimination of unnecessary organelles for a return to normal cellular function [12].

When the functions of osteoclasts and osteoblasts are unbalanced, the bone-remodeling
process may be highly altered, resulting in disorders related to bone metabolisms. In
particular, osteoporosis is characterized by increased bone resorption due to excessive
osteoclastogenesis and osteoclastic activity that is not balanced by osteoblast-mediated
bone formation. This leads to increased bone fragility and fracture risk that can have a
significant impact on quality of life [13]. The excessive apoptosis that osteocytes undergo
in some pathological conditions is also related to the loss of bone mineral density (BMD)
and bone mass, causing osteoporosis [14]. Estrogens are important regulators of bone
metabolism and exert a bone-protective role by reducing bone resorption and maintaining
bone formation [15]. Therefore, estrogen deficiency in postmenopausal women induces os-
teoporosis associated with an excessive increment of bone resorption because of an increase
in the number and activity of osteoclasts and osteocyte apoptosis [15–17]. However, in ad-
dition to hormonal changes, other factors are involved in the pathogenesis of osteoporosis,
including aging, oxidative stress, and inflammation [18–20]. There is increasing evidence
that oxidative stress increases with age and/or menopause, and that the lack of estrogen is
often accompanied by an increase in reactive oxygen species (ROS) and proinflammatory
cytokines such as IL-1, IL-6, and TNFα that, in turn, stimulate ROS production [19,21,22]. A
close correlation exists between inflammation and ROS, which are produced as proinflam-
matory mediators during inflammatory processes. All this can contribute to the activity
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of bone cells and thereby bone homeostasis by increasing and inhibiting osteoclastic and
osteoblastic function [23]. Indeed, both oxidative stress and inflammation can be involved
in the development of osteoporosis by preventing the differentiation of osteoblasts, in-
ducing the differentiation and activity of osteoclasts, enhancing apoptotic osteocytes, and
increasing the expression of RANKL and the RANKL/OPG-ratio [24–28].

MicroRNAs (miRNAs) are small endogenous single-stranded noncoding RNA molecules
containing approximately 22 nucleotides. They recognize specific mRNA sequences and
induce the mRNA degradation or block gene expression at post-transcriptional levels by
binding to the 3′-untreated region [29]. Since different genes can be targets of one miRNA,
and multiple miRNAs can target the same genes, miRNAs regulate biological processes
at the network level [30]. miRNAs regulate several physiological processes, including
the bone metabolism, by controlling the proliferation and differentiation of osteoblasts
and osteoclasts [31,32]. In addition, miRNAs modulate the expression of very important
genes involved in the recruitment of various bone cells in the osteogenic process, and
facilitate mineralization by affecting the maturation of the collagen fibrillar matrix [33,34].
However, the dysregulation of miRNA expression also plays an important role in the
development of disease [35], and can be involved in bone-related diseases and disorders
such as osteoporosis [32,36,37]. ROS can down- or upregulate the expression of miRNAs
and vice versa, and miRNAs can affect oxidative stress by inhibiting or stimulating ROS
production [38]. miRNAs are capable of regulating the function of immune cells and act
as promoters or suppressors of inflammatory response [39]. In this review, the principal
mechanisms through which oxidative stress and inflammation affect bone mass, and the
relationship among inflammation, oxidative stress, and miRNAs in the pathogenesis of
osteoporosis are reported. Therefore, the aim of the present review is to identify targets
that facilitate the development of new potential therapeutic treatments for osteoporosis.

2. Oxidative Stress and Osteoporosis: Principal Involved Molecular Mechanisms

During normal metabolism, NADPH oxidase localized on the membrane and mi-
tochondrial oxidases are the main endogenous systems involved in the production of
superoxide anion (O2•−) and hydrogen peroxide (H2O2). This production of ROS un-
der physiological conditions is usually counterbalanced by adequate antioxidant systems,
including vitamins E and C, glutathione peroxidase, reduced glutathione, superoxide dis-
mutase, and catalase [40,41]. When the intracellular production of ROS is controlled, they
act as second messengers by regulating and activating signaling transduction pathways
involved in numerous biological processes such as apoptosis, survival, differentiation,
proliferation, and inflammation [42,43]. Bone repair and bone remodeling are also redox-
regulated processes, and the physiological redox state is essential for the equilibrium
between osteoblastogenesis and osteoclastogenesis [24,44]. The transient production of
ROS due to RANKL into osteoclastic precursor is very important for its role in the induction
of osteoclastogenesis, and this indicates that ROS act as intracellular mediators for osteoclas-
tic differentiation [45]. Therefore, while a physiological production of ROS in osteoclasts
may be important in facilitating bone destruction and remodeling, osteoblasts produce
antioxidant systems to remove ROS released into the surrounding environment [46]. This
equilibrium can be altered by oxidative stress, a condition that occurs when high levels
of ROS resulting from certain oxidation pathways overcome antioxidant systems. This
alteration causes a loss of bone mass and thus osteoporosis [47]. In particular, the excessive
production of ROS increases osteoclastogenesis, and reduces osteoblastogenesis and os-
teoblastic activity, resulting in the altered bone architecture and bone loss that characterize
osteoporosis [48].

In primary rat osteoblasts, oxidative stress decreases the nuclear translocation of the
transcriptional factor, nuclear factor erythroid-2 related factor (Nrf2), involved in the regu-
lation of cellular response to oxidative stress and the maintenance of bone homeostasis [49].
Nrf2 downregulates the expression of cytokines involved in osteoclastogenesis and induces
the transcriptional activation of antioxidant genes; for this, the reduced expression of Nrf2,
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present in oxidative stress conditions and detected in osteoporotic rats, causes an increase
in osteoclastic formation [50–53]. H2O2 stimulates osteoclastogenesis by increasing the
expression of osteoclastic differentiation factors by activating the transcriptional factor
nuclear factor kappa B (NF-kB) and reducing the expression of Nrf2 in mouse mononuclear
macrophage (RAW264.7) cells [54,55]. ROS-activated NF-κB can stimulate the expression of
transcriptional factors c-Fos and nuclear factor of activated T-cell cytoplasmic 1 (NFATc1),
which regulates the genes involved in osteoclastogenesis and bone resorption, such as
tartrate-resistant acid phosphatase and cathepsin K. Moreover, ROS induce the expression
of an activator of NF-kB, TNF receptor associated factor 6 (TRAF-6), which RANKL recruits
through RANK with a consequent increase in osteoclastic formation [55,56]. However,
oxidative stress conditions also increase RANKL-induced osteoclastogenesis through the
activation of mitogen-activated protein kinases (MAPKs) and NF-kB in osteoclastic lineage
cells, leading to an enhancement of bone resorption [57,58].

The activation of extracellular signal-regulated kinases (ERKs) mediates ROS-induced
RANKL expression in human osteoblast-like cells [27,59]; RANKL, in turn, increases
oxidative stress by activating TRAF-6, Rac1, and NADPH oxidase in the osteoclastic
precursor [60]. Taken together, these effects exacerbate osteoclastogenesis and increase
bone mass loss.

ROS-activated MAPKs also affect osteogenic differentiation; in fact, the activation of
ERKs and c-Jun N-terminal kinases (JNK) due to H2O2 inhibits osteoblastic differentia-
tion by reducing the expression of osteogenic differentiation markers, such as ALP, OCN,
COLI, and Runt-related transcription factor 2 (Runx2) in rabbit calvarial osteoblast, bone
marrow stromal cells, and murine preosteoblastic MC3T3-E1 cells [61,62]. Glutathione
peroxidase 7 (GPX7), an antioxidant enzyme belonging to the GPX family and located
in the endoplasmic reticulum (ER), is involved in the osteogenic differentiation by reg-
ulating ER stress and the mammalian target of rapamycin (mTOR), a serine/threonine
kinase that controls cellular processes involved in skeletal development and homeostasis.
In fact, these signaling pathways can in part mediate the effect of oxidative stress due
to the lack of GPX7 in reducing osteogenic differentiation and increasing adipogenesis
in hBMSCs and M2-10B4 cells [63,64]. Moreover, oxidative stress can negatively affect
osteoblastogenesis through the downregulation of both the Wnt/β-catenin signaling path-
way and β-catenin expression [65,66]. In pre-osteoblasts, high ROS levels activate FOXO
transcription factors, belonging to the family of forkhead proteins, which, through bind-
ing with β-catenin, enhance the transcription of antioxidant enzymes. This apparently
positive effect inhibits osteoblastogenesis because it reduces the availability of β-catenin
necessary to promote osteoblastic differentiation [67]. Moreover, the activation of FOXO
transcription factors due to oxidative stress enhances the expression and the activity of
peroxisome proliferator-activated receptor (PPAR)γ, which has the function of stimulating
adipogenesis and inhibiting osteogenesis [68]. The transcription factor Krüppel-like factor 5
(KLF5), present in osteoblasts but not in osteoclasts, plays a positive role in the osteogenic
differentiation of murine BMSCs through β-catenin. However, the oxidative stress-induced
hypermethylation of KLF5, together with its downregulated expression, reduces the ex-
pression and nuclear translocation of β-catenin, altering osteogenic differentiation [69].
Moreover, oxidative stress reduces osteoblastogenesis by downregulating the expression
and inducing the degradation of the tumor protein p53-inducible nuclear protein 2, which
controls the osteogenic differentiation of human BMSCs through the Wnt/β-catenin signal-
ing pathway [70]. Figure 1 summarizes the principal molecular factors involved in the role
of oxidative stress on osteoclastic and osteoblastic differentiation.
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Excessive ROS production not only induces the defective formation of osteoblasts,
but also negatively affects their activity, viability, proliferation, and apoptosis. This leads
to a reduction in osteoblastic number and functionality with consequent beginning and
evolution of osteoporotic processes [27,71–74]. The increase in the intracellular activity
of ALP and RANKL, and the decrease in IL-6 production due to oxidative stress alter the
mineralization processes in H2O2-treated MC3T3-E1 cells [62,75,76]. Moreover, oxidative
stress causes mitochondrial membrane depolarization, ATP level reduction, and apoptosis
through JNK activation in osteoblasts [62]. Ca2+ influx and Ca2+/calmodulin activation due
to oxidative stress stimulates the activity of NFATc1 with consequent increase in cell apop-
tosis and inhibition of mineralization in MC3T3-E1 cells and femoral tissue of osteoporotic
female rats [76]. The tripartite motif-containing 33 (TRIM33), belonging to E3 ubiquitin
ligases, plays an important role in the differentiation and proliferation of osteoblasts acting
as a positive regulator of the BMP-pathway [77]. The expression of TRIM33 is positively
related to BMD; in fact, a low expression of this nuclear factor is present in primary human
osteoblasts of osteoporotic patients, while TRIM33 overexpression decreases the oxidative
stress-induced apoptosis in osteoblasts by inhibiting FOXO3a degradation [78]. Oxida-
tive stress-activated mTOR signaling pathways can also be involved in osteoporosis by
increasing the apoptosis of osteoblasts [79]. In fact, blocking the Akt/mTOR signaling path-
way inhibits the oxidative stress-induced apoptosis in osteoblasts [73], and the inhibition
of mTOR/NF-kB phosphorylation reduces oxidative stress and apoptosis in osteoblasts
treated with high levels of glucose [79]. Hyperglycemia is able to reduce bone quality, and
diabetic bone disease is a complication of diabetes mellitus in humans [80,81]. In fact, in
glucose-treated MC3T3-E1, there is an increase in ROS and apoptosis, along with an upreg-
ulation of the expression of activin receptor-like kinase 7. This protein is overexpressed
in diabetic rats and appears to be involved in osteoblastic damage due to high glucose
levels [82]. The bone loss and osteoporosis induced by glucocorticoids (GCs) are also due
to oxidative stress, which negatively affects the proliferation, differentiation, maturation,
and apoptosis of osteoblasts, and increases osteoclastic activity [83,84]. GC-induced apop-
tosis due to oxidative stress is mediated by ERK1/2 activation in MC3T3-E1 cells [85] and
involves the downregulation of Nrf2 in BMSCs [86]. It is possible that, in osteoblasts, there
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is a correlation between the reduced activation of Nrf2 due to oxidative stress [49] and
ROS-induced apoptosis, considering that the activation of the γNrf2 signaling cascade
inhibits oxidative injury and apoptosis in these cells [87,88].

Given that osteocytes take part in the regulation of bone resorption and formation,
the excessive programmed cell death of these cells causes their decrease and represents a
crucial aspect in the development of osteoporosis [89]. Postmenopausal osteoporosis is also
related to enhanced osteocyte senescence and apoptosis [90–93]. Indeed, the activation of
MAPK signaling due to oxidative stress mediates the increase in apoptosis, RANKL/OPG
ratio, sclerostin, and FGF23 levels, and the decrease in autophagy in osteocytic MLO-Y4
cells [28,94,95]. In these cells, the high levels of glucose increase ROS production and apop-
tosis through the downregulation of the AMP-activated protein kinase (AMPK)/FOXO3a
signaling pathway [96]. GCs increase osteocyte apoptosis via the upregulation of NADPH-
oxidase, subsequently inducing oxidative stress, as demonstrated in the osteocytes of
patients affected by steroid-induced avascular necrosis of the femoral head [73] and in
MLO-Y4 cells [97].

Cellular senescence, characterized by the permanent arrest of the cell cycle, participates
in age-related osteoporosis, and oxidative stress is one of the factors involved in senescence
and senescence-associated secretory phenotype in primary hBMSCs, osteoblasts, and
osteocytes [89,91,98–101].

Given that oxidative stress plays an important role in the pathogenesis of osteoporosis,
treatment with antioxidants can improve bone metabolism processes. Many molecules
with antioxidant properties, such as flavonoid polyphenols (e.g., genistein, quercetin, and
icariin) and nonflavonoid polyphenols (e.g., resveratrol and curcumin), could represent a
potential and effective therapeutic treatment of osteoporosis [102,103].

3. Proinflammatory Mediators and Osteoporosis: Role of Immune Cells

Inflammation is a defensive response against exogenous and/or endogenous signals.
Estrogen loss causes a chronic inflammatory state and increases the levels of proinflam-
matory mediators, such as cytokines and chemokines, which affect bone cell function,
contributing to the development of osteoporosis [18,104]. Indeed, estrogens regulate the ex-
pression of cytokines involved in bone cell biology and, in estrogen deficiency, the increase
in the production of cytokine levels, such as ILs and TNFα, IL-1β, and interferon-gamma is
due to both circulating peripheral blood immune cells and those located in bone tissue [105].
In addition, the altered immune cell number in postmenopausal women and ovariec-
tomized (OVX) rats plays a role in the pathogenesis of osteoporosis [106]. Macrophages,
the principal cells involved in the production of cytokines in bone metabolism, are flexible
cells with the ability to change function according to their environment, and can reversibly
assume the M1 (inflammatory) and M2 (reparative) phenotypes [106,107]. An increase in
the M1/M2 macrophage ratio is present in the bone marrow of OVX osteoporotic mice,
and estrogen deficiency contributes to the alteration of this ratio by inducing the differen-
tiation of RANKL-stimulated M2 macrophages into osteoclasts. Thus, the M1/M2 ratio
may be involved in bone mass loss and considered a potential therapeutic target for the
treatment of osteoporosis. [108]. Monocytes, like macrophages, are characterized by dif-
ferent phenotypes and functions, and they remain viable and spontaneously differentiate
into osteoclasts in women with postmenopausal osteoporosis in whom there is a higher
production of TNFα and RANKL [109]. Peripheral blood mononuclear cells (PBMCs)
isolated from female osteoporotic patients undergo spontaneous osteoclastogenesis with-
out exogenous stimulating factors in vitro [110]. Indeed, macrophages and monocytes
stimulate the osteoclastic differentiation of PBMCs by producing IL-1 and TNFα [111], and
this may explain how inflammation can increase osteoclastic numbers, bone resorption,
and osteoporotic processes. The absence of estrogen in OVX mice induces the production
of high levels of IL-17 and IL-15 by dendritic cells, which then play a role in inflammation-
mediated osteoclastogenesis and bone loss [112]. Moreover, both RANKL and macrophage
colony-stimulating factor (M-CSF), involved in osteoclastic differentiation, can stimulate
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dendritic cells to trans-differentiate into osteoclasts [113], and this can also occur after the
direct interaction of dendritic cells with T helper cells (Th) [114]. Since estrogens regulate
the function and number of neutrophils, which in turn secrete proinflammatory mediators,
these cells can play a role in the development of postmenopausal osteoporosis [106]. The
enhancement of RANKL and RANK expression that occurs in inflammatory neutrophils is
related to a decrease in BMD and an increase in osteoclastic bone resorption [115,116]. In
addition, eosinophils and mastocytes, by producing inflammatory factors, can be associ-
ated to the pathogenesis of bone disorders and osteoporosis [117,118]. In particular, IL-31
produced by eosinophils induces osteoclastogenesis through the activation of transcription
factors and cytokines correlated to osteoporosis in a condition of inflammatory state, and
its levels increase in the serum of postmenopausal women [117]. In the absence of estrogen,
mastocytes promote osteoclastic formation by producing TNFα, IL-6, and other media-
tors with osteoclastogenic properties, and an increase in the mastocyte and osteoclastic
numbers occurs in OVX-rodents. Mastocytes may also play an osteoprotective role by
producing transforming growth factor-β and IL-12, which stimulate osteoblasts and reduce
osteoclastogenesis [119].

The evidence that there is an increase in proinflammatory cytokines involved in the
pathogenesis of osteoporosis in estrogen deprivation is demonstrated by the fact that post-
menopausal women and OVX rats present high levels of inflammatory cytokines [120,121],
significantly reduced by estrogen administration [122,123]. ILs and factors belonging to the
TNFα family upregulate the RANK/RANKL pathway in postmenopausal women [124];
in fact, TNFα and IL-1β activate NF-kB and MAPK, enhance the production of RANKL
and M-CSF, and downregulate the expression of OPG, resulting in defective bone remod-
eling [106,125–127]. IL-1β increases the expression of RANKL not only in osteoblasts but
also in lymphocytes and macrophages, while IL-18 stimulates Th17 cells to release IL-17,
which in turn upregulates RANKL [128,129]. However, IL-17 downregulates the expres-
sion of Dickkopf-1 (DKK1), an inhibitor of the Wnt signaling pathway and osteoporosis
biomarker, in osteoblasts, resulting in an increase in osteoblastic differentiation. Therefore,
IL17 may play a dual role, dependent on the presence of other cytokines and the skeletal
site [130]. IL-1β inhibits the BMP/SMAD signaling pathway and Runx2 activation, pre-
venting osteogenesis and osteoblastic differentiation, through the activation of NF-kB and
MAPKs [131,132]. Although osteoclastic precursors express the IL-6 receptor, IL-6 indirectly
induces osteoclastogenesis by promoting RANKL in the osteoblastic precursor and exerts
anti-osteoblastic action by inhibiting the Wnt signaling pathway [133,134]. In addition,
TNFα inhibits the Wnt pathway through the upregulation of DKK1 expression [135].

Estrogen deficiency activates the nucleotide-binding oligomerization domainlike re-
ceptor family pyrin domain-containing 3 (NLRP3) inflammasome, a multiproteic complex
involved in immune innate response and inflammation [136]. NLRP3 inflammasome is
expressed in osteoblasts and, when it is abnormally activated, plays an important role
in the development of osteoporosis. It is activated by the NF-kB-dependent pathway
and, after recruitment and activation of caspase-,1, it induces the conversion of pro-IL-1β
and pro-IL18 into their mature forms [137–139]. The consequence of this is evidenced in
the upregulation of osteoclastic differentiation and bone resorption [140,141]. NFLRP3
inflammasome is involved in pyroptosis, a caspase-1-dependent form of programmed
lytic cells [142]; in human osteoblast-like cell line MG-63, ROS induce the expression of
inflammasome components and promote pyroptosis, resulting in an altered osteoblastic
function [143]. The immune system is influenced by the gut microbiota (GM), which in turn
affects bone homeostasis through immune and endocrine functions and the maintenance of
calcium and phosphate homeostasis. This suggests a possible link among immunity, GM,
and bone homeostasis. GM composition changes in the intestine of osteoporotic patients
and it may be related to osteoporotic risk. In fact, GM regulates estrogens, and dysbiosis
reduces the levels of estrogens into their active form by negatively affecting bone quality
and health [144,145]. Probiotic supplementation can promote bone health, and natural
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anti-inflammatory molecules may be useful in preventing bone loss, the triggering and/or
progression of osteoporosis, and fracture risk [146].

4. miRNAs and Osteoporosis

miRNAs play a pivotal role during skeletal development, and maintain bone home-
ostasis by modulating osteoblast–osteoclast axis activity. In fact, miRNAs contribute to the
bone metabolism by regulating the differentiation, proliferation, apoptosis, and autophagy
of osteoblasts, osteoclasts, and osteocytes [31,98,147]. One major role assigned to miRNAs
is to promote the differentiation of BMSCs through the suppression of osteogenic inhibitors
or by activating the signaling pathway involved [147,148]. miRNAs, like exosomal miRNAs
(Exo-miRNAs), can be found in bioactive vesicles called exosomes, and can be directly
secreted by cells as circulating miRNAs (ci-miRNAs) into the blood and biological fluids.
Exo-miRNAs can be delivered to the target cells with which they interact to regulate their
function, and ci-miRNAs behave like signaling molecules involved in cell-to-cell communi-
cation [149,150]. miRNAs also function as mediators between bone cells; in fact, miRNAs
released by osteoclasts can affect osteoblastic activity, and those released by osteocytes can
regulate the function of other bone cells [151].

Some miRNAs, such as miRNA-33-5p and miRNA-433-3p, promote osteoblastic dif-
ferentiation via the downregulation of osteoblastogenesis inhibitors [152,153], while others,
such as miRNA-194 and miRNA-2861, inhibit osteoblastogenesis through Runx activa-
tion [154,155]. In addition, there are miRNAs such as miRNA-34a that inhibit osteo-
clastogenesis by blocking the pro-osteoclastogenesis factor, transforming growth factor-
beta-induced factor 2 [156], or miRNAs such as miRNA-124-3p and miRNA-125a-5p that
suppress NFATc1 expression [157,158]. However, several miRNAs, such as miRNA-125b,
miRNA-375, and miRNA-133a-5p, can inhibit osteoblastogenic differentiation by acting
directly or indirectly on Runx2 [159–161]. On the other hand, other miRNAs, such as
miRNA-21-5p, miRNA-29, and miRNA-183-5p, can promote osteoclastogenesis by acting
on signaling pathways involved in osteoclastic formation and bone resorption [162–164].
For this, the dysregulation of miRNA expression is reflected in changes in osteoblastic and
osteoclastic differentiation, resulting in altered bone remodeling and the development of
bone disease, including osteoporosis [36]. The overexpression of some miRNAs prevents
osteoblastic formation and osteogenic differentiation in in vitro cell cultures and in mouse
mesenchymal cells, respectively. This occurs through the downregulation of the expression
of Runx2 and one of its targets, transcriptional factor Osterix, which completes osteoblastic
differentiation and induces the production of bone structural proteins [165,166]. Instead,
the reduced expression of miRNAs targeting RANK causes increased bone resorption and
reduced bone mass, as observed in OVX rats [167]. Given that higher extracellular miRNA
levels are detected in serum from osteoporotic patients compared with that of healthy
controls, miRNAs can be considered potential biomarkers of osteoporosis [168].

5. Crosstalk among Oxidative Stress, Inflammation, and miRNAs in Osteoporosis

A certain number of miRNAs are able to regulate inflammation, in particular, molecules
belonging to pathways involving NF-kB and NLRP3 inflammasome [169]. However, as
soon as proinflammatory signals begin, there is a large increase in miRNA expression
through the activation of NF-kB [170]. Oxidative stress also plays a critical role in the
biogenesis of miRNAs, and ROS can be involved in the deregulation of miRNA expres-
sion [38]. With aging, the BMSCs are no longer able to effectively initiate the osteogenic
pathway and undergo senescence characterized by inflammation and oxidative stress that
can subsequently alter miRNA levels [171]. A relationship among inflammation, ROS,
and miRNAs is, therefore, evident in osteoporotic processes. High levels of TNFα due to
estrogen deficiency participate in osteoporosis through the downregulation of expression of
FOXO1, a very important protein involved in the defense of bones from oxidative damage.
In particular, the activation of NF-kB by TNFα promotes the expression of miRNA-705,
a post-transcriptional downregulator of FOXO1, with a consequent increase in oxidative
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damage in osteoporotic mouse BMSCs [172]. TNFα also enhances miR-182, which, in
turn, upregulates TNFα-induced murine osteoclastogenesis by inhibiting FOXO3 and the
negative regulators of inflammatory osteoclastogenesis, mastermind-like protein 1 [173].

The overexpression of miRNA-128, targeting Sirtuin1 (Sirt1), an inhibitor of NF-kB,
is related to an increased inflammatory state and bone resorption in postmenopausal
osteoporosis. In fact, in mouse bone-marrow-derived macrophages, high levels of miRNA-
128 increase osteoclastogenesis due to low Sirt1 levels and the subsequent activation of
NF-kB [174]. Moreover, miRNA-128-3p mediates and exacerbates the inflammatory effect
of TNFα, which induces the production of other cytokines by reducing Sirt-1 levels in
hBMSCs [175].

During inflammation- and oxidative-stress-induced senescence, an increase in miRNA-
141 levels occurs in human BMSCs [176]. The effect of ROS on the upregulation of miRNA-
141 was demonstrated in endothelial cells in which the treatment of H2O2 increases the
levels of this miRNA [177]. Moreover, miRNA-141 is related to inflammation via the down-
regulation of transforming growth factor-beta 2, which behaves as both immunosuppressor
and proinflammatory mediator [178]. Zinc metalloproteinase ZMPSTE24 is downregulated
when levels of miRNA-141 are high, and this leads to an alteration in bone formation and
osteoporosis. In fact, in ZMPSTE24 −/− knockout mice, good fracture healing cannot occur,
and ALP levels decrease [176,179].

miRNA-320a is also overexpressed in osteoporosis, and plays a role on osteoclas-
togenesis by inhibiting the expression of phosphatase and tensin homolog (PTEN), an
inhibitor of AKT expression and the PI3-K pathway [180,181]. The increase in miRNA-320a
expression may cause oxidative damage by inhibiting the PI3K/AKT signaling pathway in
osteoblasts [182], and it regulates several osteoblastic genes, including those involved in
oxidative stress in human primary osteoblasts. For this reason, high levels of miRNA-320a
cause alterations in osteoblastic differentiation by lowering mineralization and ALP activity,
and increasing ROS production [183].

High levels of ROS present in ferroptosis, a new iron-dependent form of programmed
cell death due to lipid peroxidation, alter the function and activity of osteoblasts, osteo-
cytes, and osteoclasts, resulting in loss of bone mass [184] In particular, iron accumulation
increases NADPH oxidase 4, an enzyme that enhances ROS levels and intracellular lipid
peroxides driving ferroptosis in osteoblasts [185]. The regulation of ferroptosis can prevent
osteoporosis, and miRNAs may be a target for the therapeutic treatment of this disease.
In fact, several miRNAs whose levels are directly or indirectly related to ferroptosis are
involved in the regulation of iron and ROS metabolism. Some miRNAs, for example,
miRNA-675 and miRNA-181, promote ferroptosis by suppressing the transcription of
Nrf2, unlike other miRNAs such as miRNA-144 and miRNA-153 that instead stimulate
the Nrf2 signal pathway resulting in ferroptotic inhibition [186]. Ferroptosis can also
modify miRNA levels in various pathologies; specifically, iron accumulation reduces and
increases the expression of miRNA-758-3p and miRNA-3074-5p, respectively, with the
consequent augmentation of osteoblastic apoptosis [187,188]. Oxidative stress due to
iron overload inhibits osteoblastic functions and induces osteoporosis by downregulating
miRNA-455-3p in osteoblasts. This miRNA participates in osteoporosis through one of
its targets, histone deacetylases 2 (HDAC2), a pivotal mediator of osteoblastic differentia-
tion that is overexpressed in the presence of low levels of miRNA-455-3p. In MC3T3-E1
cells treated with ferric ammonium citrate, high levels of HDAC2 due to the decreased
expression of miRNA-455-3p inhibit the acetylation of Nrf2 and subsequent activation
of Nrf2/antioxidant response elements signaling, which plays a protective role against
oxidative stress. All this increases oxidative stress, and reduces osteoblastic growth and
differentiation, exacerbating osteoporotic processes [189].

Oxidative stress, in addition to inhibiting osteoblastic growth, upregulates the expres-
sion of miRNA-138, involved in the apoptosis of osteoblasts in osteoporosis, by downregu-
lating the inhibitor of metalloproteinase TIMP-1 [190]. However, other studies performed
in H2O2-treated MC3T3-E1 cells highlighted a decrease in miRNA-708 and miRNA-214,
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and an increase in apoptotic processes. In addition, the upregulation of PTEN and acti-
vating transcription factor 4 (ATF4), targets of miRNA-708 and miRNA-214, respectively,
occur [191,192]. Therefore, miRNA-708 and miRNA-241 can protect osteoblasts against
damage due to oxidative stress by regulating PTEN and AFT4, multifunctional molecules
involved in various cellular processes [180]. Table 1 summarizes the targets and effects of
the principal miRNAs dysregulated by oxidative stress and inflammation in osteoporosis.

Table 1. Principal miRNAs related to oxidative stress and inflammation in osteoporosis.

miRNA miRNA Target Effect Species Ref.

miRNA-705 (+) FOXO1 (−) Oxidative damage Osteoporotic mouse BMSCs Liao et al. [172]

miRNA-182 (+) FOXO3 (−)
Maml1 (−)

TNFα-induced
osteoclastogenesis Murine BMSCs Miller et al. [173]

miRNA-128 (+) Sirt-1 (−)
NF-kB (+) Osteoclasogenesis

Mouse
bone-marrow-derived

macrophages
Shen et al. [174]

miRNA-128-3p (+) Sirt-1 (−) Exacerbation of TNFα
inflammation Human BMSCs Wu et al. [175]

miRNA-141 (+) ZMPSTE24 (−) Alteration bone
formation Mice Bergo et al. [179]

miRNA-320 (+)

(PTEN) (−)
PI3K/AKT (−)

Osteoblastic genes and
genes involved in

redox homeostasis (−)

Osteoclastogenesis
Oxidative damage

Oxidative stress and
reduced osteoblastic
differentiation and

functionality

RAW 264.7 cells
MC3T3-E1 cells

Human primary osteoblasts

Chen et al. [180]
Kong et al. [182]

De-Ugarte et al. [183]

miRNA-138 (+) TIMP-1 (−) Apoptosis osteoblasts MC3T3-E1 cells Yan et al. [190]

miRNA-455-3p (−) HDAC2 (+) Inhibition of Nfr2
Oxidative stress MC3T3-E1 cells Zhang et al. [189]

miRNA-708 (−) PTEN (+) Apoptosis osteoblast
Oxidative stress MC3T3-E1 cells Zhang et al. [191]

miRNA-214 (−) (ATF4) (+) Apoptosis osteoblast
Oxidative stress MC3T3-E1 cells Lu et al. [192]

Abbreviations: FOXO, forkead proteins; NF-kB, nuclear factor kappa B; Maml1, mastermind-like protein 1, Sirt-1,
sirtuin-1; ZMPSTE24, zinc metalloproteinases; PTEN, phosphatase and tensin homolog; TIMP1, metallopro-
teinase inhibitor 1; HDAC2, histone deacetylase 2; ATF4, activating transcription factor 4. (−) downregulated;
(+) upregulated.

6. Conclusions

Under normal conditions, bones undergo continuous remodeling due to bone forma-
tion and bone resorption. In this process, osteoblasts and osteoclasts play finely balanced
roles supported by biochemical signaling pathways. Hormones, growth factors, ROS, and
cytokines induce biological responses in osteoblasts and osteoclasts that are responsible
for bone resorption and formation. miRNAs also affect bone formation by regulating
the proliferation and differentiation of cells involved in bone homeostasis. Osteoporosis
is a silent bone disease characterized by a loss of bone mass and mineral density. The
oxidative stress, inflammation, and dysregulation of miRNA expression can contribute
to the development of postmenopausal osteoporosis due to the deficiency of estrogen.
ROS and proinflammatory cytokines, by controlling transcriptional factors, can down- or
upregulate miRNA expression, causing an imbalance in osteoblastogenesis and/or osteo-
clastogenesis with a consequent alteration of bone formation. However, the deregulated
expression of miRNAs by stimulating or inhibiting signaling pathways can also induce
oxidative stress and inflammation, resulting in an increase in bone resorption. The interplay
among oxidative stress, inflammation, and miRNA expression can be advantageous for
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identifying new suitable targets to address potential therapeutic strategies. In fact, it could
be useful to project molecules that, in addition to having antioxidant and anti-inflammatory
proprieties, can improve and/or restore the balance of bone remodeling by normalizing
both redox-regulated pathway signaling and the levels of miRNA expression. Compounds
able to re-establish normal levels of dysregulated miRNAs in osteoporosis can also offer
therapeutic benefits by reducing oxidative and inflammatory damage, and alleviating
osteoporotic processes by restoring bone homeostasis.
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