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Abstract: Many prominent combinatorial sequences, such as the Fibonacci, Lucas, Pell, Jacobsthal
and Tribonacci sequences, are defined by homogeneous linear recurrence relations with constant coef-
ficients. These sequences are often referred to as C-finite sequences, and a variety of representations
have been employed throughout the literature, largely influenced by the author’s background and
the specific application under consideration. Beyond the representation through recurrence relations,
other approaches include those based on generating functions, explicit formulas, matrix exponen-
tiation, the method of undetermined coefficients and several others. Among these, the generating
function approach is particularly prevalent in enumerative combinatorics due to its versatility and
widespread use. The primary objective of this work is to introduce an alternative representation
grounded in the theory of Riordan arrays. This representation provides a general formula expressed
in terms of the vectors of constants and initial conditions associated with any recurrence relation of a
given order, offering a new perspective on the structure of such sequences.
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1. Introduction

According to recent terminology (see, e.g., [1,2]), a C-finite sequence is any sequence
defined by a homogeneous linear recurrence relation with constant coefficients. If (uk)k∈N
is a C-finite sequence, the recurrence relation is written as follows:

un+ω = c1un+ω−1 + c2un+ω−2 + · · ·+ cωun, (1)

where c1, c2, . . . , cω ∈ Q are constant with respect to n, cω ̸= 0 and ω is the order of the
recurrence. The sequence is completely defined when we fix the initial conditions, that is,
the value of the first ω elements (not all 0) of the sequence u0, u1, . . . uω−1. The defining
recurrence relation (1) has the following obvious “generalization”:

c0un+ω = c1un+ω−1 + c2un+ω−2 + · · ·+ cωun,

with c0 ̸= 0, but obviously the two formulations are equivalent. Therefore, we will always
suppose c0 = 1.

Surely, C-finite sequences are the simplest and most used numeric sequences, for
example, the well-known Fibonacci sequence, the properties of which have been widely
studied and applied. Because of that, a number of different representations have been
adopted in the literature, often depending on the background of the author and/or on the
properties related to the specific application.

Among the various representations, we obviously have recurrence relations which,
according to the definition of a C-finite sequence, have to be homogeneous, linear and
with constant coefficients. For the relation (1), if C = [c1, c2, . . . , cω ] is the vector of
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coefficients and U = [u0, u1, . . . , uω−1] is the vector of initial conditions, we use the
following notation:

(uk)k∈N = ℜ([c1, c2, . . . , cω ], [u0, u1, . . . , uω−1]) = ℜ(ω)(C, U), (2)

where the order can be understood when no ambiguity arises. For the well-known Fibonacci
numbers, for example, we have the following:

(Fk)k∈N = ℜ([1, 1], [0, 1]) corresponding to Fn+2 = Fn+1 + Fn

valid for every n ∈ N, and with F0 = 0, F1 = 1 as initial conditions.
Another representation is in terms of an explicit formula: a mathematical formula

depending on a parameter n which returns un, the element at position n in the sequence.
Especially important are closed formulas, that is, formulas the evaluation of which does not
require a number of arithmetic operations depending on n. For Fibonacci numbers we have
the well-known Binet formula:

Fn =
ϕn − ϕ̂n
√

5
,

where ϕ = (
√

5 + 1)/2 ∼ 1.618033988 is the golden ratio and ϕ̂ = −1/ϕ.
Generating functions correspond to another important representation; it is well known

that a sequence (uk)k∈N is C-finite if and only if its generating function is a rational function
u(t) = P(t)/Q(t), where P(t), Q(t) are two polynomials having deg(P(t)) < deg(Q(t)).
The function u(t) contains the whole information relative to the sequence, so it is the
ideal approach to most problems relative to C-finite sequences. A typical example is the
generating function of Fibonacci numbers:

F(t) =
t

1 − t − t2 ,

from which so many properties of Fibonacci numbers can be deduced, in particular the
Binet formula.

Moreover, the evaluation of un through the recurrence relation can be seen as the
computation of some power of a suitable matrix. In this case also, the appropriate example
is given by the Fibonacci numbers. If we define

F =

[
1 1
1 0

]
then by computing the power Fn we find a matrix containing some elements of the sequence:

Fn =

[
Fn+1 Fn

Fn Fn−1

]
.

The method can be generalized to all C-finite sequences and allows many of their properties
to be easily proven.

Another peculiar representation is by points: if we know the order ω of a C-finite
sequence (or, at least, an upper bound thereof), we can represent it by a subsequence of 2ω
consecutive elements. In fact, by substituting these values in (1), we obtain ω equations
in the ω unknowns c1, c2, · · · , cω. If the points belong to the sequence, the system so
obtained has one and only one solution. For example, the subsequence (5, 8, 13, 21)
defines the Fibonacci numbers, the order of which is 2; from these points, we obtain the
following system: {

13 = 8c1 + 5c2
21 = 13c1 + 8c2
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with the obvious solution c1 = c2 = 1. This representation has been intensively used by
Doron Zeilberger [2] and known as the method of indeterminate coefficients.

The previous and other representations can be found in [1–3]. In Table 1, we show the
first values of some well-known C-finite sequences which will be used as examples in this
paper; they are found, among others, in the On-Line Encyclopedia of Integer Sequences [4] and
we attach a label Axxxxxx to a sequence if it appears in the OEIS with that identifier.

Table 1. Examples of C-finite sequences and their OEIS identifiers.

NAME OEIS ω 0 1 2 3 4 5 6 7 8 9 10

Fibonacci A000045 2 0 1 1 2 3 5 8 13 21 34 55
Lucas A000032 2 2 1 3 4 7 11 18 29 47 76 123
Pell A000129 2 0 1 2 5 12 29 70 169 408 985 2378
Jacobsthal A001045 2 0 1 1 3 5 11 21 43 85 171 341
Pell–Lucas A002203 2 2 2 6 14 34 82 198 478 1154 2786 6726
3n − 2n A001047 2 0 1 5 19 65 211 665 2059 6305 19,171 58,025
n A001477 2 0 1 2 3 4 5 6 7 8 9 10
Tribonacci A000073 3 0 1 1 2 4 7 13 24 44 81 149

In this work, we aim to introduce a novel representation for C-finite sequences, utiliz-
ing the framework of Riordan arrays, introduced in the literature in [5,6] as a generalization
of the Pascal triangle.

A Riordan array D = R(d(t), h(t)) is defined in terms of two generating functions
d(t) and h(t) with d(0) ̸= 0, h(0) = 0, h′(0) ̸= 0 and corresponds to an infinite matrix
(dn,k)n,k∈N, where the generic element can be found by extracting the coefficient of tn from
the generating function d(t)h(t)k. Many properties of Riordan arrays have been studied in
the literature; in particular, they are recognized as a powerful tool for proving combinatorial
identities (see, e.g., [6,7]). Actually, if ( fk)k∈N is any sequence having f (t) as its generating
function, it can be proven that the computation of the combinatorial sum ∑n

k=0 dn,k fk can
be reduced to the extraction of the coefficient from the generating function d(t) f (h(t)),
obtained by transforming f (t) in terms of the functions d(t) and h(t). In this paper, by
using an approach based on Riordan arrays, we are able to present a new representation for
any C-finite sequence, which in the case of Fibonacci numbers gives the following formula:

Fn =
⌊(n−1)/2⌋

∑
k=0

(
n − k − 1
n − 2k − 1

)
.

In Section 2, we provide the necessary theoretical foundation for understanding
generating functions and Riordan arrays. Subsequently, in Section 3, we delve into the
connection between C-finite sequences and Riordan arrays. A noteworthy feature of the
representation discussed in this paper is that it can be generalized to entire classes of C-
finite sequences of the same order, offering a unified approach to their study. A preliminary
version of these results has been presented in [8].

2. Generating Functions and Riordan Arrays

One of the most important representations of C-finite sequences is through generating
functions. Generating functions correspond to one of the most popular approaches to
combinatorial problems and a clear exposition of this concept can be found in [9–11]. In
fact, generating functions belong to the broader framework of the method of coefficients (see,
e.g., [12,13]), which provides a unified approach to handling the algebraic properties of
various types of sequences, particularly in the realm of enumerative combinatorics.

Let us consider a sequence of numbers ( f0, f1, f2, . . .) = ( fk)k∈N; the generating function
for the sequence ( fk)k∈N is defined as the formal power series f (t) = f0 + f1t + f2t2 + · · · ,
where the indeterminate t is arbitrary. Given the sequence ( fk)k∈N, we introduce the
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generating function operator G, which applied to ( fk)k∈N produces the generating function
for the sequence, i.e., G( fk)k∈N = f (t). The operator G is clearly linear:

G(α fk + βgk) = αG( fk) + βG(gk) (3)

and the function f (t) can be shifted:

G( fk+1) =
G( fk)− f0

t
. (4)

For the Fibonacci sequence (Fk)k∈N, we have the following:

G(Fn+2) = G(Fn+1) + G(Fn)

and by setting F(t) = G(Fn) we find the following:

F(t)− F0 − F1t
t2 =

F(t)− F0

t
+ F(t).

Because we know that F0 = 0, F1 = 1, we have the following:

F(t)− t = tF(t) + t2F(t)

and by solving in F(t) we have the explicit generating function:

F(t) =
t

1 − t − t2 .

Moreover, the notation [tn] f (t) indicates the extraction of the coefficient of tn from f (t)
and is known as the coefficient operator, [tn] f (t) = fn. The linearity and shifting properties
also apply to the [tn] operator:

[tn](α f (t) + βg(t)) = α[tn] f (t) + β[tn]g(t), (5)

[tn]tk f (t) = [tn−k] f (t). (6)

An important property of this operator is Newton’s rule:

[tn](1 + αt)r =

(
r
n

)
αn, (7)

which is one of the most frequently used results in coefficient extraction. Let us remark
explicitly that when r = −1 we have the following:

[tn]
1

1 + αt
=

(
−1
n

)
αn =

(
1 + n − 1

n

)
(−1)nαn = (−α)n.

For example, by using the [tn] operator, we can find an explicit expression for Fibonacci
numbers. The denominator of F(t) can be written as 1 − t − t2 = (1 − ϕt)(1 − ϕ̂t) where

ϕ =
1 +

√
5

2
, ϕ̂ =

1 −
√

5
2

.

By using partial fraction expansion we find the following:

F(t) =
t

(1 − ϕt)(1 − ϕ̂t)
=

A
1 − ϕt

+
B

1 − ϕ̂t
=

A − Aϕ̂t + B − Bϕt
1 − t − t2 .
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We determine the two constants A and B by equating the coefficients in the first and last
expression for F(t):{

A + B = 0
−Aϕ̂ − Bϕ = 1

{
A = 1/(ϕ − ϕ̂) = 1/

√
5

B = −A = −1/
√

5
.

The value of Fn is now obtained by extracting the coefficient of tn:

Fn = [tn]F(t) = [tn]
1√
5

(
1

1 − ϕt
− 1

1 − ϕ̂t

)
=

=
1√
5

(
[tn]

1
1 − ϕt

− [tn]
1

1 − ϕ̂t

)
=

ϕn − ϕ̂n
√

5
.

More details and other properties of the operators G and [tn] can be found in [13].
The generating functions of C-finite sequences are particularly simple and can be

derived directly from their recurrence relation, as previously carried out for Fibonacci
numbers.

Theorem 1. A sequence (uk)k∈N is C-finite if and only if its generating function u(t) is a rational
function:

u(t) =
P(t)
Q(t)

=
a0 + a1t + a2t2 + · · ·+ aktk

1 − c1t − c2t2 − · · · − cωtω
,

where k = deg(P(t)) < ω = deg(Q(t)).

Proof. The theorem is well known and is sometimes traced back to A. de Moivre [14], so
we limit ourselves to a simple sketch. If (uk)k∈N is C-finite, relation (1) holds for every
n ∈ N and we can apply the rules of the generating function operator linearity and shifting,
this latter in the general form

G(un+j) =
u(t)− u0 − u1t − · · · − uj−1tj−1

tj

for j = 0, 1, . . . , ω. Multiplying everything by tω and isolating u(t), we obtain Q(t)u(t) =
P(t) where deg(P(t)) is less than deg(Q(t)) by construction. For the converse, let u(t) =
P(t)/Q(t), write this identity as Q(t)u(t) = P(t) and extract the coefficient of tn+ω:

[tn+ω ]Q(t)u(t) = [tn+ω ](1 − c1t − c2t2 − · · · − cωtω)u(t)

= [tn+ω ]u(t)− c1[tn+ω−1]u(t)− c2[tn+ω−2]u(t)− · · · − cω [tn]u(t)

= un+ω − c1un+ω−1 − c2un+ω−2 − · · · − cωun.

On the other hand, we have [tn+ω ]P(t) = 0, since deg(P(t)) < deg Q(t) = ω, and this
completes the proof.

Some important observations are to be emphasized relative to the conditions of this
theorem. First of all, the last recurrence constants cω and at least one among the initial
conditions must be different from 0. In fact, in the former case, cω = 0 would imply an
order less than ω; in the latter case, we would obtain the 0 sequence in correspondence of
every other specification. Finally, let us consider an example of a generating function for
which the condition deg(P(t)) < deg(Q(t)) is not true:

G(t) =
3 + t − 3 t2 − 4 t3 − t4

1 − t − t2 = 3 + 4 t + 4 t2 + 4 t3 + 7 t4 + 11 t5 + 18 t6 + 29 t7 + 47 t8 + · · · .

Since the denominator is the same as that of Fibonacci numbers, the relation Gn+2 =
Gn+1 + Gn should be valid. However, by a simple inspection, we see that the relation



Mathematics 2024, 12, 3671 6 of 12

holds true only from the fifth element on, with initial conditions G0 = 4 and G1 = 7. If we
perform the division, we obtain 1 + 3t + t2 as quotient and 2 − t as remainder; therefore,

G(t) = 1 + 3t + t2 +
2 − t

1 − t − t2 ;

now, everything is clear and we can go on ignoring the first elements, not conforming to
the recurrence relation.

A (proper) Riordan array is defined by a pair of generating functions D = R(d(t), h(t))
with d(0) ̸= 0, h(0) = 0, h′(0) ̸= 0 and the usual way to represent the Riordan array
R(d(t), h(t)) is by means of an infinite matrix (dn,k)n,k∈N, its generic element being as fol-
lows:

dn,k = [tn]d(t)h(t)k. (8)

If h′(0) = 0, the Riordan array is said to be non-proper; moreover, we point out that (8) is
also well defined in the case d(0) = 0. The Pascal triangle is simply the following case:

P = R
(

1
1 − t

,
t

1 − t

)
,

while

C = R
(

1 −
√

1 − 4t
2t

,
1 −

√
1 − 4t

2

)
represents the Catalan triangle. The first six rows of the involved matrices are given below:

P =



1 0 0 0 0 0

1 1 0 0 0 0

1 2 1 0 0 0

1 3 3 1 0 0

1 4 6 4 1 0

1 5 10 10 5 1


, C =



1 0 0 0 0 0

1 1 0 0 0 0

2 2 1 0 0 0

5 5 3 1 0 0

14 14 9 4 1 0

42 42 28 14 5 1


.

Both triangles are very well known and studied in the literature.
Many properties of Riordan arrays, in particular their connection with combinatorial

sums, have been studied in the literature and are collected in the recent book [15]. Actually,
if ( fk)k∈N is any sequence having f (t) = ∑∞

k=0 fktk as its generating function, it is possible
to prove the following:

n

∑
k=0

dn,k fk = [tn]d(t) f (h(t)) (9)

thus reducing the sum to the extraction of a coefficient from a formal power series by using
the operator [tn] (see, e.g., [6,7]). Equation (9) is known as the Fundamental Rule of Riordan
Arrays (FRRA) and reduces to the partial sum theorem

n

∑
k=0

fk = [tn]
f (t)

1 − t
,

when

D = R
(

1
1 − t

, t
)

,

and to the Euler transformation in the case of Pascal triangle:

n

∑
k=0

(
n
k

)
fk = [tn]

1
1 − t

f
(

t
1 − t

)
.
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Let us see an application related to Harmonic Numbers Hn = ∑n
k=1

1
k , starting from the

generating function of the sequence (0, 1, 1
2 , 1

3 , 1
4 , · · · ) :

G
(

1
n

)
= ln

1
1 − t

and the alternate sign version of it:

G
(
(−1)n

n

)
= ln

1
1 + t

.

By using the FRRA, we have

G
(

n

∑
k=1

1
k

)
= G(Hn) =

1
1 − t

ln
1

1 − t

and
n

∑
k=1

(
n
k

)
(−1)k−1

k
= [tn]

1
1 − t

ln
1

1 − t
= Hn.

Equation (9) can be expressed in a different way, by observing that it corresponds
to the product between the matrix (dn,k)n,k∈N and the vector of coefficients ( fk)k∈N. For
example, the first few rows corresponding to the Euler transformation ∑n

k=0 (
n
k) = 2n go

as follows: 

1 0 0 0 0 0

1 1 0 0 0 0

1 2 1 0 0 0

1 3 3 1 0 0

1 4 6 4 1 0

1 5 10 10 5 1





1

1

1

1

1

1


=



1

2

4

8

16

32


.

This reasoning leads to the following formula, which expresses the FRRA in terms of
generating functions:

R(d(t), h(t)) ∗ f (t) = d(t) f (h(t)), (10)

where ∗ denotes the action of Riordan arrays on generating functions.
More generally, the product can be performed between two Riordan arrays R(d(t), h(t))

and R(a(t), b(t)), as follows:

R(d(t), h(t)) ∗ R(a(t), b(t)) = R(d(t)a(h(t)), b(h(t))). (11)

A key characteristic of proper Riordan arrays is their group structure under the specified
product operation. For an in-depth discussion on the theory and practical applications of
Riordan arrays, readers can refer to [15].

3. Identities for C-Finite Sequences

Typically, the FRRA, in both Formulations (9) and (10), is applied from left to right,
as demonstrated in the examples of the previous section. In this section, however, we
introduce a new approach for representing C-finite sequences, which involves applying the
formula from right to left. Specifically, given the generating function of a C-finite sequence
of a particular order, the goal is to derive a combinatorial expression for its coefficients
through repeated applications of the FRRA. To do so, we consider generating functions of
the form t/(1 + c1t + · · ·+ cωtω) with a simple t at the numerator.

Let F be the set of all C-finite sequences and Fω denotes the class of C-finite sequences
of order ω. Every class is, in its turn, subdivided into families, joining all the C-finite
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sequences having their generating functions with the same denominator. For example,
Fibonacci and Lucas numbers belong to the same family, as do Jacobsthal and Jacobsthal–
Lucas numbers. Finally, as the representative of the family P(t)/(1 + c1t + · · ·+ cωtω), we
choose the sequence whose numerator is t; this sequence will be called the canonical sequence
of its family. The following theorem assures that by studying the canonical sequence we
actually study the representation of all the sequences in the family.

Theorem 2. Let

u(t) =
P(t)
Q(t)

=
a0 + a1t + a2t2 + · · ·+ aω−1tω−1

1 + c1t + c2t2 + · · ·+ cωtω

be the generating function of a C-finite sequence of order ω and let f (t) = t/Q(t) be the generating
function of the canonical sequence of the relative family; then, un can be expressed as a linear
combination of at most ω − 1 elements of the canonical sequence.

Proof. We make use of the method of coefficients by applying linearity and the shifting
property [tn]tk f (t) = [tn−k] f (t) whenever k ≤ n. Arranging the powers of t, we obtain

un = [tn]
a0 + a1t + a2t2 + · · ·+ aω−1tω−1

1 + c1t + c2t2 + · · ·+ cωtω

= a0[tn+1]
t

Q(t)
+ a1[tn]

t
Q(t)

+ a2[tn−1]
t

Q(t)
+ · · ·+ aω−1[tn−ω+2]

t
Q(t)

and t/Q(t) is the generating function of the canonical sequence.

We can now concentrate on canonical sequences by introducing some new concepts.
Let us begin with the following generating functions:

G[k](t) =
1

1 + ckt
= 1 − ckt + c2

kt2 − c3
kt3 + c4

kt4 − c5
kt5 + · · · ,

Z[k](t) =
t

1 + c1t + c2t2 + · · ·+ cktk ,

and then go on with two families of (non-proper) Riordan arrays:

S[k] = R
(

t
1 + c1t + c2t2 + · · ·+ cktk ,

tk+1

1 + c1t + c2t2 + · · ·+ cktk

)
,

N[k] = R
(

1
1 + ckt

,
t

1 + ckt

)
.

Moreover, we need the following transformation α:

α(R(d(t), h(t)) = R(d(t), th(t)),

whose effect consists in pushing down by k positions the k-th column of the Riordan array.
In fact, we have the following lemma:

Lemma 1. Let dn,k be any element of the Riordan array D = R(d(t), h(t)); then, for any element
d̂n,k of α(D) = R(d(t), th(t)), we have d̂n,k = dn−k,k.

Proof. Clearly, we obtain the following:

d̂n,k = [tn]d(t)(th(t))k = [tn−k]d(t)h(t)k = dn−k,k.
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The theory of Riordan arrays, with formula (10), allows us to prove the following
identity.

Theorem 3. For every positive k, we have S[k] ∗ G[k+1](t) = Z[k+1](t).

Proof. The proof consists in a straightforward computation:

S[k] ∗ G[k+1](t) = R
(

t
1 + c1t + c2t2 + · · ·+ cktk ,

tk+1

1 + c1t + c2t2 + · · ·+ cktk

)
∗ 1

1 + ck+1t

=
t

1 + c1t + c2t2 + · · ·+ cktk · 1
1 + ck+1tk+1/(1 + c1t + c2t2 + · · ·+ cktk)

=
t

1 + c1t + c2t2 + · · ·+ cktk · 1 + c1t + c2t2 + · · ·+ cktk

1 + c1t + c2t2 + · · ·+ ck+1tk+1

=
t

1 + c1t + c2t2 + · · ·+ ck+1tk+1

and this is simply Z[k+1](t). We explicitly observe that the computation implies the recur-
sive relation Z[k+1](t) = Z[k](t)/(1 + ck+1tkZ[k](t)).

This result has an immediate application. In fact, for k = 1, we have

S[1] ∗ G[2](t) = R
(

t
1 + c1t

,
t2

1 + c1t

)
∗ 1

1 + c2t
= Z[2](t) =

t
1 + c1t + c2t2 ,

the generating function of the generic canonical C-finite sequence of order 2. Therefore, we
have found a universal formula which can be extended to all C-finite sequences of order 2
by means of Theorem 2. The problem is now to find an explicit formula for the elements of
the Riordan array S[1]. Happily, the theory supplies a simple method to find S[1]

n,k:

S[1]
n,k = [tn]

t
1 + c1t

(
t2

1 + c1t

)k

= [tn−2k−1]

(
1

1 + c1t

)k+1

=

(
−k − 1

n − 2k − 1

)
cn−2k−1

1 =

(
n − k − 1

n − 2k − 1

)
(−c1)

n−2k−1.

Finally, we compute the following:

un =
n

∑
k=0

S[1]
n,k(−c2)

k =
n

∑
k=0

(
n − k − 1

n − 2k − 1

)
(−c1)

n−2k−1(−c2)
k,

and conclude the following:

Theorem 4. For the canonical sequence of class F2, un = ℜ([−c1,−c2, ], [0, 1]), we have the
following general formula:

un =
⌊(n−1)/2⌋

∑
k=0

(
n − k − 1

n − 2k − 1

)
(−c1)

n−2k−1(−c2)
k.

Proof. At this point, the only thing that remains to be proven concerns the limits of the
sum. The binomial coefficient is different from 0 when n − 2k − 1 ≥ 0 and n − k − 1 − (n −
2k − 1) ≥ 0. This happens if and only if 0 ≤ k ≤ ⌊(n − 1)/2⌋.
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Corollary 1. The following identities hold true. For Fibonacci numbers A000045, defined by
(Fn) = ℜ([1, 1], [0, 1]),

Fn =
⌊(n−1)/2⌋

∑
k=0

(
n − k − 1
n − 2k − 1

)
.

For Pell numbers A000129, defined by (Pn) = ℜ([2, 1], [0, 1]),

Pn =
⌊(n−1)/2⌋

∑
k=0

(
n − k − 1

n − 2k − 1

)
2n−2k−1.

For Jacobsthal numbers A001045, defined by (Jn) = ℜ([1, 2], [0, 1]),

Jn =
⌊(n−1)/2⌋

∑
k=0

(
n − k − 1
n − 2k − 1

)
2k.

For (3n − 2n) numbers A001047, defined by (Dn) = ℜ([5,−6], [0, 1]),

Dn =
⌊(n−1)/2⌋

∑
k=0

(
n − k − 1
n − 2k − 1

)
(−6)k5n−2k−1.

For n numbers A001477, defined by (Nn) = ℜ([2,−1], [0, 1]),

Nn = n =
⌊(n−1)/2⌋

∑
k=0

(
n − k − 1

n − 2k − 1

)
(−1)k2n−2k−1.

In order to find a general formula for class Fω, we proceed in an analogous way.

Lemma 2. With the notations above, we have

α(S[k] ∗ N[k+1]) = S[k+1].

Proof. By applying the rule for the product of two Riordan arrays, we obtain

S[k] ∗ N[k+1] = R
(

t
1 + c1t + c2t2 + · · ·+ cktk ,

tk+1

1 + c1t + c2t2 + · · ·+ cktk

)
∗

∗ R
(

1
1 + ck+1t

,
t

1 + ck+1t

)
= R

(
t

1 + c1t + c2t2 + · · ·+ ck+1tk+1 ,
tk+1

1 + c1t + c2t2 + · · ·+ ck+1tk+1

)
.

Finally, α pushes down by k positions the elements of column k, for every k ∈ N.

From Lemma 2 and Theorem 3, we find the following:

Theorem 5. For every positive k, we have α(S[k] ∗ N[k+1]) ∗ G[k+2](t) = Z[k+2](t).

Varying k in Theorem 5, we have the following:

Z[3](t) = α(S[1] ∗ N[2](t)) ∗ G[3](t),

Z[4](t) = α(α(S[1] ∗ N[2]) ∗ N[3]) ∗ G[4](t),

Z[5](t) = α(α(α(S[1] ∗ N[2]) ∗ N[3]) ∗ N[4]) ∗ G[5](t)
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and so on, thus obtaining decompositions in terms of products of Riordan arrays and
generating functions, which easily translate into combinatorial identities.

In particular, let us consider the case ω = 3, that is, recurrence relations of the third
order. For the canonical sequences we have the following:

Theorem 6. For the canonical sequence of class F3, un = ℜ([−c1,−c2,−c3], [0, 1,−c1]), we
have the following general formula:

un =
n

∑
k=0

⌊(n−k−1)/2⌋

∑
j=0

(
n − k − j − 1
n − k − 2j − 1

)(
j
k

)
(−c1)

n−k−2j−1(−c2)
j−k(−c3)

k.

Proof. We begin by computing the product S[1] ∗ N[2], the generic element of which is

⌊(n−1)/2⌋

∑
j=0

(
n − j − 1
n − 2j − 1

)(
j
k

)
(−c1)

n−2j−1(−c2)
j−k.

The next step consists in applying the transformation α, but, as we have seen, it reduces to
the change in variable n 7→ n − k. The last step is to perform the product by G[3](t), which
is carried out by applying the fundamental rule of Riordan arrays.

As a simple but meaningful example, we consider Tribonacci numbers A000073

(Tn) = ℜ([1, 1, 1], [0, 1, 1]),

corresponding to the following canonical generating function:

T(t) =
t

1 − t − t2 − t3 .

The previous theorem gives the following identity:

Tn =
n

∑
k=0

⌊(n−k−1)/2⌋

∑
j=0

(
n − k − j − 1
n − k − 2j − 1

)(
j
k

)
.

4. Conclusions

In conclusion, we have explored various well-known combinatorial sequences, such
as the Fibonacci, Lucas, Pell, Jacobsthal and Tribonacci sequences, all of which are defined
by homogeneous linear recurrence relations with constant coefficients and belong to the
class of C-finite sequences. Throughout the literature, several representations for these
sequences have been adopted, each influenced by the author’s approach or the specific
context of the application.

In this work, we focused on introducing a new representation based on the theory of
Riordan arrays. Unlike traditional methods, such as generating functions, explicit formulas,
or matrix exponentiation, our approach provides a unified formula that encapsulates both
the constants and initial conditions of the involved recurrence relation. This offers a new
perspective on how C-finite sequences can be studied.
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