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Background: Leptomeningeal enhancement (LME) is considered an MRI 
marker of leptomeningeal inflammation in inflammatory neurological disorders, 
including multiple sclerosis (MS). To our knowledge, no disease-modifying 
therapies (DMTs) have been demonstrated to affect LME number or morphology 
so far.

Methods: Monocentric study investigating the frequency and number of 
LME in a cohort of people with (pw)MS who performed a 3  T brain MRI with a 
standardized protocol (including a post-contrast FLAIR sequence), and exploring 
the impact of autologous hematopoietic stem cell transplantation (AHSCT) on 
this marker. In a longitudinal pilot study, consecutive MRIs were also analyzed in 
a subgroup of pwMS, including patients evaluated both pre- and post-AHSCT.

Results: Fifty-five pwMS were included: 24/55 (44%) had received AHSCT 
(AHSCT group) and 31 other treatments (CTRL group). At least one LME was 
identified in 19/55 (35%) cases (42 and 29% in the AHSCT and CTRL groups, 
respectively; p  =  0.405). In the AHSCT group, LME number correlated with age 
at AHSCT (R  =  0.50; p  =  0.014), but not with age at post-treatment MRI. In the 
longitudinal pilot study (n  =  8), one LME disappeared following AHSCT in 1/4 
patients, whereas LME number was unchanged in the remaining four pwMS 
from the CTRL group.

Discussion: These results suggest that AHSCT may affect development and 
persistence of LME, strengthening the indication for early use of effective 
therapies bioavailable within the central nervous system (CNS), and therefore 
potentially targeting compartmentalized inflammation.
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1 Introduction

Multiple sclerosis (MS) is a chronic inflammatory disease of 
the Central Nervous System (CNS), characterized by 
demyelinating lesions and axonal damage (1). The presence of 
inflammatory cell infiltrates in the leptomeninges of MS patients 
has been described for several years in histopathological studies 
(2–5). Leptomeningeal inflammation ranges from sparse infiltrates 
of inflammatory cells to well-organized structures that resemble 
lymphatic tissue, the latter defined as Ectopic Lymphoid Follicle-
like structures (ELFs) (6). It has been hypothesized that ELFs 
correspond to chronic inflammation compartmentalized within 
the CNS and contribute to disease progression through the release 
of soluble factors (i.e., cytokines and chemokines) that promote 
cortical damage (7, 8).

ELFs can be visualized with Magnetic Resonance Imaging (MRI) 
in T2/fluid-attenuated inversion recovery (FLAIR) sequences 
performed after the injection of gadolinium-based contrast agent, 
possibly due to increased permeability of the blood–brain barrier 
(BBB) within ELFs. These radiological findings are defined as 
Leptomeningeal Enhancement (LME) (9). However, LME is not a 
finding specific to MS, as it was observed with similar frequency in 
MS patients and patients with other inflammatory and 
non-inflammatory diseases of the CNS (10).

In MS patients, LME is reported with a variable frequency across 
different studies, being the proportion higher when adopting high-
magnetic field (7-Tesla—7 T) MRI compared to a 3 T magnet. 
Typically, the frequency of LME is higher in the progressive than in 
the relapsing–remitting (RR) form of the disease (9, 11). A direct 
association between LME and age, disease duration, and Expanded 
Disability Status Scale (EDSS) score was reported in the literature, but 
with some inconsistencies across studies. Patients with LME had a 
lower total brain and cortical volume (9, 12, 13), but the spatial 
association between LME and cortical lesions detected by MRI 
remains controversial (14, 15). LME tends to remain stable over time. 
Rare cases of disappearance of LME following high-dose steroids were 
reported (16), but no disease-modifying therapies (DMTs) have been 
demonstrated to affect LME number or morphology so far (17–19).

To our knowledge, there are no data on the prevalence of LME in 
patients with MS treated with autologous hematopoietic stem cell 
transplantation (AHSCT), a hematological procedure endorsed as a 
standard of care for the treatment of aggressive RR-MS refractory to 
conventional DMTs (20).

2 Materials and methods

2.1 Aim of the study

The main aim of the study was to describe the prevalence and 
characteristics of LME in MS patients treated with AHSCT compared 
to MS patients treated with DMTs/untreated, exploring differential 
correlations between LME number and clinical-demographic 
characteristics in the two groups.

The impact of AHSCT on LME number was then explored in a 
pilot series of patients evaluated both before and after AHSCT at 
pre-defined timepoints, and in control patients not receiving AHSCT 
who had longitudinal MRI follow-up.

2.2 Patient population

Consecutive patients affected by MS in clinical follow-up at the 
Neurology 2 Department of the Careggi University Hospital in 
Florence, Italy, who had performed at least one 3 T brain MRI with a 
standardized protocol (including post-contrast volumetric FLAIR) at 
the Neuroradiology Unit of the same hospital over an 
18-month period.

The MS cohort included RR- and secondary progressive (SP-) MS 
patients diagnosed according to the Poser and McDonald criteria (21, 
22). Patients were further stratified according to the previous 
treatment with AHSCT into the AHSCT group and control (CTRL) 
group, the latter including those cases who had not undergone 
AHSCT. MS patients not treated with AHSCT who are in clinical 
follow-up at our center and who performed a brain MRI at our facility 
over the pre-defined period were consecutively included in the 
CTRL group.

AHSCT patients received the transplant in an open-label 
monocentric study in collaboration with the Cell Therapy and 
Transfusion Medicine Unit of the Careggi University Hospital, 
according to the inclusion/exclusion criteria of the center, as 
previously reported (23). Briefly, RR- or SP-MS patients were 
eligible for transplant if they showed highly active disease or 
disability progression with signs of inflammation despite receiving 
treatment with high efficacy DMTs approved for MS; PP-MS and 
patients with medical conditions contraindicating the procedure 
were excluded. Patients were mobilized with cyclophosphamide 4 g/
m2 body surface area and granulocyte-colony stimulating factor 
(G-CSF; 10 μg/kg per day); the conditioning protocol used was the 
intermediate intensity regimen BEAM+ATG (20), encompassing 
BCNU (Carmustine) 300 mg/m2 at on day −6, ARA-C (Cytosine-
Arabinoside) 200 mg/m2/day and VP-16 (Etoposide) 200 mg/m2/
day from day −5 to day −2, and Melphalan 140 mg/m2 at on day −1; 
rabbit anti-thymocyte globulin (ATG, Thymoglobulin™, Sanofi) 
was added at a dose of 3.75 mg/kg/die day on day +1 and + 2 (total 
dose 7.5 mg/Kg).

2.3 MRI analysis

All the patients underwent a brain MRI with the same scanner 
and standardized protocol. Two MRI examinations taken at least 
6 months apart were available for a subset of patients, including a 
pre-transplant MRI scan and at least one MRI performed after 
AHSCT for those in the AHSCT group.

Patients treated with AHSCT underwent brain MRIs at 
pre-defined timepoints, i.e., before AHSCT, at month 6 and 12 after 
AHSCT and then yearly; no unscheduled MRIs were analyzed in this 
study. The time interval between AHSCT and post-AHSCT MRI was 
dependent on the time interval between AHSCT and 3 T 
machine purchase.

The scans were obtained with a 3 T MRI scanner (Ingenia, Philips 
Healthcare, The Netherlands). The standardized protocol included a 
3D-volumetric T2-FLAIR sequence acquired 3–4 min after the 
injection of gadolinium-based (0.1 mL/kg) contrast, and 3D T1 post-
contrast sequence. A T2-FLAIR sequence acquired before gadolinium 
administration was not available as it was not included in the protocol 
of the Center.
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LME was defined according to the literature as “high signal 
intensity within the subarachnoid space that is substantially greater 
than that of brain parenchyma” (9). The presence of LME foci was 
investigated by analyzing all the slices of T2-FLAIR scans for each 
patient; the analyses were performed by two raters trained in 
neuroimaging, who were blind to the demographical and clinical 
information of the patients. Cohen’s kappa (κ) for inter-rater 
agreement was 0.8. Longitudinal changes in LME number were 
confirmed by a third trained rater.

Contrast enhancement in the context of the pachymeninges 
(Dura Mater Enhancement, DME) and around the meningeal blood 
vessels (meningeal Vessel Wall Enhancement, VWE) was also 
evaluated (24).

2.4 Statistical methods

Baseline characteristics of the study population are reported as 
median (range) or number (frequency) for continuous and 
dichotomous variables, respectively. The Mann–Whitney U test or 
Chi-square were used to compare the baseline characteristics between 
the groups, as appropriate according to data distribution. Bivariate 
Spearman correlation was used to explore correlations between the 
number of LME and baseline characteristics of the patients, corrected 
for age at MRI. The statistical analysis was performed using the 
Statistical Package for the Social Sciences software (SPSS, IBM, 
Armonk, NY, United States, version 25.0).

3 Results

3.1 Characteristics of the patient 
population

Fifty-five MS patients (40 RR-MS; 15 SP-MS) were included 
(Table  1). Twenty-four/55 (44%) patients had received AHSCT a 
median of 44 (5–229) months before the MRI scan. All the patients in 
the AHSCT group were free from DMTs at the time of MRI; 61% of 

the cases in the MS CTRL group were receiving active treatment 
(Figure 1A). DMTs received prior to MRI are detailed in Figure 1B. No 
differences in proportion of patients treated with each DMT were 
observed between AHSCT and CTRL patients, except for fingolimod, 
which was received by 33 and 10% of cases from the AHSCT and 
CTRL groups, respectively (p = 0.043). Most of the patients were 
affected by RR-MS (Table 1). No differences were observed between 
the two groups in clinical-demographic characteristics, except for the 
duration of treatment with DMTs and the number of previous DMTs, 
that were both higher in the AHSCT group than in the CTRL group 
(p = 0.024 and < 0.001, respectively; Table 1).

3.2 Leptomeningeal enhancement

At least one LME focus was identified in 19/55 (35%) MS patients, 
including 15/40 (38%) RR-MS and 4/15 (27%) SP-MS (p = 0.537; 
Figure 2).

Ten/24 (42%) cases from the AHSCT group and 9/31 (29%) from 
the CTRL group showed at least one LME. Fifty percent of the RR-MS 
patients from the AHSCT group were LME-positive versus 29% of 
those in the CTRL group (Figure 2).

LME-positive patients showed a median of 1 (range 1–3) LME 
foci, ranging between 1 and 2 and 1 and 3 in the CTRL and AHSCT 
groups, respectively (Figure 3).

3.3 Factors associated with leptomeningeal 
enhancement

In the AHSCT group, the number of LME was directly correlated 
with age at AHSCT (R = 0.50; p = 0.014), but not with age at the time 
of MRI, and it was inversely correlated with the time between AHSCT 
and MRI (R = −0.49; p = 0.018) (Table 2). MS duration showed a mild 
negative correlation with LME number in the whole cohort. No other 
significant correlations between LME number and clinical-
demographic characteristics were observed in the overall cohort or 
CTRL group.

TABLE 1 Clinical-demographic characteristics of the overall cohort and the AHSCT and CTRL groups at the time of the MRI scan.

Overall (n  =  55) AHSCT group (n  =  24) CTRL group (n  =  31)

Median (Range) Median (Range) Median (Range) p Value

Age, years 46 (22–74) 46 (29–57) 43 (22–74) 0. 753

Disease duration, years 16 (0–52) 17 (6–31) 13 (0–52) 0.391

Progressive phase duration, years 6 (1–24) 6 (1–24) 6 (1–8) 0.620

Treatment duration, years 11 (0–26) 13 (5–26) 10 (0–25) 0.024

EDSS 4.0 (0.0–7.0) 3.5 (1–7) 4.0 (0.0–7.0) 0.385

Number of previous DMTs 3 (0–7) 4 (2–7) 2 (0–5) <0.001

n (%) n (%) n (%) p value

Gender, female 39 (71%) 20 (83%) 19 (61%) 0.133

MS phenotype: RR-MS 40 (73%) 16 (67%) 24 (77%) 0.375

Patients receiving treatment with DMTs at MRI 19 (35%) 0 (0%) 19 (61%) <0.001

AHSCT, Autologous hematopoietic stem cell transplantation; CTRL, Controls, i.e., patients who did not receive AHSCT; DMTs, Disease-modifying treatments; EDSS, Expanded disability 
status scale; MRI, Magnetic resonance imaging; MS, Multiple sclerosis; RR-, Relapsing–remitting.
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3.4 Dural and vessel wall enhancement

Contrast enhancement was also observed in the context of the 
dura mater (DME) and meningeal vessels (VWE). The median DE 
and VWE number were 0 (0–1) and 0 (0–4), respectively. Median 
VWE number was 0 (0–4) and 1 (0–4) in the AHSCT and CTRL 
groups, respectively.

3.5 Longitudinal pilot study

Seriate MRI scans were available for four MS CTRL (four RR-MS) 
and four MS AHSCT (two RR-MS; two SP-MS). In the former group, 
two MRI were analyzed for each patient, taken a median of 11 (6–13) 
months apart. In the AHSCT group, one MRI was taken before 
undergoing AHSCT (baseline scan) and at least one after transplant 

FIGURE 1

Proportion of patients from the AHSCT and CTRL groups who were receiving active treatment with each DMT at the time of MRI (A) or who had 
received each DMT since MS diagnosis (B). All the patients from the AHSCT group were untreated at the time of MRI, whereas 61% of patients in the 
CTRL group were receiving treatment with DMTs. No significant differences were observed in treatment history between the two groups, except for a 
higher proportion of patients from the AHSCT group who had received fingolimod.
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according to a pre-defined schedule, with a median interval of 16 (7–27) 
months between the pre-AHSCT scan and the latest follow-up available.

In AHSCT patients, the disappearance of one LME detected in the 
baseline scan was observed in one/four cases at month 6 after AHSCT 
(Figure 4), and the number of LMEs remained stable at a subsequent 
exam taken 6 months later. The number and morphology of LME were 
unchanged at follow-up MRIs (6 and 12 months after AHSCT) in the 
remaining three patients.

No changes in the number of LME (median 1, range 1–2) were 
observed in the four patients from the MS CTRL group in the 
follow-up MRI scan.

4 Discussion

In the present study, the presence of LME was explored in people 
with MS, as it has been proposed as a potential MRI biomarker of 

compartmentalization of the immune response in the CNS. We observed 
a prevalence of LME similar between RR-MS and SP-MS patients, a 
finding conflicting with most of the published studies (9, 24) that show 
a significantly higher frequency of LME in progressive MS compared to 
RR-MS. Such difference could be attributed, at least in part, to a selection 
bias toward patients affected by highly active or aggressive MS recruited 
in the AHSCT program, who could bear signs of compartmentalized 
inflammation early on during disease course. A trend for a higher 
frequency of LME-positive cases was indeed observed in RR-MS patients 
treated with AHSCT compared to RR-MS patients from the CTRL group.

It has been hypothesized that some of the currently available 
DMTs may act on leptomeningeal follicles, however longitudinal 
studies with rituximab, dimethyl-fumarate, and teriflunomide (17–19) 
did not show any reduction in LME number over time; on the 
contrary, an increase in the number of LME positive patients and LME 
foci was observed in dimethyl-fumarate and teriflunomide treated MS 
patients over a 24-month follow-up (17). To our knowledge, only 

FIGURE 2

Proportion of LME-positive patients in the overall MS cohort and in the AHSCT and CTRL groups, and in patients from each group stratified according 
to the MS form (relapsing–remitting, RR, or secondary-progressive, SP). RR-MS patients from the AHSCT group tended to higher proportion of LME 
positivity compared to those in the CTRL group.

TABLE 2 Correlations between LME number and clinical-demographic characteristics of MS patients at the time of the MRI scan, corrected for age at 
the MRI.

MS overall (n  =  55) AHSCT (n  =  24) CTRLS (n  =  31)

R (p value) R (p value) R (p value)

Age, years 0.07 (0.590) 0.13 (0.540) 0.07 (0.727)

Disease duration, years −0.27 (0.044) −0.40 (0.060) −0.17 (0.379)

Treatment duration, years −0.10 (0.92) −0.41* (0.049) 0.10 (0.615)

Progressive phase duration, years −0.29 (0.341) −0.57 (0.234) 0.11 (0.837)

N prior DMTs 0.08 (0.542) −0.08 (0.705) 0.13 (0.477)

EDSS −0.12 (0.929) −0.06 (0.787) 0.02 (0.900)

Age at AHSCT, years N.A. N.A. 0.50* (0.014) N.A. N.A.

Time AHSCT-MRI, years N.A. N.A. −0.49* (0.018) N.A. N.A.

Significant correlations are marked with *.
AHSCT, Autologous hematopoietic stem cell transplantation; CTRL, Control group; DMTs: Disease-modifying treatments; EDSS, Expanded disability status scale; LME, Leptomeningeal 
enhancement; MRI, Magnetic resonance imaging; MS, Multiple sclerosis; N.A., Not applicable.
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FIGURE 4

The disappearance of one LME focus was observed in one patient after AHSCT from the pre-treatment scan [axial (A) and coronal (C)] to the MRI scan 
taken at 6  months after AHSCT [axial (B) and coronal (D)].

anecdotal cases of LME disappearance following high-dose IV steroid 
therapy have been described so far (16), which could indeed be due to 
a transient modification of the BBB permeability induced by the 
treatment. The sample size and heterogeneity of treatment history did 

not allow us to explore the effect of DMTs on LME number. However, 
the two groups did not differ in terms of prior use of DMTs, except for 
fingolimod and, to our knowledge, no data are available supporting 
the effect of DMTs on LME formation/persistence.

In this respect, the bioavailability of a drug within the CNS 
would be  a pre-requisite for acting on compartmentalized 
inflammation and, likely, for affecting LME persistence. The 
chemotherapy drugs administered during the conditioning regimen 
in the BEAM protocol are able to cross the BBB, with the highest 
penetration rate for carmustine (25). BEAM-based AHSCT may 
therefore plausibly affect compartmentalized inflammation thanks 
to the use of chemotherapy drugs crossing the BBB. In this study, 
the prevalence of LME was not significantly different between 
patients who had received AHSCT and those who had not. However, 
we observed a direct correlation between the number of LME and 
age at AHSCT, but not with age at MRI. Interestingly, the number 
of LME was inversely correlated with the time between AHSCT and 
the (post-AHSCT) MRI. Although still speculative, as a direct 
correlation between age and LME frequency is described in the 
literature (although not consistently across studies) (10, 12, 13, 24), 
such findings could suggest that AHSCT may halt the formation of 
new ELFs. If this hypothesis was true, it could strengthen the 
indication for early treatment with high efficacy DMTs active within 
the CNS, in order to prevent further accumulation of ELFs and 
possibly related disability progression. However, we did not detect 
any correlation between the number of LME and age at MRI in the 

FIGURE 3

Number of LME in the AHSCT and CTRL groups, stratified according 
to the MS form (relapsing–remitting, RR, or secondary-progressive, 
SP). Median values are represented by a line.
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CTRL group. As such correlation is reported in wide cohorts (12, 
24), but not consistently described in small patient populations like 
that included in this study (13), the detection of a potential weak 
correlation between LME number and age at MRI could 
be undermined by the small sample size of the CTRL group.

In the longitudinal pilot study, a reduction in LME number was 
observed following AHSCT in one out of four cases analyzed, a finding 
that needs to be  confirmed in larger patient populations. In the 
remaining three patients, the number and morphology of LMEs were 
not affected by AHSCT, although the observation was performed over 
a short-term follow-up. No changes in LME number were observed in 
the four CTRL patients evaluated longitudinally. However, in our 
opinion, it cannot be excluded that irreversible structural modification 
had already occurred in the BBB and structures within ELFs and that 
other elements may be responsible for their persistent enhancement. In 
this latter hypothesis, if inflammatory infiltrates within ELFs were 
effectively removed by a DMT, LME could persist indefinitely over time 
without actually corresponding to ELFs. If this was true, a possible 
dissociation between this marker and clinical outcomes may be observed 
over long-term. However, the small sample size and the lack of a long-
term prospective follow-up after AHSCT did not allow us to further 
explore this intriguing hypothesis.

Our study has several limitations. First of all, the sample size in 
the longitudinal pilot study was small and the post-AHSCT 
follow-up relatively short, therefore these findings should 
be considered as exploratory. Comparisons between the AHSCT and 
CTRL groups should be taken with caution for a possible selection 
bias in the CTRL group, as no matching for clinical-demographic 
characteristics was performed. Serum biomarkers could not 
be  analyzed as biological samples were not available due to the 
retrospective design of the study. Although the frequency and 
number of DE and VWE were recorded, a formal analysis of possible 
correlations with clinical-demographic variables was not performed 
as their role in MS is debated, and their detection and interpretation 
were challenging due to potential artifacts.

5 Conclusion

In the present study, a similar prevalence of LME was observed 
between MS patients who had received AHSCT and those who had not. 
However, the observation of a direct correlation between the number of 
LMEs and patients’ age at AHSCT, but not at MRI, and the disappearance 
of one LME focus after AHSCT in one case suggest that AHSCT may 
halt the formation of new LMEs. If this hypothesis was true, early 
treatment with high-efficacy therapies reaching the CNS compartment 
could reduce leptomeningeal inflammatory infiltrates organized in ELFs 
and possibly prevent (or revert) the compartmentalization of 
inflammation. Longitudinal prospective studies with long-term 
follow-up are needed to clarify if LME can represent a marker of 
response to treatments bioavailable within the CNS.
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