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Abstract

In clinical trials, patients sometimes discontinue study treatments prematurely due to reasons

such as adverse events. Since treatment discontinuation occurs after the randomisation as an

intercurrent event, it makes causal inference more challenging. The Intention-To-Treat (ITT)

analysis provides valid causal estimates of the effect of treatment assignment; still, it does not

take into account whether or not patients had to discontinue the treatment prematurely. We

propose to deal with the problem of treatment discontinuation using principal stratification,

which is recognised in the ICH E9(R1) addendum as a strategy for handling intercurrent events.

Under this approach, we can decompose the overall ITT effect into principal causal effects for

groups of patients defined by their potential discontinuation behaviour in continuous time. In

this framework, we must consider that discontinuation happening in continuous time generates

an infinite number of principal strata; furthermore, discontinuation time is not defined for

patients who would never discontinue. An additional complication is that discontinuation time

and time-to-event outcomes, which are often the main endpoints in clinical trials, are subject to

administrative censoring. We employ a flexible model-based Bayesian approach to deal with such

complications. We apply the Bayesian principal stratification framework to analyse synthetic

data based on a recent clinical trial in Oncology, aiming to assess the causal effects of a new
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investigational drug combined with standard of care versus standard of care alone on progression-

free survival. We simulate data under different assumptions that reflect real situations where

patients’ behaviour depends on critical baseline covariates. Finally, we highlight how such

an approach makes it straightforward to characterise patients’ discontinuation behaviour with

respect to the available covariates with the help of a simulation study.

Keywords: Causal inference; Censoring; MCMC; Potential outcomes; Principal stratification.

1 Introduction

Randomised controlled trials (RCTs) are the gold standard for assessing causal effects in medical

studies. RCTs, however, may suffer from complications that are not under experimental control:

phenomena such as noncompliance, treatment switching or treatment discontinuation are all events

that break initial randomisation since they occur after it, and they can either preclude observation

of the outcome of interest or affect its interpretation. Recently, an addendum to the E9 guide-

line on “Statistical principles in clinical trials” has been released by the International Council of

Harmonization (ICH), where these types of events are referred to as intercurrent events [ICH, 2020].

The case study that motivated this work consists of a clinical trial in which premature treatment

discontinuation can occur, and questions were raised to understand better the effect of a partial

receipt of the treatment in the subgroup of patients who discontinued. In particular, we deal with

an RCT in Oncology aimed to assess the causal effects of a new investigational drug combined with

standard of care versus standard of care only on progression-free survival, i.e., the time from ran-

domisation until disease progression or death. In the case of adverse events (AEs), e.g., side effects,

patients enrolled in the investigational treatment arm can prematurely discontinue the treatment.

In such a context, and also in line with the tripartite estimand strategy [Akacha et al., 2017], rele-

vant questions to patients, physicians, pharmaceutical companies, and regulatory agencies concern

i) the treatment effect for patients who adhere to the treatment for its intended duration, ii) the

proportion of those who discontinue the investigational treatment prematurely, and iii) the effect for

patients who discontinue the treatment prematurely. The latter patients could still derive a benefit

from taking the treatment initially. For example, Schadendorf et al. [2017] investigate such questions
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from a clinical perspective for a new treatment in Oncology.

To face the issues that may concern different stakeholders, we propose to deal with the problem

of estimating treatment effect in the presence of premature treatment discontinuation using the

principal stratum strategy, which is introduced by the ICH E9 Addendum (ICH, 2020) to provide

valid causal estimands in the presence of intercurrent events. The principal stratum strategy refers

to the principal stratification framework by Frangakis and Rubin [2002]. Principal stratification

(PS) focuses on causal effects for patients belonging to latent subpopulations, namely the “principal

strata”, defined by the post-randomisation variable of interest; in this work, by the premature

discontinuation behaviour.

Treatment discontinuation can be viewed as a form of partial noncompliance; namely, patients

take only part of the assigned dose. If we consider the patients who can tolerate the treatment for

its intended duration as compliers, it is natural to resort to PS. Indeed, noncompliance is a natural

application of PS since Frangakis and Rubin [2002], and even before their formalisation; see Angrist

et al. [1996] and Hirano et al. [2000]. Since then, key methodological contributions to the topic have

been made during the last two decades; among many others, see Mealli et al. [2004], Mattei and

Mealli [2007], Roy et al. [2008], Jin and Rubin [2008], Schwartz et al. [2011], Sheng et al. [2019],

Jiang and Ding [2021], and Liu et al. [2023].

Recent reviews of the principal stratum strategy in the context of clinical trials in drug devel-

opment have been given by Bornkamp et al. [2021] and Lipkovich et al. [2022]. Articles showing

the potential of principal stratification often rely on dated case studies (see Jin and Rubin [2008],

Schwartz et al. [2011], among others).

Yet, motivated by a recent RCT in Oncology, we can deal with and specify a problem-driven

model that could address substantive research questions under different scenarios. In this article, we

provide a method to answer questions raised during the last years by the pharmaceutical community

[Akacha et al., 2017, Qu et al., 2020, 2021], specifically addressing the treatment discontinuation

problem in continuous time. In terms of efficacy, we can provide well-defined estimands for measuring

treatment effects for those who potentially adhere to the treatment for its intended duration and

causal effects for those who potentially discontinue the treatment at a certain time. Our model can

also estimate the percentage of patients that discontinue the treatment and, leveraging the available
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covariates, the probability that a specific patient will discontinue the treatment and after how long.

Previous works exploited the advantages of a Bayesian approach for inference in a PS framework

when dealing with post-randomisation events occurring in clinical trials; see Magnusson et al. [2019],

Ohnishi and Sabbaghi [2022] and Mattei et al. [2023a]. In this work, the Bayesian approach allows

us to properly take into account that the discontinuation time is either not defined (for those who

would never discontinue) or continuous; in the latter case, it generates a continuum of principal

strata. Moreover, we consider that both survival time and discontinuation time are subject to

censoring. Although it addresses a different problem, our model is indeed similar to that in Mattei

et al. [2023a], under the common framework of the PS. However, our approach overcomes the limits

of Mattei et al. [2023a], whose application cannot be targeted for current policy interests and cannot

shed light on the role of the covariates in this framework.

The following Section introduces the case study that motivated this work. Section 3 presents

our principal stratum strategy, recalling the potential outcomes approach and defining the principal

strata and the respective principal causal estimands. Section 4 sets the model and the inference in a

fully Bayesian framework. Section 5 shows how we perform the analyses under different scenarios via

a simulation study and the results we obtain in each scenario using a single data set. The simulation

study highlights the role of covariates in improving the precision of causal effects estimates; Section

6 shows that the covariates can also be used to inform about the risk of AEs and characterise the

PS. The discussion follows. Some details of this work are discussed in the Supplementary Material

available online.

2 The case study

The case study that motivated this work deals with a recent RCT in Oncology, aiming to assess

the causal effects of a new investigational drug combined with the standard of care (SOC) versus

SOC on progression-free survival, i.e., the time from randomisation until a primary event that can

be either disease progression or death. The study duration from the first randomised patient to

the analysis cutoff date is approximately c = 33 months. All patients were enrolled during the

first 23 months; thus, each patient can have a different follow-up period (or time to censoring)
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Figure 1: Illustration of patients’ journeys in the specific trial. Patients 1 to 4 are assigned to the
investigational treatment plus SOC, whereas Patients 5 and 6 are assigned to the SOC only. During
the follow-up period, in the treatment arm: Patient 1 remains on treatment for its intended duration;
Patient 2 discontinues the treatment due to AE and continues with SOC; Patient 3 discontinues due
to AE and then experiences a primary event; Patient 4 experiences the primary event without
discontinuing the treatment. On the control arm: Patient 5 experiences the primary event, while
Patient 6 does not.

Ci ∈ [10, 33]. Let Zi denote the treatment assigned to the ith patient, and let zi denote a realisation

of Zi; zi can be either 1, if i is assigned to the new investigational treatment - in addition to SOC

(investigational treatment), or 0 if i is assigned SOC only (control treatment). Among n = 335

patients, n1 = 181 were assigned to the new investigational treatment, and n0 = 154 were assigned

to SOC. When patients in the new treatment arm incurred AEs, they were allowed to discontinue the

new investigational treatment but continued on SOC. Figure 1 show the possible patients’ journeys.

We denote with D̃obs
i = min(Dobs

i , Ci) and Ỹ
obs
i = min(Y obs

i , Ci) the censored discontinuation time

and the time to primary event, respectively. The baseline information available consists of the

following covariates:

• X1: continuous variable. The higher the value of X1, the higher risk of progression;

• X2: binary indicator for metastatic status. X2 = 1 denotes higher progression risk;

• X3: binary indicator for disease burden. As for X2, X3 = 1 denotes higher progression risk.

For confidentiality reasons, here we use summary statistics based on synthetic data generated using
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Table 1: Summary statistics of synthetic data. Here n = 335, n1 = 181, and n = 154.

Variable Mean(proportion) SD Min Q1 Median Q3 Max
Zi = 1 54.00% (181/335) —– —– —– —– —– —–
I(Dobs

i < Ci) 16.57%(30/181) —– —– —– —– —– —–

D̃obs
i 3.72 5.04 0.26 1.07 1.41 4.09 24.11

I(Y obs
i < Ci) 66.00% (221/335) —– —– —– —– —– —–

Ỹ obs 6.60 5.95 0.10 1.87 3.81 9.17 27.63
Continuous covariates
X1 63.27 10.50 25.00 57.00 63.00 71.00 92.00
Categorical covariates
X2 43.90% (147/335) —– —– —– —– —– —–
X3 23.90% (80/335) —– —– —– —– —– —–

real case data. The statistics are summarized in Table 1. This gives us the opportunity to simu-

late individual data with different hypothetical assumptions of treatment effects to test our model

performance; see Section 5.

3 Methods. A principal stratum strategy

Consider the randomized controlled clinical trial described in the previous Section. Applying the

widespread Intention-To-Treat (ITT) principle would provide valid causal estimates of the treat-

ment assignment, neglecting the premature treatment discontinuation; as the name suggests, it is a

treatment policy estimand and does not always inform on treatment efficacy.

We apply the principal stratification framework [Frangakis and Rubin, 2002] and define causal

estimand on the treatment effect that can capture the effect heterogeneity with respect to the

discontinuation time.

3.1 Potential outcomes approach

Principal stratification heavily relies on the potential outcomes (or “Rubin causal”) model [Rubin,

1974]. Under the Stable Unit Treatment Value Assumption (SUTVA; Rubin [1980]), let Yi(zi) be

the potential progression-free survival time for the ith unit under treatment assignment zi. When

the patients incur AEs due to the investigational treatment, they can discontinue the new treatment

so that they are treated with SOC only. On the contrary, patients under control treatment cannot
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receive the investigational treatment. Let Di(zi) be the potential time to discontinuation of unit i

under treatment assignment Zi = zi.

Since the discontinuation of the new treatment is possible under investigational treatment only,

the discontinuation time is not defined under control. This scenario is similar to a randomized

study with one-sided partial compliance, although the time-to-event nature of the discontinuation

behaviour makes it particularly challenging. Following Mattei et al. [2023a], we formally set Di(0) =

D̄ ∀i, meaning that Di(0) takes on a non-real value. Yet, patients are allowed to discontinue the

investigational treatment as far as they do not experience the primary event. We say that Di(1) is

censored by death or progression; indeed, Di(1) < Yi(1). Therefore, on the one hand, for those who

potentially discontinue, Di(1) is defined in R+. On the other hand, for the units who experience the

event without discontinuing (either before or after the follow-up period), the time to discontinuation

is not defined, i.e., Di(1) = D̄. The study duration is limited to c months, and each patient can

enter the study at a different time, implying different censoring times Ci(zi) ≤ c under treatment

assignment Zi = zi. We assume that Ci(1) = Ci(0) = Ci ∀i and that the censoring mechanism is

ignorable given the covariates Xi, i.e.,

P (Ci|Di(1), Yi(1), Yi(0),Xi) = P (Ci) . (1)

3.2 Principal strata and causal estimands

According to their discontinuation behaviour, the units are classified into different (latent) subpop-

ulations, or principal strata. Since Di(0) = D̄, ∀i, treatment discontinuation is one-sided; thus, the

strata are defined exclusively with respect to the discontinuation behaviour under new treatment,

Di(1). Since Di(1) is either not defined or continuous, units can be either patients that would not

discontinue if assigned to the investigational treatment, i.e., those i such that Di(1) = D̄, or patients

that would discontinue at a time d ∈ R+. We refer to the former patients as “Never Discontinuing”

(ND patients) and to the latter as “Discontinuing” (D patients) throughout the paper. Given that

the discontinuation variable is continuous, the group of patients who would discontinue at some

point in time is the union of infinite basic principal strata D.

Under such a principal stratification approach, we can decompose the ITT effect defining principal
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causal estimands, namely causal estimands for each latent subpopulation.

In the case of average causal effects, the ITT effect would be a weighted average of principal

average causal effects, i.e., average causal effects conditional for the discontinuation behaviour:

ITT = πNDACEND + (1− πND)ACED , (2)

where πND is the proportion of ND patients, and ACEND and ACED are the average causal effects

for ND and D patients, respectively.

Characterising the ITT effect heterogeneity with respect to the discontinuation time is challenging

because the discontinuation can be non-ignorable, i.e., the discontinuation status is not necessarily

independent of the potential outcomes even conditional on covariates: Yi(1), Yi(0)⊥̸⊥ Di(1)|Xi.

We may define population principal average causal effects as follows.

• for ND patients:

ACEND =

∫
X

{E[Y (1) | D(1) = D̄,X = x]− E[Y (0) | D(1) = D̄,X = x]}f̂(x)dx , (3)

• for D patients:

ACED =

∫
R+

ACED(D(1) = d)fD(d) dd , (4)

where fD(d) is the density of D(1), and

ACED(d) =

∫
X

{E[Y (1) | D(1) = d,X = x]− E[Y (0) | D(1) = d,X = x]}f̂(x)dx (5)

for all d ∈ R+. In Equations (3)-(5), f̂(x) is the empirical multivariate distribution of X [in fact,

those in (3) and (5) can be more properly called mixed effects; see Li et al., 2023].

Finally, we define the distributional causal effects of the treatment (or principal survival differ-

ence) at time y, in a similar fashion to Mattei et al. [2023a]. The distributional causal effect at y
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for the set of ND patients is:

DCEND(y) =

∫
X
{P

{
Y (1) > y | D(1) = D̄,X = x

}
− P

{
Y (0) > y | D(1) = D̄,X = x

}
}f̂(x)dx, y ∈ R+ ,

(6)

whereas the distributional causal effects of the treatment at time y for those who would discontinue

at time d had they survived until time d if assigned to treatment is:

DCED(y | d) =
∫
X
{P{Y (1) > y | D(1) = d,X = x}

− P {Y (0) > y | D(1) = d,X = x}}f̂(x)dx, y, d ∈ R+ .

(7)

3.3 Potential outcomes and observed data

Considering the censoring, once the treatment has been assigned, the observed progression-free

survival and the observed discontinuation time for each unit i are Ỹ obs
i = min(Y obs

i , Ci), and

D̃obs
i =


min {Dobs

i , Ci} ∀i : Zi = 1, Dobs
i ∈ R+

Ci ∀i : Dobs
i = D̄

(8)

where

Y obs
i = ZiYi(1) + (1− Zi)Yi(0), and Dobs

i = ZiDi(1) + (1− Zi)D̄ . (9)

According to their behaviour, it is possible to categorise different patients’ profiles. Table 2

summarises the observed profile. Under treatment, among those who have experienced the primary

event during the follow-up (Ỹ obs
i = Y obs

i ), there may be D patients, namely, those who had dis-

continued the treatment (D̃obs
i = Dobs

i ), and patients who had not (D̃obs
i = Ci) and hence are ND

patients undoubtedly. Among those who have not experienced the primary event during the follow-

up (Ỹ obs
i = Ci), there may be patients who have discontinued the treatment (D) and patients who

have not; the latter set is a mixture of ND and D at time d > Ci. Under control, we cannot observe

the patients’ behaviour under treatment; their profiles are thus infinite mixtures of units who would

have discontinued at time d, 0 < d < Y obs
i , and units who would have never discontinued if assigned
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Table 2: Observed profiles according to the observed discontinuation behaviour.

Zi Ỹ obs
i D̃obs

i Principal stratum label
1 Y obs

i Dobs
i D

1 Y obs
i Ci ND

1 Ci Dobs
i D

1 Ci Ci D or ND
0 Y obs

i Ci D or ND
0 Ci Ci D or ND

to the investigational treatment.

4 Bayesian inference

Even under initial randomisation, i.e., Yi(1), Yi(0), Di(1) ⊥⊥ Zi, which holds by design in an RCT,

and the assumption of completely ignorable censoring (see Equation (1)), the causal estimands

described in Section 3.2 are not fully nonparametrically identifiable from the observed data. Aiming

at estimating the treatment causal effect for each stratum, we adopt a Bayesian approach, which

does not require full identification [Lindley, 1972]. Within the framework of the Bayesian causal

inference [Li et al., 2023], in this Section, we provide a general setting to model the intermediate

variable and the potential outcomes given the intermediate variable.

4.1 Model setting

To each unit i we associate the following quantities: Zi, Ci, Yi(1), Yi(0), Di(1),Xi. We observe

Zi, Ci, Ỹ
obs
i , D̃obs

i ,Xi for each i. Therefore, Yi(Zi) is only observed for units who experienced the

event under treatment Zi; Di(1) is only observed for some i, namely the D patients assigned to

treatment whose discontinuation time is not censored. However, Yi(1−Zi) is missing for all i. Note

that, under a Bayesian approach, Y obs
i is a realisation of Yi(1) for the units assigned to treatment

and of Yi(0) for those assigned to the control. Similarly, Dobs
i is a realisation of Di(1) for the units

assigned to treatment; yet, Dobs
i is deterministically equal to D̄ for those assigned to control.

The joint distribution of the quantities described above is π(Zi, Ci, Yi(1), Yi(0), Di(1),Xi | θ),

with θ being the parameter (vector) that governs the joint distribution. Such distribution can be

10



factorised as follows:

π(Zi,Ci, Yi(1), Yi(0), Di(1),Xi | θ) =

= π(Zi | Ci, Yi(1), Yi(0), Di(1),Xi;θ)π(Ci | Yi(1), Yi(0), Di(1),Xi;θ)

× π(Yi(1) | Yi(0), Di(1),Xi;θ)π(Yi(0) | Di(1),Xi;θ)π(Di(1) |Xi;θ)π(Xi | θ)

(10)

Under randomisation, assuming exchangeability and the ignorability of the censoring mechanism,

we only need to model the potential outcomes and the potential discontinuation to make inferences

on the causal estimands described in Section 3.2. We do not directly model the covariates’ vector

since we are interested in what we refer to as mixed effects, and thus we condition on the empirical

distribution of the covariates f̂(x) [again, see Li et al., 2023]. No additional structural assumptions

are made, such as principal ignorability, exclusion restriction [Mattei et al., 2023b].

Let us start defining a two-part model for the discontinuation variable; the first categorical part

models the membership to the group of ND patients versus the group of D ones. We denote with

IND
i = I{Di(1)=D} = IND

i (θD̄,Xi) , (11)

the discontinuation indicator taking value 1 when the unit i is ND; we let the probability of IND
i be

function of the K-dimensional vector of covariates Xi = (Xi,1, . . . , Xi,K) and of parameters θD̄.

The second part of the model deals with the potential time-to-discontinuation Di(1), conditional

on the discontinuation status and the covariates Xi. We assume

Di(1)|IND
i ,Xi


= D̄ if IND

i = 1

∼ ψD(·;θD,Xi) if IND
i = 0 ,

(12)

i.e., the discontinuation time is not defined for the ND patients, while for D patients it follows a

generic suitable distribution ψ(·;θD,Xi) depending on some parameters θD and covariates Xi.

Then, we model the potential survival outcomes assuming that they are conditionally independent

given the discontinuation status and time and given the covariates and the parameters’ vector.
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Let the potential outcome under treatment conditionally be:

Yi(1)|IND
i , Di(1),Xi


∼ ψ1̄(·; θ̄1,Xi) if IND

i = 1

∼ ψ1(·;θ1,Xi, Di(1)) if IND
i = 0 .

(13)

By the natural constraint, Yi(1) > Di(1); thus, the conditional potential outcome under investiga-

tional treatment for D patients must be a truncated variable.

We assume the potential outcome under control Yi(0) to be independent of Yi(1) given Di(1)

and the covariates but not independent of the discontinuation status;

Yi(0)|IND
i , Di(1),Xi


∼ ψ0̄(·; θ̄0,Xi) if IND

i = 1

∼ ψ0(·;θ0,Xi, Di(1)) if IND
i = 0 .

(14)

Here, the potential outcome under control for D patients can also be a function of the discontinuation

time.

We assume that the elements of the parameter vector θ = (θD̄,θD, θ̄1,θ1, θ̄0,θ0) are a priori

independent. Hence, we write the joint prior distribution of θ as

π(θ) = π(θD̄)π(θD)π(θ̄1)π(θ1)π(θ̄0)π(θ0) . (15)

4.2 Posterior computation

Our aim is to draw from the posterior distribution

π(θ |X,Z,C, D̃obs, Ỹ obs) ∝ L(Ỹ obs, D̃obs;θ,X,Z,C)π(θ) , (16)

where L(Ỹ obs, D̃obs;θ,X,Z,C) is the observed data likelihood. Given the presence of infinite

mixtures in the likelihood function, following Mattei et al. [2023a], we rely on a data augmentation

procedure and estimate the posterior via MCMC. Further details can be found in the Supplementary

Material. Note that once we are able to draw from (16), we can estimate the posterior distribution

of any causal estimand of interest beyond those introduced in Section 3.2.
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5 Application and results

5.1 Synthetic data

In this article, we illustrate two scenarios of interest. The first scenario depicts a situation in which

the principal causal effects are positive in all the latent strata, reflecting the efficacy of the treatment.

The second scenario represents a more challenging case of a positive overall effect, i.e., ITT > 0,

but the treatment assignment has no effect for D patients; ACED = 0, DCED = 0; in other words,

we mimic a situation in which the treatment does not show efficacy due to discontinuation. The

summary statistics of the data simulated under such scenarios are very close between them and

similar to the summaries of the real data; Tables are shown in the Supplementary Material.

In both scenarios, we make some assumptions on discontinuation for synthetic data simulation.

• The higher the value of X1, the lower the probability of being a ND patient.

• Patients with X2, X3 equal to 1 are more likely to be ND patients, i.e., patients who experience

progression-free survival (PFS) without discontinuing.

• For D patients, those with higher risk are more likely to discontinue sooner.

5.1.1 Scenario I: ACEND > 0, ACED > 0, DCEND(y) > 0, DCED(y | d) > 0 ∀d

We generate data such that there is a positive treatment effect for all latent strata and, thus, a

positive effect of the treatment for the ND patients (see the true model values in Table 4). To

simulate such a situation, we first draw IND
i from a Bernoulli(p(Xi)), where

p(Xi) =
exp(γ0 +X ′

iγ)

1 + exp(γ0 +X ′
iγ)

; (17)

than, we specify the model for the potential outcomes as follows:

Di(1) | IND
i = 0 ∼Weibull(αD, e

−(βD+X′
iηD)/αD ) (18)

Yi(1) | IND
i = 1,Xi ∼Weibull(ᾱ1, e

−(β̄1+X′
iη̄1)/ᾱ1) (19)

13



(a) IND = 1 (b) IND = 0

Figure 2: Scenario I. Kaplan-Meier curves for treated (blue) and controls (red), estimated using the
potential outcomes’ complete simulated data (one sample).

Yi(0) | IND
i = 1,Xi ∼Weibull(ᾱ0, e

−(β̄0+X′
iη̄0)/ᾱ0) (20)

Yi(1) | IND
i = 0, D(1),Xi ∼ tWeibullDi(1)(α1, e

−(β1+X′
iη1+δ log(Di(1)))/α1) (21)

Yi(0) | IND
i = 0, D(1),Xi ∼Weibull(α0, e

−(β0+X′
iη0+δ log(Di(1)))/α0) (22)

In Equation (21), tWeibullDi(1) stands for left truncated Weibull with truncation parameter Di(1).

The Kaplan-Meier estimated using the potential outcomes’ complete data are shown in Figures

2a and 2b, whereas Figure 3 shows the observed survival curves.

5.1.2 Scenario II: ACEND > 0, ACED = 0, DCEND(y) > 0, DCED(y | d) = 0 ∀d

We simulate the data such that the principal causal effects for D patients are zero. However, the

treatment has a positive effect on ND patients; the overall ITT effect is positive. In order to mimic

such a situation, as in Scenario I, we simulate the principal stratum membership and the time-

to-discontinuation as in Equations (17) and (18), respectively, and the potential outcomes for ND

patients as in Equations (19) and (20). Then, we generate the potential outcomes under investiga-

tional treatment and under control for D patients under the assumption that they are independent

and identically distributed conditionally on the potential time to discontinuation and the covariates.
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Figure 3: Scenario I. Kaplan-Meier curves for treated (blue) and controls (red), estimated using the
simulated data (one sample).

Specifically, we assume that they both follow the following truncated Weibull distribution:

{Yi(1) | IND
i = 0, D(1),Xi}, {Yi(0) | IND

i = 0, D(1),Xi}
iid∼ tWeibullDi(1)(α, e

−(β+X′
iη+δ log(Di(1)))/α)

(23)

Here the two potential outcomes have the same conditional distribution for each D patient. The

Kaplan-Meier curves based on potential outcomes’ complete data (Figures 4a and 4b) clearly show

no effect for the D patients.

It is not possible to grasp that difference without resorting to the principal stratum strategy; the

observed survival curves in Figure 5 show a positive ITT effect.

5.2 Modeling details and prior specification

We correctly specify the model for the the principal stratum membership and the discontinuation

time assuming that IND
i follows a Bernoulli distribution with probability parameter

p(Xi) =
exp(γ0 +X ′

iγ)

1 + exp(γ0 +X ′
iγ)

, θD̄ = (γ0,γ) ∈ RK+1 , (24)
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(a) IND = 1 (b) IND = 0

Figure 4: Scenario II. Kaplan-Meier curves for treated (blue) and controls (red), estimated using
the potential outcomes’ complete data (one sample).

Figure 5: Scenario II. Kaplan-Meier curves for treated (blue) and controls (red), estimated using
the observed data (one sample).
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and modelling the potential discontinuation under treatment as follows:

Di(1)|IND
i = 0,Xi ∼Weibull(αD, e

−(βD+X′
iηD)/αD ), θD = (αD, βD,ηD) (25)

with αD ∈ R+, βD ∈ R, and ηD ∈ RK .

Then, independently of how we simulated data, to estimate the causal effects under any scenario,

we model the potential outcomes as follows:

ψ1̄(·; θ̄1,Xi) = Weibull(ᾱ1, e
−(β̄1+X′

iη̄1)/ᾱ1), θ̄1 = (ᾱ1, β̄1, η̄1) (26)

ψ0̄(·; θ̄0,Xi) = Weibull(ᾱ0, e
−(β̄0+X′

iη̄0)/ᾱ0), θ̄0 = (ᾱ0, β̄0, η̄0) (27)

ψ1(·;θ1,Xi, Di(1)) = tWeibullDi(1)(α1, e
−(β1+X′

iη1+δ log(Di(1)))/α1), θ1 = (α1, β1,η1, δ) (28)

ψ0(·;θ0,Xi, Di(1)) = Weibull(α0, e
−(β0+X′

iη0+δ log(Di(1)))/α0), θ0 = (α0, β0,η0, δ) (29)

The above model is a correct specification of the model under Scenario I. Under Scenario II, the

model is misspecified due to Equation (29): a truncated Weibull, rather than the Weibull, is the

true underlying model, and the parameters of the model are the same as those in Equation (28).

The parameter δ in Equations (28) and (29) capture the dependence between the potential outcomes

and the potential discontinuation time under treatment. Note that the dependence between Yi(0)

and Di(1) is not identifiable since we never observe the discontinuation behaviour of a unit assigned

to the control. Hence, we let Yi(1) and Yi(0) depend on the common parameter δ, similarly as in

Mattei et al. [2023a].

Concerning the prior specification, we assume multivariate Normal priors for all parameters play-

ing the role of covariates’ coefficients and intercepts; we assume Gamma priors for Weibulls’ shape

parameters. Further details and the hyperparameters specification can be found in the Supplemen-

tary Material.
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5.3 Simulation study

We simulate 100 samples under each scenario described in Section 5.1 to evaluate the performance

of our method in repeated sampling in terms of coverage.Results in Table 3 show how often the 95%

Highest Posterior Density intervals cover the “true” values of the effects, i.e., the values computed

using the complete simulated data. For the sake of brevity, we show results for the average causal

effects only.

As stated in Section 5.2, the model we use to estimate the causal effects is correctly specified

under Scenario I; in such a case, the 95% HPD coverage is good (Table 3, row 1).Under Scenario II,

the model is misspecified; thus, as we expected, the coverage worsens (Table 3, row 3).

However, the results under Scenario II are superior to those obtained estimating the model

without covariates (Table 3, row 4). Intuitively, proper utilization of auxiliary variables provides

extra dimensions to better predict the missing principal strata membership; recent results on mixture

models show that a multivariate analysis improves the efficiency of estimators [Mercatanti et al.,

2015]. In this case, the inclusion of covariates may mitigate the impact of the model misspecification.

These results show how crucial it is to include covariates available that are also good predictors of

the potential outcomes and of the latent principal stratum membership in the context of treatment

discontinuation in RCTs.

In the next paragraph, we show the performance of the model on one data set per scenario.

Table 3: 95% High Posterior Density coverage of the true values expressed as a relative frequency
over a number of samples = 100.

Scenario ITT ACEND ACED ACED(1) ACED(2) ACED(3) ACED(4)
I 0.95 0.92 0.92 0.93 0.93 0.93 0.93
I w/o covariates 0.90 0.92 0.92 0.76 0.72 0.69 0.68
II 0.76 0.81 0.75 0.94 0.85 0.72 0.41
II w/o covariates 0.81 0.77 0.58 0.70 0.66 0.55 0.38
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5.4 Estimation of causal effects

5.4.1 Scenario I.

Table 4 shows the results for the principal average causal effects and for the ITT effect computed

as the weighted average of the principal ACE’s. The posterior means of the effects are all positive

and very close to the simulated value.

Table 4: Scenario I. Posterior mean and 95% Highest Posterior Density interval of the percentage
of ND patients and the population causal estimands considered.

True model value Posterior Mean 95% HPD
πND 0.73 0.73 [0.69 ; 0.78]
πNDACEND + (1− πND)ACED 4.24 4.49 [3.42 ; 5.56]
ACEND 4.92 5.20 [3.92 ; 6.78]
ACED 2.40 2.52 [0.67 ; 4.30]

Figure 6 shows the population average causal effect for D patients as a function of the discon-

tinuation time. Note that patients who receive the treatment for longer may benefit more from the

new investigational drug even though they will experience an AE at a certain time.

Figures 7 and 8 show the principal survival differences as we defined them in Section 3.2. As

we expect, both DCEND(y) and the DCED(y | d) for each d are first concave, and then, after the

peak, they flex and become convex. Such behaviour indicates that the survival curve under control

decreases much faster than the one under treatment.

5.4.2 Scenario II

Table 5 summarises the results obtained under Scenario II in terms of principal causal effects and

ITT effect computed as the weighted average of the principal ACE’s. The overall ITT effect is

positive; the principal stratification approach allows us to highlight that the stratum of ND patients

leads to such a result. In fact, the ACEND is positive, whereas we cannot reject the hypothesis of

no causal effect for D patients since the 95% Highest Posterior Density interval of ACED covers the

zero.

The misspecification of the model leads to more bias as the discontinuation time gets longer (see

Figure 9). However, we remind that our simulated data mimic the data in Table 1, where about
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Figure 6: Scenario I. ACED(d) as a function of the potential discontinuation time D(1) = d. The
posterior mean (dotted line) is close to the simulated value (solid line), which is included in the 95%
Highest Posterior Density interval (grey shade).

Figure 7: Scenario I. Principal survival difference at time y of ND patients, DCEND. The posterior
mean (dotted line) is close to the simulated value (solid line), which is always included in the 95%
Highest Posterior Density interval (grey shade).

20



Figure 8: Scenario I. Principal survival difference at time y of D patients, DCED(y | d), for different
potential discontinuation time D(1) = d (in different colours).
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Table 5: Scenario II. Posterior mean and 95% Highest Posterior Density interval of the percentage
of ND patients and the population causal estimands considered.

True model value Posterior Mean 95% HPD
πND 0.73 0.72 [0.68 ; 0.77]
πNDACEND + (1− πND)ACED 4.18 4.24 [2.99 ; 5.55]
ACEND 5.72 5.40 [3.36 ; 7.23]
ACED 0.00 1.14 [-2.66 ; 6.02]

Figure 9: Scenario II. ACED(d), as a function of the potential discontinuation time D(1) = d. The
posterior mean (dotted line) diverges from the 0 (solid line) as d increases, which is covered by the
95% Highest Posterior Density interval (grey shade) though.

75% of patients discontinue within the first 4 months. Yet, the ACED(d) Highest Posterior Density

(HPD) interval at the 95% credibility level shown in Figure 9 is widely covering the 0.

Figures 10 and 11 show the principal survival differences for ND and D patients, respectively.

As for the principal ACE’s, there is evidence of a positive treatment effect on the PFS of the ND

patients. Indeed, as in Scenario I, DCEND(y) shows a peak and then slowly goes to zero. However,

here the Highest Posterior Density intervals are much wider, indicating more uncertainty deriving

from the misspecification of the model. DCED(y | d) sharply go to zero, suggesting there is no

significant treatment effect for the D patients.
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Figure 10: Scenario II. Principal survival difference of ND patients, DCEND.

6 The role of covariates: Characterisation of the principal

strata

We previously stressed the role of covariates as predictors that allow more precise estimates of the

causal effects in the simulation study in Section 5.3. The results are in line with the literature. In a

principal stratification analysis, even under randomisation, the use of covariates improves inference

by helping the prediction of missing potential outcomes, and thus the identification of the principal

causal effects [see Gilbert and Hudgens, 2008, Grilli and Mealli, 2008, Ding et al., 2011, Long and

Hudgens, 2013, Mercatanti et al., 2015, Mealli and Pacini, 2013, Jiang and Ding, 2021].

Here, we highlight the importance of the covariates from a different point of view, emphasising

how our approach may inform about the risk of AEs and makes the characterisation of the patients’

behaviour natural in terms of the patient’s baseline features. Indeed, we may be interested in

profiling the patients in the different principal strata in terms of the covariates; so we can better

predict whether a patient will discontinue the treatment and when. For a likelihood-based approach

to this issue, see Frumento et al. [2012].
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Figure 11: Scenario II. Principal survival difference at time y of D patients, DCED(y | d), for
different potential discontinuation time D(1) = d (in different colours).

24



Figure 12: Distribution of X1 by latent stratum - ‘Never Discontinue’ refers to those patients whose
IND
i = 1; ‘Discontinue late’ and ‘Discontinue early’ refer to patients whose Di(1) ≥ median(Di(1))
and Di(1) < median(Di(1)), respectively.

We investigate the distribution of the covariates within different principal strata, e.g., ND pa-

tients, early D patients and late D patients. The early D patients are those discontinuing before the

median time of discontinuation, whereas the late D patients discontinue after.

The availability of posterior samples of memberships and discontinuation time make it straight-

forward to characterise the principal strata. Figures 12-14 show the distributions of the covariates

used in our analyses with respect to the patients’ membership.

ND patients are characterised by lower values of X1 (Figure 12). However, given that one would

discontinue the treatment, the lower the value of X1, the later the discontinuation.

The higher the probability that X2 or X3 is equal to 1, the more likely the patient would be a

ND one. However, if one discontinues, those with a higher probability of X3 = 1 discontinue sooner;

the association of X2 to the discontinuation time is not strong.

The results are reasonable and consistent with the assumptions used in simulating the data.

7 Discussion

This paper addresses a relevant but challenging clinical question. A novel treatment (administered

in combination with the standard of care) is more likely to trigger AEs leading to discontinuation
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Figure 13: Distribution of X2 by latent stratum - ‘Never Discontinue’ refers to those patients whose
IND
i = 1; ‘Discontinue late’ and ‘Discontinue early’ refer to patients whose Di(1) ≥ median(Di(1))
and Di(1) < median(Di(1)), respectively.

Figure 14: Distribution of X3 by latent stratum - ‘Never Discontinue’ refers to those patients whose
IND
i = 1; ‘Discontinue late’ and ‘Discontinue early’ refer to patients whose Di(1) ≥ median(Di(1))
and Di(1) < median(Di(1)), respectively.
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of the novel component while continuing the standard of care alone. To assess the treatment effect

depending on the discontinuation status, we adopt a principal stratification approach, classifying

patients according to their potential discontinuation time under treatment. Suppose a trial shows

a clinically meaningful overall treatment effect based on ITT analysis; then naturally, one may be

interested in the treatment effect in those who adhere to the treatment but also in those who discon-

tinue the treatment. This would help a better understanding of the drug mechanism (e.g. whether

taking only some doses initially may prove a longer-lasting benefit even after early discontinuation)

and will provide a more complete picture for clinical decision-making. For instance, whether early

treatment discontinuation leads to reduced or null treatment benefit; whether treatment discontinu-

ation depends on specific baseline covariates; and so on, all constitute clinically relevant information

that can be used in the risk and benefit assessment of a new treatment for an individual patient.

For inference, we developed a flexible parametric Bayesian model that takes into account (i)

whether or not a patient is a patient who would discontinue the treatment if assigned to it, (ii)

that time to discontinuation is a continuous variable, and (iii) that both discontinuation and efficacy

endpoints are subject to administrative censoring. In the motivating application, we used specific

parametric models; however, the approach is more general and can also be implemented with al-

ternative model specifications. All model components allow for the inclusion of baseline covariates,

which makes the parametric assumptions more plausible and improves the prediction of the missing

potential outcomes. It also potentially allows us to characterize the D patients by discontinuation

time and the ND patients in terms of baseline covariates. This provides very useful information on

the drug and has strong implications for further development: If AEs are associated to certain base-

line characteristics and if patients who discontinue the treatment have a reduced treatment effect,

one could investigate an optimized dosing regimen or improved AE management guideline for these

patients in further research.

Our approach enables us to decompose the ITT effect into the actual treatment effect for ND

patients and the effects of initiating the treatment for D ones. Hence, it allows us to evaluate

whether, e.g., a positive ITT effect results from either positive effects for each type of patients or

only for some specific subgroups.

In this work, we assume that covariates that are good predictors of outcome variables (time to

27



event, discontinuation status, and time to discontinuation) are available. In practice, covariates or

prognostic factors impacting time to progression or death are usually well discussed, recognized, and

collected for specific disease areas, while baseline covariates that may impact the discontinuation

status may not always be clear and readily available, especially for rare disease and novel treatment

(as well as its chosen dosing regimen). At the design stage, it is hence important to assess potential

covariates (based on earlier trials or clinical or mechanistic understanding) and make those covari-

ates part of the data collection. Our simulation study shows that the model performance strongly

improves by including appropriate covariates in the analysis.

Acknowledgments

Veronica Ballerini is supported by the European Union - Next GenerationEU, UNIFI Young Inde-

pendent Researchers Call - BayesMeCOS Grant no. B008-P00634.

Alessandra Mattei and Fabrizia Mealli thank the Department of Excellence 2013-2027 funding pro-

vided by the Italian Ministry of University and Research (MUR).

Conflict of Interest: None declared.

References

Mouna Akacha, Frank Bretz, and Stephen Ruberg. Estimands in clinical trials–broadening the

perspective. Statistics in medicine, 36(1):5–19, 2017.

Joshua D Angrist, Guido W Imbens, and Donald B Rubin. Identification of causal effects using

instrumental variables. Journal of the American statistical Association, 91(434):444–455, 1996.

Björn Bornkamp, Kaspar Rufibach, Jianchang Lin, Yi Liu, Devan V Mehrotra, Satrajit Roychoud-

hury, Heinz Schmidli, Yue Shentu, and Marcel Wolbers. Principal stratum strategy: Potential

role in drug development. Pharmaceutical Statistics, 20(4):737–751, 2021.

Peng Ding, Zhi Geng, Wei Yan, and Xiao-Hua Zhou. Identifiability and estimation of causal effects

by principal stratification with outcomes truncated by death. Journal of the American Statistical

Association, 106(496):1578–1591, 2011.

28



Constantine E Frangakis and Donald B Rubin. Principal stratification in causal inference. Biomet-

rics, 58(1):21–29, 2002.

Paolo Frumento, Fabrizia Mealli, Barbara Pacini, and Donald B Rubin. Evaluating the effect of

training on wages in the presence of noncompliance, nonemployment, and missing outcome data.

Journal of the American Statistical Association, 107(498):450–466, 2012.

Peter B Gilbert and Michael G Hudgens. Evaluating candidate principal surrogate endpoints. Bio-

metrics, 64(4):1146–1154, 2008.

Leonardo Grilli and Fabrizia Mealli. Nonparametric bounds on the causal effect of university stud-

ies on job opportunities using principal stratification. Journal of Educational and Behavioral

Statistics, 33(1):111–130, 2008.

Keisuke Hirano, Guido W Imbens, Donald B Rubin, and Xiao-Hua Zhou. Assessing the effect of an

influenza vaccine in an encouragement design. Biostatistics, 1(1):69–88, 2000.

ICH. International council for harmonisation of technical requirements for pharmaceuticals for hu-

man use. addendum on estimands and sensitivity analysis in clinical trials to the guideline on

statistical principles for clinical trials E9(R1). Ich e9 statistical principles for clinical trials -

scientific guideline, International Council for Harmonisation of Technical Requirements for Phar-

maceuticals for Human Use (ICH), 2020.

Zhichao Jiang and Peng Ding. Identification of causal effects within principal strata using auxiliary

variables. Statistical Science, 36(4):493–508, 2021.

Hui Jin and Donald B Rubin. Principal stratification for causal inference with extended partial

compliance. Journal of the American Statistical Association, 103(481):101–111, 2008.

Fan Li, Peng Ding, and Fabrizia Mealli. Bayesian causal inference: a critical review. Philosophical

Transactions of the Royal Society A, 381(2247):20220153, 2023.

Dennis Victor Lindley. Bayesian statistics: A review. SIAM, 1972.

29



Ilya Lipkovich, Bohdana Ratitch, Yongming Qu, Xiang Zhang, Mingyang Shan, and Craig Mallinck-

rodt. Using principal stratification in analysis of clinical trials. Statistics in Medicine, 41(19):

3837–3877, 2022.

Bo Liu, Lisa Wruck, and Fan Li. Principal stratification with time-to-event outcomes. arXiv preprint

arXiv:2301.07672, -:1–35, 2023.

Dustin M Long and Michael G Hudgens. Sharpening bounds on principal effects with covariates.

Biometrics, 69(4):812–819, 2013.

Baldur P Magnusson, Heinz Schmidli, Nicolas Rouyrre, and Daniel O Scharfstein. Bayesian inference

for a principal stratum estimand to assess the treatment effect in a subgroup characterized by

postrandomization event occurrence. Statistics in Medicine, 38(23):4761–4771, 2019.

Alessandra Mattei and Fabrizia Mealli. Application of the principal stratification approach to the

faenza randomized experiment on breast self-examination. Biometrics, 63(2):437–446, 2007.

Alessandra Mattei, Peng Ding, Veronica Ballerini, and Fabrizia Mealli. Assessing causal ef-

fects in the presence of treatment switching through principal stratification. arXiv preprint

arXiv:2002.11989v2, -(-):1–79, 2023a.

Alessandra Mattei, Laura Forastiere, and Fabrizia Mealli. Assessing principal causal effects us-

ing principal score methods. In Handbook of Matching and Weighting Adjustments for Causal

Inference, pages 313–348. Chapman and Hall/CRC, 2023b.

Fabrizia Mealli and Barbara Pacini. Using secondary outcomes to sharpen inference in randomized

experiments with noncompliance. Journal of the American Statistical Association, 108(503):1120–

1131, 2013.

Fabrizia Mealli, Guido W Imbens, Salvatore Ferro, and Annibale Biggeri. Analyzing a randomized

trial on breast self-examination with noncompliance and missing outcomes. Biostatistics, 5(2):

207–222, 2004.

Andrea Mercatanti, Fan Li, and Fabrizia Mealli. Improving inference of gaussian mixtures using

30



auxiliary variables. Statistical Analysis and Data Mining: The ASA Data Science Journal, 8(1):

34–48, 2015.

Yuki Ohnishi and Arman Sabbaghi. A bayesian analysis of two-stage randomized experiments in

the presence of interference, treatment nonadherence, and missing outcomes. Bayesian Analysis,

1(1):1–30, 2022.

Yongming Qu, Haoda Fu, Junxiang Luo, and Stephen J Ruberg. A general framework for treatment

effect estimators considering patient adherence. Statistics in Biopharmaceutical Research, 12(1):

1–18, 2020.

Yongming Qu, Junxiang Luo, and Stephen J Ruberg. Implementation of tripartite estimands using

adherence causal estimators under the causal inference framework. Pharmaceutical Statistics, 20

(1):55–67, 2021.

Jason Roy, Joseph W Hogan, and Bess H Marcus. Principal stratification with predictors of com-

pliance for randomized trials with 2 active treatments. Biostatistics, 9(2):277–289, 2008.

Donald B Rubin. Estimating causal effects of treatments in randomized and nonrandomized studies.

Journal of educational Psychology, 66(5):688, 1974.

Donald B Rubin. Randomization analysis of experimental data: The fisher randomization test

comment. Journal of the American statistical association, 75(371):591–593, 1980.

Dirk Schadendorf, Jedd D Wolchok, F Stephen Hodi, Vanna Chiarion-Sileni, Rene Gonzalez, Piotr

Rutkowski, Jean-Jacques Grob, C Lance Cowey, Christopher D Lao, Jason Chesney, et al. Effi-

cacy and safety outcomes in patients with advanced melanoma who discontinued treatment with

nivolumab and ipilimumab because of adverse events: a pooled analysis of randomized phase ii

and iii trials. Journal of Clinical Oncology, 35(34):3807, 2017.

Scott L Schwartz, Fan Li, and Fabrizia Mealli. A bayesian semiparametric approach to intermediate

variables in causal inference. Journal of the American Statistical Association, 106(496):1331–1344,

2011.

31



Elisa Sheng, Wei Li, and Xiao-Hua Zhou. Estimating causal effects of treatment in rcts with provider

and subject noncompliance. Statistics in Medicine, 38(5):738–750, 2019.

32



Supplementary material for

“Evaluating causal effects on time-to-event outcomes in an

RCT in Oncology with treatment discontinuation due to

adverse events”

A Model specification

We describe in detail the model specified in the main text.

We assume that the probability of being an ND patient is

p(Xi) =
exp(γ0 +X ′

iγ)

1 + exp(γ0 +X ′
iγ)

, θD̄ = (γ0,γ) . (A. 1)

Given the principal strata one belongs to, the potential discontinuation time under treatment is:

Di(1)|IND
i ,Xi


= D̄ if IND

i = 1

∼ ψD(·;θD,Xi) if IND
i = 0 .

(A. 2)

We denote with fD(1)(d|Xi,θ
D) and GD(1)(d|Xiθ

D) the density and survival functions for the

discontinuation time of who discontinued, respectively. In the case of the Weibull specification,

fD(1)(d |X,θD) = αDy
αD−1 exp{βD +X ′

iηD − eβD+X′
iηDyαD},

GD(1)(d |X,θD) = exp{−eβD+X′
iηDyαD}, θD = (αD, βD,ηD)

(A. 3)

The potential outcome under treatment Yi(1), given the discontinuation status Di(1) and the

covariates, is

Yi(1)|IND
i , Di(1),Xi


∼ ψ1̄(·; θ̄1,Xi) if IND

i = 1

∼ ψ1(·;θ1,Xi, Di(1)) if IND
i = 0 .

(A. 4)
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For ND patients, the Weibull density and the survival functions are

f D̄Y (1)(y |X, θ̄1) = ᾱ1y
ᾱ1−1 exp{β̄1 +X ′

iη̄1 − eβ̄1+X′
iη̄1yᾱ1},

GD̄
Y (1)(y |X, θ̄1) = exp{−eβ̄1+X′

iη̄1yᾱ1}, θ̄1 = (ᾱ1, β̄1, η̄1) ,

(A. 5)

respectively. Yet, for D patients, the left truncated Weibull density and survival functions are

fY (1)(y | d,X,θ1) = α1y
α1−1 exp{β1 +X ′

iη1 + δ logD(1) + eβ1+X′
iη1+δ logD(1)(dα1 − yα1)}Id≤y,

GY (1)(y | d,X,θ1) = exp{eβ1+X′
iη1+δ logD(1)(dα1 − yα1)}Id≤y, θ1 = (α1, β1,η1) ,

(A. 6)

respectively.

We assume that the potential outcome under control Yi(0) is independent of Yi(1) given Di(1)

and the covariates, i.e.,

Yi(0)|IND
i , Di(1),Xi


∼ ψ0̄(·; θ̄0,Xi) if IND

i = 1

∼ ψ0(·;θ0,Xi, Di(1)) if IND
i = 0 .

(A. 7)

The Weibull densities of Yi(0)|IND
i , Di(1),Xi are

f D̄Y (0)(y |X, θ̄0) = ᾱ1y
ᾱ0−1 exp{β̄0 +X ′

iη̄0 − eβ̄1+X′
iη̄0yᾱ0},

GD̄
Y (0)(y |X, θ̄0) = exp{−eβ̄1+X′

iη̄0yᾱ0}, θ̄0 = (ᾱ0, β̄0, η̄0)

(A. 8)

for those who would never discontinue; yet, for those who would discontinue if assigned to the

treatment, they are:

fY (1)(y | d,X,θ1) = α0y
α0−1 exp{β0 +X ′

iη0 + δ logD(1)− eβ0+X′
iη1+δ logD(1)yα0},

GY (1)(y | d,X,θ1) = exp{−eβ0+X′
iη1+δ logD(1)yα0}, θ0 = (α0, β0,η0) .

(A. 9)
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B Priors specification

We assume multivariate Normal priors for all parameters playing the role of covariates’ coefficients

and intercepts; yet, we assume Gamma priors for Weibulls’ shape parameters.

(γ0,γ) ∼ N(0,ΣD̄) (B. 1)

αD ∼ Gamma(a, b), βD ∼ N(0, σ2
D) ηD) ∼ N(0,ΣD) (B. 2)

ᾱ1 ∼ Gamma(ā1, b̄1), β̄1 ∼ N(0, σ2
1̄) (B. 3)

α1 ∼ Gamma(a1, b1), β1 ∼ N(0, σ2
1) (B. 4)

ᾱ0 ∼ Gamma(ā0, b̄0), β̄0 ∼ N(0, σ2
0̄) (B. 5)

α0 ∼ Gamma(a0, b0), β0 ∼ N(0, σ2
0) (B. 6)

η̄1 = η1 = η̄0 = η0 ≡ ηY ∼ N(0,ΣY ) (B. 7)

δ ∼ N(0, σ2
δ ) (B. 8)

The results shown in the main text are obtained setting (i) all Gammas’ shape parameters equal to

0.5, (ii) all Gammas’ scale parameters equal to 0.5, (iii) all variances σ2 = 102, and (iv) variance-

covariance matrices Σ as diagonal matrices with non-zero elements equal to 52. The results are quite

robust to hyperparameters’ specifications.
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C Posterior distribution

We write the posterior using the observed data likelihood:

π(θ |X,Z,C, D̃obs, Ỹ obs) ∝ π(θD̄)π(θD)π(θ̄1)π(θ1)π(θ̄0)π(θ0)

×
∏

i:Zi=1,Ỹ obs
i =Y obs

i ,D̃obs
i =Ci

p(Xi)f
D̄
Y (1)(Y

obs
i |Xi, θ̄

1)

×
∏

i:Zi=1,Ỹ obs
i =Ci,D̃obs

i =Dobs
i

[1− p(Xi)]fD(1)(D
obs
i |Xi,θ

D)GY (1)(Ci|Dobs
i ,Xi,θ

1)

×
∏

i:Zi=1,Ỹ obs
i =Y obs

i ,D̃obs
i =Dobs

i

[1− p(Xi)]fD(1)(D
obs
i |Xi,θ

D)fY (1)(Y
obs
i |Dobs

i ,Xi,θ
1)

×
∏

i:Zi=1,Ỹ obs
i =Ci,D̃obs

i =Ci

p(Xi)G
D̄
Y (1)(Ci|Xi, θ̄

1) + [1− p(Xi)]GD(1)(Ci|Xi,θ
D)

×
∏

i:Zi=0,Ỹ obs
i =Y obs

i

[
p(Xi)f

D̄
Y (0)(Y

obs
i |Xi, θ̄

0)+

[1− p(Xi)]

∫
R+

fY (0)(Y
obs
i |Di(1) = d,Xi,θ

D)fD(1)(d|Xi,θ
D) dd


×

∏
i:Zi=0,Ỹ obs

i =Ci

[
p(Xi)G

D̄
Y (0)(Ci|Xi, θ̄

0)+

[1− p(Xi)]

∫
R+

GY (0)(Ci|Di(1) = d,Xi,θ
0)fD(1)(d|Xi,θ

D) dd



(C. 1)

Given the intractability of the observed data likelihood due to the presence of infinite mixtures,

following Mattei et al. [2023a], we include a data augmentation step simulating Di(1) for units

assigned to the control arm.
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We obtain the following complete data posterior distribution:

P (θ|X,Z,C, D̃obs, Ỹ obs,D(1),Y ) ∝ P (θ)L(θ|X,Z,C, D̃obs, Ỹ obs,D(1),Y )

∝ π(θD̄)× π(θD)× π(θ̄1)× π(θ1)× π(θ̄0)× π(θ0)

×
∏

i:Zi=1,Di(1)=D̄

p(Xi)f
D̄
Y (1)(Y

obs
i |Xi, θ̄

1)I{Y
obs
i ≤Ci}GD̄

Y (1)(Ci|Xi, θ̄
1)I{Y

obs
i >Ci}

×
∏

i:Zi=1,Di(1)∈R+

[1− p(Xi)]GD(1)(Ci|Xi,θ
D)I{D

obs
i >Ci}

·
[
fD(1)(D

obs
i |Xi,θ

D)fY (1)(Y
obs
i |Dobs

i ,Xi,θ
1)I{Y

obs
i ≤Ci}GY (1)(Ci|Dobs

i ,Xi,θ
1)I{Y

obs
i >Ci}

]I{Dobs
i ≤Ci}

×
∏

i:Zi=0,Di(1)=D̄

p(Xi)f
D̄
Y (0)(Y

obs
i |Xi, θ̄

0)I{Y
obs
i ≤Ci}GD̄

Y (0)(Ci|Xi, θ̄
0)I{Y

obs
i >Ci}

×
∏

i:Zi=0,Di(1)∈R+

[1− p(Xi)]fD(1)(Di(1)|Xi,θ
D)

· fY (0)(Y
obs
i |Di(1),Xi,θ

0)I{Y
obs
i ≤Ci}GY (0)(Ci|Di(1),Xi,θ

0)I{Y
obs
i >Ci}

(C. 2)

Once derived the full conditionals, it will be possible to draw from the posterior above using a

Metropolis-within-Gibbs algorithm such as the one described in Algorithm 1.
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D Algorithm description

Following Mattei et al. [2023a], we implemented a Metropolis within Gibbs with Data Augmentation

to estimate the causal effects of a new investigational drug, administered in addition to the standard

of care, with respect to the standard of care only. The algorithm is described by Algorithms 1 and

2.

Algorithm 1: Metropolis within Gibbs

1 Choose initial values for all the J elements of the vector θ(0) ;

2 Choose initial values I
ND(0)
i ∀i ∈ {Zi = 0 ∪ (Zi = 1 ∩ Y obs

i > Ci)};
3 Choose initial values Di(1)

(0) ∀i ∈ Zi = 0 ;
4 for t← 1 to T do
5 1. Data augmentation as in Algorithm 2
6 2. Parameters’ update
7 for θ[j]← θ[1] to θ[J ] do
8 draw θ[j]∗ from a proposal distribution qt(θ[j]

∗|θ[j]t−1) ;

9 compute the acceptance ratio γθ[j] = min
(
1; P (θ[j]∗|·)

P (θ[j]t−1|·)
qt(θ[j]

t−1|θ[j]∗)
θ[j]∗|θ[j])

)
;

10 draw u ∼ Unif(0, 1) ;
11 if u < γθ[j] then
12 set θ[j](t) = θ[j]∗

13 else
14 set θ[j](t) = θ[j]t−1

15 end

16 end

17 end
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Algorithm 2: Data augmentation step at iteration t

1 for i : Zi = 1, Y obs
i > Ci do

2 compute the ratio

3 γi =
p(Xi,θ

D̄(t))GD̄
Y (1)(Y

obs
i |Xi,θ

1(t))

p(Xi,θD̄(t))GD̄
Y (1)

(Y obs
i |Xi,θ1(t))+(1−p(Xi,θD̄(t)))GD(1)(D

obs
i |Xi,θ1(t))

;

4 draw I
ND(t)
i ∼ Ber(γi)

5 end
6 for i : Zi = 0 do

7 draw IND∗
i ∼ Ber(P (IND

i |Xi,θ
D̄,(t−1))) ;

8 if IND∗
i = 0 then

9 draw D(1)∗i ∼Weibull(α
(t−1)
D , exp (−{β(t−1)

D +X ′
iη

(t−1)
D }/α(t−1)

D ))
10 else
11 set D(1)∗i = 0
12 end

13 compute the ratio ri =
π(θ(t−1)|IND∗

i ,D∗
i ,Y

obs
i ,Xi)

π(θ(t−1)|IND(t−1)
i ,D

(t−1)
i ,Y obs

i ,Xi)
;

14 compute ρi =



1 if IND∗
i = I

ND(t−1)
i = 1

p(Xi,θ
D̄(t−1))

(1−p(Xi,θD̄(t−1)))fD(D∗
i |Xi,θD(t−1))

if IND∗
i = 0, I

ND(t−1)
i = 1

(1−p(Xi,θ
D̄(t−1)))fD(D

(t−1)
i |Xi,θ

D(t−1))

p(Xi,θD̄(t−1))
if IND∗

i = 1, I
ND(t−1)
i = 0

fD(D
(t−1)
i |Xi,θ

D(t−1))

fD(D∗
i |Xi,θD(t−1))

if IND∗
i = I

ND(t−1)
i = 0

;

15 if u < (ri · ρi) then
16 set I

ND(t)
i = IND∗

i and D(1)
(t)
i = D(1)∗i

17 else

18 set I
ND(t)
i = I

ND(t−1)
i and D(1)

(t)
i = D(1)

(t−1)
i

19 end

20 end
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E Summary statistics for the two scenarios

Table E.1: Summary data, scenario I

Variable Mean(proportion) SD Min Q1 Median Q3 Max
Zi 54.0% (181/335) —– —– —– —– —– —–
I(Dobs

i < Ci) 14.93%(50/335) —– —– —– —– —– —–
Dobs

i 2.99 (50/335) 2.41 0.19 1.04 2.64 3.87 11.99
I(Y obs

i < Ci) 91.64% (307/335) —– —– —– —– —– —–
Y obs 5.16 (307/335) 3.66 0.02 2.31 4.35 7.58 20.76
Continuous covariates
X1 63.09 10.46 28.44 55.80 63.09 70.48 91.51
Categorical covariates
X2 43.88% (147/335) —– —– —– —– —– —–
X3 25.37% (85/335) —– —– —– —– —– —–

Table E.2: Summary data, scenario II

Variable Mean(proportion) SD Min Q1 Median Q3 Max
Zi 54.0% (181/335) —– —– —– —– —– —–
I(Dobs

i < Ci) 14.93%(50/335) —– —– —– —– —– —–
Dobs

i 2.99 (50/335) 2.41 0.19 1.04 2.64 3.87 11.99
I(Y obs

i < Ci) 90.15% (302/335) —– —– —– —– —– —–
Y obs 5.51 (302/335) 3.87 0.01 2.36 4.87 7.84 20.76
Continuous covariates
X1 63.09 10.46 28.44 55.80 63.09 70.48 91.51
Categorical covariates
X2 43.88% (147/335) —– —– —– —– —– —–
X3 25.37% (85/335) —– —– —– —– —– —–
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