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Abstract: Large-scale gridded climatic data can be useful for the assessment of climate variability
and change as a basis for understanding and monitoring natural hazards, as well as for determining
appropriate coping strategies. However, an evaluation of the accuracy of these data products against
local observational measurements over the different regions of the globe is always required, as these
large-scale data may be affected by systematic errors, which can affect the results of downstream
applications. Therefore, this study was carried out to evaluate the performances of two long-term
gridded datasets in reproducing station-based precipitation and temperature data over the Apulia
region (southern Italy) for the period 1956–2019, with a particular focus on the effect of using the
different data sources on the results of trend analyses and aridity classification. The results revealed
that the considered gridded data products allow only general indications on the spatial and temporal
behavior of climatic variables over the Apulia region, especially in regard to precipitation data.

Keywords: precipitation; temperature; station data; gridded data; E-OBS; CRU; climate; trend; aridity;
Apulia region

1. Introduction

On a global scale, extreme weather events, causing major adverse impacts on pop-
ulations, economies and the environment, have been observed becoming more frequent
in the last decades because of climate change [1]. In this context of changing climate, the
understanding and monitoring of the variability of climatic parameters are crucial for iden-
tifying suitable coping strategies against climate-related risks [2,3]. While in situ station
data can provide a clear picture of the climate state and its trend in a region of interest, the
spatial coverage of dense observation networks over the globe is still highly uneven [4].
To overcome this problem, several global and regional climatic gridded datasets, derived
through interpolation of station data, have been released over the years (e.g., [5,6]). These
products provide long-term climatic information for large areas, thus making them suitable
to be used for applications at any spatial scale. However, in spite of rigorous protocols for
their production, these datasets inherently bring potential inaccuracies and errors that may
significantly affect the results of downstream applications [7–12].

In particular, larger errors are especially expected in regions characterized by complex
topographic and/or climatic features as a consequence of the smoothing effect behind the
interpolation methods on which gridded data are based [13–17]. In this regard, the Mediter-
ranean region, often referred to as a hotspot for climate change [18], can be considered as a
pivotal example because of its transitional position between tropical and temperate climates
and its complex orography. Several studies have analyzed recent trends in the main climatic
variables for the Mediterranean, identifying a significant warming all over the basin and a
weak, although not spatially uniform, decreasing trend in total precipitation (e.g., [19–22]).
The study carried out by Kostopoulou et al. [23] for the eastern Mediterranean region
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revealed the ability of the E-OBS [5] gridded dataset to satisfactorily reproduce temperature
data registered in most of the 54 considered meteorological stations, although with some
evident deviations at higher elevations, while a poorer accuracy was found for precipita-
tion data. These general tendencies have been also confirmed and emphasized by studies
carried out at smaller spatial scales, relying on more dense observational networks, as
shown for instance in Turco et al. [24], Dumitrescu and Birsan [25] and Curci et al. [16].

In this heterogeneous context, it is therefore critical to evaluate the reliability of grid-
ded data products in reproducing local climatic features captured at point meteorological
stations, especially when used for performing impact assessments of climate change or de-
riving conclusions on climate variability. Consequently, more intercomparisons of different
data sources in regions with diverse climatology and topography would be beneficial to
obtain more insights into the global view of the accuracy and uncertainties related to the
use of gridded data.

The present study was then carried out to investigate the different outcomes, in terms
of trend assessment and aridity classification, resulting from the analysis of long-term
temperature and precipitation observations registered at gauging sites or derived from
large-scale gridded datasets. The selected study area is the Apulia region (located in
the eastern part of the Mediterranean basin), one of the most climate-vulnerable areas
in Italy, challenged by warming, water scarcity and intensive agricultural activities [26].
At the same time, the existence of a robust dense temperature and precipitation gauging
network makes it suitable for an intercomparison study aimed at assessing the reliability
of large-scale gridded data; such analysis has not already been performed in any of the
previous investigations carried out for the region, which were instead aimed at analyzing
the impacts of climatic variability on groundwater, agriculture, landslide occurrence and
possible desertification [26–30].

The paper is organized as follows: the datasets and the methodology for the intercom-
parison analysis on the use of the different data sources in terms of trend detection and
aridity classification are described in Section 2; Section 3 presents the results of the compar-
isons and the corresponding discussion, followed by concluding remarks in Section 4.

2. Materials and Methods
2.1. Study Area and Station Data

The Apulia region (Figure 1) extends over an area of approximately 20,000 km2 in
southern Italy, characterized by a mostly flat topography, with more than 50% of the
territory located below 300 m a.s.l. and only a small portion of it (<2%, in the northern part
of the region) exceeding 600 m a.s.l.

The climate is typically Mediterranean, with hot, dry and sunny summers and mild
and rainy winters, receiving more than 60% of total annual precipitation. The mean annual
temperature ranges between 12 ◦C and 17 ◦C, with a mean summer temperature of approx-
imately 24 ◦C. Although dominated by a Mediterranean macroclimate, the morphology of
the region determines the occurrence of many local microclimates, with a strong influence
of winds, especially over the Adriatic coastal areas.

The station data used in this study as a comparison means for gridded data products
derive from a dense observation network managed by the “Centro Funzionale Decentrato
della Protezione Civile della Regione Puglia”. The originally available precipitation dataset
for the region consisted of monthly rainfall measured at about 140 meteorological stations,
while temperature data included registrations for monthly maximum, minimum and mean
temperatures at about 100 gauging stations. Preliminary standard quality control proce-
dures (World Meteorological Organization [31]) were applied to the time series to identify
nonphysical values (e.g., abnormally high/low temperature, minimum temperature higher
than maximum temperature, repeated values, misprints and abrupt jumps) and outliers
through comparison with neighboring correlated stations. This study focused on the period
1956–2019 to guarantee a homogenous spatial density of stations over the region and to
reduce the number of missing records in the time series. In detail, the final dataset included
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only those stations having less than five consecutive years of missing data and being
characterized by a limited overall percentage of missing annual records, which was set
at 10% and 17% for precipitation and temperature measurements, respectively. The final
selected dataset at the end of this preprocessing phase then consisted of 84 precipitation
and 44 temperature gauging stations (Figure 1 and Table S1). On average, the percentage of
missing data in the considered precipitation and temperature time series was, respectively,
equal to 2.5% and 8.7%. In this study, it was decided to not apply any filling procedure for
the reconstruction of missing values, as well as any homogenization algorithm, in order to
avoid the introduction of any bias in the time series used in the comparison with gridded
datasets, which themselves can contain inhomogeneities [8,11].
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Figure 1. Overview of the study area, with indication of the considered meteorological stations
(reported in Table S1) and spatial coverage of the two gridded datasets (E-OBS and CRU) selected for
the analysis.

2.2. E-OBS Database

The E-OBS is a database developed at the European level comprising daily values of
precipitation and minimum, maximum and mean temperature back to 1950, constructed on
a 0.1◦ regular grid (~11 km × 11 km) through interpolation of the most complete collection
of station data over wider Europe [5,32]. All gridded datasets (E-OBS v23.0e, released
on March 2021) used in this study are available on the project’s website (www.ecad.eu,
accessed on 18 May 2022).

2.3. CRU Database

Similarly to the E-OBS, the CRU dataset, generated by the Climatic Research Unit
of the University of East Anglia, provides monthly precipitation as well as minimum,
maximum and mean temperature on a 0.5◦ global grid (~55 × 55 km) back to 1901 [33].
The latest version of the dataset (CRU TS v. 4.05, released on March 2021 and available

www.ecad.eu
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at https://crudata.uea.ac.uk/cru/data/hrg/, accessed on 18 May 2022), was used in
this study.

2.4. Analysis of Temperature, Precipitation and Aridity Indices

Temperature and precipitation station data were compared to the E-OBS and CRU data
extracted from the nearest grid cell. The following time series over the common period 1956–
2019 were then associated to each station based on available raw monthly data: annual and
seasonal precipitation (RR) and annual and seasonal mean temperature I, mean maximum
(TX) and minimum (TN) temperature. The different seasons are identified hereinafter
by using the following subscripts: spring (spr) (March–April–May) and summer (sum)
(June–July–August) for the “warm season” and winter (win) (December–January–February)
and autumn (aut) (September–October–November) for the “mild/cold season”. The same
time series were derived from the gridded products and associated to the selected sites.

As a first mean for comparison, Taylor diagrams were used to examine how closely
gridded precipitation and temperature data resemble in situ registrations. These diagrams
can indeed provide a concise overview on the similitude between datasets in terms of
three statistics, i.e., the Pearson correlation coefficient, the root-mean-square error and the
standard deviation [34].

Then, it was analyzed to what extent the differences in the datasets reflect on the
results of trend assessment, in terms of detection of significant/nonsignificant changes and
trend magnitude in the climatic variables. To this aim, the nonparametric Mann–Kendall
test [35,36] was applied to identify the presence of significant climatic linear trends in the
time series of the above-mentioned variables. Trend magnitude was quantified using the
Theil–Sen approach [37] and the statistical significance of the trend was assessed at the
5% level. All trend analyses were performed for the individual stations considering the
different data sources.

Furthermore, the processed temperature and precipitation data at the selected sites
were then used to calculate new annual time series representing aridity indices, calculated
based on the three different data sources. For this purpose, we considered two of the most
renowned aridity parameters, namely the De Martonne (DMI) and the Pinna combinative
(PCI) aridity index [38–40], widely used to identify the dry/humid climate conditions of
any given region over the globe. The DMI is based on total annual precipitation (P) and
mean temperature (T), as follows:

DMI =
P

T + 10
[mm/◦C] (1)

The PCI considers also the total precipitation (Pd) and the mean air temperature (Td)
of the driest month of the year, in addition to the total annual precipitation and mean
temperature, as in the DMI:

PCI =
1
2

(
P

T + 10
+

12Pd
Td + 10

)
=

1
2

(
DMI +

12Pd
Td + 10

)
[mm/◦C] (2)

The corresponding climatic classification based on the DMI and PCI is provided in
Table 1. Then, for the individual sites, a climate type (according to Equations (1) or (2)) was
attributed to each year of the time series by considering the three data sources; normal-
ized contingency matrices were computed to evaluate the differences in the classification
obtained with the use of the considered datasets.

Similarly to the other climate variables, a trend analysis was also carried out for the
calculated time series of the DMI and PCI in each site to investigate potential different
outcomes provided by the use of the selected data products.

https://crudata.uea.ac.uk/cru/data/hrg/
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Table 1. Climatic classification for the De Martonne (DMI) and Pinna combinative index (PCI).

Index Climate Type Acronym Index Value

DMI

Dry D DMI < 10
Semi-dry SD 10 ≤ DMI < 20

Mediterranean M 20 ≤ DMI < 24
Semi-humid SH 24 ≤ DMI < 28

Humid H 28 ≤ DMI < 35
Very humid VH 35 ≤ DMI ≤ 55

Excessively humid EH DMI > 55

PCI
Dry D PCI < 10

Semi-dry SD 10 ≤ PCI ≤ 20
Humid H PCI > 20

3. Results and Discussion
3.1. Comparison of the Station Data and E-OBS and CRU-Derived Data

Taylor diagrams for total annual precipitation and annual mean, minimum and max-
imum temperature data extracted at station locations from the E-OBS (in orange) and
CRU (in red) datasets are displayed in Figure 2. These graphs provide information on the
datasets’ agreement with observations by simultaneously reporting three statistics, i.e., the
normalized standard deviations of observed and extracted data as the radial distance from
the graph origin, the centered root mean square difference (or error, RMSE), indicated by
the distance from the point labeled as “observed”, located on the x-axis, and the Pearson
correlation coefficient given by the azimuthal angle between the x-axis and the position
vector [34].
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Figure 2. Taylor diagrams for assessing the performances of the E-OBS and CRU datasets in
resembling the observations at the selected sites in the Apulia region: (a) precipitation data;
(b) temperature data.

Generally, both gridded datasets showed reasonable performances for most of the
stations, with values of the correlation coefficient concentrated between 0.5 and 0.8. Regard-
ing precipitation, CRU demonstrated to have a much closer resemblance with station data,
while large deviations were observed for the E-OBS derived data in some sites, irrespective
of their elevations (Figure 2a). A similar pattern, although with a more limited scatter, was
also found for temperature data.
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3.2. Trend Detection with the Use of the Different Datasets

After the preliminary investigation of the ability of gridded data products in replicating
the climatic variables registered at the meteorological stations in the Apulia region, in
this section we investigate to what extent the identified differences in the data sources
affect the results of a trend analysis, in terms of sign, magnitude and significance of the
detected change.

3.2.1. Precipitation Data

Results obtained for annual total precipitation for the period 1956–2019 are shown in
Figure 3a, which summarizes, by means of boxplots, trend rates calculated at the individual
stations for the different considered datasets. Along with trend magnitude, the normalized
contingency matrices in Figure 3b give information on the possible mismatch of the trend
sign and significance identified by using observational or extracted gridded data. The
diagonal elements in the matrices represent the relative frequency of stations (i.e., number
of stations over the total) for which the sign and significance of the trend assessed by using
station data is equal to the one estimated with E-OBS or CRU data sources. Corresponding
results at the seasonal scales are reported, for the sake of conciseness, in the Supplementary
material (Figures S1 and S2).
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ered databases: (a) calculated trend rates; and (b) normalized contingency matrices for detected
trend signs.

On annual scale, about 95% of the gauging network exhibited a nonsignificant trend
for total precipitation, almost equally distributed between positive and negative signs,
with a larger variability in the results observed at the stations located above 300 m a.s.l.
As for nonsignificant trends, E-OBS data correctly identified most of the few significant
changes detected with station data, which were positive in four sites and negative in one.
In particular, E-OBS data generally provided larger (positive) trend magnitudes, although
with a variability similar to the one of station data, less evident at hilly locations. Differently,
CRU data depicted a scenario of general nonsignificant reduction in total precipitation, with
more spatially homogeneous rates of changes, as a consequence of the lower resolution of
the dataset, which implies a smoothing of the local differences that are instead captured by
the other two data sources. The seasonal analysis (Figures S1 and S2) indicated that the
nonsignificant changes in rainfall amounts registered at annual scale are mainly the result
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of weak reductions in winter, counterbalanced by generally equal weak positive increases
in autumn and spring.

The analysis with station data then confirmed the weak changes in precipitation
observed in neighboring areas of central and southern Italy over the last years, with a more
evident reduction during the winter season [41–47]. This tendency was not captured by
E-OBS data, which described nonsignificant positive trends in all seasons, while CRU data
showed a better agreement with the pattern depicted by observational data, although with
a markedly reduced variability in the results.

3.2.2. Temperature Data

The results of trend analysis applied to annual mean, maximum and minimum tem-
peratures, considering the different data sources, are summarized in Figures 4 and S3,
which clearly denote widespread warming tendencies in the Apulia region over the period
1956–2019. In particular, Tm showed a well-defined spatial pattern, with significant posi-
tive trends detected in almost 100% of the sites by the three selected databases (Figure 4b).
However, some differences are evident in terms of trend magnitude, as visible in Figure 4a,
which shows a larger rate of warming detected by E-OBS data (median trend magnitude for
Tm: +0.33 ◦C/decade); the variability of trend rates identified by observational data was
quite similar, although with a generally lower magnitude (median value of the trend for
Tm: +0.27 ◦C/decade), comparable to the one identified by CRU data, which, as expected,
was characterized by a less variable trend intensity. Figure 4 indicates that minimum
temperature experienced a greater rate of warming than maximum temperature, confirmed
by all the datasets, with observational and E-OBS data providing similar results, ranging
from a median of about +0.24 ◦C/decade for TX to +0.32 ◦C/decade for TN, while CRU
data reported slightly smaller rates of changes (+0.21 and +0.28 ◦C/decade for TX and
TN, respectively).
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contingency matrices for detected trend signs.

Overall, trend magnitudes calculated in this study for Tm are consistent with previous find-
ings on climate evolution observed during thelast decades in Mediterranean countries [4,20,48,49]
and in other Italian regions, as demonstrated, for instance, by Viola et al. [50] and
Appiotti et al. [51], who described a +0.40 and +0.20 ◦C/decade increase for mean an-
nual temperature in the Sicily and Marche regions, respectively.
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Some of previous studies described for southern Europe a general more intense in-
crease in the hot-tail (i.e., related to TX) of temperature distribution [45,52–58]. However,
also depending on the different considered periods of analysis [16], this was confirmed
not to be true in any region, as shown at larger spatial scales by Donat et al. [59], Fischer
and Knutti [60] and Lorenz et al. [61], or by Bartolini et al. [62] and Caloiero et al. [63] for
the Tuscany and Calabria regions of Italy, as well in the present study, which then con-
firmed spatially heterogenous patterns experienced by warming maximum and minimum
temperatures over the globe.

Results of the seasonal analysis (Figures S4 and S5) revealed that the general increase
in temperature detected at the annual scale is primarily due to a strong warming in summer
and spring. Indeed, in these seasons, almost the whole set of stations exhibited significant
positive signs for Tm, TX and TN. In particular, the maximum seasonal temperature trends
were observed in summer, when the average temperature rise for Tm was estimated to be
about +0.38 ◦C/decade, with similar values found between the different datasets, while
spring reported an average change of about +0.27◦/decade. Trend pattern in the cold half of
the year was instead slightly more complex, but always characterized by prevailing positive
signs, which were significant in less than 40% of the stations, considering observational
data. For winter and autumn temperatures, CRU data tended to detect less significant
positive trends, leading to generally lower trend magnitudes, as opposed to E-OBS data,
which indicated the maximum rates of changes, particularly evident in the colder seasons.
Similar considerations can be drawn for winter and autumn TX and TN, with the only
exception for TNwin that showed the most noticeable differences in the results obtained
with the selected data sources, as evident from Figure S4 and from the contingency matrix
in Figure S5.

The described results are consistent with previous findings in the literature pointing
out the summer nature of recent warming over southern Europe [45,52–54,56,58,62,64–66].
In addition, the more intense warming detected here by E-OBS data is in line with the
results of Krauskopf and Huth [11], who described a similar pattern in Europe and ex-
plained these differences by inhomogeneities existing in the E-OBS gridded dataset, thus
highlighting the need for a continuous validation of these large-scale data products versus
point observations.

3.3. Aridity Classification and Trends

Figure 5 summarizes, by means of normalized contingency matrices, the results
regarding the ability of the E-OBS and CRU datasets in identifying the aridity conditions
experienced during the 1956–2019 period in the considered locations of the Apulia region,
according to the De Martonne and Pinna combinative aridity classification (Table 1), thus
providing information on their ability to represent the interannual and spatial variability of
precipitation and temperature time series, combined into a single index. In detail, the colors
in the cells of the matrices indicate the (relative) number of years, for the whole gauging
network, which were labelled under a specific class considering station and gridded (E-OBS
or CRU) data.

Considering the DMI, it can be noted that the E-OBS fairly captured the frequent
semi-dry (SD) conditions experienced in the region, although some deviations toward
Mediterranean (M) and semi-humid (SH) climates were not fully detected. A similar ability
was observed also in terms of PCI, with the most frequent SD condition often correctly
detected, with, however, some differences toward a drier climate indicated by E-OBS.

Larger dispersion is visible in the performance of the lower resolution CRU data for
the DMI, with classification types provided by it that tended to be shifted toward more
humid conditions. In terms of PCI, also in this case, the frequent SD years were instead
mostly recognized, although with dry (D) conditions often misinterpreted as SD.

As regards the results for trends in the time series of the De Martonne and Pinna
aridity indices, Figure 6 reveals no substantial changes in the Apulia region, where almost
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all considered locations experienced nonsignificant trends in the DMI and PCI over the
1956–2019 period.
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This scenario seems to be confirmed by all the three datasets, although with some
evident differences in the sign of detected changes, especially for the CRU data, which
indicated only reductions in both DMI and PCI, differently from E-OBS and station data,
for which a large number of positive signs are evident. By analyzing Figures 3, 4 and 6
it is apparent that the general stability in the aridity conditions is the combined effect
of a significant, intense warming which is not, however, accompanied by a comparable
change (i.e., reduction) in precipitation that could lead toward a more arid climate, as also
described in other Mediterranean and central European regions [67–71].

4. Conclusions

The results of this study can contribute to improve knowledge of climate evolution
over Italy and the wider Mediterranean basin in the past decades (1956–2019) and to provide
important information on the accuracy of climatic gridded data products in resembling in
situ observations in a climate-vulnerable region of southern Europe.
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In detail, considering observational data, the following results were pointed out:

• Annual precipitation exhibited a widespread nonsignificant change in most of the
gauging network, with a larger variability observed at hilly sites; this is the result of
a weak precipitation reduction in winter, compensated for by similar weak positive
increases in autumn and spring.

• Almost all the meteorological stations in the Apulia region experienced a significant
warming over the considered period of analysis. The mean annual temperature
registered a significant increase at a median rate of +0.27 ◦C/decade and the largest
contribution to this increase was detected in the warm season, with a calculated
median change of +0.38 ◦C/decade in summer. In particular, minimum temperatures
registered a greater rate of warming than maximum temperatures.

• In terms of aridity classification, “dry” and “semi-dry” were the prevalent climate
conditions experienced in the considered locations of the region, with no significant
changes detected over the considered time period.

Regarding the ability of the considered gridded data products in resembling the above-
mentioned results, this study revealed that they reasonably reproduced the observed trend
patterns (i.e., sign), although with deviations evident in the estimation of trend magnitude
and variability, thus allowing only general indications on the spatial–temporal evolution of
temperature and precipitation parameters in the Apulia region. In particular, less accurate
results were identified for precipitation data, in line with the expectations based on the
larger spatial variability characterizing this parameter, if compared to temperature’s one.

Moreover, it was found that both E-OBS and, to a lesser extent, CRU data were mostly
able to identify the climatic conditions experienced in the region, although with some
evident deviations, which are the result of the combined effect of the inaccuracies present
in both gridded precipitation and temperature data.

Therefore, the main conclusion of this study was that gridded datasets, especially for
complex topographic and/or climatic regions, should be used with caution or only after a
preliminary evaluation against observational data before any climatological application to
ensure a proper reliability.
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10.3390/w14142203/s1. Table S1. Meteorological stations considered in the study. Figure S1. Calcu-
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ized contingency matrices for detected trend sign for seasonal precipitation using the three considered
databases. Figure S3. Normalized contingency matrices for detected trend signs for annual maximum
(TX) and minimum (TN) temperatures using the three considered databases. Figure S4. Calcu-
lated trend rates for seasonal mean (Tm), maximum (TX) and minimum (TN) temperatures using
the three considered databases. Figure S5. Normalized contingency matrices for detected trend
signs for seasonal mean (Tm), maximum (TX) and minimum (TN) temperatures using the three
considered databases.
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