
How can landslide risk maps be
validated? Potential solutions
with open-source databases

Francesco Caleca1*, Veronica Tofani1, Samuele Segoni1,
Federico Raspini1, Rachele Franceschini1 and Ascanio Rosi2

1Department of Earth Sciences, University of Florence, Florence, Italy, 2Department of Geosciences,
University of Padova, Padova, Italy

Landslides are a worldwide natural hazard that cause more damage and

casualties than other hazards. Therefore, social and economic losses can be

reduced through a landslide quantitative risk assessment (QRA). In the last two

decades, many attempts of quantitative analysis on various scales have been

performed; nevertheless, the major difficulty of QRA lies in how precise and

reliable the assessment should have to be useful. For this reason, in this paper,

we analyzed different freely available datasets and some products of previous

research to assess the soundness of the outcomes performed by a recent QRA

of slow-moving landslides in the Arno River basin (Central Italy). The validation

process was carried out by comparing the abovementioned datasets and two

components of the selected QRA (hazard and risk). The obtained results

showed a robust correlation between most of the testing dataset and risk

components, highlighting the accuracy of the selected QRA.
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Introduction

Landslides are one of the major widespread natural hazards; each year, they cause

more economic damage and casualties than other natural hazards, such as floods or

earthquakes (Dai et al., 2002; Guzzetti, 2006; Petley, 2012; Wirtz et al., 2014). Landslide

occurrence is constantly increasing due to climate change, urbanization, deforestation and

the greater susceptibility of soil to instability (Nadim et al., 2006). Recent studies have

demonstrated that there has been a statistically significant increase in the number of fatal

landslide events over the last two decades (Haque et al., 2019) due to global warming.

Landslide occurrence triggered by human activity (construction, mining, and hill cutting)

is increasing (Froude and Petley, 2018).

Italy is the country most affected by landslides and mass movements. According to

Trigila et al. (2010), 6.8% of Italian territory is covered by landslides; specifically,

4,82,272 landslides cover an area of approximately 20,500 km2, and 70.5% of Italian

municipalities are affected by them. Landslides are the natural hazards that occur most

frequently in Italy, and they cause casualties and damage to buildings and infrastructure

(Catani et al., 2005).
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Social and economic losses by landslides can be reduced

through risk analysis and quantitative risk assessment (QRA),

which represent a crucial tool for risk management and planning

mitigation measures. To manage risk, it must be first analyzed

and evaluated; there is an increasing need to perform quantitative

risk analysis (QRA). QRA is distinguished from qualitative risk

analysis by the input data, the procedures used in the analysis and

the final risk output. In contrast with qualitative risk analysis,

which yields results in terms of weighted indices, relative ranks

(e.g., low, moderate, and high) or numerical classification, QRA

quantifies the probability of a given level of loss and the

associated uncertainties.

QRA is important for scientists and planners because it

allows risk to be quantified in an objective and reproducible

manner, and the results can be compared from one location (site,

region, etc.) to another (Corominas et al., 2014); moreover, QRA

can facilitate financial and cost–benefit analyses (Fell et al., 2008).

Landslide risk is a measure of the probability and severity of a

landslide event to health, property and the environment (Varnes

and IAEG Commission on Landslides, 1984; Fell et al., 2008).

This definition has been translated into a mathematical form by

the Varnes and IAEG Commission on Landslides, 1984: R (I) =

H × V(I) × E, where R is the landslide risk, H is the landslide

hazard, V is the vulnerability of exposed elements, I is the

intensity of landslides and E is the value of the element at risk

(e.g., the number of people or the monetary value of buildings).

In the last two decades, many attempts have been made to

quantify landslide risk on various geographic scales (Catani et al.,

2005; Remondo et al., 2005; van Westen et al., 2006; Zêzere et al.,

2007; Lu et al., 2014b; Uzielli et al., 2015a; Uzielli et al., 2015b;

Peng et al., 2015; Guo et al., 2020; Huang et al., 2020; Caleca et al.,

2022); however, due to the lack of complete data or inability to

obtain them, landslide risk studies can be based on indicator

definitions (Abella and Van Westen, 2007; Guillard-Gonçalves

et al., 2015; de Almeida et al., 2016; Trigila et al., 2018; Pereira

et al., 2020; Segoni and Caleca, 2021).

Nevertheless, one of the main difficulties of QRA lies in how

precise and reliable the assessment must have to be useful This

issue can be resolved only through a solid validation phase of the

results performed by a QRA, which is still an aspect of landslide

risk assessment that receives less attention by the geoscience

community; in contrast to the validation of landslide hazard,

which is a well-consolidated topic (Chung and Fabbri, 2003;

Remondo et al., 2003; Lombardo and Tanyas, 2020). This lack in

the state of art of landslide QRA is mainly due to future scenarios

analysis that QRA proposes, which can be validated only

verifying future damages and expenses of risk mitigation

measures that will be recorded in the expected scenarios.

The raised issue is the starting point of this paper, which aims

to analyze a set of available databases for the whole Italian

country to define which of them are more suitable to validate

QRA for landslides, demonstrating the feasibility of a robust

validation process. Specifically, we explore the possibility of using

different Italian open-source data and outcomes of previous

research studies to assess the soundness of a recently

performed regional-scale QRA in Italy (Caleca et al., 2022).

The regional-scale QRA selected for validation was performed

in the Arno River basin (Central Italy). This QRA was derived

from a methodological approach developed for slow-moving

landslides, and risk was defined in terms of expected damage

to buildings and land use. The methodology was based on the use

of freely available open data at the Italian national scale (e.g., IFFI

database, ISTAT census sections, OMI database, and VAM

database) to compute the components of the risk equation

with the final aim of obtaining national reproducible and

updatable values of landslide risk at the national level. The

obtained results showed high values of landslide risk in the

study area, with a total risk of 6.7 billion euros, and the

average value for each 1 km2 cell of the grid was 0.946 million

euros. These large results were mainly due to the adopted scale of

work, which emphasized the great urban centers; therefore, the

building exposure role in the risk assessment, specifically, the

building risks, were approximately one order of magnitude larger

than the land use risk.

Since the aim of this work is to validate landslide risk and its

components through a freely available dataset, the validation

focused only on landslide hazard and landslide risk values.

Nevertheless, we did not validate vulnerability since no open-

source database related to building damage from landslides is

available, and to carry out the validation, we would have required

detailed in situ surveys and investigations to retrieve the damage

affecting buildings and land use. Concerning the exposure

dataset used in the QRA analyses, these data have been

defined by public national institutions as the Revenue Agency,

and they do not need validation.

Study area and QRA assessment

The Arno River basin covers an area of approximately

9,100 km2 and is located in Central Italy, mostly in the

Tuscany region (98.4%) and a small part is located in the

Umbria region (1.6%) (Figure 1). In the Arno River basin,

approximately 78% (7,190 km2) of the territory is situated in

mountainous and hilly regions. The mean elevation of the whole

basin is approximately 235 m above sea level, with 85% of the

basin area lower than 600 m and the remaining 15% having

elevations greater than 600 m (Lu et al., 2014a). The river

originates in Monte Falterona and enters the Thyrrhenian Sea

near Pisa after flowing for approximately 241 km (Dapporto

et al., 2001).

The study area is placed across the Northern Apennine

chain, which is part of the Alpine orogen. A fold and thrust

belt developed in two main stages: first, an oceanic stage (Late

Cretaceous–late Eocene/Oligocene), which led to the formation

of the Alpine as a consequence of the Ligurian-Piedmont ocean

Frontiers in Earth Science frontiersin.org02

Caleca et al. 10.3389/feart.2022.998885

https://context.reverso.net/traduzione/inglese-italiano/Revenue+Agency
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2022.998885


closure through which the Ligurian units (internal oceanic

units) were deformed and accreted, and second, an ensialic

stage (late Oligocene–Present), during which continental

collision formed the Apennine chain (Boccaletti and Sani,

1998). Since the late Tortonian, the internal side of the

northern Apennines has been characterized by the deposition,

in episutural basins, of marine (to theWest) and fluvio-lacustrine

(to the East) sediments. This deposition occurred as a

consequence of a tectonic regime change from a

compressional to extensional regime (Elter, 1975; Carmignani

and Kligfield, 1990; Martini and Sagri, 1993; Vai and Martini,

2001).

The Arno River basin is mainly composed of flysch and rocks

with a prevailing pelitic fraction along the reliefs and cohesive

and granular soils in the hilly basins; obviously, this geological

composition affects the type and occurrence of surface processes,

primarily through differences in the mechanical properties of the

prevalent lithology (Stefanelli et al., 2020).

The study area is mostly affected by landslides; specifically,

due to its geological setting and lithological characteristics,

FIGURE 1
Location of the Arno River basin.

FIGURE 2
Flowchart of the methodology to compute total expenses of mitigation measures provided by the ReNDIS and DODS.
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slow-moving rotational slides are the mass movements that occur

most frequently (IAEG Commission on Landslides, 1990;

Bertolini et al., 2004; Catani et al., 2005; Catani et al., 2013;

Catani et al., 2016; Lu et al., 2014b; Rosi et al., 2018; Bicocchi

et al., 2019). It has been clearly demonstrated that most slope

movements are reactivations of pre-existing phenomena that

originally occurred in periods characterized by different climatic

conditions (e.g., intense rainfall and snowmelt), or

anthropogenic activities, in particular agricultural practices,

that are identified as the main triggering factors for the

reactivation of dormant landslides (Canuti et al., 1979; Farina

et al., 2006). According to the Italian landslide inventory, IFFI

(Trigila et al., 2007; Trigila et al., 2010), 18,134 landslides have

been mapped in the Arno River basin, and their areas range from

100 to 5,106 m2.

In the approach proposed by Caleca et al. (2022), the Arno

River basin was divided into a grid with a 1 km2 cell size, and

floodplains were excluded from the analysis to simplify the

calculation. For each cell, the parameters necessary for the

risk assessment were calculated (e.g., hazard, vulnerability, and

exposure).

The QRA derives from amethodological approach developed

for slow-moving landslides, and risk was defined in terms of

expected damage to buildings and land use. The methodology

was based on the use of freely available open data at the Italian

national scale (e.g., IFFI database, ISTAT census sections, OMI

database, and VAM database) to compute the components of the

risk equation (hazard, vulnerability, and exposure) with the final

aim of obtaining national reproducible and updatable values of

landslide risk.

The hazard was considered as the spatial probability of

landslide occurrence (e.g., susceptibility) due to the difficulty

of retrieving at the national scale information for the evaluation

of the temporal probability occurrence of landslides. The hazard

values were obtained from an already published slow-moving

landslide susceptibility map of Italy (Trigila et al., 2013), which

was based on the use of a machine learning algorithm, specifically

the random forest treebagger (Breiman, 2001; Brenning, 2005;

Catani et al., 2013). The original susceptibility map was updated

by combining it with the IFFI database defining a hazard index;

then, it was reaggregated to the 1 km2 cell to define a hazard

value. The outcomes showed that the hazard values spanned

from 0.11 to 1; obviously, there were no cells with hazard values

equal to 0 because alluvial plains were removed from the analysis.

The landslide risk was evaluated separately for each type of

element at risk (e.g., buildings and land use) in terms of economic

losses by applying the equation defined by the Varnes and IAEG

Commission on Landslides, 1984. Then, the total risk was

obtained by the sum of the buildings and land use. The

average value of building risk in the Arno River basin was

0.896 million euros, while the highest value was 67.89 million

euros and located in a cell of the municipality of Florence, while

the sum of building risk was 6.3 billion euros. The highest value

of land use risk was situated in a cell of the municipality of

Fiesole, which amounted to 0.809 million euros, and the sum of

the land use risk was 0.35 billion euros, while the average value

was 0.050 million euros. The highest value of total risk was placed

in a cell of the municipality of Florence, and it amounted to

approximately 68 million euros (the cell was the same as the

building risk); the average value was 0.946 million euros, and the

total sum was approximately 6.7 billion euros.

Data and methods

The validation procedure was based on a comparison

between the data obtained in Caleca et al. (2022) and several

open databases available for the study area (Table 1).

The validation procedure was carried out for the final output

of the QRA, landslide risk values and hazard values. The

vulnerability was not analyzed due to the lack of complete

data that could be compared with the vulnerability values

obtained in our former work.

Data for validation

The database employed to validate intermediate and final

outcomes of the QRA for the Arno River basin is described in

terms of availability, scale, resolution, and references.

The ground deformation data were used to validate the

hazard component of the QRA. The ground deformation data

are freely available for the whole Tuscany region and were

obtained using the SqueeSAR technique (Ferretti et al., 2011)

applied to radar images acquired by the Sentinel-1 satellite

constellation of the European Space Agency (ESA) (Bianchini

et al., 2018; Raspini et al., 2019). The SqueeSAR technique is a

second generation PSInSAR algorithm (Ferretti et al., 2001) and

has the great advantage of measuring ground displacements

using both Permanent Scatterers (PS) and Distributed

Scatterers (DS), identifying a sparse grid of measurement

points (MP) for which the displacement time series (TS)

along the satellite line of sight (LOS) and the mean yearly

velocity can be estimated (Ferretti et al., 2011; Crosetto et al.,

2016). Ground deformation data provide deformation map with

an excellent spatial and temporal resolution, that can be adopted

for validation purposes. According to the literature overview,

several studies based on satellite InSAR data have been

performed to refine or validate landslide susceptibility maps

and models (Ciampalini et al., 2016; Hussain et al., 2021).

The hazard and risk values obtained in our former QRA were

also verified through the analysis of landslide online news

collected through the employment of a data-mining algorithm

named SECaGN (Semantic Engine to Classify and Geotagging

News), which is a methodology developed by Battistini et al.

(2013). The SECaGN method relies on a mechanism of
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acquisition, management, publication and geolocation of Google

News related to landslides, with a final output represented by an

updatable and complete inventory. According to the literature

overview, landslide online news report events with high mass-

media attention, locating those phenomena that caused huge

damage. Therefore, this aspect turns out to be very appropriate

for hazard and risk validation purposes (Battistini et al., 2017;

Franceschini et al., 2022). Geodatabases that present on-going

geomonitoring analysis of the area of a given municipality or

province are very useful within validation frameworks

(Skrzypczak et al., 2021).

To validate the outcomes of the QRA, financial data

concerning the expenses spent on landslide remediation or

risk mitigation measures were collected, and these data were

provided by the ReNDiS and DODS databases. The first one

holds information data (e.g., amount allocated) on mitigation

measures and restoration projects of soil protection implemented

at the national scale since 2000 (Spizzichino et al., 2009;

Campobasso et al., 2013); currently, the ReNDiS database

contains 6,063 records, which amount to approximately

6.60 billion euros. Specifically, 3,615 records out of 6,063 are

related to landslides. Unfortunately, ReNDiS database does not

provide the amount allocated by local and regional

administrations, however this gap is filled by the DODS database.

The latter provides information about expenses for hydraulic

and hydrogeological hazard mitigation in the Tuscany Region

since 2016 spent by the regional administration; specifically,

approximately 94 million euros were allocated over the period

from 2016 to 2020 (2021 is not yet available).

Last, the outcomes of QRA were verified through two

different landslide risk indicator databases, which were

adopted to describe in a simplified way a phenomenon of

interest. These indicators have the advantage of being concise,

easy to understand and easy to measure and update.

Undoubtedly, landslide risk indicators are, by definition, are a

simple means to frame very useful to frame areas potentially

subjected to economic losses due to landslides, despite they

represent an oversimplification of the risk analysis topic.

The risk indicators developed by ISPRA (Trigila et al., 2018)

are related to population, families, buildings, industries/services

and cultural heritage over the whole Italian country. The

indicators provide the number of different types of elements

at risk for each landslide hazard area (e.g., very high hazard, H4;

high, H3; medium, H2; moderate, H1; and attention zones, AA)

defined on the basis of the national mosaic of landslide and flood

hazard zones realized by ISPRA. The purpose of these indicators

is to define an official reference framework for landslide and

flood risk in Italy to create a support tool for national mitigation

policies by identifying intervention priorities, allocation of funds,

programming mitigation measures and planning civil protection

measures.

The risk indicators proposed by ISPRA are freely available on

the new national IdroGEO web platform, which allows the

navigation and download of data and reports and represents a

solid infrastructure to communicate and disseminate

information about hydrogeological hazards in Italy (Iadanza

et al., 2021).

The other set of indicators employed was the one proposed

by Segoni and Caleca. (2021), who created indices by overlaying

in a GIS environment a susceptibility map (expressing the spatial

probability of landslide occurrence) and the nation-wide soil

sealing monitoring data (classifying as “1” the urbanized areas

and as “0” the natural and seminatural areas). While the

susceptibility values are used as a proxy for landslide hazards,

soil sealing maps account for the presence/absence of anthropic

elements exposed to risk. Two indices were created to quantify

the degree of overlap between hazardous areas and built areas,

which represent the basic condition to have a relevant degree of

risk. The ALR (averaged landslide risk) index characterizes each

mapping unit with the mean value of hazard found

corresponding to anthropic elements. This index provides an

average of how hazardous the portion of the territory that has

been urbanized in each mapping unit is. The TLR (total landslide

risk) expresses for each mapping unit the sum of the

susceptibility values of all urbanized cells. Basically, this index

can be used to cumulate for each administration the conditions of

interaction between spatial hazard and urbanized areas,

expressing how much the development of the municipality

has let hazardous areas be “invaded” by construction,

infrastructure and services. If compared with a QRA, these

TABLE 1 The data to be validated and used for the validation process.

Validated parameter Data for validation Scale/Resolution Website/Reference

Hazard Ground deformation database (InSAR data) Regional (Tuscany) https://geoportale.lamma.rete.toscana.it/difesa_suolo

Hazard/ Risk Landslide online news National Battistini et al. (2013)

Risk ReNDiS database National http://www.rendis.isprambiente.it/

DODS database Regional (Tuscany) https://geoportale.lamma.rete.toscana.it/difesa_suolo

Risk indicators National Segoni and Caleca. (2021)

Risk indicators National Trigila et al. (2018) https://idrogeo.isprambiente.it/app/

The translation of the Italian acronyms is provided: ReNDiS (Repertorio Nazionale degli interventi per la Difesa del Suolo) denotes “Repertory of mitigation measures for National Soil

Protection”; and DODS (Documento operativo per la Difesa del Suolo) denotes “Operative Document for Soil Protection.”
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very simple indicators can be assumed to consider vulnerability

as equal to one and to simply account for the presence of exposed

elements, neglecting their worth.

Hazard validation

In this work, the validation process regarding the hazard

component of the QRA was based on two different phases: the

first phase relied on a comparison between the ground

deformation data retrieved by Sentinel-1 and the hazard index

map; the other phase concerned the analysis of the relation

between the landslide hazard values and the database of

landslide online news collected by the SECaGN algorithm.

The ground deformation data were used for the validation

process to verify whether areas with higher landslide hazard

index values corresponded to active ground movement. In the

comparison processes, data acquired in both ascending and

FIGURE 3
Frequency distribution of velocity classes of MP in hazard values. Ascending dataset (A); descending dataset (B).
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descending geometries were considered; subsequently, they were

divided into three classes based on their mean yearly velocity

expressed in absolute values: MP with velocity <2 mm/yr; MP

with 2 mm/yr < velocity <16 mm/yr; and MP with

velocity >16 mm/yr. These different threshold values were set

according to the landslide velocity classification proposed by

Cruden and Varnes (1996). To allow for a proper comparison

with the landslide hazard map (which has a 50 m × 50 m pixel

resolution), each MP was converted to a cell with a pixel spacing

of 30 m × 30 m (which generally corresponds to the resolution of

the InSAR processing). Finally, for each ground deformation cell,

a mean landslide hazard value was calculated, which was

compared with the corresponding velocity class.

The hazard component of the QRA was also analyzed with the

inventory of landslide online news collected by the SECaGN data-

mining algorithm. The online news used in our validation process

ranged from January 2010 to June 2021, and the automatic

inventory comprised approximately 51,390 news items regarding

the whole Italian territory. Obviously, landslide news was considered

only for the study area and was aggregated at the provincial scale to

define the amount of landslide news on the territory of each

province. Among the different Italian administrative levels, the

provincial scale turned out to be the analysis scale that better

optimized the spatial distribution of landslide online news. The

adoption of higher (i.e., regional) or lower (i.e., municipal)

scales of aggregation would have led to an overestimation or

underestimation of the amount of news before the

comparison with the hazard values. Landslide hazard

values, calculated for each of the 1 km2 cell sizes of the

grid, were aggregated to the provincial scale to obtain a

mean hazard value. Therefore, for each of the nine

provinces located in the Arno River basin, a mean hazard

value and a number of landslide news items were obtained.

Risk validation

The accuracy of outcomes provided by our former QRA were

verified through several databases (financial data, landslide

online news and risk indicators) to analyze in detail the

landslide risk values. The ReNDiS and DODS data were

clipped over the study area and aggregated to the 1 km2 grid

to obtain for each cell the sum of expenses from the two databases

(Figure 2). Subsequently, the financial data were compared with

the landslide risk values obtained in Caleca et al. (2022).

The landslide risk values were also analyzed through online

news related to landslides, which were also employed in hazard

validation. Nevertheless, online news is mainly related to damage

caused by landslides; therefore, it is possible to assume that they

can also be used in landslide risk validation. Similar to the hazard

validation process, landslide online news and landslide risk

values were aggregated to the provincial scale. For each

province, the sum of the risk values was computed, and this

value was compared with the number of online news items.

Last, the risk values were compared with two different

databases of national risk indicators; for this validation phase,

the outcome analyzed was the risk to buildings because both risk

indicators do not report information about land use risk, while

they provide data about buildings; indeed, the ISPRA indicators

clearly show the number of buildings for each landslide hazard

zone. Likewise, the indices proposed by Segoni and Caleca.

(2021) were computed on the basis of the urbanized areas,

which can be undoubtedly correlated to the exposure to

building risk.

Results and discussion

Hazard vs. ground deformation data

InSAR data represent a valuable support for the validation of

landslide hazard maps, as they depict the same geomorphological

element from a complementary perspective: While hazard

represents the probability of occurrence of slope instability,

InSAR measures the corresponding ground deformation with

a mutual benefit.

The comparison shows a general agreement between the

landslide hazard map and the ground deformation data,

highlighting that areas with high hazard values largely

correspond to zones with high deformation rates. This general

trend was highlighted by both the ascending and descending

datasets. Figure 3 clearly includes the frequency distribution of

the three velocity classes of MPs for both the ascending and

descending geometries; concerning MPs with velocity <2 mm/yr,

their peak was in the lower hazard range between 0 and 0.05,

while for the other hazard intervals, the percentage of these MP

classes was always very low, being less than or equal to 5% for

both the ascending and descending datasets.

The frequency distribution of MP with 2 mm/yr<
velocity <16 mm/yr showed that this class mainly recurred for

hazard values that could be considered medium-high;

specifically, for the ascending dataset, approximately 50% of

TABLE 2 Amount of landslide online news for each province.

Province N° News

Florence 777

Pisa 314

Arezzo 223

Lucca 210

Siena 195

Pistoia 131

Prato 101

Perugia 50

Livorno 13
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this velocity class was within the hazard range from 0.40 to 0.70

(Figure 3A), while for the descending dataset, approximately 56%

of the class was in the same hazard interval (Figure 3B).

Focusing on the highest velocity class of MPs (v > 16 mm/yr),

their distribution highlighted that the majority of MPs of this

class belonged to areas with high landslide hazard values;

approximately 82% of this class in the ascending dataset was

characterized by a hazard value greater than 0.60, while

approximately 73% was in the descending dataset. Specifically,

for both datasets, the peak of the MP with velocity >16 mm/yr

was located in the hazard interval between 0.65 and 0.70, with a

percentage of approximately 25%.

The results obtained from this validation process clearly

reported, despite intrinsic differences between the two sources

FIGURE 4
Number of landslide online news items versus QRA values. Mean hazard (A); and total risk (B).
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of information, good agreement between the InSAR and hazard

datasets: analysis of the frequency distribution of the three

velocity classes of MP showed a positive correlation between

the hazard values and ground deformation velocities. The

presence, within low hazard classes, of small percentages

(on the order of a few percentage points) of MPs with

medium and high velocities did not decrease the level of

correlation, as these MPs were isolated, single points that

most likely represent false positives, being more related to

noise (Barra et al., 2017) or artifacts in the interferometric

processing chain, rather than to actual deformative processes

(Solari et al., 2019).

Hazard and risk vs. landslide online news

The landslide online news collected from January 2010 to

June 2021 for the Italian provinces located in the Arno River

basin amounted to approximately 2,014 items. The subdivision

for each province is reported in Table 2. The province of Florence

had the largest number of news items (777); the second largest

was the province of Pisa with 314 landslide news items; and

Arezzo was the third province with 223 news items recorded in

its territory. The provinces reporting the lowest number of news

items were Perugia and Livorno, with 13 and 50, respectively. The

outcomes concerning the aggregated hazard value at the

provincial level clearly showed a homogeneous distribution:

the landslide hazard values spanned from 0.42 to 0.57;

specifically, there were two provinces in the Arno River basin

(Prato and Florence) with the largest hazard value (0.57), while

the province of Arezzo had the second largest hazard value with a

mean value of 0.56. In contrast, the provinces of Perugia, Pisa,

Siena, and Livorno had lower values, which were 0.42 (Livorno),

0.48 (Perugia), and 0.46 (Pisa, Siena). Similar to the hazard

validation process, the landslide risk values were compared

with online news after a reaggregation at the provincial scale.

For all nine provinces located in the Arno River basin, the total

landslide risk was calculated as the sum of the risk value of each

cell within the province. The province of Florence showed the

highest value, with approximately three billion euros,

approximately half of the total risk evaluated in Caleca et al.

(2022). The second one was Arezzo, which reported

approximately 936 million euros, and the third province was

Pistoia, with 701 million euros. In contrast, the provinces with

the lower sum of landslide risk were Perugia and Livorno, with

15 and five million euros, respectively.

The results carried out from the comparison between the two

datasets provided by the QRA and the landslide online news for

FIGURE 5
Location of mitigation measures.
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each province are reported in Figure 4. The analysis performed

demonstrated the absence of a robust correlation between the

mean hazard value and the news collected for each province.

Specifically, the r squared factor of the regression line (Figure 4A)

was approximately 0.18. In contrast, the comparison between

the total landslide risk and the amount of news for each

province (Figure 4B) showed a positive and robust

correlation, with a very high value of the r squared factor

(0.90). Specifically, the performed analysis demonstrated for

most provinces that by increasing the risk, the number of news

items also increased. In addition, the provinces showing an

inconsistent trend (Pisa and Lucca with a high number of

news items but a low total risk) were the same as the smaller

portion of their territory within the Arno River basin;

therefore, a small number of cells were involved in the

QRA, leading to a very low total risk.

Risk vs. expense mitigation measures

The locations of mitigation measures in the Arno River

basin provided by the ReNDiS and DODS databases are

reported in Figure 5. For the validation of risk, expenses

related to 167 measures were considered; 80 of these were

related to the ReNDiS inventory, and the remaining 87 were

related to the DODS inventory. The analysis performed

through the comparison between landslide risk values and

financial data highlighted that approximately 2% of 1 km2

cells had at least one landslide risk prevention or mitigation

measure. Specifically, 47.5% of these cells had only measures

reported by the DODS inventory, 44.9% had only measures

reported by the ReNDiS, and the remaining 7.6% had measures

reported by both the DODS and ReNDiS databases.

The total amount of expenses related to mitigation measures

was approximately 54 million euros: 19 million from the DODS

database and 35million from the ReNDiS database. The cell with the

highest value of total expenses was located in the municipality of

Pontassieve in the province of Florence, and the total amount was

approximately 2.5 million euros compared to a landslide risk of

21 million euros. Specifically, approximately 1.8 million of this

expense was provided by the ReNDiS inventory, while the

remaining 0.7 million euros were provided by the DODS

database. This cell reported the following parameters: Hazard =

0.85, landslide intensity = I3, building vulnerability = 0.5, land use

vulnerability = 0.194, building exposure = 49million euros, and land

use exposure = 1.2 million euros.

The highest expense reported by the DODS database was in a

cell at the boundary between the municipality of Capannori in

the province of Lucca and the municipality of Buti in the

province of Pisa, and it amounted to 1.35 million euros, while

the cell with the highest value provided by the ReNDiS database

was the same with the highest total expenses (DODS + ReNDiS).

Furthermore, the comparison between risk values and financial

data showed that the cell with the highest landslide risk (68 million

euros) did not contain any mitigation measures; considering only

the cells with mitigation measures, the average landslide risk was

three million euros compared to an average expense of 0.46 million.

Expenses for prevention and mitigation measures are

generally one order of magnitude lower than the QRA values;

specifically, if only cells with mitigation measures are considered,

the sum of the computed landslide risk is approximately

386 million euros compared to 54 million euros for the

amount of expenses.

Figure 6 shows the frequency distribution of total

landslide risk (€) (Figure 6A) and funds for mitigation

measures (€) (Figure 6B) in cells where both parameters

are greater than 0. In both frequency distributions, the

mean value was reported, and it clearly demonstrates that

the mean value of mitigation measure expenses is

approximately one order of magnitude less than the QRA

mean value; specifically, the average value of landslide risk is

FIGURE 6
Frequency histogram of total landslide risk (A) and expenses
of mitigation measures (B).
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approximately 3.5 million euros, while that of mitigation

measures is approximately 0.443 million euros.

This difference between the funds allocated and landslide

risk is due to several facts. First, the main difference is caused

by the resolution adopted in the QRA, which was 1 km2,

while the data related to the mitigation measures are

geolocated and they show the precise location of the

measure; thus, there is a large difference between the

resolution of the data compared that certainly could prove

the order of magnitude of difference between the data. A

further difference is undoubtedly due to the target of

mitigation measures, which are usually roads and exposed

elements that were not analyzed in our previous QRA, while

buildings are scarcely present as elements for which

mitigation measures were implemented. Furthermore, the

difference between financial data and landslide risk values

can be explained by the fact that not all financial data were

collected; indeed, in this study, only the available public

funds were considered, while the private funds, which mainly

refer to buildings, are not available.

Nevertheless, the validation process proves the accuracy of

our landslide risk values since 70% of cells with mitigation

measures have a landslide risk greater than the expenses; the

remaining 30% of cells have a value of risk lower than the

mitigation measure. These cells are not in urban areas, and

the expenses are mainly related to road reconstruction and

stabilization after a landslide event. Roads were not

considered in the QRA analysis.

Risk vs. landslide risk indicators

Concerning the indicators proposed by ISPRA and made

openly available by the platform Idrogeo, we considered only

those referring to landslides, and among them, we selected the

“number of buildings in H3 and H4 areas” indicator, which

provides a count, for each administrative subdivision, of the

buildings located in areas that were mapped in the two highest

classes of hazard. The index aggregated at the municipality level

was compared with the mean building risk (MbR) of each

municipality resulting from the QRA. The results of the

comparison are portrayed in Figure 7.

Only in a part of the municipalities can a consistent trend be

observed, where MbR and number of buildings in H3 and H4 areas

are positively correlated (that is, in general, the higher the number of

buildings built in hazardous areas, the higher the mean risk).

Some municipalities, however, are characterized by pairs of

values that appear inconsistent for two opposite reasons.

Analyzing these inconsistencies is useful for gaining insight

into the weaknesses and points of strength of the QRA

compared to a simplified approach. A cluster of municipalities

exhibits a low number of buildings in the H3 and H4 area values

and medium or high MbR values. This is because the QRA-

derived indicators also use lower hazard classes (and not only the

highest ones); moreover, the quantification of exposure leads in

some municipalities to a very high total risk, even if the number

of buildings at stake is limited (e.g., in the surroundings of

Florence, the main city of the test site). Conversely, a cluster

FIGURE 7
ISPRA data versus mean building risk.
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of municipalities with low MbR and a high number of buildings

can also be observed in the H3 and H4 areas. This discrepancy is

mainly observed in municipalities on the edge of the Arno Basin:

the indicators were calculated on a municipality basis, while the

QRA was performed only in a portion of the municipality, namely,

in those 1 km2 cells that are contained within the Arno River basin.

In some other cases, the dissimilarity can be referred to

municipalities in less developed areas, which show a large

number of hazardous buildings, characterized by relatively low

building exposure compared with the rest of the test site.

The comparison between IDROGEO indicators and the QRA

outcomes shows that indicators can be used as a general estimate

of landslide risk only in some cases, as the exposure of buildings

plays a crucial role in driving relevant differences between

municipalities exposed to similar hazard levels.

The risk indicators proposed by Segoni and Caleca (2021)

can be considered an intermediate step between the ones by

ISPRA and the ones that can be derived from a QRA, as hazard is

considered a continuous value (provided by a susceptibility

assessment) and the exposure is not a count of the buildings

FIGURE 8
Average landslide risk index versus mean building risk (A). Total landslide risk index versus total building risk (B).
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but accounts for the areal extension of urbanization. It is

important to stress that infrastructure was considered as well,

while in the QRA by Caleca et al. (2022), this was not explicitly

considered. Indeed, the pairs of indicators compared in Figure 8

show a better match than the comparisons with IDROGEO

indicators. Figure 8 shows a comparison of indices aggregated

at the municipality scale. The mean building risk and the average

landslide risk indices are scattered, but an upper boundary is

clearly distinguishable. This is because, in general, the higher the

landslide hazard affecting urbanized areas (ALR), the higher the

risk. However, if the risk is calculated in a quantitative way, the

mean risk can deviate from this theoretical trend (represented by

the hypothetical upper boundary in the graph) and can show

smaller risk according to lower vulnerability and different levels

of exposure (i.e., economic value of the elements at risk)

(Figure 8A). A similar outcome is obtained if the aggregated

FIGURE 9
ALR (A) and TLR (B) indices aggregated to a 1 km2 resolution versus total risk.
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risk (quantitatively expressed by the total buildings risk) is

compared with the total landslide risk index in each

municipality (Figure 8B). An upper bound is clearly

distinguishable, even if it has a less straightforward pattern

than in the previous case. In general, if in a municipality

many urban elements are built in hazardous areas, the total

risk is higher. This simple rule defines the upper bound line in

the graph, while the points are actually scattered because in

every municipality, the buildings are characterised by

different levels of vulnerability and different real estate

market values. The upper bound line has a reverse trend

for a few municipalities characterized by high TLR and low

TBR values, which can be explained mainly as the “border

effect.” In general, these municipalities are either only

partially contained in the Arno Basin or have a relevant

portion of territory occupied by almost flat territories (e.g.,

small alluvial plains of Arno River tributaries), which were

filtered out with different criteria in the QRA and in the

previous work of Segoni and Caleca. (2021). These spatial

differences lead to inconsistent outcomes in a small number of

municipalities.

To overcome this issue and to more closely examine the

correspondence between QRA values and risk indicators, the

comparisons were repeated using the raw QRA data at the pixel

level (1 km2 cell size) and the ALR and TLR indices aggregated

over the same spatial unit (Figure 9).

Conclusion

Quantitative risk assessment (QRA) is a fundamental means

in landslide risk management and planning mitigation measures

since it quantifies the probability of a given level of loss

(Corominas et al., 2014); therefore, QRA presents major

challenges to the geoscience community, and the difficulty lies

in how precise and reliable the evaluation has to be to be useful to

the users of a risk assessment (Lee, 2009). In this work, we

analyzed different governmental datasets and some products of

previous research to assess the soundness of the outcomes

performed by a recent QRA for slow-moving landslides in

Italy (Caleca et al., 2022).

The test process was based on a comparison between these

datasets and two components of the selected QRA: hazard and

risk. The outcomes showed a robust correlation between the

ground deformation data and the landslide hazard input values,

highlighting that areas with high hazard values correspond to

high deformation rates. Alternatively, a strong correspondence

was not found in a comparison between landslide hazard and

landslide online news provided by the SECaGN algorithm

(Battistini et al., 2013). Nevertheless, this research product

turns out to be an appropriate tool for risk validation

purposes since a strong relationship was reported between this

and landslide risk at the provincial level.

The soundness of landslide risk values developed by the

selected QRA was further confirmed by a comparison between

these values and financial data concerning expenses for risk

mitigation measures (ReNDiS and DODS databases) and

landslide risk indicators performed at the national scale by

previous studies (Trigila et al., 2018; Segoni and Caleca, 2021).

The proposed work represents a supplementary process

regarding the landslide QRA topic as it evaluates different

databases to test the accuracy of a novel QRA approach.

Future developments could be performed regarding those risk

components that were not analyzed in this work (e.g.,

vulnerability) due to the lack of suitable data for the comparison.
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