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NON-SOLVABLE GROUPS WHOSE CHARACTER DEGREE GRAPH HAS A

CUT-VERTEX. II

SILVIO DOLFI, EMANUELE PACIFICI, AND LUCIA SANUS

Abstract. Let G be a finite group, and let cd(G) denote the set of degrees of the irreducible complex
characters of G. Define then the character degree graph ∆(G) as the (simple undirected) graph whose

vertices are the prime divisors of the numbers in cd(G), and two distinct vertices p, q are adjacent if

and only if pq divides some number in cd(G). This paper continues the work, started in [8], toward the
classification of the finite non-solvable groups whose degree graph possesses a cut-vertex, i.e. a vertex

whose removal increases the number of connected components of the graph. While, in [8], groups

with no composition factors isomorphic to PSL2(ta) (for any prime power ta ≥ 4) were treated, here
we consider the complementary situation in the case when t is odd and ta > 5. The proof of this

classification will be then completed in the third and last paper of this series ([7]), that deals with the

case t = 2.

1. Introduction

Let G be a finite group, and let cd(G) denote the degree set of G, i.e. the set of degrees of the
irreducible complex characters of G. In the paper “Research in Representation Theory at Mainz (1984–
1990)” ([12]), Bertram Huppert writes: “Several special results, known since some time, made it clear
that the structure of a finite group G is controlled to a large extent by the type of the prime-number-
decomposition of the degrees of the irreducible characters of G over C”. That work highly contributed to
boost the interest of many authors, and the study of the arithmetical properties of the degree set, both
on their own account and in connection with the structure of the group, is nowadays a well-established
and classical research topic in the representation theory of finite groups.

Part of the discussion in [12] concerns the character degree graph ∆(G) of a finite groupG (degree graph
for short), a tool that has been devised in order to investigate the arithmetical structure of the degree
set cd(G). This is the simple undirected graph whose vertex set V(G) consists of the primes dividing the
numbers in cd(G), and such that two distinct vertices p and q are adjacent if and only if pq divides some
number in cd(G). As discussed, for instance, in the survey [18], many results in the literature illustrate
the deep link between graph-theoretical properties of ∆(G) (in particular, connectivity properties) and
the group structure of G.

The series of three papers including the present one (together with [8, 7]) is a contribution in this
framework. Namely, our purpose is to characterize the finite non-solvable groups whose degree graph
has a cut-vertex, i.e. a vertex whose removal increases the number of connected components of the
graph. We mention that an analysis of the solvable case is carried out in [19].

The main results of the whole series are Theorem A, Theorem B and Theorem C of [8]: they are stated
in full details and commented in [8, Section 2], where also the relevant graphs are described with some
figures (we refer the reader to [8, Section 2], as well as to the Introduction of [8] for a more exhaustive
presentation of the problem). In particular Theorem C of [8], which provides a characterization of the
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2 DEGREE GRAPHS WITH A CUT-VERTEX. II

finite non-solvable groups whose degree graph has a cut-vertex and it is disconnected, is entirely proved
in that paper and will not be discussed further. As regards Theorem A and Theorem B of [8], they deal
with finite non-solvable groups whose degree graph has connectivity degree 1 (i.e. it has a cut-vertex
and it is connected), and they are only partially proved in [8]. As we said, we do not reproduce the
full statements of these theorems here but, for the convenience of the reader, we summarize next some
properties of the relevant class of groups.

If G is a finite non-solvable group whose degree graph has connectivity degree 1, then G has a unique
non-solvable composition factor S, belonging to a short list of isomorphism types: PSL2(t

a), Sz(2a),
PSL3(4), M11, J1; moreover, if S ̸∼= PSL2(t

a), then G has a (minimal) normal subgroup isomorphic to
S. Finally, denoting by R the solvable radical of G, the vertex set of ∆(G) consists of the primes in
π(G/R) (the set of prime divisors of the order of the almost-simple group G/R) and, if not already
there, the cut-vertex of ∆(G). We also remark that in all cases, except possibly when the non-abelian
simple section S is isomorphic to the Janko group J1, the cut-vertex p of ∆(G) is a complete vertex (i.e.
it is adjacent to all other vertices) of ∆(G); moreover, the graph obtained from ∆(G) by removing the
vertex p (and all the edges incident to p) has exactly two connected components, which are complete
graphs, and one of them consists of a single vertex.

While in [8] we classify the finite non-solvable groups G such that ∆(G) has connectivity degree 1
and whose unique non-solvable composition factor S is not isomorphic to PSL2(t

a) for any prime power
ta ≥ 4 (which covers cases (a)–(d) of [8, Theorem A]), here we consider the situation when S ∼= PSL2(t

a)
for an odd prime t with ta > 5, thus covering case (e) of [8, Theorem A]. Note that in conclusion (b) of
the following theorem, by the “natural module” for K/L ∼= SL2(t

a) we mean the standard 2-dimensional
module for K/L over the field with ta elements, or any of its Galois conjugates, seen as a 2a-dimensional
K/L-module over the field with t elements.

Main Theorem. Let G be a finite group and let R be its solvable radical. Assume that G has a
composition factor S ∼= PSL2(t

a), for a suitable odd prime t with ta > 5, and let p be a prime number.
Then, denoting by K the last term in the derived series of G, the graph ∆(G) is connected and has cut-
vertex p if and only if: G/R is an almost-simple group with socle isomorphic to S, V(G) = π(G/R)∪{p},
the order of G/KR is not a multiple of t, the prime p is not t, and one of the following holds.

(a) K is isomorphic to PSL2(t
a) or to SL2(t

a), and V(G/K) = {p}.
(b) K contains a minimal normal subgroup L of G such that K/L is isomorphic to SL2(t

a) and L
is the natural module for K/L; moreover, V(G/K) = {p}.

(c) ta = 13 and p = 2. K contains a minimal normal subgroup L of G such that K/L is isomorphic
to SL2(13), and L is one of the two 6-dimensional irreducible modules for SL2(13) over the field
with three elements. Moreover, V(G/K) ⊆ {2}.

In all cases, p is a complete vertex and the unique cut-vertex of ∆(G), and it is the unique neighbour of
t in ∆(G) with the only exception of case (c).

As already mentioned, the even-characteristic case is treated in [7], and it covers the remaining
case (f) of [8, Theorem A] together with [8, Theorem B]. As regards the “only if” part of the above
theorem, the main difference from the situation treated in [8] is that here the subgroup K need not be
minimal normal in G. In fact, K can be isomorphic to SL2(t

a), or even, it is possible to have a non-
trivial normal subgroup L of G such that K/L ∼= SL2(t

a). Much of the work carried out in this paper
consists in showing that such a subgroup L is minimal normal in G, and in controlling the (conjugation)
action of K/L on L. To this end, two results concerning orbit properties in certain actions of SL2(t

a)
(Theorem 3.3, that should be compared with Lemma 3.10 of [8], and Theorem 3.4) turn out to be crucial
in our analysis; these might be of interest on their own.

To conclude, we point out that the structure of the groups appearing in the Main Theorem (as
well as of the corresponding graphs), quite surprisingly, does not fall too far from the structure of the
finite non-solvable groups whose degree graph has two connected components (see Theorem 2.8). We
will comment on this fact in Remark 5.1. At any rate, the graphs related to the groups of the Main
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Theorem are displayed in Table 1. In the following discussion, every group is tacitly assumed to be a
finite group.

3 2

13

7

TABLE 1

(clique) (clique)

π0

p

t

π1 π2

π1 ∪ π0 = π(ta − 1) ∪ π(G/KR) ∪ {p}
π2 ∪ π0 = π(ta + 1) ∪ π(G/KR) ∪ {p}

Case (a) of Main Theorem

(clique)

2
p

Case (b) of Main Theorem

Case (c) of Main Theorem

2. Preliminaries

Given a group G, we denote by ∆(G) the degree graph of G as defined in the Introduction. Our
notation concerning character theory is standard, and we will freely use basic facts and concepts such
as Ito-Michler’s theorem, Clifford’s theory, Gallagher’s theorem, character triples and results about
extension of characters (see [15]).

As customary (and already used), given a positive integer n, the set of prime divisors of n will be
denoted by π(n), but we simply write π(G) for π(|G|). Moreover, for a prime power q, we use the symbol
Fq to denote the field having q elements.

We start by recalling some structural properties of the 2-dimensional special linear or projective
special linear groups. Although this paper treats groups of this kind in odd characteristic, most of the
results in this section and in the following one will be stated and proved with no restrictions about the
characteristic.

Remark 2.1. Recall that, for an odd prime t, the group PSL2(t
a) has order

ta(ta − 1)(ta + 1)

2
. More-

over, as stated in [13, II.8.27], the proper subgroups of this group are of the following types.

(i+) Dihedral groups of order ta + 1 and their subgroups.
(i−) Dihedral groups of order ta − 1 and their subgroups.
(ii) Frobenius groups with elementary abelian kernel of order ta and cyclic complements of order

(ta − 1)/2, and their subgroups;
(iii) A4, S4 or A5;
(iv) PSL2(t

b) or PGL2(t
b), where b divides a.

In our discussion, we will freely refer to the above labels when dealing with a subgroup of PSL2(t
a).

By a subgroup of type (i) we will mean a subgroup that is either of type (i−) or of type (i+).



4 DEGREE GRAPHS WITH A CUT-VERTEX. II

Lemma 2.2. Let G ∼= SL2(t
a) or G ∼= PSL2(t

a), where t is a prime and ta ≥ 4. Let r be an odd prime
divisor of ta − 1, and let R be a subgroup of G with |R| = rb for a suitable b ∈ N− {0}. Then R lies in
the normalizer in G of precisely two Sylow t-subgroups of G.

Proof. We start by observing that the number of Sylow t-subgroups of G is ta +1 and, for T ∈ Sylt(G),
the number of subgroups of order rb lying in NG(T ) is t

a. Moreover, the total number of subgroups of
G having order rb is ta(ta + 1)/2.

Now, consider the set

X = {(R0, T ) | T ∈ Sylt(G), |R0| = rb, R0 ⊆ NG(T )}.
On one hand we get

|X| =
∑

T∈Sylt(G)

ta = ta(ta + 1);

on the other hand, if n denotes the number of Sylow t-subgroups of G that are normalized by a given
subgroup of order rb, we also have

|X| =
∑

|R0|=rb

n = ta(ta + 1)/2 · n.

The desired conclusion is then readily achieved.

The following results are more specific of the context we will analyze.

Lemma 2.3 ([26, Theorem 5.2]). Let S ∼= PSL2(t
a) or S ∼= SL2(t

a), with t prime and a ≥ 1. Let
ρ+ = π(ta + 1) and ρ− = π(ta − 1). For a subset ρ of vertices of ∆(S), we denote by ∆ρ the subgraph
of ∆ = ∆(S) induced by the subset ρ. Then

(a) if t = 2 and a ≥ 2, then ∆(S) has three connected components, {t}, ∆ρ+ and ∆ρ− , and each of
them is a complete graph.

(b) if t > 2 and ta > 5, then ∆(S) has two connected components, {t} and ∆ρ+∪ρ− ; moreover, both
∆ρ+

and ∆ρ− are complete graphs, no vertex in ρ+ − {2} is adjacent to any vertex in ρ− − {2}
and 2 is a complete vertex of ∆ρ+∪ρ− .

Theorem 2.4 ([8, Theorem 3.9]). Let G be an almost-simple group with socle S, and let δ = π(G) −
π(S). If δ ̸= ∅, then S is a simple group of Lie type, and every vertex in δ is adjacent to every other
vertex of ∆(G) that is not the characteristic of S.

Given a group G, we will denote by R = R(G) the solvable radical (i.e. the largest solvable normal
subgroup), and by K = K(G) the solvable residual (i.e. the smallest normal subgroup with a solvable
factor group) of G. Equivalently, K(G) is the last term of the derived series of G.

Lemma 2.5. Let G be a group and let R be its solvable radical. Assume that G/R is an almost-simple
group with socle isomorphic to PSL2(t

a), for a prime t with ta > 4 and ta ̸= 9. Then, denoting by K
the solvable residual of G, one of the following conclusions holds.

(a) K is isomorphic to PSL2(t
a) or to SL2(t

a);
(b) K has a non-trivial normal subgroup L such that K/L is isomorphic to PSL2(t

a) or to SL2(t
a),

and every non-principal irreducible character of L/L′ is not invariant in K.

Proof. Note that K is clearly non-trivial because G is non-solvable, so there exists a normal subgroup
N of G such that K/N is a chief factor of G. As K is perfect, it is easy to see that KR/NR ∼= K/N is
a non-solvable chief factor of G/R; now, denoting by M/R the socle of the almost-simple group G/R,
we get NR = R (i.e. N = K ∩R) and KR =M . Thus, by our hypothesis, K/N ∼=M/R is isomorphic
to PSL2(t

a) and we get conclusion (a) if N is trivial.
Therefore we can assume N ̸= 1, and we can also assume that there exists a non-principal irreducibe

character µ of N/N ′ such that µ is invariant in K (otherwise we get (b) setting L = N).
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So, let us define L to be ker(µ). We have that L is a normal subgroup of K and N/L is contained
in Z(K/L); thus, since K is perfect, we see that N/L embeds in the Schur multiplier of K/N (see [15,
Theorem 11.19]). Under our assumptions, this Schur multiplier is trivial if t = 2 and it has order 2
if t ̸= 2, so, in the present situation, we have t ̸= 2, |N/L| = 2 and K/L ∼= SL2(t

a). Again we reach
conclusion (a) if L is trivial. But if L ̸= 1, taking into accout that the Schur multiplier of K/L is trivial
and arguing as above, then we see that L/L′ does not have any non-principal irreducible character that
is invariant in K. We reached conclusion (b) in this case, and the proof is complete.

Recall that, for a and n integers larger than 1, a prime divisor q of an − 1 is called a primitive prime
divisor if q does not divide ab − 1 for all 1 ≤ b < n. In this case, n is the order of a modulo q, so n
divides q − 1. It is known ([22, Theorem 6.2]) that an − 1 always has primitive prime divisors except
when n = 2 and a = 2c − 1 for some integer c, or when n = 6 and a = 2.

Lemma 2.6. Let G be a group and let R be its solvable radical. Assume that G/R is an almost-simple
group with socle isomorphic to PSL2(t

a), for a prime t with ta ≥ 4. Denoting by K the solvable residual
of G, assume that L is a minimal normal subgroup of G, contained in K, such that K/L ∼= SL2(t

a) acts
non-trivially on L. Setting |L| = qd, where q is a suitable prime, let U be a Sylow u-subgroup of R for
an odd prime u that does not divide qd − 1. If there exists a primitive prime divisor p of qd − 1 such
that |K/L| is a multiple of p, then U ⊆ CG(L).

Proof. Set C = CG(L). Since L is an elementary abelian q-group of order qd, the factor group G/C
embeds in GLd(q). Denoting by S/C a subgroup of KC/C such that |S/C| = p, by [11, Theorem 2.11]
we see that S/C is contained in a Singer subgroup of GLd(q): this is a cyclic group of order qd − 1,
which is a maximal cyclic subgroup of GLd(q), and which acts fixed-point freely on L. Now S/C acts
irreducibly on L, thus, by Schur’s Lemma and by the fact that the ring of endomorphisms of L that
commute with the action of S/C is a finite field, CGLd(q)(S/C) is a cyclic group and it is then forced

to have order qd − 1. On the other hand, setting N/L = Z(K/L) and observing that N = K ∩ R
(so, [K/N,R/N ] = 1), by coprimality we have K/N ∼= (K/L)/(N/L) = CK/L(U)/(N/L), whence
K/L = CK/L(U). In particular, as L ⊆ C, the factor group UC/C centralizes KC/C, which forces
U ⊆ C by the discussion above. The proof is complete.

The above result can be applied when L is isomorphic to the natural module for K/L ∼= SL2(t
a) as

far as t2a − 1 has a primitive prime divisor. Nevertheless, we remark that the conclusion of Lemma 2.6
is true in this situation even if t2a − 1 does not have any primitive prime divisor, i.e. if a = 1 and t is a
Mersenne prime, or if t2a = 26: in the former case, in fact, the u-part of |KC/C| already exhausts the
full u-part of |GL2(t)| because u does not divide |GL2(t) : SL2(t)| = t− 1, therefore a Sylow u-subgroup
of R is forced to be contained in CG(L). In the latter case, we observe that GL6(2) has a unique
conjugacy class of elements of order 23 +1; therefore, defining S/C to be a subgroup of order 9 of G/C,
the action of S/C on L is again fixed-point free and obviously irreducible, so the previous argument
goes through.

For later use, we stress that Lemma 2.6 also applies when K/L ∼= SL2(13) and L is isomorphic to an
irreducible K/L-module of dimension 6 over F3, because 7 is a primitive prime divisor of 36−1 dividing
|SL2(13)|.

Theorem 2.7. [8, Theorem 3.15] Let G be a non-solvable group such that ∆(G) is connected and it has
a cut-vertex p. Then, denoting by R the solvable radical of G, we have that G/R is an almost-simple
group and V(G) = π(G/R) ∪ {p}.

As an important reference for our discussion, we recall here the characterization of the finite non-
solvable groups whose degree graph has two connected components, provided by M.L. Lewis and D.L.
White in [20]. We will discuss the relationship between this and our main result in the last section of
the present paper.
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Theorem 2.8. [20, Theorem 6.3] Let G be a non-solvable group. Then ∆(G) has two connected com-
ponents if and only if there exist normal subgroups N ⊆ K of G such that, setting C/N = CG/N (K/N),
the following conditions hold.

(a) K/N ≃ PSL2(t
a), where t is a prime with ta ≥ 4.

(b) G/K is abelian.
(c) If ta ̸= 4, then t does not divide |G/CK|.
(d) If N ̸= 1, then either K ∼= SL2(t

a) or there exists a minimal normal subgroup L of G such that
K/L ∼= SL2(t

a) and L is isomorphic to the natural module for K/L.
(e) If t = 2 or ta = 5, then either CK ̸= G or N ̸= 1.
(f) If t = 2 and K is an in (d) in the case K ̸∼= SL2(t

a), then every non-principal character in
Irr(L) extends to its inertia subgroup in G.

We recall that if G satisfies the hypotheses of Theorem 2.8, then the solvable radical R of G coincides
with C and V(G) = π(G/R) (see [8, Remark 3.8]).

For later use, we also note that if a group K has a normal subgroup L such that K/L ∼= SL2(t
a) for

an odd prime t (with ta ≥ 5) and L is isomorphic to the natural K/L-module, then by the previous
theorem ∆(K) has two connected components. In particular, it is easy to check that ∆(K) in this case
has {t} as one connected component, whereas all the other vertices are pairwise adjacent.

3. Some orbit theorems

In this third preliminary section, we focus on some module actions of 2-dimensional special linear
groups that will be crucial for our discussion. The main results of the section are Theorem 3.3, which
deals with irreducible modules for SL2(t

a) in cross characteristic, and Theorem 3.4 concerning actions
on t-groups. We will also prove another result on orbit sizes in this kind of linear actions (Lemma 3.5),
that will turn out to be useful.

To begin with, we recall some special types of actions of groups on modules. Let H and V be groups,
and assume that H acts by automorphisms on V . Given a prime number q, we say that the pair (H,V )
satisfies the condition Nq if q divides |H : CH(V )| and, for every non-trivial v ∈ V , there exists a Sylow
q-subgroup Q of H such that Q ⊴ CH(v) (see [4]). If (H,V ) satisfies Nq then V turns out to be an
elementary abelian r-group for a suitable prime r, and V is in fact an irreducible module for H over the
field Fr (see Lemma 4 of [29]).

For H ∼= SL2(t
a), we have the following result.

Lemma 3.1. [8, Lemma 3.10] Let t, q, r be prime numbers, let H = SL2(t
a) (with ta ≥ 4) and let V

be an H-module over the field Fr. Then (H,V ) satisfies Nq if and only if either ta = 5 and V is the
natural module for H/CH(V ) ∼= SL2(4) or V is faithful and one of the following holds.

(a) t = q = r and V is the natural Fr[H]-module (so |V | = t2a);
(b) q = r = 3 and (ta, |V |) ∈ {(5, 34), (13, 36)}.

Theorem 3.3 is introduced by the following Lemma 3.2. Note that the numbers indicated in Table 1
of this lemma are the possible dimensions of the relevant modules (only some of them actually show up).

Lemma 3.2. Let V be an irreducible module for G = SL2(t
a) over the field Fq, where t

a ≥ 4 and q is a
prime in π(G)−{t}. Also, let F be a finite-degree field extension of Fq such that F is a splitting field for
G and all its subgroups, and let ℓ denote the composition length of the F[G]-module V ⊗ F. Then, for
T ∈ Sylt(G), the maximal dimensions of CV (T ) over Fq (depending on dimFq

V ) are listed in Table 1.

Proof. We start by claiming that, for any field extensionK of Fq, we have dimK CV⊗K(T ) = dimFq CV (T ).
In fact, denote by U an Fq[T ]-submodule of V that is a direct complement for CV (T ) in V (such a sub-
module U exists by Maschke’s theorem); then, the K[T ]-module V ⊗K decomposes as (CT (V )⊗K)⊕
(U ⊗K), and our claim easily follows from the fact that the 1-dimensional trivial K[T ]-module is not an
irreducible constituent of U ⊗K (this is ensured, for instance, by Lemma 1.12 in [14, VII]).
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Table 1. Maximal dimension of the centralizers of T in V .

dimFq
V ℓ · ta ℓ · (ta + 1) ℓ · (ta − 1) ℓ ·

(
ta + 1

2

)
ℓ ·

(
ta − 1

2

)
(for t ̸= 2) (for t ̸= 2)

dimFq
CV (T ) ℓ 2ℓ 0 ℓ 0

Now, [14, VII, Theorem 2.6b)] yields the existence of a field F as in our hypothesis. Since V ⊗F is the
direct sum of Galois conjugates of a suitable irreducible F[G]-moduleW , we get dimF(V ⊗F) = ℓ·dimFW
and dimF CV⊗F(T ) = ℓ · dimF CW (T ); therefore we will assume (absolute) irreducibility for the F[G]-
module V ⊗ F and the general bounds concerning the dimension of CV (T ) over Fq will follow at once.

Given that, if we extend the field further to the algebraic closure F of F, then the module V ⊗ F clearly
remains irreducible.

Let T be an F-representation associated with V ⊗F; by Maschke’s theorem and by the fact that F is a
splitting field for T , the restriction TT (up to equivalence) maps each element of T to a diagonal matrix,
and dimF CV⊗F(T ) is the multiplicity of the 1-dimensional trivial representation as a constituent of TT .
Following the notation established in the paragraph preceding [15, Lemma 15.1], let R be the full ring of
algebraic integers in the complex field, and let U be the subgroup of elements of order not divisible by
q in the multiplicative group of C (clearly, U ⊆ R); we can indentify F with the factor ring R/M , where
M is a maximal ideal of R containing qR, and we consider the natural homomorphism ∗ : R → F. By
[15, Lemma 15.1], the restriction ∗U maps U isomorphically onto the multiplicative group of F. Now,
consider the composite map D given by TT followed by the map which applies the inverse of ∗U to each
entry of the relevant matrix: it is easy to see that D is a complex representation of T whose character
δ is the restriction to T of the Brauer character θ afforded by T, and what we want to determine is in
fact the multiplicity [1T , δ] of the trivial character of T as a constituent of δ.

In view of the discussion of [2, Sections 9.2–9.4], it turns out that θ has a lift χ ∈ Irr(G) (i.e. the
restriction χ̂ of χ to the set of q-regular elements of G coincides with θ). Now, as we have δ = χT , we
can refer to the ordinary character table of G (see for example [2, Page 58]) and compute [1T , χT ]. The
result of this computation can be found (setting ℓ = 1, as we are assuming irreducibility for V ⊗ F) in
the second row of Table 1, where the maximal values for dimFq

CV (x) are displayed according to the
possible dimensions of V over Fq.

We are ready to prove the first main result of this section.

Theorem 3.3. Let V be a non-trivial irreducible module for G = SL2(t
a) over the field Fq, where t

a ≥ 4
and q ̸= t is a prime number. For odd primes r ∈ π(ta − 1) and s ∈ π(ta + 1) (possibly r = q or s = q)
let R, S be respectively a Sylow r-subgroup and a Sylow s-subgroup of G, and let T be a Sylow t-subgroup
of G. Then, considering the sets

VI− = {v ∈ V | there exists z ∈ G such that Rz ⊴ CG(v)},
VI+ = {v ∈ V | there exists z ∈ G such that Sz ⊴ CG(v)},
VII = {v ∈ V | there exists z ∈ G such that T z ⊴ CG(v)},

we have that V − {0} strictly contains VI− ∪ VII , VI+ ∪ VII , and VI− ∪ VI+ , unless one of the following
holds.

(a) G ∼= SL2(5), s = 3, |V | = 34 and V − {0} = VI+ ,
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(b) G ∼= SL2(13), r = 3, |V | = 36 and V − {0} = VI− .

Proof. Observe first that, if V − {0} is covered by just one of the sets VI− , VI+ or VII , then we get
conclusions (a) or (b) by Lemma 3.1; therefore we will show that V − {0} cannot be covered as in the
statement assuming that none of the relevant sets is empty.

Given that, we start by ruling out the case when q is coprime to |G|; in fact, in this situation,
Theorem 2.3 of [16] ensures that there exists v ∈ V whose centralizer in G is trivial or of order 2, thus
v ̸= 0 does not lie in any of the sets VI+ , VI− and VII .

We will then assume q ∈ π(G)− {t}, and we will show first that V − {0} cannot be covered by VI−
and VII . So, for a proof by contradiction, let us assume V − {0} = VI− ∪ VII (both the sets on the
right-hand side being non-empty, as we said).

If, for g ∈ G, the element v ∈ V −{0} is centralized by both R and Rg with Rg ̸= R, then there exists
a Sylow t-subgroup of G that is normalized by both R and Rg. Since, by Lemma 2.2, R is contained in
the normalizer of precisely two Sylow t-subgroups of G, and since these normalizers contain ta conjugates
of R each, there are at most 2(ta−1) choices for Rg. On the other hand, the total number of conjugates

of R in G is
ta · (ta + 1)

2
, so there certainly exists an element h ∈ G such that no element of V − {0} is

centralized by both R and Rh. As a consequence, we get dimFq
V ≥ 2 · dimFq

CV (R).
Now, the possible dimensions of V over Fq are listed in Table 1. Note that, VII being non-empty, the

dimension over Fq of CV (T ) cannot be 0, so the relevant dimensions in the present situation are ℓ · ta,

ℓ · (ta + 1) and ℓ ·
(
ta + 1

2

)
.

Let us consider the case when dimFq V = ℓ · ta. Taking into account Table 1 together with the
conclusions of the second-last paragraph above (and the fact that the number of Sylow t-subgroups of
G is ta+1), in order to get a contradiction it will be enough to show that the following inequality holds:

qℓ·t
a

− 1 >
ta · (ta + 1)

2
· (qℓ·t

a/2 − 1) + (ta + 1) · (qℓ − 1).

Since (ta + 1) · (qℓ − 1) is clearly smaller than
ta · (ta + 1)

2
· (qℓ·ta/2 − 1), it is enough to analyze the

inequality

qℓ·t
a

− 1 > ta · (ta + 1) · (qℓ·t
a/2 − 1),

which is in turn satisfied if

qℓ·t
a

> ta · (ta + 1) · qℓ·t
a/2

holds. The last inequality is obviously satisfied for every value of ℓ provided it is satisfied for ℓ = 1,
and this happens whenever ta ≥ 17; for smaller values of ta we go back to the original inequality, and
we see that it is not satisfied only by the following triples (q, ta, ℓ): (2, 5, 1), (2, 7, 1), (2, 9, 1), (2, 11, 1),
(3, 4, 1). In any case, since the value of ℓ is always 1, the Fq[G]-module V is absolutely irreducible, and
we are in a position to apply Corollary 1.2 of [17]: there exists a regular orbit for the action of G on V ,
a contradiction for us, except for the triple (3, 4, 1). As regards (3, 4, 1) (which is, by the way, the unique
triple among those under consideration that corresponds to an existing module) a direct computation
via GAP [9] shows that SL2(4) generates an orbit of size 30 in the action on its absoultely irreducible
module of order 34. This contradiction completes the proof for the case dimFq

V = ℓ · ta.

We treat next the case dimFq V = ℓ · (ta + 1), so, we analyze the inequality

qℓ·(t
a+1) − 1 >

ta · (ta + 1)

2
· (qℓ·

ta+1
2 − 1) + (ta + 1) · (q2ℓ − 1).

As above, the second summand of the right-hand side is smaller than the first summand, so it is enough
to have

qℓ·(t
a+1) − 1 > ta · (ta + 1) · (qℓ·

ta+1
2 − 1),
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which reduces to

qℓ·(t
a+1) > ta · (ta + 1) · qℓ·

ta+1
2 .

If the last inequality holds for ℓ = 1, which happens as soon as ta ≥ 16, then it clealry holds for every
value of ℓ. On the other hand, for smaller values of ta, the original inequality is always satisfied except
when the triple (q, ta, ℓ) lies in {(2, 5, 1), (2, 7, 1), (2, 9, 1), (2, 11, 1)}. Making use of [17, Corollary 1.2] as
above, only the triple (2, 7, 1) has to be checked: a computation via GAP [9] shows that SL2(7) generates
an orbit of size 21 in the action on its absolutely irreducible module of order 28, the final contradiction
for this case.

To conclude, we consider the case dimFq
V = ℓ ·

(
ta + 1

2

)
, only for t ̸= 2. Thus, we analyze the

inequality

qℓ·
ta+1

2 − 1 >
ta · (ta + 1)

2
· (qℓ·

ta+1
4 − 1) + (ta + 1) · (qℓ − 1).

Similarly to the previous cases, we reduce to

qℓ·
ta+1

2 > ta · (ta + 1) · qℓ·
ta+1

4 ,

which is satisfied for every value of ℓ as soon as it is satisfied for ℓ = 1; this happens whenever ta ≥ 43.
Looking at smaller values in the original inequality for ℓ = 1, and using Corollary 1.2 of [17], it turns
out that only the triples (3, 11, 1) and (3, 13, 1) have to be checked. A direct computation via GAP [9]
shows that SL2(11) has two absolutely irreducible modules of order 37: in both of them, the three sets
VI− (for r = 5), VI+ (for s = 3) and VII are all non-empty, so our assumptions are not satisfied. As
regards the absolutely irreducible module of order 37 for SL2(13), it has elements whose centralizer in
SL2(13) is a 2-group, again not our case.

For larger values of ℓ we note that, if ℓ = 2, then the present inequality is the same as the one
discussed for the case dimFq

V = ℓ · (ta+1), and the triples that have to be checked are (2, 5, 2), (2, 7, 2),
(2, 9, 2), (2, 11, 2). Again by GAP [9], none of these triples corresponds to an existing module, the final
contradiction for this case.

We omit the proof that V − {0} ≠ VI+ ∪ VII , which is totally analogous to the previous one, and we
focus next on the remaining claim that V −{0} is not covered by VI− and VI+ . Assuming the contrary,

Table 1 yields that the dimension of V over Fq is ℓ · (ta − 1) or ℓ ·
(
ta − 1

2

)
(only for t ̸= 2), and we will

start by considering the former possibility. In view of the fact that both dimFq
CV (R) and dimFq

CV (S)
are at most a half of dimFq V , it is enough to analyze the inequality

qℓ·(t
a−1) − 1 >

ta · (ta + 1)

2
·
(
qℓ·(

ta−1
2 ) − 1

)
+
ta · (ta − 1)

2
·
(
qℓ·(

ta−1
2 ) − 1

)
.

As usual we reduce to

qt
a−1 > ta · (ta + 1) · q

ta−1
2 ,

which is satisfied for ta ≥ 19. For smaller values of ta, it can be checked (via the original equation
for various values of ℓ and taking into account Corollary 1.2 of [17]) that the possible exceptions are
the triples (2, 5, 1), (2, 11, 1), (3, 5, 1), (3, 7, 1), (5, 4, 1) and (2, 5, 2); among the corresponding modules,
the first one has elements whose centralizers in SL2(5) do not have a normal Sylow 3-subgroup, the
remaining four absolutely irreducible modules all have elements whose centralizers in the relevant group
are 2-groups, whereas the last one does not exists. The proof for this case is complete.

Finally, we focus on dimFq
V = ℓ ·

(
ta − 1

2

)
, thus the inequality that has to be considered is

qℓ·(
ta−1

2 ) − 1 >
ta · (ta + 1)

2
·
(
qℓ·(

ta−1
4 ) − 1

)
+
ta · (ta − 1)

2
·
(
qℓ·(

ta−1
4 ) − 1

)
.
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With the usual argument, this reduces to

q
ta−1

2 > ta · (ta + 1) · q
ta−1

4

which is always satisfied for ta ≥ 47. For smaller values of ta (and for various ℓ), from the original
inequality we see that the triples to be checked are: (2, ta, 1) for ta ∈ {7, 9, 17, 23, 25, 31}, (3, 11, 1),
(3, 13, 1), (5, 9, 1), (5, 11, 1), (2, 5, 2), (2, 7, 2), (2, 9, 2), (2, 11, 2), (2, 13, 2), (3, 5, 2), (3, 7, 2), (2, 5, 3),
(2, 7, 3), (2, 9, 3) and (2, 5, 4). None of these correspond to modules that satisfy our assumptions, the
final contradiction that concludes the proof.

Next, the aforementioned result concerning actions of SL2(t
a) by automorphisms on a t-group.

Theorem 3.4. Let T be a Sylow t-subgroup of G ∼= SL2(t
a) (where ta ≥ 4) and, for a given odd prime

divisor r of t2a − 1, let R be a Sylow r-subgroup of G. Assuming that V is a t-group such that G acts
by automorphisms (not necessarily faithfully) on V and CV (G) = 1, consider the sets

VI = {v ∈ V | there exists x ∈ G such that Rx ⊴ CG(v)}, and
VII = {v ∈ V | there exists x ∈ G such that T x ⊴ CG(v)}.

Then the following conditions are equivalent.

(a) VI and VII are both non-empty and V − {1} = VI ∪ VII .
(b) G ∼= SL2(4), and V is an irreducible G-module of dimension 4 over F2. More precisely, V is the

restriction to G, embedded as Ω−
4 (2) into SL4(2), of the standard module of SL4(2).

Proof. Set V ♯ = V − {1} and, as in our hypothesis, assume V ♯ = VI ∪ VII where VI and VII are both
non-empty; we start by observing that VI and VII are disjoint, because our assumptions ensure that no
non-trivial element of V is centralized by the whole G and, on the other hand, no proper subgroup of
G contains both a conjugate of R and a conjugate of T as a normal subgroup. By similar reasons, it is
also clear that VII is partitioned by the subsets CV ♯(T x) as x runs in G.

As regards the set VI , we see that it is certainly covered by the union of the subsets CV ♯(Rx) as x
runs in G (in fact, every element of VI lies in precisely one of those subsets); however, only in the case
when r is a divisor of ta − 1, the subsets CV ♯(Rx) can have a non-empty intersection also with VII , and
for our purposes it will be important to determine these intersections.

To this end, assuming r ∈ π(ta − 1), we will show next that CV ♯(R) ∩ VII is the (disjoint) union of
CV ♯(T1R) and CV ♯(T2R) where T1, T2 are suitable conjugates of T . In fact, these T1 and T2 turn out
to be the two Sylow t-subgroups of G that are normalized by R (see Lemma 2.2).

So, let T0 ∈ Sylt(S) be such that R lies in NG(T0), and let v be an element of CV ♯(T0R). Then v
is in VII , as otherwise it would lie in VI and CG(v) would contain a unique Sylow r-subgroup together
with a Sylow t-subgroup of G, which does not happen for any proper subgroup of G. Also, it is clear
that v is centralized by R. As a consequence, if T1 and T2 are the two Sylow t-subgroups of G that are
normalized by R, then we get CV ♯(T1R) ∪CV ♯(T2R) ⊆ CV ♯(R) ∩ VII . On the other hand, let v be an
element of CV ♯(R) ∩ VII , and let T0 be the (unique) Sylow t-subgroup of G that centralizes v. As T0
is a normal subgroup of CG(v) and R ⊆ CG(v), we clearly get R ⊆ NG(T0). This yields T0 ∈ {T1, T2}
and, together with the discussion in the previous paragraph, CV ♯(T1R) ∪CV ♯(T2R) = CV ♯(R) ∩ VII ,
as wanted.

Still in the case r ∈ π(ta − 1), set |V | = td, |CV (R)| = te, |CV (T )| = tf and, assuming R ⊆ NG(T )
(as we may), |CV (TR)| = tg. Note that e and f are positive integers because VI and VII are non-empty;
moreover, f ≥ g, and te > 2tg − 1. In view of the above discussion, we get the following equality.

td − 1 = |V ♯| =

 ∑
T∈Sylt(G)

|CV ♯(T )|

+

 ∑
R∈Sylq(G)

|CV ♯(R)− VII |

 =

= (ta + 1)(tf − 1) +
ta(ta + 1)

2
(te − 2tg + 1),
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therefore,

2td + ta + 2t2a+g + 2ta+g = 2ta+f + 2tf + t2a+e + t2a + ta+e.

It is not difficult to check that, by the uniqueness of the t-adic expansion, the above equality is never
satisfied if t is odd. As regards the case t = 2, the equality is indeed satisfied if and only if d = 2a,
g + 1 = e and a = f + 1, so, in particular, we get |V | = 22a.

We focus next on the subgroup Ω = Ω(Z(V )) of V generated by all the central elements of V having
order 2. Since Ω is a characteristic subgroup of V and it is an elementary abelian 2-group, we can view it
as an G-module over F2 and we can consider an irreducible submodule W of it. Of course no non-trivial
element of W is centralized by the whole G, and we have W = (W ∩ VI) ∪ (W ∩ VII). Moreover, if
W ∩VII is empty, then [1, Lemma 3.3] yields a contradiction; on the other hand, if W ∩VI is empty or if
both W ∩ VI and W ∩ VII are non-empty, then we get |W | = 22a(= |V |) via [21, Lemma 5.2] or via the
discussion in this proof, respectively. In any case we conclude that V = W is an irreducible G-module
of dimension 2a over F2. Now, by Lemma 3.12 in [24], a is even (a = 2b, say) and V is necessarily the
restriction to F2 of the “natural” (4-dimensional) F2b -module for the group Ω−

4 (2
b) or one of its Galois

twists; furthermore, in this situation we get |CV (T )| = 2b, i.e. f = a/2. But we observed that a = f+1,
whence a = 2 and the proof that (a) implies (b) is complete in this case. The converse statement is also
true, because the centralizers of the non-trival elements in the module described in (b) are isomorphic
either to S3 or to A4.

It remains to show that condition (a) cannot hold if, under our hypotheses, r lies in π(ta + 1). In
fact, using the notation introduced for the case r ∈ π(ta − 1), we get

td − 1 = (ta + 1)(tf − 1) +
ta(ta − 1)

2
(te − 1),

therefore

2td + ta + t2a + ta+e = 2ta+f + 2tf + t2a+e.

Again by the uniqueness of the t-adic expansion, it is not difficult to see that the above equality is never
satisfied.

We conclude the section with Lemma 3.5, that deals with one specific orbit condition in linear actions
of SL2(t

a), for t ̸= 2, on modules over F2.

Lemma 3.5. Let V be a non-trivial irreducible module for G = SL2(t
a) over the field F2, where t is an

odd prime with ta > 3. Let r ̸= t be a prime in {3, 5}. Then there exists v ∈ V such that CG(v) does
not contain any element of order r, except in the following cases: ta = 5 and dimF2

V = 4, or ta = 7
and dimF2

V = 3 (in both cases r = 3).

Proof. We will prove the statement as follows. Given an element x ∈ G of order r, we will establish an
upper bound for the dimension over F2 of the subspace CV (x); we will then see that, with the possible
exceptions mentioned in the statement, this dimension is too small to get a covering of V with subspaces
of the form CV (x) where x ranges over the elements of order r in G.

The bound for dimF2 CV (x) can be obtained by the same argument used in Lemma 3.2. Observing
that V is in fact a module for S = PSL2(t

a) (because the element of order 2 of G acts trivially on V ), we
consider the irreducible 2-Brauer characters of S. In view of the discussion of [3, Section VIII], it turns
out that every non-principal irreducible 2-Brauer character θ of S is unique in its 2-block and it has a
lift χ ∈ Irr(S), except when ta − 1 is divisible by 22 and θ lies in the principal 2-block of S; in the latter
case, however, there exists γ ∈ Irr(S) such that γ − 1S is a lift for θ. In particular, the degrees of the
irreducible 2-Brauer characters of S are ta − 1, (ta − 1)/2 and ta + 1. Now we can refer to the ordinary
character table of S (see for example [3, Pages 80, 82]) and compute [1⟨x⟩, χ⟨x⟩], where χ ∈ Irr(S) ranges
over a set of lifts for the non-principal irreducible 2-Brauer characters of S. In Table 2 and Table 3 the
parameter ℓ denotes (as in Lemma 3.2) the composition length of the F[G]-module V ⊗ F, where F is a
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Table 2. Maximal dimension of the centralizer of an element of order 3.

dimF2
V ℓ · (ta − 1) ℓ ·

(
ta − 1

2

)
ℓ · (ta + 1)

dimF2 CV (x) ℓ ·
(
ta − 1

3

)
ℓ ·

(
ta − 1

6

)
ℓ ·

(
ta + 5

3

)
for ta ≡ 1 (mod 3)

dimF2 CV (x) ℓ ·
(
ta + 1

3

)
ℓ ·

(
ta − 5

6

)
ℓ ·

(
ta + 1

3

)
for ta ≡ −1 (mod 3)

Table 3. Maximal dimension of the centralizer of an element of order 5.

dimF2 V ℓ · (ta − 1) ℓ ·
(
ta − 1

2

)
ℓ · (ta + 1)

dimF2 CV (x) ℓ ·
(
ta − 1

5

)
ℓ ·

(
ta − 1

10

)
ℓ ·

(
ta + 9

5

)
for ta ≡ 1 (mod 5)

dimF2 CV (x) ℓ ·
(
ta + 1

5

)
ℓ ·

(
ta − 9

10

)
ℓ ·

(
ta + 1

5

)
for ta ≡ −1 (mod 5)

splitting field for G and all its subgroups; the maximal value of [1⟨x⟩, χ⟨x⟩] is shown in the second and
third row of the tables (dealing with the cases r | ta − 1 and r | ta + 1, respectively).

Next, assume that every element of V is centralized by an element of order r of G; then, denoting
by k the number of Sylow r-subgroups of G and choosing a non-trivial element xi (i ∈ {1, . . . , k}) from
each of those subgroups, we have

V − {0} =

k⋃
i=1

(CV (xi)− {0}).

Observe that k = ta · (ta ± 1), where the plus or minus sign occurs according to whether ta ≡ 1 (mod r)
or ta ≡ −1 (mod r) respectively. So, setting m to be the maximal dimension of CV (x) corresponding
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to each d = dimF2
V as shown in Table 2 and Table 3, we consider the inequality

(1) 2d − 1 > ta · (ta + 1) · (2m − 1),

and we discard all the modules whose corresponding pair (ta, d) satisfies Inequality (1) (the appropriate
value of m is deduced by the tables from the values of ta and d).

Note that (1) is true whenever we have

(2) 2d > ta · (ta + 1) · 2m;

furthermore, writing d = ℓd0, m = ℓm0, and applying the function log2 to both sides, it is also easy to
see that Inequality (2) is in turn satisfied if 2d0 > ta · (ta + 1) · 2m0 is. In other words, if an absolutely
irreducible module (i.e. an irreducible module for which the parameter ℓ is 1) has a corresponding pair
(ta, d0) satisfying (2), then we can discard every irreducible module corresponding to a pair of the kind
(ta, ℓd0).

Now, the list of pairs (ta, d) that do not satisfy (2) and that correspond to absolutely irreducible
modules is the following.

(a) For r = 3: (5, 2), (5, 4), (5, 6), (7, 3), (7, 6), (7, 8), (11, 5), (11, 10), (13, 6), (17, 8), (19, 9), (23, 11),
(25, 12).

(b) For r = 5: (9, 4), (9, 8), (11, 5), (19, 9).

This can be refined further using Corollary 1.2 of [17] (so, discarding the modules on which the action
of G generates regular orbits); as a result, the pairs that still need to be analyzed for the case ℓ = 1 are
the following.

(a) For r = 3: (5, 4), (7, 3), (7, 8), (11, 10), (17, 8), (23, 11), (25, 12).
(b) For r = 5: (9, 4).

A direct computation with GAP [9] shows that, in all of the above cases, there are elements of the
relevant module whose centralizer in G does not have an order divisible by r, except for the pairs (5, 4)
and (7, 3) as claimed in the statement.

As regards the cases when ℓ > 1, only three pairs do not satisfy inequality (2), the value of ℓ being 2
for all of them: these are (5, 4), (5, 8) and (7, 6). The non-absolutely irreducible pair (5, 4) is associated
to the natural module of SL2(4) ∼= PSL2(5) and obviously does not satisfy the condition about the
centralizers, whereas the pairs (5, 8) and (7, 6) are not associated to any existing module.

On the other hand, if V is an absolutely irreducible module corresponding to the pairs (5, 4) or (7, 3),
then every element of V is actually centralized by an element of order 3 (the sets of orbit sizes are {5, 10}
and {7} respectively). The proof is complete.

4. The structure of the solvable residual

Let G be a non-solvable group having a normal section isomorphic to PSL2(t
a), where t is an odd

prime with ta > 5, and assume that ∆(G) is connected with a cut-vertex. Our aim in this section is
to describe the structure of the solvable residual K of G. In particular we will see that, except for one
sporadic case, either we have K ∼= PSL2(t

a), or K ∼= SL2(t
a), or K contains an abelian minimal normal

subgroup L of G such that K/L ∼= SL2(t
a) and L is the natural module for K/L. We will actually prove

that the dual group of L is the natural module for K/L, but the desired conclusion follows taking into
account that this module is self dual.

Theorem 4.1. Assume that the group G has a composition factor isomorphic to PSL2(t
a), for an odd

prime t with ta > 5, and let p be a prime number. Assume also that ∆(G) is connected with cut-vertex
p. Then, denoting by K the solvable residual of G, one of the following conclusions holds.

(a) K is isomorphic to PSL2(t
a) or to SL2(t

a);
(b) K contains a minimal normal subgroup L of G such that K/L is isomorphic to SL2(t

a) and L
is the natural module for K/L.
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(c) ta = 13 and p = 2. K contains a minimal normal subgroup L of G such that K/L is isomorphic
to SL2(13), and L is isomorphic to one of the two 6-dimensional irreducible modules for SL2(13)
over F3.

Our analysis concerning Theorem 4.1 splits in two parts, depending on whether one of the sets
of primes π(ta − 1), π(ta + 1) reduces to the prime 2 or not. Theorem 4.3, which is introduced by
Proposition 4.2, deals with the former situation.

Proposition 4.2. Set G ≃ PSL2(t
a), where t is an odd prime, and assume that one among the sets of

primes π− = π(ta − 1)− {2} and π+ = π(ta + 1)− {2} is empty. Then the following conclusions hold.

(a) a = 1, unless ta = 9.
(b) If |π(G)| = 3, then ta ∈ {5, 7, 9, 17}.

Proof. Our assumptions, together with Proposition 3.1 of [22], yield that a = 1 and t can be written as
2k − 1 or 2k + 1 for a suitable integer k > 2, with the only exception of the case ta = 9 (if t = 2k − 1,
then t is a Mersenne prime and k is a prime number, whereas if t = 2k + 1, then t is a Fermat prime
and k is a 2-power). This proves conclusion (a).

Assuming now in addition that |π(G)| = 3, we write π(G) = {2, t, u} and we consider first the case
when π+ is empty, so t = 2k − 1 for a suitable prime number k. Then t − 1 = 2k − 2 = 2 · (2k−1 − 1)
is divisible only by 2 and u, which means that u = 2k−1 − 1 is in turn a Mersenne prime and k − 1 is
a prime number. This can happen only for k = 3, thus t = 7. On the other hand, if π− is the empty
one, then either ta = 9 or t = 2k +1 is a Fermat prime and k is a 2-power. Consider the latter case: the
fact that π+ consists of the single prime u yields that (2k−1 + 1) = (t+ 1)/2 is a power of u, so either
u = 2k−1 +1 is in turn a Fermat prime (and k− 1 is a 2-power as well) or u2 = 9 = 2k−1 +1. If both k
and k − 1 are 2-powers, then necessarily we get k = 2 and t = 5; it remains then the possibility u2 = 9,
thus k − 1 = 3 and t = 2k + 1 = 24 + 1 = 17.

Theorem 4.3. Assume that the group G has a composition factor isomorphic to PSL2(t
a), for an odd

prime t with ta > 5, and let p be a prime number. Assume also that ∆(G) is connected with cut-vertex
p, and that one among the sets of primes π− = π(ta − 1) − {2} and π+ = π(ta + 1) − {2} is empty.
Then, denoting by K the solvable residual of G, one of the following conclusions holds.

(a) K is isomorphic to PSL2(t
a) or to SL2(t

a);
(b) K contains a minimal normal subgroup L of G such that K/L is isomorphic to SL2(t

a) and L
is the natural module for K/L.

Proof. Let R be the solvable radical of G. Observe that, by Theorem 2.7, the factor group G/R is
an almost-simple group (with socle isomorphic to PSL2(t

a)) and V(G) = V(G/R) ∪ {p}; furthermore,
Proposition 4.2 yields that a = 1 with the only exception of the case ta = 9, therefore V(G) consists of p
and the primes dividing the order of the socle of G/R. As the subgraph of ∆(G) induced by V(G)−{t, p}
is then a complete subgraph, it is clear that p ̸= t and that the set of neighbours of t in ∆(G) is {p}.
As another consequence of the fact that a = 1 or ta = 9, the socle of G/R does not have any proper
subgroup of type (iv) except when ta = 9, in which case the relevant subgroups (isomorphic to A4 or
S4) are in fact also of type (iii).

Consider now the solvable residual K of G and assume ta ̸= 9. By Lemma 2.5 we can assume that, for
a suitable non-trivial normal subgroup L of K, we have K/L ∼= PSL2(t

a) or K/L ∼= SL2(t
a); moreover,

for every non-principal irreducible character λ of L/L′, the inertia subgroup IK(λ) is a proper subgroup
of K (and the same clearly holds also for IK(λ)N , where N/L = Z(K/L)).

We claim that the conclusions of Lemma 2.5 actually hold even if ta = 9. In fact, as in the proof of
that lemma, consider a chief factor K/N ∼= PSL2(9) of G and suppose (as we may) N ̸= 1; if µ is a non-
principal K-invariant irreducible character of N/N ′ and L = ker(µ), then (L ⊴ K and) N/L lies in the
Schur multiplier of K/N , that has order 6. But if K/L is a central extension of N/L by K/N ∼= PSL2(9)
such that 3 divides |N/L|, then it can be checked that the set of irreducible character degrees of K/L
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contains both 6 and 15, thus ∆(K/L) is a triangle of vertices 2, 3, 5 and ∆(G) does not satisfy the
hypothesis. The conclusion so far is that K/L ∼= SL2(9), and again we can assume L ̸= 1. Now, since
the Schur multiplier of SL2(9) has order 3, but the Schur cover of SL2(9) has irreducible characters of
degree 6 and 15, arguing as above we see that L/L′ does not have any K-invariant irreducible character.

Given that, the proof is organized as follows. First, we will show that in the present setting K/L
is isomorphic to SL2(t

a) and L/L′ is the natural module for K/L; we will treat separately four cases,
depending on whether |π(K/N)| is larger than 3 or not, and whether p ̸= 2 or p = 2. After that, we will
prove that L′ is in fact trivial. This, together with the observation that in this situation L = Ot(K)
(therefore L is actually a normal subgroup of G) and L is already a minimal normal subgroup of K,
will conclude the proof.

Consider first the case when |π(K/N)| is larger than 3, i.e. the non-empty set among π− and π+ does
not consist of a single prime (observe that the case ta = 9 is then excluded, so we always have a = 1),
and p ̸= 2. In what follows, we denote by π the non-empty set among π+ and π− (in other words, we
set π = π+ ∪ π−).

Let λ be a non-principal irreducible character of L/L′, and assume that t divides |K : IK(λ)|. Then
IK(λ)/L must contain a Sylow 2-subgroup of K/L, as otherwise t would be adjacent to 2 in ∆(G) (recall
that p ̸= 2 is the only neighbour of t in ∆(G)); in particular, N is contained in IK(λ). In this situation,
if IK(λ)/N is of type (i), then it is easy to see that t is adjacent in ∆(G) to every prime in π, which
implies π = {p} and |π(K/N)| = 3, not the case we are considering. It is also clear that IK(λ)/N cannot
be of type (ii). Finally, if IK(λ)/N is of type (iii), then the largest power of 2 that divides |K/N | is
22 or 23; since it is easily seen that, writing t = 2k ± 1, the 2-part of |K/N | is 2k, we get either k = 2
(but recall that k > 2 in the present situation) or k = 3, t = 7 and V(G) = {2, 3, 7}, in any case a
contradiction.

On the other hand, assume that t does not divide |K : IK(λ)|. Then IK(λ)N/N is not of type (i);
moreover, if this factor group is of type (iii), then we get t = 3 or t = 5, against our hypothesis. The
only possibility is then the type (ii): in particular, IK(λ)/L contains a Sylow t-subgroup of K/L as a
normal subgroup. Since this holds for every non-principal irreducible character λ of L/L′, by Lemma 3.1
we conclude that K/L ∼= SL2(t) and L/L

′ is the natural module, as desired.

Still assuming |π(K/N)| > 3, we move now to the case p = 2.
Again, let λ be a non-principal irreducible character of L/L′. If t divides |K : IK(λ)|, then the factor

group IK(λ)N/N is clearly not a subgroup of type (ii) with non-trivial t-part of K/N . But this factor
group is not of type (iii) as well: in fact, if IK(λ)N/N is isomorphic to A4 or S4, then π would consist
of the element 3 only, whereas if IK(λ)N/N ∼= A5, then (by Gallagher’s theorem or by the theory of
character triples, according to whether λ has an extension to its inertia subgroup or not) we see that t is
adjacent to 3 in ∆(G), anyway a contradiction. Therefore IK(λ)N/N must be of type (i), containing a
Hall π-subgroup of K/N as a normal subgroup; as easily checked, we then have that IK(λ)/L contains
a Hall π-subgroup of K/L as a normal subgroup.

On the other hand, if t does not divide |K : IK(λ)|, then IK(λ)N/N is a subgroup of type (ii) of
K/N , and IK(λ)/L contains a Sylow t-subgroup of K/L as a normal subgroup.

Now, assume that L/L′ is not a t-group. Then there exists a chief factor L/Y of K that is a q-group
for a suitable prime q ̸= t. Denoting by V the dual group of L/Y , the discussion carried out so far
yields that for every non-trivial element λ of V , the factor group IK(λ)/L contains either a unique Hall
π-subgroup or a unique Sylow t-subgroup of K/L. This is against Theorem 3.3, thus we conclude that
L/L′ is a t-group, and we are in a position to apply Theorem 3.4 obtaining that the subgroups IK(λ)/L
(for λ a non-principal character in Irr(L/U)) are all of the same kind: either they all contain a unique
Hall π-subgroup of K/L or they all contain a unique Sylow t-subgroup of K/L. However, by Lemma 3.1
(and recalling [29, Lemma 4]) the former condition is impossible and L/L′ is the natural module for
K/L ∼= SL2(t), as desired.
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Now, let us consider the case when |π(K/N)| = 3, so π(K/N) = {2, u, t} for a suitable prime u. Recall
that, by Proposition 4.2, K/N is then isomorphic to one of the following groups: PSL2(7), PSL2(9) or
PSL2(17).

We assume first that, under the hypothesis |π(K/N)| = 3, we have p ̸= 2. Thus, if λ is a non-
principal irreducible character of L/L′ and t divides |K : IK(λ)|, then 2 cannot divide the degree of any
irreducible character of K lying over λ. In particular, K/L should have an abelian Sylow 2-subgroup
by Theorem A of [23], and this is not the case. Looking at [5], the only remaining possibility is that
IK(λ)/L contains a Sylow t-subgroup of K/L as a normal subgroup. This holds for every non-principal
λ ∈ Irr(L/L′), and again by Lemma 3.1 we have that L/L′ is the natural module for K/L ∼= SL2(t

a).

Finally let |π(K/N)| = 3 and p = 2. Assume first K/N ∼= PSL2(7): in this case we have V(G) =
{2, 3, 7} and the only non-adjacency in ∆(G) is between 3 and 7. Now if, for every non-principal λ in
Irr(L/L′), we have that 7 does not divide |K : IK(λ)N |, then IK(λ)/L contains a Sylow 7-subgroup
of K/L as a normal subgroup and L/L′ is the natural module for K/L ∼= SL2(7) (by Lemma 3.1);
therefore, in view of the structure of the maximal subgroups of PSL2(7), we can assume that there
exists λ0 ∈ Irr(L/L′) such that IK(λ0)N/N is isomorphic to a subgroup of S4. Of course the order
of IK(λ0)N/N must be a multiple of 3, so either IK(λ0)/L contains a Sylow 3-subgroup of K/L as a
normal subgroup, or it has a normal section isomorphic to A4. In the latter case λ0 cannot extend to
IK(λ0), as otherwise we would get the adjacency between 3 and 7 by Clifford’s theory; hence |L/L′| is
an even number, and there exists a chief factor L/Y of K that is a 2-group. But it can be checked (via
GAP [9], for instance) that all the three irreducible modules of SL2(7) over F2 (that have dimensions
3, 3, 8 respectively) produce factor groups K/Y having irreducible characters of degree divisible by 21,
and this is a contradiction. By Ito-Michler’s theorem and Gallagher’s theorem we conclude that, for
every non-principal λ ∈ Irr(L/L′), IK(λ)/L contains either a Sylow 7-subgroup or a Sylow 3-subgroup
of K/L as a normal subgroup. If L/L′ is not a 7-group, then we can consider a chief factor L/Y of K
such that L/Y is a q-group for a suitable prime q ̸= 7, and Theorem 3.3 applied to the action of K/L
on the dual group of L/Y yields a contradiction. Therefore L/L′ is a t-group, and now by Theorem 3.4
(together with Lemma 3.1) we get that L/L′ is in fact the natural module for K/L ∼= SL2(7).

Assume now K/N ∼= PSL2(9), thus V(G) = {2, 3, 5} and the only non-adjacency in ∆(G) is between
3 and 5. If, for every non-principal λ in Irr(L/L′), we have that 3 does not divide |K : IK(λ)N |, then
IK(λ)/L contains a Sylow 3-subgroup of K/L as a normal subgroup and L/L′ is the natural module
for K/L ∼= SL2(9); therefore, we can assume that there exists λ0 ∈ Irr(L/L′) such that IK(λ0)N/N
is isomorphic to a subgroup of A5. Of course the order of IK(λ0)N/N must be a multiple of 5, so
either IK(λ0)/L contains a Sylow 5-subgroup of K/L as a normal subgroup, or it is isomorphic to
A5. In the latter case λ0 cannot extend to IK(λ0), as otherwise we would get the adjacency between
3 and 5 by Clifford’s theory; hence |L/L′| is an even number, and there exists a chief factor L/Y of
K that is a 2-group. But it can be checked (via GAP [9], for instance) that all the three irreducible
modules of SL2(9) over F2 (that have dimensions 4, 4, 16 respectively) produce factor groups K/Y
having irreducible characters of degree divisible by 15, and this is a contradiction. We conclude that, for
every non-principal λ ∈ Irr(L/L′), IK(λ)/L contains either a Sylow 3-subgroup or a Sylow 5-subgroup
of K/L as a normal subgroup; the same argument as in the paragraph above shows that L/L′ is the
natural module for K/L ∼= SL2(9).

Finally, consider the case K/N ∼= PSL2(17), hence V(G) = {2, 3, 17} and the only non-adjacency in
∆(G) is between 3 and 17. If, for every non-principal λ in Irr(L/L′), we have that 17 does not divide
|K : IK(λ)N |, then IK(λ)/L contains a Sylow 17-subgroup of K/L as a normal subgroup and L/L′ is
the natural module for K/L ∼= SL2(17); therefore, we can assume that there exists λ0 ∈ Irr(L/L′) such
that IK(λ0)N/N has order not divisible by 17, but divisible by 32. An inspection of the subgroups of
PSL2(17) yields that IK(λ0)N/N is either a cyclic group of order 32 or it is a dihedral group of order
18, so, in any case it contains a Sylow 3-subgroup of K/N as a normal subgroup and we can get the
conclusion that L/L′ is the natural module for K/L ∼= SL2(17) as in the previous cases.
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The proof that L/L′ is the natural module for K/N ∼= SL2(t
a) is then concluded. It remains to show

that, setting U = L′, we have U = 1. This will also imply that L is normal in G, because if U = 1 then
we have L = Ot(K). Again we will treat separately the cases p ̸= 2 and p = 2.

Assume p ̸= 2 and, aiming at a contradiction, assume U ̸= 1. Since U/U ′ is an abelian (non-trivial)
normal subgroup of L/U ′ having t-power index, any non-linear irreducible character ϕ of L/U ′ is such
that t divides ϕ(1). Now, we know that every irreducible character of K lying over ϕ must have odd
degree, and so [23, Theorem A] yields that K/L has abelian Sylow 2-subgroups. This is clearly a
contradiction, and the proof is complete.

Finally, let us consider the case p = 2 and, again assuming U ̸= 1, let us take a subgroup Z of K
such that U/Z is a chief factor of K. We treat three situations, that are exhaustive, and that all lead
to a contradiction.

(i) U/Z ̸≤ Z(L/Z).
(Note that, in this case, U/Z is a faithful K/U -module.) Consider the normal subgroup CU/Z(L/U) of
K/Z; since U/Z is a chief factor of K and it is not centralized by L/U , we deduce that CU/Z(L/U) is
trivial. We are in a position to apply the proposition appearing in the Introduction of [6], which ensures
that the second cohomology group H2(K/U,U/Z) is trivial, and therefore K/Z is a split extension of
U/Z; in particular, every irreducible character of U/Z extends to its inertia subgroup inK/Z. Now, let λ
be any non-principal character in Irr(U/Z): if ξ ∈ Irr(L/Z) lies over λ, then ξ(1) ̸= 1 (as U/Z = (L/Z)′)
and ξ(1) is a divisor of |L/U | = t2. In particular, every irreducible character of K lying over λ has a
degree divisible by t. Since λ extends to IK(λ)/Z, our assumptions together with Gallagher’s theorem
imply that IK(λ)/U contains a unique Hall π-subgroup of K/U . But this yields a contradiction via, for
example, Proposition 3.13 of [8]; in fact, according to that result, K/U should have a cyclic solvable
radical (whereas L/U = Ot(K/U) is non-cyclic).

(ii) U/Z ≤ Z(L/Z), but U/Z ̸≤ Z(K/Z).
Let λ be a non-principal character in Irr(U/Z), and let ξ ∈ Irr(L/Z) be a character lying over λ. Clearly
ξ(1) is a multiple of t and, assuming for the moment ta ̸= 9, ξ extends to its inertia subgroup in K
because K/L has cyclic Sylow t-subgroups ([15, 8.16, 11.22, 11.31]). It follows by Gallagher’s theorem
that IK(ξ) contains a Hall π-subgroup of K/L as a normal subgroup. Now, ξU = ξ(1)λ and ξ(1)2 ≤ t2,
therefore ξ(1) = t and λ is fully ramified with respect to L/U . In particular, ξ vanishes outside U ,
thus IK(λ) = IK(ξ) and so IK(λ)/L contains a Hall π-subgroup of K/L as a normal subgroup. This is
against Lemma 3.1, and we are done under the additional assumption ta ̸= 9.

As regards the remaining case, we proceed as follows. Observe first that U/Z is a 3-group, as otherwise
L/Z would be the direct product of U/Z with an abelian 3-group, and it would be abelian. Moreover,
if λ is a non-principal character in Irr(U/Z), then any irreducible character of K lying over λ has a
degree divisible by 3; as a consequence, |K : IK(λ)| is not divisible by 5. But a direct computation on
the non-trivial irreducible modules for SL2(9) over F3 (there are five of them, of dimensions 4, 4, 6, 9,
12) shows that in every such module there are elements lying in orbits of size divisible by 5, the final
contradiction that concludes the proof for this case.

(iii) U/Z ≤ Z(K/Z).
Let λ be a non-principal character in Irr(U/Z). We have that (L/Z,U/Z, λ) is a character triple for
which the factor group (L/Z)/(U/Z) ∼= L/U is abelian, thus we can apply Lemma 2.2 of [28]: there
exists a unique subgroup W/Z of L/Z, containing U/Z, maximal with respect to the fact that λ has an
L/Z-invariant extension to W/Z. By the uniqueness of this W/Z and by the fact that λ is invariant in
K, it follows that W/Z is normal in K/Z and, since it is properly contained in L/Z (because λ does
not extend to L), we get W = U . Now part (b) of the same lemma yields that λ is fully ramified with
respect to L/U , and therefore the unique ξ in Irr(L/Z | λ) is such that IK(ξ) = IK(λ) = K.

Now, if ξ (whose degree is divisible by t) extends to K, then we reach a contradiction via Gallagher’s
theorem. This always happens when the Schur multiplier of K/L is trivial, i.e. when ta ̸= 9. As for
the remaining case, working with character triples, we see that there exists an irreducible character of
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K lying over ξ whose degree is divisible by 5 (actually, by 15) even if ξ does not extend to K. This is
impossible in our setting, and the proof is complete.

We consider now, still for t odd and ta ̸= 5, the complementary situation with respect to previous
result. This will conclude the proof of Theorem 4.1.

Theorem 4.4. Assume that the group G has a composition factor isomorphic to PSL2(t
a), for an odd

prime t with ta > 5, and let p be a prime number. Assume also that ∆(G) is connected with cut-vertex
p, and that both the sets of primes π− = π(ta−1)−{2} and π+ = π(ta+1)−{2} are non-empty. Then,
denoting by K the solvable residual of G, one of the following conclusions holds.

(a) K is isomorphic to PSL2(t
a) or to SL2(t

a);
(b) K contains a minimal normal subgroup L of G such that K/L is isomorphic to SL2(t

a) and L
is the natural module for K/L.

(c) ta = 13 and p = 2. K contains a minimal normal subgroup L of G such that K/L is isomorphic
to SL2(13), and L is isomorphic to one of the two 6-dimensional irreducible modules for SL2(13)
over F3.

Proof. Denoting by R be the solvable radical of G, Theorem 2.7 yields that G/R is an almost-simple
group with socle isomorphic to PSL2(t

a), and V(G) = π(G/R) ∪ {p}. Note that Lemma 2.5 applies
here, because ta = 9 is excluded by our assumption of π− being non-empty; so, either we get conclusion
(a), or K has a non-trivial normal subgroup L such that K/L is isomorphic to PSL2(t

a) or to SL2(t
a),

and every non-principal irreducible character of L/L′ is not invariant in K. Therefore, we can assume
that the latter condition holds.

Consider then a non-principal λ in Irr(L/L′): as we said, the inertia subgroup IK(λ) is a proper
subgroup of K and the same clearly holds for IK(λ)N , where we set N/L = Z(K/L). Thus IK(λ)N/N
is a suitable proper subgroup of K/N ∼= PSL2(t

a).
If t is not a divisor of |K : IK(λ)|, then IK(λ)N/N is of type (ii) and it is easy to see that IK(λ)/L

contains a Sylow t-subgroup of K/L as a normal subgroup. Assuming for the moment that this happens
for every non-principal λ ∈ Irr(L/L′), an application of Lemma 4 in [29] and Lemma 3.1 yields that
K/L is isomorphic to SL2(t

a) and L/L′ is the natural module for K/L. So, in order to get conclusion
(b), we only have to show that L′ is trivial (note that, once this is proved, L = Ot(K) is a minimal
normal subgroup of G), and this is what we do next.

Writing U for L′ we observe that, if K/L ∼= SL2(t
a) and L/U is the natural module for K/L, then

∆(K/U) has two complete connected components, {t} and V(K/L) − {t} (see the last paragraph of
Section 2); recalling also that every prime in π(G/R)− π(K/L) is adjacent in ∆(G/R) to all the other
primes in π(G/R)−{t} (Theorem 2.4), we see that the subgraph of ∆(G) induced by the set π(G/R)−{t}
is a clique, therefore p ̸= t and the set of neighbours of t in ∆(G) consists of p only. Given that, for a
proof by contradiction, assume U ̸= 1 and consider the non-abelian factor group L/U ′; since U/U ′ is an
abelian normal subgroup of L/U ′ having t-power index, any non-linear irreducible character ϕ of L/U ′

has a degree divisible by t. Now, if p ̸= 2, then the non-adjacency between t and 2 yields that every
irreducible character of K lying over ϕ has odd degree, which implies (via Theorem A of [23]) that K/L
has abelian Sylow 2-subgroups. Since this is not the case, we deduce that p = 2 and so |K : IK(ϕ)| is
divisible only by 2 and t.

Note that ϕ cannot be invariant in K, because the Schur multiplier of K/L is trivial and we would
easily get a contradiction by Gallagher’s theorem. It is also not difficult to see that IK(ϕ)N/N cannot
be a subgroup of type (i), (ii) or (iv) of K/N . On the other hand, IK(ϕ)N/N cannot be isomorphic
to S4 or to A4 as well, because we know that every prime in π− ∪ π+ does not divide |K : IK(ϕ)N |
and we would have π− ∪ π+ ⊆ {3}, against the assumption that both π− and π+ are non-empty. It
remains to consider the case IK(ϕ)N/N ∼= A5. In this situation, π− ∪ π+ is forced to coincide with
{3, 5}, hence t ̸∈ {3, 5}. Moreover, ϕ does not have an extension to IK(ϕ), as otherwise we would get
(again by Gallagher’s theorem) that t is adjacent to 3 and to 5 in ∆(G). Now, if IK(ϕ) contains N ,
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then IK(ϕ)/L is isomorphic to SL2(5) (because K/L ∼= SL2(t
a) has a unique involution); but the Schur

multiplier of this group is trivial, so ϕ would have an extension to IK(ϕ). It follows that IK(ϕ) does not
contain N and, using character triples, we see that there exists an irreducible character of IK(ϕ) lying
over ϕ whose degree is divisible by 3. This again produces the adjacency between t and 3 in ∆(G), the
final contradiction that yields conclusion (b) in this case.

So, our assumption will be henceforth that there exists a non-principal λ ∈ Irr(L/U) such that t
divides |K : IK(λ)|. Our aim will be to get conclusion (c) under this hypothesis.

We claim that, if this is the setting, then the vertices 2 and t are adjacent in ∆(K) (thus, in ∆(G)).
Assuming the contrary, first of all we observe that IK(λ)/L is forced to contain a Sylow 2-subgroup of
K/L, and [23, Theorem A] ensures that K/L has abelian Sylow 2-subgroups, which yields N = L; in
particular, IK(λ)/N cannot be a subgroup of type (ii) of K/N , and it cannot be isomorphic to S4 or to
PGL2(t

b) for any b (recall that the Sylow 2-subgroups of PGL2(t
b) are dihedral groups). The remaining

possibilities for IK(λ)/N are then to be either of type (i) or isomorphic to a group in the following
list: A4, A5, PSL2(t

b) for a suitable divisor b of a. Suppose first that λ does not have an extension to
IK(λ): then, working in a Schur cover of IK(λ)/N for any of its possible isomorphism types and using
the theory of character triples, we see that there exists an irreducible character of IK(λ) lying over λ
and having an even degree. In fact, if IK(λ)/N is (non-cyclic) of type (i), then any central extension
of IK(λ)/N has an abelian normal subgroup of index 2 and all irreducible character degrees in {1, 2};
the other cases can be easily checked. This is against our assumption that 2 and t are non-adjacent
in ∆(K). On the other hand, if λ does have an extension to IK(λ), then Gallagher’s theorem yields a
contradiction for all the possible types of IK(λ)/N , except for the type A4. In this last case, however,
by Gallagher’s theorem the primes in π(K/N) − {2} are the vertices of a clique in ∆(K): taking into
account Lemma 2.3 and Theorem 2.4 (together with the fact that V(G) = π(G/R) ∪ {p}), it is easily
seen that ∆(G) cannot have a cut-vertex, against our hypothesis. The claim concerning the adjacency
between 2 and t is then proved. As a consequence, again in view of Lemma 2.3 and Theorem 2.4, we
get p = 2.

Still assuming that there exists a non-principal λ ∈ Irr(L/U) such that t divides |K : IK(λ)|, we
also claim that t must be adjacent in ∆(K) to some odd prime divisor of t2a − 1. This is clearly true
if IK(λ)N/N is of type (i), (ii) or (iv). As regards type (iii), assume that our claim is false. Then
IK(λ)N/N cannot be isomorphic to A4 or S4 by our assumption that both π+ and π− are non-empty;
on the other hand, if IK(λ)N/N ∼= A5, then we get π− ∪ π+ = {3, 5}, and Gallagher’s theorem or the
theory of character triples (according to whether λ extends to IK(λ) or not) yield the contradiction that
t is adjacent to 3 in ∆(K).

Finally, given our assumption that ∆(G) has a cut-vertex (and still having 2.3, 2.4 in mind), it is
easy to see that the neighbours of t in ∆(G) belonging to π(t2a − 1) − {2} must be either all in π− or
all in π+; moreover, there are no adjacencies in ∆(G) between vertices lying in π− and vertices lying in
π+.

Taking into account the structure of the graph ∆(G) as described so far, we consider now a chief
factor V = L/Y of K and discuss the action of K/L on its irreducible module V . We will work actually
on the dual module of V , analyzing the subgroups IK(µ)N/N for µ in Irr(V )− {1V }; recall that, since
µ can be regarded as a character of L/U , the factor group IK(µ)N/N is a proper subgroup of K/N .

Let us start by assuming that t is adjacent in ∆(K) to some vertex in π−. Then we know that t
has no neighbours in π+ (as a vertex of ∆(G)), so we can immediately exclude that IK(µ)N/N is a
subgroup of type (i−); on the other hand, IK(µ)N/N can be a subgroup of type (i+), and in that case it
contains a Sylow subgroup of K/N (as a normal subgroup) for every prime in π+. However, note that
the latter situation cannot occur for all non-principal µ ∈ Irr(V ), as otherwise we get a contradiction
by Lemma 3.1.

Suppose that IK(µ)N/N is of type (ii): in this case, IK(µ)N/N must contain a Sylow subgroup
of K/N both for the prime t and for all the primes in π−, therefore it is a Frobenius group whose
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complements have order divisible by every prime in π− and it has irreducible characters whose degree is
a multiple of all those primes. It is not difficult to see that IK(µ)/L has a normal 2-complement H/L,
which enjoys the same properties mentioned above for IK(µ)N/N . If µ extends to H, then Clifford’s
theory yields the adjacency in ∆(K) of every prime in π− with every prime in π+, not our case. On the
other hand, if µ does not extend to H, then V = L/Y is a t-group (recall [15, 8.16, 11.22, 11.31]) and
we reach a contradiction as well: in fact, in this case IK(µ)/Y has a normal Sylow t-subgroup T0/Y and
µ does not extend to T0. Now, the restriction of any ϕ ∈ Irr(IK(µ)|µ) to T0 must have an irreducible
constituent whose degree is divisible by t, as otherwise some linear constituent of ϕT0 would lie over µ
and would be an extension to T0 of it, so Clifford’s theory would imply the adjacency of t with every
prime in π+.

We exclude next that IK(µ)N/N is of type (iv). If this is the case, certainly |K : IK(µ)| is divisible
by t (thus not divisible by any prime in π+), and therefore no irreducible character of IK(µ) lying over
µ has a degree divisible by a prime in π+; it is not difficult to check that both if µ extends to IK(µ)
and if it does not, using Gallagher’s theorem or character triples respectively, we obtain a contradiction
(note that IK(µ)N/N cannot be isomorphic to PSL2(9) or PGL2(9) in this case, because any primitive
prime divisor of 32a − 1 lies in π+ and clearly divides |K : IK(µ)|).

Our conclusion so far is that, for every non-principal µ ∈ Irr(V ), the factor group IK(µ)N/N is
either of type (i+) or of type (iii); as observed, there must be some µ as above for which the latter case
holds. Now, if IK(µ)N/N is isomorphic to either S4 or A4, then t cannot be 3: otherwise the t-part
of |K/N | would be larger than t, so t would divide |K : IK(µ)| and no prime in π+ could be a divisor
of |K : IK(µ)N |. But this would force π+ to be empty, which is not the case. Thus, t is a divisor of
|K : IK(µ)| and π+ is then forced to be {3}. If µ extends to IK(µ), then Clifford’s theory yields the
adjacency in ∆(K) between t and 3, which is not allowed. It only remains the possibility that µ does not
extend to IK(µ), and this can happen only if V is a 2-group. On the other hand, if IK(µ)N/N ∼= A5, a
similar argument shows that either t is larger than 5 and π+ ⊆ {3, 5}, or {t} ∪ π+ = {3, 5}; in any case
t divides |K : IK(µ)| and, if µ extends to IK(µ), then we get the adiacency of t with the primes in π+.
This cannot happen, so again we have that V is a 2-group.

To sum up, we can assume that V is an irreducible K/L-module over the field F2. Moreover, there
exists r ∈ {3, 5} (dividing ta + 1) such that every non-principal irreducible character of V is centralized
by an element of order r. An application of Lemma 3.5 yields the final contradiction for this case.

Let us move to the case when t is adjacent in ∆(K) to some vertex in π+. Then we know that t
has no neighbours in π− (as a vertex of ∆(G)), so we can immediately exclude that IK(µ)N/N is of
type (i+).

We can also exclude that IK(µ)N/N is of type (iv) arguing as in the case when t is adjacent to a prime
in π−, unless IK(µ)N/N is isomorphic to PSL2(9) or PGL2(9). In the latter case, it is not difficult to
see that IK(µ)/L has a normal subgroup H/L isomorphic either to PSL2(9) or to SL2(9); recalling that
ker(µ) is a normal subgroup of IK(µ) with L/ker(µ) ⊆ Z(IK(µ)/ker(µ)), we consider the factor group
H/ker(µ). If this factor group splits over L/ker(µ), then µ extends to H, and there certainly exists an
irreducible character of IK(µ) lying over µ with a degree divisible by 5; now, Gallagher’s theorem yields
the contradiction that t = 3 is adjacent to 5 ∈ π−. On the other hand, if H/ker(µ) does not split over
L/ker(µ), then L/ker(µ) embeds in the Schur multiplier of H/L (so, |L/ker(µ)| ∈ {2, 3}), and using
character triples we see that H/ker(µ) has irreducible characters lying over µ having a degree divisible
by 5. As a consequence, IK(µ) has irreducibe characters lying over µ having a degree divisible by 5,
again producing the same contradiction as above.

Next, IK(µ)N/N can be of type (i−), and in that case it contains a Sylow subgroup of K/N (as
a normal subgroup) for every prime in π−. Clearly, IK(µ)/L contains a Sylow subgroup of K/L as a
normal subgroup for every prime in π− as well.

The factor group IK(µ)N/N can also be of type (ii) (with an order divisible by t): if so, recalling
that there are no adjacencies between vertices in π− and vertices in π+, then it must contain a Sylow
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subgroup of K/N for all the primes in π− (of course IK(µ)/L contains a Sylow subgroup of K/L for
every prime in π− as well), and it is a Frobenius group whose kernel is a t-group and whose complements
have an order divisible by every prime in π−. We claim that IK(µ)N/N must contain a full Sylow t-
subgroup of K/N . To show this, we can clearly assume a > 1; if ta − 1 has a primitive prime divisor
q, then q lies in π− and so the Sylow t-subgroup of IK(µ)N/N (on which an element of order q of
IK(µ)N/N acts fixed-point freely) cannot have order less than ta. On the other hand, assume that
ta − 1 does not have a primitive prime divisor and, for a proof by contradiction, that IK(µ)N/N does
not contain a full Sylow t-subgroup of K/N . Then a = 2, t is a Mersenne prime, and IK(µ)N/N has
a (normal) subgroup H/N that is a Frobenius group whose kernel has order t and whose complements
are cyclic of odd order t−1

2 . Setting H0 = H ∩ IK(µ), we then get that the normal subgroup H0/L of
IK(µ)/L has irreducible characters of degree divisible by every prime in π−, and it has a trivial Schur
multiplier because every Sylow subgroup of H0/L is cyclic. Now µ extends to H0/L, which easily yields
that IK(µ) has irreducible characters lying over µ and having a degree divisible by every prime in π−.
As usual, we get a contradiction via Gallagher’s theorem.

It remains to consider type (iii). Assume that µ ∈ Irr(V ) is such that IK(µ)N/N is isomorphic to
either S4 or A4. Then t cannot be 3: otherwise the t-part of |K/N | would be larger than t, so t would
divide |K : IK(µ)| and no prime in π− could be a divisor of |K : IK(µ)N |. But this would force π− to
be empty, which is not the case. Thus, t is a divisor of |K : IK(µ)| and π− is then forced to be {3}. If
µ extends to IK(µ), then Clifford’s theory yields the adjacency in ∆(K) between t and 3, which is not
allowed. It only remains the possibility that µ does not extend to IK(µ), and this can happen only if V
is a 2-group. On the other hand, if IK(µ)N/N ∼= A5, a similar argument shows that either t is larger
than 5 and π− ⊆ {3, 5}, or {t} ∪ π− = {3, 5}; in any case t divides |K : IK(µ)| and, if µ extends to
IK(µ), then we get the adiacency of t with the primes in π−. This cannot happen, so again we have
that V is a 2-group.

To sum up, if there exists µ ∈ Irr(V ) such that IK(µ)N/N is of type (iii), then V is a non-trivial
irreducible K/L-module over the field F2 and the set π− is contained in {3, 5}. But now, for r ∈ π−, the
discussion in the last three paragraphs above ensures that the centralizer in K/L of every element of V
contains an element of order r: an application of Lemma 3.5 yields a contradiction (note that ta = 7 is
excluded here by the fact that π+ is assumed to be non-empty).

Our conclusion so far is that, for every non-trivial µ ∈ Irr(V ), the factor group IK(µ)/L either contains
a unique Sylow subgroup of K/L for every prime in π−, or it contains a unique Sylow t-subgroup of
K/L. Recall, however, that V is not the natural module for K/L because the factor groups IK(µ)/L
are never Sylow t-subgroups of K/L in the present situation. By (Lemma 3.1 and) Theorem 3.3 or
Theorem 3.4, depending on whether V has order coprime to t or is a t-group, we then get that ta = 13,
K/L is isomorphic to SL2(13), and V is one of the two 6-dimensional irreducible modules for SL2(13)
over F3.

In order to complete the proof of conclusion (c), it remains to show that actually |L| = 36 (which
also implies L = O3(K) ⊴ G). Observe first that, by our argument so far, |L/W | = 36 for every choice
of a chief factor L/W of K; this implies that L/U is actually a 3-group. If U ̸= 1, we see that every
non-linear irreducible character ϕ of L/U ′ has a degree divisible by 3. Now, such a ϕ is not K-invariant,
as otherwise it would have an extension to K (because the Schur multiplier of K/L is trivial) and
we would get a contradiction via Gallagher’s theorem; on the other hand, every maximal subgroup of
K/N ∼= PSL2(13) has an index in K/N that is divisible either by 7 or by 13, thus IK(ϕ)N cannot be
a proper subgroup of K and we have a contradiction. Our conclusion so far is that U = 1, i.e. L is an
abelian 3-group.

Taking into accout that (again by [15, 8.16, 11.22, 11.31]) every irreducible character of L extends
to its inertia subgroup in K, we are now ready to finish our argument. Let θ be a non-principal
irreducible character of L, and observe that θ cannot be K-invariant (as the Schur multiplier of SL2(13)
is trivial); therefore, IK(θ)N/N is contained in a maximal subgroup of K/N . Now, the index of a
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maximal subgroup of PSL2(13) lies in the set {14, 78, 91}, but the non-adjacency between 3 and 13 in
∆(G) rules out the index 78 for a maximal subgroup containing IK(θ)N/N . On the other hand, in all
the remaining cases, 3 divides the order of IK(θ)N/N ; but now IK(θ)/L has an irreducible character of
degree 3, yielding contradictory adjacencies via Gallagher’s theorem (recall that 3 is also non-adjacent
to 7 in ∆(G)), except when it contains a Sylow 3-subgroup of K/L as a normal subgroup. Since this
holds for every non-principal θ ∈ Irr(L), [29, Lemma 4] yields that L is an irreducible K/L-module,
completing the proof.

5. A proof of the main result

In this section we prove the Main Theorem stated in the Introduction, which provides a characteri-
zation of the groups having a normal section isomorphic to PSL2(t

a) (for t ̸= 2 and ta > 5) and whose
degree graph is connected with a cut-vertex.

Proof of the Main Theorem. We start by proving the “only if” part of the statement: we assume that
the group G has a composition factor isomorphic to PSL2(t

a) for a suitable odd prime t with ta > 5,
and the graph ∆(G) is connected with cut-vertex p.

As usual, this implies (via Theorem 2.7) that G/R is an almost-simple group whose socle is isomorphic
to PSL2(t

a), and V(G) = π(G/R) ∪ {p}. Moreover, by Theorem A of [27], if t is a divisor of |G/KR|
then both t and 2 turn out to be complete vertices of the graph ∆(G/R), against our hypothesis on
∆(G). Also, if p = t, then we get V(G) = π(G/R); but again [27, Theorem A] yields that the subgraph
of ∆(G/R) induced by π(G/R)− {t} is connected, not our case.

It remains to prove that one among (a), (b) and (c) holds and, in this respect, much of the work has
been done in Theorem 4.1. Namely, we will only have to show that V(G/K) = {p} in cases (a) and (b),
whereas p = 2 and V(G/K) ⊆ {2} in case (c).

Set N = K ∩ R (so, K/N ∼= PSL2(t
a)): we start by proving that t cannot lie in V(G/K). In fact,

assuming the contrary and recalling that t does not divide |G/KR|, we would have (by Ito-Michler’s
theorem) that t divides the degree of some irreducible character ϕ of R/N ∼= KR/K. Now, as KR/N
is the direct product of K/N and R/N , it easily follows that t is adjacent in ∆(G) to every prime in
π(K/N)−{t} = π(KR/R)−{t}. But an application of (Clifford’s theory and) Proposition 2.6(a) in [1]
yields that t is adjacent in ∆(G) to every prime r in π(G/R)− π(KR/R) as well: in fact, according to
that proposition, there exists an irreducible character θ of K/N such that |G : IG(θ)| is divisible by r,
and our claim follows considering any irreducible character of G lying over ϕθ ∈ Irr(KR). So, t turns
out to be a complete vertex in the subgraph of ∆(G) induced by π(G/R); this forces p = t, against
what observed above.

Next, we show that any prime q ∈ V(G/K) is adjacent in ∆(G) to all the primes in π(G/R) − {q}.
Take then q ∈ V(G/K) (recall that q ̸= t by the previous paragraph): it is well known that the Steinberg
character St of K/N has an extension to G (see for instance [25]). Therefore, recalling that St(1) = ta,
Gallagher’s theorem yields that q is adjacent to t in ∆(G). Now, if q divides |G/KR|, then q is adjacent
in ∆(G/R) to every prime in π(G/R) − {q, t} by [27, Theorem A]; but since q is also adjacent to t in
∆(G), we are done in this case. On the other hand, if q does not divide |G/KR|, then q divides the
degree of some irreducible character of KR/K (hence of R/N). Since KR/N = K/N ×R/N , clearly q
is adjacent in ∆(G) to every prime in π(K/N)− {q} = π(KR/R)− {q}; but q is also adjacent in ∆(G)
to every prime in π(G/R)−π(KR/R), by the same argument involving [1, Proposition 2.6(a)] that was
used in the previous paragraph. The desired conclusion follows.

As a consequence of the paragraph above, if there exists a prime q ∈ V(G/K) − {p}, then q is a
complete vertex in the subgraph of ∆(G) induced by π(G/R), which contradicts the fact that p ̸= q is
a cut-vertex of ∆(G). In particular, we get V(G/K) ⊆ {p}. Another immediate consequence is that, if
(conversely) p lies in V(G/K), then p is a complete vertex of ∆(G).

For cases (a) and (b) we actually see that p ∈ V(G/K). Assuming the contrary, we would have that
G/K is abelian, which implies R/N ⊆ Z(G/N). Now Theorem 2.8 yields that ∆(G) is disconnected,
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a contradiction (observe that the subgroup C of Theorem 2.8 coincides with R in our situation). As
for case (c), it can be checked via GAP [9] that the set of irreducible character degrees of K is {1, 2 ·
3, 7, 22 · 3, 13, 2 · 7, 23 · 7 · 13}, therefore π(G/R) = {2, 3, 7, 13} induces a connected subgraph of ∆(G)
and we get V(G) = π(G/R); as 2 is a complete vertex of ∆(G), we necessarily have p = 2 and the “only
if” part of the statement is proved. Observe that, still in case (c), t = 13 is adjacent in ∆(G) to the
cut-vertex 2 but also to 7, so the exception pointed out in the last sentence of the statement is a genuine
one. Note also that, by the last observation of the previous paragraph, p is a complete vertex of ∆(G)
in cases (a) and (b) because it lies in V(G/K), but p = 2 is a complete vertex in case (c) as well, thus
proving the first claim in the sentence that concludes the statement.

We move now to the “if” part. Observe first that, by Theorem 2.8 and Theorem 4.1 of [20], ∆(G) is
a connected graph under our hypotheses. Setting N = K ∩R as above, consider the Steinberg character
St of K/N ; we already observed that St, viewed by inflation as an irreducible character of K having
degree ta, has an extension to G. Thus, by Gallagher’s theorem, ta ·ψ(1) is the degree of an irreducible
character of G for every ψ ∈ Irr(G/K). Since one of our assumptions in cases (a) and (b) is that p
divides the degree of some irreducible character of G/K, we get the adjacency of t with p in ∆(G).
Furthermore, if K is as in (c) then, as noted in the paragraph above, 2 is a complete vertex of ∆(G),
thus it is the only possible cut-vertex of ∆(G) and it also adjacent to the vertex 3 in ∆(G).

In order to conclude the proof, we will show that there exists v ∈ V(G) which is adjacent only to
p in ∆(G): in particular, v is the vertex t in cases (a) and (b) (which settles also the last claim of
the statement), whereas it is the vertex 3 in case (c). To this end we will first prove that, for every
χ ∈ Irr(G) such that v ∈ π(χ(1)) and ker(χ) ⊇ L, we have π(χ(1)) ⊆ {v, p} (where L is set to be the
trivial group in case (a)); secondly, we will see that v does not divide χ(1) for every χ ∈ Irr(G) with
ker(χ) ̸⊇ L.

So, let us start with χ ∈ Irr(G) such that v ∈ π(χ(1)) and ker(χ) ⊇ L. Consider first cases (a) and
(b) (so, we set v = t). Since t does not divide |G/KR|, the degree of an irreducible constituent ξ of χKR

is necessarily divisible by t; moreover, taking into account that KR/L is a central product of K/L and
R/L, we have that KR/L is isomorphic to a quotient of the direct product K/L×R/L, hence ξ can be
viewed as the product of two suitable irreducible characters α, β of K/L and R/L, respectively. Since
V(G/K) = {p} and p ̸= t, it easily follows that t does not divide any irreducible character degree of
R/L, so t necessarily divides α(1). But K/L has a unique irreducible character of degree divisible by t
(see [10, Theorem 2.1(i)]), that is St: hence α = St and, as α has an extension to G, χ(1) is the product
of α(1) = ta with the degree of some irreducible character of G/K. We conclude that π(χ(1)) ⊆ {p, t},
as wanted. As regards case (c) (for which we set v = 3), we have G = KR and χ can be thought as
an irreducible character of K/L × R/L, as above; since 3 is only adjacent to p = 2 in ∆(K/L), and
V(R/L) ⊆ {2}, we easily deduce that π(χ(1)) ⊆ {3, p} in this case as well.

Finally, let χ ∈ Irr(G) be such that χL has a non-principal irreducible constituent λ (obviously
case (a) is not involved here). Denoting by V0 a Sylow v-subgroup of R, the hypothesis V(G/K) ⊆ {p}
implies that the factor group V0N/N is an abelian normal Sylow v-subgroup of R/N ∼= KR/K. It is
then easily seen that V0/L is an abelian normal Sylow v-subgroup of R/L (in particular, V0 ⊴ G), and
recall also that, by Lemma 2.6, we have L ⊆ Z(V0). Now, consider the normal subgroup KV0 of G:
taking into account that, both in case (b) and in case (c), IK(λ)/L is a Sylow v-subgroup of K/L, we
have that IKV0(λ) = IK(λ)V0 is a Sylow v-subgroup of G. Furthermore, again in both cases (b) and (c),
N/L acts fixed-point freely on L; thus the abelian subgroup L has a complement in G by the proposition
in the Introduction of [6]. It follows that λ extends to IKV0

(λ) and, as IKV0
(λ)/L ∼= (IK(λ)/L)× (V0/L)

is abelian, every irreducible constituent of λIKV0
(λ) is linear. Now Clifford’s theory (together with the

fact that v does not divide |KV0 : IKV0
(λ)|) yields that v does not divide the degree of any irreducible

character of KV0 lying over λ. But then v does not divide ψ(1), where ψ is an irreducible constituent
of χKV0

lying over λ. As v does not divide |G : KV0| as well, it follows that v does not divide χ(1), and
the proof is complete.
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We conclude the paper with the following remark, that compares the structure of the groups appearing
in the Main Theorem with the structure of the non-solvable groups whose degree graph has two connected
components.

Remark 5.1. Let G be a group satisfying the assumptions of the “only if” part of the Main Theorem,
i.e. G has a composition factor isomorphic to PSL2(t

a) for a suitable odd prime t (with ta > 5), and
∆(G) is connected with cut-vertex p. Then, by the Main Theorem, the structure of G turns out to be
very similar to the structure of a non-solvable group G whose graph ∆(G) has two connected components
(see Theorem 2.8), with the only exception of case (c).

In fact, in cases (a) and (b), we know that there exist normal subgroups K ⊇ N such that K/N ∼=
PSL2(t

a); these subgroups are respectively the last term in the derived series of G, and N = K ∩ R.
Also, observing that the subgroup denoted by C in the statement of Theorem 2.8 is in fact R, we have
that t does not divide |G/KR|. Finally, if N ̸= 1, then either K ∼= SL2(t

a) or there exists a minimal
normal subgroup L of G such that K/L ∼= SL2(t

a) and L is isomorphic to the natural module for K/L.
In other words, G has precisely the structure prescribed by Theorem 2.8 except for two aspects:

rather than being empty, the set V(G/K) consists of a single prime which is the cut-vertex p, and
the vertex set of G is π(G/R) ∪ {p} rather than π(G/R). This can be somewhat surprising, since the
graph-theoretical condition expressed in Theorem 2.8 is in principle much stronger than that of the
Main Theorem.

Of course, the two relevant classes of groups behave similarly also from the point of view of the graphs:
the only difference is that the groups of the Main Theorem have a degree graph with a complete vertex
p (that may be already in π(G/R) or not), which is the unique neighbour of t and which guarantees the
connectedness of the graph. For a description of the relevant graphs, we refer the reader to [8, Section 2].

On the other hand, the class of groups as in case (c) of the Main Theorem is different and doesn’t
show up in Theorem 2.8. As already pointed out, this is the only exception to the fact that p (which is
2) is the unique neighbour of t = 13 in ∆(G) (see Introduction, Figure 1).
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Università degli Studi di Firenze, viale Morgagni 67/a, 50134 Firenze, Italy.

Email address: silvio.dolfi@unifi.it

Emanuele Pacifici, Dipartimento di Matematica e Informatica U. Dini,
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