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ABSTRACT Drastic changes into city road traffic may impact in large portions of the city, then hypothetical
scenarios have to be analyzed to identify the best solutions to maintain high quality of city services. In this
paper, a solution for unexpected or planned events is proposed and validated with the major focus on
traffic flow fields. In order to mitigate the effects on wide area, assessments are needed to evaluate the
city changes impact on traffic flow in short time. The proposed solution takes into account static, historical,
real-time/dynamic, and forecasting information, with long terms and range of Traffic Flow Reconstructions
(multiple simulations, predictions and data transformations) integrated with a specific assessment model to
provide support for decision makers. Such a solution dynamically reshapes the road network with many
connected critical areas and it automatically computes multiple traffic reconstructions in consecutive time
slots, while considering the evolution of traffic flow data according to the related traffic re-distribution at
junctions, solving their indeterminacy. Each scenario can be grounded for different road graph solutions,
and each solution is evaluated by means of specific indicators taking into account traffic flow criticisms,
and topological road graph features. The solution herein presented has been developed into the Snap4City
framework for Sii-Mobility national mobility and transport action of the Italian Ministry of Innovation and
Research.

INDEX TERMS Traffic analysis, traffic flow reconstruction, traffic distribution, traffic scenarios, large scale
traffic flow analysis.

I. INTRODUCTION
Smart city solutions have to cope with high complex situa-
tions of city scenarios addressing unexpected and/or planned
events. On this topic, the major focus is often dedicated on
vehicular traffic flow which has a strong impact in the frame-
work of urban behaviors. In fact, most simulations in city con-
text deal with mobility and transport, including traffic flow,
parking, pollutant production, people flow, accidents, etc. [1].
Closing a part of a city is an extreme occurrence, while less
critical situations such as changing road direction, closing a
single road, may be more frequent and less complex to be
managed and analyzed. Whenever such closures/changes are
planned, there is time to identify the best solutions tomaintain
high quality of services [2]. On the contrary, when critical

The associate editor coordinating the review of this manuscript and

approving it for publication was Tamas Tettamanti .

changes are determined by events (e.g., a broken pipe, a rele-
vant accident), the rearrangement of services inside/around
the area must be performed as fast as possible to recover
functionalities and to reduce any risk/damage/discomfort to
city users by means of a cascading approach and according
to resilience strategies [3], [4].

In case of unplanned events, the number of possible cases
may be very high, since they vary in terms of locations and
entities, and impact on city services. Ideally, experts could
foresee the occurrence of certain events, while many other
cases are impossible to be foreseen and they are somehow
unexpected, as to precise date and time, relevance, location,
context, reactions from city users, and cascade effects on
multiple services and areas, which substantially makes the
simple prediction offered by single traffic flow sensors un-
useful in terms of decision making on changes. They are the
so-called unexpected unknowns [5], for which both models
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and contexts are doomed to change at any event occurrence,
thus making long-terms prediction almost infeasible.

The actual goal to cope with unexpected unknowns on
traffic road network is based on the possibility in short time
to understand how the traffic would autonomously react as
to the changes in place. Which directions would be taken by
vehicles arriving in the critical area and finding out that roads
and the area itself have been radically changed? It is not only
a matter of dynamic routing (routing with real time changes
in the road network structure), but it means also to estimate
traffic flow changes in real time, since the context has been
changed, which is much more complex. Traffic flow analysis
requires having an input context which describes the substan-
tially changed scenario and conditions. This kind of problem
could be addressed by performing specific simulations with a
certain margin of error, having high complexity in large scale
contexts. The simple outcome prediction computing could
not be possible, since such detailed scenariosmay be typically
unknown.

In literature, traffic flow estimation is performed by using
Traffic Flow Reconstruction, TFR, solutions which are pro-
cesses to produce a value of traffic density (flow) - e.g., num-
ber of vehicles per meter (or vehicles per minute) - for each
road or road segment (or a large number of road segments
for example of 20mt each) by starting from a limited number
of traffic sensors measuring traffic density (flow in terms of
vehicles per meter) [6] on strategic positions (e.g., 100 in a
city of 300.000 inhabitants) or in other devices (e.g., mobile
apps navigators). In most cases, TFR solutions are based
on both LWR model (Lighthill-Whitham-Richards) [7], [8]
and error analysis in traffic flow estimation. The solution of
the LWR model [9], [10], can be based on modeling traffic
density in terms of Partial Differential Equation (PDE), and
it is not trivial for large networks [6], [7], [11], [12], [13],
[14]. In alternative, TFR can be performed by using agent-
based solutions which are typically more difficult to scale,
since they need a specific process for each agent/vehicle.
In literature, many studies concerning concepts on traffic
analysis focused on routing [15], [16], signal control systems
[17], [18], and autonomous driving [19].

The related literature also provides a set of traffic or
city simulators which could be used for TFR in small
area. DEUS [20] is a Discrete-Event Universal Simulator
used to simulate a Vehicular Ad-Hoc Network. VANET
[21] has been used with SUMO (Simulation of Urban
Mobility, http://sumo.dlr.de) which can create microsimula-
tions of traffic crossroad distribution. MATSim (Multi-Agent
Transport Simulation, https://www.matsim.org/) is an agent-
based simulator which can cope with a limited number of
agents/vehicles [22]. Most of these simulators are unsuitable
for large scale analysis of changes to understand how they
impact in the whole city. Large scale simulators are often
based on origin destination and population characteristics.
Transport SystemModels (TSMs) try to predict the impact of
city changes (projects or plans) to assess their technical suit-
ability and to support intermediate and final decision-makers

through the process of project/plan evaluation. They focus
on basic concepts and methods of discrete choice analysis,
and describe the applications of the methodology to travel
demand modelling. Demand forecasting deals with the trav-
ellers’ behaviour and the one of goods in urban, interurban,
and international transport contexts. Discrete choice models
use the principle of utility and benefit maximization, and
operational models often consist on the characterization of
parameterized utility functions via statistical inference. More
precisely, an operational model consists of parameterized
utility functions in terms of observable independent variables
and unknown parameters, and their values are estimated from
a sample of observed choices made by decision makers,
when confronted with a choice situation, thus adopting the
concept of random utility [23]. Discrete choice models are
usually applied to forecast trips by starting from origins and
destinations (O-D) data and considering different transport
modalities [24]. The approach for the identification of a use-
ful travel path by minimising the cost has been proposed by
[25]. These models assume the knowledge of O-D data which
are not often accessible, and in some cases, cities are trying
to avoid collecting vehicles plates due to privacy regulations.
On the other hand, anonymization approaches are expensive
to be applied on legacy solutions.

InterSCSimulator [26] is an agent-based simulator
which may scale up to large roads and cases at
the expense of memory and computational time, for
instance 51 GByte of memory for 50.000 nodes, 22 min-
utes of computation. Also, a commercial solution such
as OPTIMA proposed by PTV has a limited capabil-
ity in forecasting traffic behavior within 60 minutes
(https://www.ptvgroup.com/en/solutions/products/), which
means the motivations for traveling could be parametrized
but not assessed from actual data.

Other simulators have been reviewed and compared in
[27], identifying the limitations when it comes to traffic flow
evolution with Bayesian-based models, and in addressing
large scale cases, and small events not large cases.

The available solutions in the current state of the art for
traffic analysis typically perform simulations only of single
elements of the road graph, in cases of general road blocking
conditions [28], road bottlenecks and congestion, as well as
disaster management [29], [30]. The analysis of the computed
KPI (Key Performance Indicator) for city traffic would be
used to compare solutions. Generally, traffic flow study can
also exploit network analysis according with the topological
features of each scenario, since the related road network is
modelled as a directed graph. And thus, a new graph implies
a different redistribution of traffic. For example, [6] shows
that the highest value for betweenness [31] is in proximity of
one of the typical areas where traffic congestion often occurs.
In [32] it is proven that the nodes characterized by higher
values of betweenness potentially represent critical regions
(intersections) of the network. On the other hand, nodes
having high eccentricity [31] are in the decentralized zones
of the urban graph admitting more distance from the other
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side of the network. In [33], some integrated performance
indicators in urban road infrastructure are also developed for
an evaluation of the network functionality and the impact
of transport system interventions such as average degree
of saturation. Traditional indicators used to measure traffic
congestion include travel delays with respect to average travel
time at signalized intersections to estimate the saturation flow
rate [34]. In many studies, urban traffic state is explored
in different ways. For example, in [35] travel speed and
travel time are directly obtained through the loop detector,
GPS, video, etc. In [36] both traffic volume and occupancy
are integrated to form a new value for network-wide traf-
fic state observation and analysis via pseudo-color maps.
In [37], a comprehensive traffic state estimator derived from
traffic flow variables (flows, mean speeds, and densities)
is presented. The architectural aspects of a future scenario
traffic analysis tool should be also addressed [38]. It must
take into account multiple simulations, and probably most
of them are going to exploit TFR in the modified context
to assess/simulate the impact of traffic changes on public
transport, parking, people flow, commercial areas, etc. Some
developers of custom scenario analysis complain about the
lack of formalism tomake the setup of the solutions easier and
compute several simulations based on the same scenario [39].

Traffic conditional routing in vehicular networks has been
addressed in literature, as a measure for mitigating as well as
preventing traffic congestions. Several strategies have been
proposed, such as Dynamic Shortest Path (DSP), Random k
Shortest Paths (RkSP) [40] and Entropy Balanced k Shortest
Paths (EBkSP) [30]. Some works also have addressed the
traffic routing problem due to natural disasters, such as in
[41], where a traffic rerouting system is presented exploiting
Bayesan Networks Analysis to provide possible reroute paths
to avoid flooded areas.

The TFR analysis in future and evolved scenarios should
not be confused with sensitivity analysis which aims at eval-
uating how sensitive is the behavior of the system/subsystem
with respect to small changes of one or more parameters (for
example the size of a road). Moreover, there is an important
difference with respect to traffic flow predictions. Predictions
are produced by extrapolating short/long-term trends from
historical time series in sensor locations [42]. Therefore, the
single traffic flow sensor prediction cannot provide hints
on the impact of changes in the context (road network).
Approaches for traffic flow predictions may be based on AI,
machine learning, provided that in a stable context, data are
accessible for any training of the model.

Thus, according to the state of the art, the computation
of TFR in large scale and providing responses in real-time
for long-term scenarios, for example months in advance, is a
challenge, as well as the computation of large-scale indicators
of traffic flow conditions.

A. SCOPE AND STRUCTURE OF THE PAPER
When a small city area is closed, then the simulation of traffic
data could be performed on the basis of historical data of

traffic flow, traffic predictions, origin destination matrices,
typical time trends of traffic flow on sensors, and/or by taking
into account the typical paths done by city users in the city.
Changes in the road network structure (as well as on the num-
ber of operating sensors) imply the redistribution of traffic on
modified crossroads and the propagation of effects to a large
part of the road network up to the whole city; therefore the
model should lead to compute the TFR in the whole city area,
and the TFR computation for each new scenario into large
road networks definitively has to be considered a data inten-
sive process, which has to be replicated for each time slot,
for several days [39], [43]. In fact, a scenario may imply road
networkmodifications for a given period of time (e.g., closing
roads and areas, changing road directions and use for a week)
and it may predict the traffic evolution in those planned or
suddenly unexpected changed conditions over time. Thus,
small scale simulations or predictions (covering few roads
or single sensors) fail in providing solutions, since cascade
effects are provoking consequences in many other areas, and
small-scale solutions do not take them into account. One of
the main issues, is the presence of traffic cascade effect, long
terms predictions of single sensors seem to be un-useful for
decisions in larger scale contexts, where critical conditions
can propagate in other part of the city. For example, a block
in a part of the city may undermine many other parts of
the city, though apparently unconnected to that area, and
yet reached by the propagation of the queues. Generally, the
whole number of vehicles entering and exiting the city over
time would be conserved [6], which is a condition of solving
LWR problem, while the balance is not generally preserved
in smaller city area, thus forcing state of the art simulators to
build a large number of hypotheses.

On such grounds, the solution proposed in this paper aimed
to solve the above presented problems and provide a data
driven instrument for decisionmakers in order to select which
are the most viable city changes to cope with the unexpected
unknowns impacting on traffic and to carry out changes to
reshape traffic viability in short time - i.e., change city viabil-
ity. The aim of our work is to understand how the vehicular
traffic would react with respect to a hypothetical scenario in
order to mitigate such outcomes and their large-scale changes
in the whole city. The main paper contributions are on a real
time TFR analysis involving:
(i) definition and formalization of the scenarios as a set

of descriptive parameters on space and time according
to vehicular traffic behavior, including formalization
of scenarios; a formal definition of a scenario has to
include: (a) single or multiply connected areas, rep-
resenting spatial blocking constraints which interdict
specific kinds of traffic (private, public transportation,
cycling, pedestrian, etc.), (b) a starting and ending date
and time;

(ii) definition and implementation of large parametrized
TFR computation and simulation in real time against
scenarios to produce an outcome for each time slot of
the scenario (addressing the related changes into the
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road graphs, as well as on the number of operating
sensors, and automatically estimating traffic redistribu-
tion on modified crossroads), together with TFR vali-
dation against complex scenarios thus requiring high
precision.

(iii) a set of assessment metrics depending on road struc-
ture and traffic values, which the outcomes could be
assessed according to. The identification of the most
suitable solutions has to be performed on the basis of
objective KPIs which allow to assess traffic conditions
and would wrap up/finalize the process to minimize
the dysfunction, thus reducing/limiting any crowding
conditions as much as possible.

With the intention of providing responses in real-time for
complex scenarios we have extended the TFR solution of [6]
by (a) dynamically reshaping of the road graph network on
the basis of scenarios with multiply connected critical areas,
(b) computing multiple TFR in consecutive time slots taking
into account the road graph evolution, junction redistribution
and traffic flow data. The vehicular route choice at junctions
(on a macrosystem urban traffic model) is determined by
means of Stochastic Relaxation Approach on the basis of traf-
fic flow data in a given number of sensor points, at each time
instant, to reduce any possible system error. The solution can
address static, historical, real-time/dynamic, and forecasting
information, in a functional model, where TFR processes
(simulations, predictions, data transformations) are integrated
with the business logic of visualization and user interaction
made available to decision makers.

The solution has been developed in the framework of
Sii-Mobility, which is a national project on sustainable
mobility and transport. The architecture of the traffic recon-
struction analysis tool has been based on Snap4City frame-
work (https://www.snap4city.org), where the business logic
is defined by using Node-RED and Snap4City MicroService
Libraries [44]. Such a solution is currently exploited in sev-
eral cities which have adopted the Snap4City framework.

The paper is structured as follows. In Section 2, both
general architecture and data flow are presented together with
some details regarding scenarios, prediction and changes on
the road network graph. Section 3 brings up the approach for
TFR computing. In Section 4, some metrics, fit for assessing
changes from topological point of view, are presented accord-
ing to the new road graph identification or scenario. Besides,
more complex metrics based on the reconstructed traffic
flow values are considered to mitigate any scenario-provoked
changes. Section 5 provides the analysis tool’s validation,
when multiply-connected areas are blocked. In Section 6,
an analysis with multiply connected scenario is provided,
while performance is discussed in Section 7 and conclusion
are drawn in Section 8.

II. GENERAL ARCHITECTURE AND DATA FLOWS
In order to cope with the above complexity, a flexible analysis
architecture has been defined and implemented as reported
in Fig. 1. It exploits Historical and Real Time Data from

FIGURE 1. Functional Architecture of the traffic flow analysis in future
scenarios.

traffic flow sensors to compute predictions and to enable any
computing of dense TFR in thewhole city, bothwithin regular
and evolved/changed scenarios. As described above, the most
effective solutions for large scale TFR are the ones based on
solving differential equations. Thus, in agreement with TFR
approach of [6] and while considering the reference scenario,
a number of steps are needed to compute traffic flow in each
time slot and day of the scenario. According to [6], dense
TFR at time t can be computed by: (i) taking into account
an annotated Road Graph, R, (a network of road segments
and cross roads with turns, max velocity, number of lanes,
any other constraints, etc.); (ii) measuring or estimating the
traffic flow distribution at each cross road for each time slot
of the day and week, named Traffic Distribution Matrices,
TDM; (iii) being aware of traffic flow conditions in terms of
flow data in any previous time instants.

On the other hand, the above-described problem of com-
puting TFR in some radically changed city conditions is
much more complex, since an evolved Scenario (inception of
changes for some disaster, or changes planned to assess their
impact) could change the Road Graph and this would impact
on TDM and TFR for the whole city, lasting up to hours and
days, according to cascade effects and duration of changes.
For example, if we consider analyzing a future scenario where
some city areas are forbidden to vehicular traffic for 3 days,
6 months from today, we would be interested to assess what
it will happen on traffic. Thus, for example, the following
problems should be addressed by: (i) registering the scenario
blocking some city areas on that specific time lapse, 3 days,
6 months from today; (ii) changes on Road Graph which
could be decided, so as to mitigate the effects of that scenario
(e.g., changing road directions, closing other roads); (iii) pre-
dicting any possible traffic flow sensor values 6months ahead
and thus also at the border of the involved scenario areas,
or forcing to zero traffic flow the sensors in the blocked areas;
(iv) computing TDM and dense TFR during the selected span
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of 3 days in the whole city to understand what is going
to happen on traffic flow according to those changes due
to the scenario and according to the modified Road Graph;
(v) computing KPI to assess the impact of changes within the
city in terms of objective indicators, so as to choose the best
scenarios to reduce city user dysfunction, traffic conditions,
costs, security preservation, service quality, safeguarding a
routing for emergency vehicles, etc.

Therefore, for each Scenario a number of RoadGraph solu-
tions could be proposed and KPI & Criteria can help decision
makers to select the best Road Graph in order to mitigate
the scenario. Actual and proposed changes and results have
to be accessible for decision makers, thus turning out into a
Visual Analytics tool, which in our case has been developed
according to the exploitation of Snap4City environment [45],
[46]. Decision makers can interact on Visual Analytic by
changing the Scenario, mitigation aspects on Road Graph,
and by selecting possible decision support KPI and criteria.

In this paper, only aspects regarding TFR and related KPIs
are discussed, since most of the other predictions/simulations
strongly rely on the distribution of traffic flow density, as to
the scenarios under study. In fact, once the dense TFR in one
or more possible Road Graph has been estimated, it can be
exploited to assess its impact on: (a) public transportation
services, which could lead to moving bus stops out of the
blocked area and changing lines/rides, timelines, etc. [47];
(b) parking lots availability, since some of the parking areas
could be included within the blocked city area scenario or
could be less easily accessible [48]; (c) pollutant changes
on the basis of traffic flow, thus provoking more emissions
of NO2 [49] and on CO2 [50], according to the related
dense estimation [51]. In the following subsections, the most
relevant aspects and steps of the above data flow architecture
are described, while the computing of dense TFR with its
corresponding TDM and KPI is described in Section 3.

A. SCENARIO MODELING AND MANAGEMENT
According to Fig.1, each scenario is denoted as SC ID, and
it is identified by a unique ID, a description, involved
areas, a set of time intervals and additional constraints,
such as any category of users or vehicles which must be
restricted/enabled. A Scenario is formalized as tuple SC ID =

{ID,D,A,T ,C,R}, where:

• ID is the unique Identifier of the scenario;
• D is a textual description of the scenario;
• A is a simple or multiply connected blocked Area, that
is a set composed by one or multiple blocked areas: A =
{A1,A2, . . . ,AN }, where N is the number of blocked
Areas;

• T represents a set of time slots or intervals: T =

{TS ,TE }, where TS and TE represent, respectively, the
starting and ending dates and times of the period when
the blocking constraints are active;

• C is a set of blocking constraints representing which
transportation mean has been blocked/limited, for

instance: C =
{
Cped ,Cpriv,Cpub,Cspec,Ccyc, . . .

}
,

where Cped represents a pedestrian constraint, Cpriv a
private vehicle constraint, Cpub a Public transport con-
straint, Cspec a special vehicle constraint, Ccyc bike
cycling path constraint, etc. Changes in any specific
constraints of a road segment (e.g., velocity, direction)
can be defined as a set of constraints;

• R is the reference road graph network.

Scenarios can be produced for: planned or unplanned events,
with the aim of solving/limiting problems, as well as man-
aging either events or changes. As to an area which has
to be closed to perform some recovery maintenance works,
multiple Scenarios (SC i = {i,Di,Ai,T i,C i,R}, where i =
1, . . . ,N represents different scenario IDs) could be defined
on the basis of changes occurring during the intervention.
Thus, different changes on the road graph, for example in
the viability, direction of roads, etc. can be applied. The
impact of the application of a certain scenario SC i,T̂ ={
i,Di,Ai, T̂ ,C i,R∗

}
, where R∗ is the modified Road Graph

starting from R, should be compared with others SC j,T̂ ={
j,Dj,Aj, T̂ ,C j,R∗

}
, as well as against the original sce-

nario in the same time slots T̂ without any restrictions,
which is called the UnChanged Scenario, SC_UC i,T̂ ={
i,Di,∅, T̂ ,∅,R

}
.

Blocking areas of the scenario are drawn via the user inter-
face (see Fig.2) by means of geometric shapes (rectangles,
circles and polygons) on the map; some the above-described
metadata have to be provided and among them some manda-
tory values are identifier, blocking areas, starting and ending
times and constraints. Saved scenarios can be shared with
other operators and loaded and used to automatically change
the Road Graph. The modified Road Graph can be further
modified by operators to mitigate any possible cascade effect
(e.g., any viability adjustment based on specific needs). Thus,
the finally modified Road Graph, R∗, can be used: (i) for
computing the dense TFR, and (ii) by the routing engine to
provide dynamic alternative routings for different types of
traffic means: private cars, public transportation busses, bikes
and pedestrians. The routing engine exploits the open source
GraphHopper library [52], which has been extended to man-
age simple or multiply connected constraints as formalized in
the Scenario.

B. COMPUTING PREDICTIONS
The short and/or long terms predictions of traffic flow data
at sensors for time slots T̂ can be computed on the basis of
historical data plus some contextual elements. For example,
short terms predictions in the range of minutes and hours
of traffic flow may be carried out/performed on the basis
of historical [53], [54]; while midterms predictions within
a day may be computed as well, by taking into account
weather conditions and forecasts [55], [56], [57], [58]. Then,
as to very long-term predictions, most predictive algorithms
cannot produce satisfactory results with errors smaller than
15%. In those occurrences, the computation of typical time
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FIGURE 2. Example of a Scenario with 3 areas and dynamic computation of routing avoiding blocked areas. Please note that
start and end points can be moved from web page to see the new routing in real time. Also, intermediate points can be
arranged. https://www.snap4city.org/dashboardSmartCity/view/index.php?iddasboard=MjE5MA==.

trends concerning that period’s traffic flow can be done,
if considering the historical data of the same day of the week,
of the month and of the year. For example, a typical time trend
can be computed as the median or average of data related to
October 2018, while the actual values are those of the same
day of the week of October 2019. According to this approach,
the computed averaged MAPE (Mean Absolute Percentage
Error), between observed (obs) and predicted (pred) data over
the whole set of city sensors in that period, is 11.2% where

MAPE =

∑n
i=1 |

obsi−pred i
obsi

|

n
∗ 100.

C. COMPUTING AND CHANGING ROAD GRAPH
The Road Graph describes all details of the road network
graph, including for each road network arc/segment: size,
bounded velocity, number of lanes, directions, and also cross-
roads with their patters, right turns, etc. The application of a
Scenario SC i,T̂ leads to imposing changes, which in turn may
provoke other changes to the road network. For example, if a
city area has to be blocked, roads leading or departing to/from
that area may need to be adapted as well.

Thus, the review of the Road Graph network on the basis
of a scenario brings forth a modified Road Graph, denoted
by R∗, by following a number of steps and actions which can
be automatically executed on a semantic model of the Road
Graph excluding some elements from the viability paths:
• road graph arcs/segments included or partially included
within the no-go areas of the Scenario (segmentation of
the arcs is performed on every 20m, thus allowing the
discretization to be very fine)

• junctions (crossroads) having the related nodes within
the no-go areas, also modify all the intersections, wher-
ever a given arc is no longer considered in the new setting

and thus modifying in an appropriate way the distribu-
tion of the incoming and outgoing traffic according to
the remaining arcs’ features,

• sensors which are inside the blocked areas.

In our case, a newRoadGraph implies to perform a number
of semantic queries in SPARQL to generate a new knowledge
basemodel of the city according to the Km4City ontology, the
latter being instantiated in a separated Docker to be exploited
for TDM and TFR computing purposes. Moreover, on the
samemodified graph, several changesmay be needed in order
to re-establish the viability within the areas and that operation
may need to be performed by operators. Some changes can
be straight forward (namely, they can be suggested by the
system), while others could be somehow performed on the
basis of experience. Actually, a number of Road Graph: R∗

could be produced by different experts and/or according to
different hypothesis in order to mitigate the same Scenario,
see Fig.1.

III. COMPUTING CONSTRAINED DENSE TRAFFIC FLOW
RECONSTRUCTION
Actually, a number of different Road Graphs mitigating the
scenario can be proposed or generated, with slight changes
into the Road Graph structure. In this section, the dense TFRs
computation according to a changedRoadGraph is discussed.
The step consists in computing the updated TDM according
to the modified Road Graph and scenario, which also defines
the set of time slots which the TDM has to be computed for.
The assessment of TDM allows to compute TFR, thus solving
PDE for the scenario time slots. Finally, the assessment of a
set of relevant metrics allows to evaluate and identify which
are the best solutions among those proposed, as described in
Section 4.
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The computing of dense TFR is performed by solving
a nonlinear model based on the conservation of vehicles
described by the following scalar hyperbolic conservation

law, in a single road, ∂ρ(t,x)
∂t +

∂f (ρ(t,x))
∂x = 0, where: ρ (t, x)

is the traffic density of vehicles, which admits values from
0 to ρmax , where ρmax > 0 is the maximal traffic density;
f (ρ(t, x)) function is the vehicular flux which is defined by
means of the product ρ (t, x) v (t, x), where v (t, x) is the
vehicle speed; and boundary conditions ρ (t, a) = ρa(t),
ρ (t, b) = ρb(t), initial values ρ (0, x) = ρ0(x), with x ∈
(a, b). As to first order approximation, we assume that v (t, x)
is a decreasing function, depending on the density, then the
corresponding flux is a concave function. Thus, we consider
the local speed of the vehicles as v (ρ) = vmax(1 −

ρ
ρmax

)

and then f (ρ) = vmax
(
1− ρ

ρmax

)
ρ, where vmax is the limit

speed on a given road segment (these assumptions are known
in the literature as the Greenshield’s Model.) The solution is
obtained by an iterative process, at finite differences on the
basis of traffic flow data in sensors points or, as in this case,
by exploiting the predicted sensor values for each time slot of
the future scenario [6].

Changes on road graph implies changes on TDM which
describes the distribution of traffic at crossroad junctions,
not only those directly involved, but also those which
can be far away from the Scenario areas. The TDM is
a distribution matrix describing the percentage of vehi-
cles getting out each outcoming road with respect to those
getting in each incoming road. Thus, it is defined as
TDM = {wji}j=n+1,...,n+m,i=1,...,n so that 0 < wji < 1 and∑n+m

j=n+1 wji = 1, for i = 1, . . . , n and j = n+ 1, . . . , n+ m,
where wji coefficients (called weights) are the percentages
of vehicles arriving from the i-th incoming road and taking
the j-th outcoming road (assuming that, on each junction, the
incoming flux coincides with the outcoming flux). The values
of weights wji may depend on the time of the day, on the
road size, cross light settings, etc., and thus, it is unknown
a priori. When one (or more) roads are closed, then the traffic
has to be redistributed in other directions. In particular, the
network would take a reassessment of the traffic distribution
in the junctions such that

∑n′+m′
j=n′+1 vji = 1, for i = 1, . . . , n′

and j = n′ + 1, . . . , n′ + m′ where n′ ≤ n, m′ ≤ m and

vji = wji
∑n+m

j=n+1 xji∑n′+m′
j=n′+1 xji

where xji are the values giving the lower

mean error for each time slot of the scenario, as to weight
assignment.

Weights can be measured or estimated, while in cases of
Scenarios they cannot be measured, therefore they have to
be estimated on the basis of the traffic arriving to crossroads
and thus taking into account any road graph changes. TDM (t)
values over time are unknown, since traffic flow cannot
be measured in each inflow/outflow road of all crossroads,
in each time slot t. A first approximation of the TDM (t)
could be the typical values for TDM (t)in a given day, for
each day of the week. These trends are an approximation,
since the TDM (t) is conceptually changing at each time slot.

Thus, the first approximation can be produced by means of
a computation of typical trends at junctions over time, in the
period. The solution is obtained by a Stochastic Relaxation
Approach on the basis of traffic flow data in a limited number
of sensors points at each time instant. At each timestamp, the
solution produces a value of traffic flow density in each road
segment of the network, typically of 20mt, as unit. The dense
TFR accuracy mainly depends on the stochastic relaxation
approach for estimating the TDMs. The computing of TFR is
progressively performed on a parallel architecture, since the
estimation of traffic flow density for the city (e.g., in Florence
there are more than 30.000 road segments or units) at time
instant t would depend on traffic flow at time t-1 in the whole
network, and on the new measures/predictions coming from
sensors.

TFR is computed in the road network, and it is assessed by
computing the Root Mean Square Error, RMSE of the recon-
structed values with respect to the predicted ones in specific
sensor locations. TFR accuracy is performed by computing
the solution excluding data from each different sensor (all
of them) by means of a Leave-One-Out Crossing-Validation
(LOOCV) approach, to estimate the deviation from dense
TFR with respect to the sensor predicted density, for each
time t in T . Then, in a road network having m traffic sensors,
LOOCV approach consists in the application of the model
to the set of observed data at time t by excluding the k-th
observation/prediction, for each k = 1, . . . ,m. Then, model
is applied to the remaining set of m−1 sensors’ observations
and the reconstructed density in the road segment (unit) where
the k-th sensor is located can be estimated and compared with
the observed/predicted value via RMSE or MAE. For each
round, the stochastic relaxation may produce a newminimum
of the RMSE that is taken as a reference status together with
the produced TDM (t), for next iterations. Such an approach
turned out to produce dense TFR with a RMSE smaller than
20% in the internal parts of the city [6].

IV. ASSESSING GLOBAL TRAFFIC FLOW CONDITIONS
According to Fig.1, KPIs are conceived / meant to assess
globally city traffic conditions, therefore the impact of
changes has to be calculated on the basis of the computed
dense TFR, taking into account the different Road Graphs
of each scenario, SC i,T̂ . Each estimation of KPI has to be
compared against values for the same time slots T̂ , and it is
obtained in different conditions against the original scenario
(that is, without changes on Road Graph) called UnChanged
Scenario, SC_UC i,T̂ . In addition, it is also possible to com-
pute KPI average values and related differences which may
provide support to make some decisions among multiple
scenarios and solutions. On the other hand, changes in the
topological structure of the road network can provide useful
information, as well.

A. TOPOLOGICAL ASSESSMENT OF THE ROAD NETWORK
Each modified road graph determines a different traffic
network. The properties of betweenness, centrality and
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eccentricity metrics can be computed on the basis of the topo-
logical structure of the city traffic network, without taking
into account the actual flow. On the other hand, [6] and [32]
showed that the highest value for betweenness is located in
proximity of areas where traffic congestions often occur. The
vertex betweenness (also known as betweenness centrality)
of a node v of the road graph network R is the number of
shortest paths which pass through v in R, formally we have

bR(v) =
∑

i6=j,i6=v,j6=v

givj/gij

where gij is the total number of the shortest paths from node
i to node j in R, and givj is the number of those paths passing-
through v in R. The vertex betweenness represents the degree
to which nodes stand between each other and it measures
the extent to which a vertex lies on paths between other
vertices. Nodes having high betweenness may have consid-
erable influence within a road network by virtue of their
control over traffic data passing between others. Such nodes
are also the ones whose removal from the network will most
disrupt communications between other vertices, because they
lie on the largest number of paths inside the network. The
correctness of a given information which goes through the
nodes of a network depends also on other issues related to
node properties. An example is given by the (eigenvector)
centrality [31] of a vertex v in R, labelled with cR (v), which
is a measure of the influence of the vertex v in the road
graph network R. In general, vertices with high (eigenvector)
centralities are those which are connected to many other
vertices which are, in turn, connected to many others (and so
on). Another topological metric is given by the eccentricity
[31] of a vertex v in R, labelled with eR (v), which is defined
as the shortest path distance that a given vertex v has from the
farthest node in the road graph network R. Nodes having high
eccentricity are located in the urban graph’s decentralized
zones, admitting more distance from the other side of the
network. Then, such metrics can be considered as structural
features of the road network describing a given scenario, and
they can help us to understand how the related and restricted
road network changes in terms of connectivity.

Formally, the connectivity KPI (denoted by KPIC ) accord-
ing to a certain scenario SC i,T̂ =

{
i,Di,Ai, T̂ ,C i,R∗

}
can be

defined as

KPIC (SCi,T̂ ) = {BR∗ ,CR∗ ,ER∗

where:
• BR∗ = (max {bR∗ (v) : v ∈ R∗} , b) with b representing
the corresponding node assuming the maximum value,

• CR∗ (max {cR∗ (v) : v ∈ R∗} , c) with c representing the
corresponding node assuming the maximum value,

• ER∗ = (max {eR∗ (v) : v ∈ R∗} , e) with e representing
the corresponding node assuming the maximum value.

Therefore, computing KPIC (SCi,T̂ ) and KPIC (SC_UCi,T̂ )
may produce different values, and distinct representative
nodes can be observed in the map in order to understand

changes in terms of road graph network connectivity. The
computing of the above-described road graph metrics can be
performed on the original road graph R, and immediately
after obtaining the graph R∗. This means that 1KPIc(.) and
some considerations can be carried out, before moving to the
complete simulation, also observing (statical) changes on the
map and the absolute values of those KPIs. In order to evalu-
ate dynamical changes on traffic flow evolution according to
the considered Scenario, via multiple traffic reconstructions
in consecutive time slots, additional KPIs in terms of traffic
state to assess the related critical conditions, are presented in
the following.

B. ASSESSMENT CRITICAL TRAFFIC FLOW CONDITIONS
According to the definition of the Scenario, it provokes
changes on Road Graph and TFR, on several time slots.
City traffic is a dynamic system represented by the TFR(t)
which essentially is a sequence of TFR. Specific KPIs are
needed to compare traffic viability taking into account all
time slots of the scenario. At each time stamp, common
metrics, used in the area of vehicular traffic flow theory,
have to be considered, namely traffic density and traffic flow
values, which respectively stand for the number of vehicles in
terms of road occupancy and the number of vehicles crossing
the supervised location during a given period of time (which
is usually equal to one hour).

More precisely, traffic density of a road graph network R
at a given time slot t , denoted byDR(t), is defined as the array
DR (t) = {ρR (i, t) : i = 1, . . . , S where S is the total number
of the road segments in R having length of about 20 meters.
In a similar way, the corresponding traffic flow is defined as
FR (t) = {fR (i, t) : i = 1, . . . , S. Fixing the i-th road segment
in R (with i = 1, . . . , S) such that ρ = ρR (i, t) in DR (t) and
f = fR (i, t) in FR (t), thus if ρ = 0 then f = 0.

Otherwise, when ρ grows, also f grows up to the maximum
fmax, for which the vehicular density assumes its critical value
ρc = ρmax/2. In the case where ρ > ρc, other increases of
traffic density lead to a congested scenario of traffic flowup to
its maximum value ρ max, where the cars’ speed is 0 and then
f = 0. The critical density associated to the i-th road segment
in R depends on its road capability according, for example,
to its number of lanes. So that, some thresholds on the road
segments of R can be defined in terms of traffic density.
Critical values of the traffic density (according to the number
of lanes) can be observed when some congestion situations
are occurring and a set of thresholds {ρc (i) : i = 1, . . . , S }
in terms of traffic density can be defined describing the state
of traffic of the i-th segment road in R, for each i = 1, . . . , S.
‘‘FREE’’, ‘‘FLUID’’, ‘‘HEAVY’’ or ‘‘VERY HEAVY’’ traf-
fic states can be determined by assigning numerical intervals
on the value ρ = ρR (i, t) according to the corresponding
threshold ρc = ρc (i), for each i = 1, . . . , S, considering for
example 0 < ρ < ρc/2, ρc/2 ≤ ρ < ρc, ρc ≤ ρ < 3/2ρc
and 3/2ρc ≤ ρ < 2ρc, respectively, as a regular partition
of the fundamental diagram, describing the traffic flow and
density relationship, as depicted in Fig. 3.
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FIGURE 3. Simple classification of the fundamental diagram in order to
define ‘‘FREE’’, ‘‘FLUID’’, ‘‘HEAVY’’ or ‘‘VERY HEAVY’’ traffic states in the
context of decision support results.

Actually, a more accurate classification could be carried
out in such a context, but the presented one is easily used as
an immediate comparative tool within decision support field.
In particular, the percentages of road segments admitting the
above traffic states, with respect to the total number of road
segments in R, can be considered in order to determine KPIs
via temporal features of a given scenario, making it easier to
understand comparative results.

Moreover, in [33] some integrated performance indicators
in urban road infrastructure are also developed to evaluate
both network functionality and impact of transport system
interventions. To determine a value of traffic congestion
in the network, the most informative metric seems to be
the so-called average degree of saturation. More precisely,
the average degree of saturation of a road graph network
R at a given time slot t , denoted by SR(t), is defined as

SR (t) =
∑S

i=1
ρR(i,t)l(i)
ρc(i)∑S

i=1 l(i)
, where l (i)is the length of the i-the

road segment in R. Please note that, in the considered road
graphs, l (i) is almost constant equal to 20m. Thus SR (t) ∼=∑S

i=1
ρR(i,t)
ρc(i)

. Please note that ρc (i) is not constant since

it depends on the structure of the road in terms of lanes.
Formally, the traffic flow KPI (denoted by KPIF ) according
to a certain scenario SC i,T̂ =

{
i,Di,Ai, T̂ ,C i,R∗

}
, where

SR∗ (t) ∼=
∑S∗

i=1
ρR∗(i,t)
ρc(i)

, can be defined as

KPIF (SCi,T̂ ) = {FRR∗ ,FLR∗ ,HER∗ ,VHR∗ ,SR∗

where

• FRR∗ = {
|FRR∗ (t)|

S∗ 100 : t ∈ T̂ is the FREE traffic
state percentage for each time t in T̂ and |FRR∗ (t) | =
|

{
i ∈

[
1, S∗

]
: ρR∗ (i, t) <

ρc(i)
2

}
| is the number of road

segments in R∗ admitting FREE traffic state at time t in
T̂ , where S∗ is the total number of road segments in R∗.

• FLR∗ = {
|FLR∗ (t)|

S∗ 100 : t ∈ T̂ is the FLUID traffic
state percentage for each time t in T̂ and |FLR∗ (t) | =
|

{
i ∈

[
1, S∗

]
:
ρc(i)
2 ≤ ρR∗ (i, t) < ρc (i)

}
| is the num-

ber of road segments in R∗ admitting FLUID traffic state
at time t in T̂ .

• HER∗ = {
|HER∗ (t)|

S∗ 100 : t ∈ T̂ is the HEAVY traffic
state percentage for each time t in T̂ and |HER∗ (t) | =

|

{
i ∈

[
1, S∗

]
: ρc (i) ≤ ρR∗ (i, t) <

3ρc(i)
2

}
| is the num-

ber of road segments in R∗ admitting HEAVY traffic
state at time t in T̂ .

• VER∗={
|VHR∗ (t)|

S∗ 100 : t ∈ T̂ is the VERYHEAVY traf-
fic state percentage for each time t in T̂ and |VHR∗ (t) |=
|

{
i∈
[
1, S∗

]
:
3ρc(i)

2 ≤ρR∗ (i, t)<2ρc (i)
}
| is the num-

ber of road segments in R∗ admitting VERY HEAVY
traffic state at time t in T̂ .

• SR∗ = {SR∗ (t) : t ∈ T̂ is the collection of the average
degree saturation values for each t in T̂ .

Finally, the scenario KPI (denoted byKPI) according to
a certain scenario SC i,T̂ =

{
i,Di,Ai, T̂ ,C i,R∗

}
can be

defined as the union of the related traffic flow KPI and the
related connectivity KPIC (see Section 4.1), so that

KPI(SC i,T̂ ) = KPI
F
(SC

i,T̂
) ∪ KPIC (SC i,T̂ ).

KPIs produce different values for each time slot in the future
simulation/scenario analysis. Thus, comparison among the
effects of different choices and scenarios has to be per-
formed on the basis of MIN, MAX, average, median or
the values obtained in each time slot. When computing:
KPI(SC i,T̂ ), KPI(SC_UC i,T̂ ), for the averages KPI (SC i,T̂ ),
KPI (SC_UC i,T̂ ), and the derived differences of KPIs in dif-
ferent scenarios we may have: 1KPI .

V. VALIDATION IN A SIMPLE CASE
In order to validate models and solution, a real case in Flo-
rence city has been considered. It has consisted in performing
the future scenario analysis in terms of traffic flow in the case
of changes in viability, due to the creation of large restructur-
ing area for a new tram line in Florence. The blocked area
of the main scenario is reported in Fig. 4 and it describes
the shape of road-works begun in December 2019 around
‘‘Piazza della Libertà’’ square. Such a modification in the
road network removed a number of road segments within the
square to allow the construction of tramway rails line #3 in
Florence.

The selected area of the scenario presents a high level of
traffic flow, and it is one of the key junctions in Florence
city. This fact is also shown by means of the location of the
road graph node having the highest betweenness as depicted
in Fig. 4 (the case of the blocking area has not yet been
considered) and such a node is very closed to the selected
area.

The presence of blocking area in the road network slightly
modifies the related suitable directed graph and, for instance,
the highest value of betweenness changes node location,
thus determining the junctions where traffic congestion
often occurs. In particular, in the case of a blocking area
scenario, the junction assuming the highest value is the
green node depicted in Fig. 4. By setting SC i,T̂ as the
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FIGURE 4. Scenario represents the real blocking area caused by the
roadworks begun in December 2019 around ‘‘Piazza della Libertà’’ square
due to future rail location in Florence. Red dot represents the location of
the road graph network, having highest betweenness before the starting
date of such works in the city, green dot stands for the position when
graph road changes have been applied.

described scenario named ‘‘ScenarioANov2019’’, we have
KPIC (SC i,T̂ ) = {(469640.5,n253179120) , (1, n3262140609) ,
(88, n298511990)} and KPIC (SC_UC i,T̂ ) = {(464605.71,
n246843224), (1, n3262140609) , (88, n298511990)} where the
nodes’ indexes correspond to the OSM (Open Street Map)
indexing. In this case, the highest value of betweenness in
SC i,T̂ admits an increment of about 1% with respect to the
one in SC_UC i,T̂ and a North-West shift appears in the
corresponding node position. Note that, the highest values
of eccentricity and centrality are assumed by the same nodes
in both cases of the road network, since their modification
only happens when significant changes in the related suitable
directed graph are operated, and this is not the case since a
small blocking area is under review (see following example
for a case with more relevance changes). Since December
2019, the presence of roadworks in the area has contributed
to some inconveniences in vehicular traffic, thus causing an
increase in vehicular density during daylight hours. Provided
that the number of road segments is reduced in the area, then
drivers cannot but have forced choices for their travel direc-
tions by converging on the same option. So that, a congested
situation has been observed in relevant and primary roads
surrounding the square. In order to validate the described
approach and simulation tools, we have carried out the TFR
simulation, while imposing the needed modifications in the
road graph network. The aim has been two folds: (i) to study
the effect of changes (see Section 5.1), and (ii) to predict
traffic behavior some months in advance (see Section 5.2),
also verifying that predicted values have been precise enough
with respect to the produced effects on traffic flow due to
works on the roads.

A. ASSESSING THE EFFECTS OF CHANGES
By setting T̂ ={2019-11-20T07:00, 2019-11-20T20:00},
the results of the simulation of SC i,T̂ (representing the
described scenario named ‘‘ScenarioANov2019’’) are related
to a working day period when the traffic is usually heavy with
respect to the weekend days. The simulation has been based

FIGURE 5. Graphical comparison between KPIF (SC i,T̂ ) and
KPIF (SC_UC i,T̂ ). In the upper part, traffic states are compared for each
time slot hour by hour, in term of distribution of free, fluid, heavy and
very heavy traffic segments. In the lower part, the related average
saturation degrees over time values are depicted. The green line is related
to SC i,T̂ and it represents a more congested situation with respect to the
blue line related to SC_UC i,T̂ .

on the above-described traffic predictions on sensors (placed
at Florence city borders that are marginally influenced by
what changes in the city core where the scenario is set). Such
simulation has been computed during the six weeks spanning
from 2019-10-14 to 2019-11-24. When computing the anal-
ysis regarding traffic flow related to SC i,T̂ and SC_UC i,T̂ ,
we can observe different vehicular traffic situations. The anal-
ysis including TFR by simulation of SC i,T̂ did produce amore
congested situation with respect to SC_UC i,T̂ and its related
computation of both KPIF (SC i,T̂ ) and KPIF (SC_UC i,T̂ ) are
graphically compared in Fig. 5, where the suitable road graph
network is restricted to the area under review, that is, a circle
area having its center at the center of ‘‘Piazza della Libertà’’
and radius 1 km, so that, it is a small part of the city (about
10% of the whole city).

The bar-series provides a comparative distribution, hour
by hour, of free, fluid, heavy and very heavy traffic roads in
terms of vehicular density during rush hours of the day. As to
the second part of Fig. 5, it is evident that the new config-
uration will produce a certain increment of traffic saturation
in the area during the last hours of the day (from 13:00 to
20:00), which are the most critical. The mean increment of
the saturation is equal to 5.1%, while the maximum saturation
increment has been equal to 12.4% at time 18:00 (for the city
part under analysis).

B. VALIDATING THE EFFECT OF CHANGES WITH RESPECT
TO ACTUALLY MEASURED EFFECTS OF CHANGES
As a validation approach, the computation of the analysis for
SC i,T̂ , modeling the effect of the roadworks for tramlines, has
been compared with respect to actual measured traffic flow,
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FIGURE 6. Graphical comparison between the simulation SC i,T̂ with
respect to RT̂ 1 where two selected frames are considered, at time 09:00
and 15:00, respectively.

FIGURE 7. Comparison between KPIF (SC i,T̂ ) and KPIF (R T̂ 1). In the upper
part, traffic state is compared for each time slot of the day. In lower part,
its related average saturation is reported with its degree values. The
green line is related to SC i,T̂ and it depicts a similar behavior with
respect to the blue line related to RT̂ 1.

when related works have been actually performed. By setting
T̂1 ={2020-02-05T07:00, 2020-02-05T20:00}, RT̂1 denotes
the real traffic situation modelled when roadworks took actu-
ally place. Both simulations related to SC i,T̂ and RT̂1 admit
a similar vehicular traffic behavior. Fig. 6 shows a graphical
comparison of traffic for SC i,T̂ and RT̂1 respectively, where
the interested area is under review.

Moreover, the related computation of KPIF (SC i,T̂ ) and
KPIF (RT̂1) can be graphically compared in Fig.7, where the
suitable road graph network is restricted to the area under
review, that is, a circle area having its center at the center of
‘‘Piazza della Libertà’’ and radius 1 km.

In order to estimate any possible error between the results
obtained with the analysis on SC i,T̂ and those coming from
actual TFR on RT̂1, traffic densities in the corresponding

FIGURE 8. An example of the tool with complex scenario presenting
multiply-connected blocking areas in the city.

road segments have been compared. To this end, mean abso-
lute error (MAE) is considered. Since RT̂1 and SC i,T̂ admit
the same road graph network, named R∗, then MAE(t) =∑S∗

i=1 |ρR∗(i,t)−ρ
′
R∗(i,t)|

S∗ , where ρR∗ (i, t) and ρ’R∗ (i, t) are the
traffic densities in the i-th road segment of R∗(with i =
1, . . . , S∗) according to RT̂1 and SC i,T̂ respectively, at the
corresponding time slot t . To estimate any error in the area
of interest, an analysis has been conducted in the area of
‘‘Piazza della Libertà’’ around 1 km, which is equal to 1/10
of the whole city, for a total of about 3000 road segments.
Then, MAE(t) is estimated in such a circular area, together
with its related percentage error (with respect to the average
traffic density) MAEp (t) =

MAE(t)
d(t) 100, where d(t) is the

average traffic density in the considered circular area at time
t . For t running from 07:00 to 20:00 we have MAE =
(0.0591, 0.0966, 0.0833, 0.0791, 0.0768, 0.0531, 0.0617,
0.0694, 0.0617, 0.0852, 0.1080, 0.1111, 0.1225, 0.1055) in
terms of vehicle/20m, and the related error percentage is
MAEp = (22.16, 20.89, 16.83, 17.67, 18.30, 12.09, 13.93,
15.09, 11.97, 16.06, 18.41, 17.29, 19.43, 18.67). Values of
MAEp(t) seem to be in accordance with the comparison
between KPIF (SC i,T̂ ) and KPIF (RT̂1) as shown in Fig. 7.

VI. MULTIPLY CONNECTED SCENARIOS
This proposed model and tools allow to perform an anal-
ysis based on large scenarios of changes in the original
road network, by defining large blocking areas by means
of multiply connected blocking constraints. In this manner,
the road network structure can be strongly modified, and
complex scenarios can be analyzed. An example of scenario
having large multiply connected areas, named ‘‘WideRe-
structionOct2021’’, is shown in Fig. 8, where two polygons
covering a considerable part of the city road network graph
are defined according to the description in Section 2.3. This
complex scenario has been defined with the aim of stressing
the solution’s computational complexity and assessing its
performance.

By setting SC j,T̂ ′ as the described scenario named
‘‘WideRestructionOct2021’’ and considering T̂ ′ ={2021-10-
22T07:00, 2021-10-22T20:00}, then the scenario represents
a situation of the network graph occurring in a determined
period in the future, from 2021-10-22T07:00 to 2021-10-
22T20:00, where two multiply-connected areas (depicted in
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blue in Fig.8) are forbidden to vehicular traffic. In particular,
this scenario admits 32299 units of road network segmenta-
tion, having length of 20m, and 1463 junctions, thus reducing
the original road network of 1529 units and 77 junctions.
Which means a 4.7% reduction on traffic road segments and
a 5% reduction in terms of junctions.

In this given analysis, the reconstruction model allows to
calculate any traffic state at each hour of the selected period,
in the case from 2021-10-22T07:00 to 2021-10-22T20:00.
In particular, any traffic state at a given hour influences the
subsequent traffic state of the scenario’s following hours,
in terms of traffic flow propagation. By running the simula-
tion on this model, the user can understand how the system
would evolve over time as a direct consequence of condi-
tions. Moreover, the resulting calculation of the reconstruc-
tion model can be graphically visualized by means of the
corresponding 14 traffic flow maps (one for each hour, from
07:00 to 20:00) that can be sequentially selected via a control
panel and widgets, with its related animation that can be
presented as well. When TRF is computed with scenarios
featuring, then it is possible to compare any produced results
in terms of KPI reference (see Section 4), in order to evaluate
the impact in terms of changes of traffic patterns with respect
to previous or different conditions.

A. ASSESSMENT OF TRAFFIC FLOW
KPI(SC j,T̂ ′ ) and KPI(SC_UC j,T̂ ′ ) represent the col-
lection of both connectivity and traffic flow KPIs
related to SC j,T̂ ′ and SCUC j,T̂ ′ and they are consid-
ered and compared hereafter. In the case, we have
KPIC (SC j,T̂ ′ ) = {(323488.76,n2471190) , (1,n4924703865) ,
(94,n298511990)} and KPIC (SC_UCj,T̂ ′ ) = {(464605.71,
n246843224), (1,n3262140609) , (88,n298511990)} where the
nodes’ indexes correspond to the OSM indexing. In particu-
lar, the presence of high dimension blocking areas in the road
network strongly modifies the related suitable directed graph,
while junctions assuming the highest values of betweenness
and centrality are the nodes as depicted in Fig. 9. The
road graph network modification according to the scenario
‘‘WideRestructionOct2021’’ causes a new orientation of the
traffic viability by means of a redefined graph balancing with
respect to the unchanged graph.

Moreover, a related computation of KPI traffic flow
can be also performed. In particular, KPIF (SC j,T̂ ′ ) and
KPIF (SC_UC j,T̂ ’) can be graphically compared in Fig. 10,
where each traffic state presents a similar behavior. Please
note that areas having typical congestion situations are
included in the blocking components and the nodes assum-
ing the highest values of betweenness and centrality in
KPIC (SC_UC j,T̂ ′ ) are included in the blocking components
(see Fig. 9). Moreover, note that SR (t) and SR∗ (t) are com-
puted on different road graphs, while the number of vehicles
involved should be the same.

When large city areas are blocked, they may include traffic
flow sensors which may strongly influence the simulation of
TFR. If sensors are not included in the blocked area, or if

FIGURE 9. Connectivity KPI comparison. Nodes assuming highest
betweenness and centrality are depicted in orange and green,
respectively. Filled dots are related to KPIC (SC_UC

j,T̂ ′
), whileempty ones

to KPIC (SC
j,T̂ ′

).

FIGURE 10. Graphical comparison between KPIF (SC
j,T̂ ′

) and
KPIF (SC_UC j,T̂ ). In the upper part of the image, traffic states are
compared for each time slot. In the lower part, the saturation degree
values are depicted for the whole city due to the breadth of the involved
area. Green line is related to SC j,T̂ and it shows a slight increment with
respect to the blue line related to SC_UC

j,T̂ ′ .

they are in the center of the city, a diffusive approach of
the computational model can compensate any lacks. On the
contrary, when sensors included into the blocked areas are at
city borders, then their exclusion may reduce the number of
simulated vehicles entering/exiting into/from the city. Thus,
in order to preserve some balance on boundary conditions
of this traffic flow mathematical model, flows measured by
specific virtual sensors are added, or the total number of
vehicles involved in the simulation has to compensate the
missing sensors. This compensation is performed by scaling
the density by hour in the computation of saturation by a
corrective factor, according to the actual volume of predicted
vehicles. The resulting saturation degree by hour is reported
in Fig. 10. The average change in saturation of the changed
solution with respect to original unchanged is equal to 2.9 %
computed for the whole city.
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VII. PERFORMANCE ASSESSMENT
As to performance assessment, major costs are due to the
TFR computing, also when they are exploited as simulation.
As above described, complexity is due not only to TFR, but
also to the road graph computation and to the TDM com-
putation. On the other hand, this current model overcomes
past limitation of the solutions proposed in literature, which
are based on agents’ simulation models (as above described).
Most of them have relevant limitations both on the road
network graph dimensions and number of changes they can
afford. On the other hand, in most real cases of future scenario
analysis, the considered graph may be very large and multi-
ply connected as highlighted above, thus leading to change
large number of road segments from the original graph.
When large network graph simulations have to be addressed,
high computational costs and considerable memory usage
are required, as presented in [26]. On the other hand, the
analysis framework approach presented in this paper is based
on a fluid dynamics model of vehicular traffic via LWR PDE
model and equation, which has kept the same computational
cost presented in [6] also when large blocking area scenarios
are defined. In [6], the TFR precision has been proven with
respect to the state of the art and with respect to topological
aspects, together with the fact that the error can be higher in
cross points. When it comes to estimating the computational
cost of our model, the scenario ‘‘WideRestructionOct2021’’
has been considered. Experimental tests are conducted on the
Snap4city platform, leaning on DISIT Lab Cluster of 26 hosts
based on multi CPU and multi core XEON on cloud with
10Gbps multiple connections (main cluster with 330GHz), 4
TB Ram, 15.000 GPU, 250 TFlops Tensor, 300 TB of online
storage in RAID, a part in SSD and a part in 15Krps, 10Krps.
Traffic reconstruction is computed by using amachine having
an Intel Xeon E5-2630 v4 CPU with 10 physical cores at
2.2 GHz (20 hyper-thread cores), 25MB cache, 128 GB Ram
and the execution time has been obtained as a mean value
of results taken on 10 distinct executions of the scenario.
It admits an average time execution for the complete per-
formance of the selected scenario equal to 16 minutes and
52 seconds and each reconstructed scenario of one hour takes
about 62.43 seconds for its computation. This largely over-
comes the state-of-the-art solutions in quality, being based
on [6], and on computational performance and capabilities
as described in this paper.

VIII. CONCLUSION
In this paper, we develop a solution for assessing traffic
evolution when unexpected and planned events occur. The
proposed solution has been validated with a major focus on
traffic flow field since it has greater impact in every city
service. The aim of this current work is to understand in short
time how traffic would react with respect to the occurred
changes, so as to mitigate any possible outcome of changed
scenarios and their large-scale changes in the whole city.
The present case of study is meant to address more complex
situations if compared with cases where the analysis is done

simply to assess the impact of changing road direction or
closing a single road; such simpler occurrences are man-
aged and analyzed by the already existing tools in literature.
In our context, a given scenario is primarily determined by
means of the related road networkmodifications in large scale
environments, multiple unconnected areas, for a given period
of time, for example few months in advance. To cope with
such large-scale complexity, some topological and structural
changes in the suitable graph are considered, as well as the
redistribution of traffic on modified crossroads leading to
different traffic propagation effects with respect to current
traffic behavior. The solution provides a data driven instru-
ment for decision makers, in order to select which are the
most viable changes providing lower impact on traffic, thus
allowing to reshape traffic viability in short time or perform
planning in advance. Due to traffic cascade effect in larger
scale contexts, specific simulations regarding Traffic Flow
Reconstruction (TFR) in the whole urban network are needed
in order to evaluate the propagation of traffic congestion in the
city area, also within zones apparently unconnected with the
given Scenario. To provide responses in real-time for com-
plex scenarios we have (a) computed TFR by dynamically
reshaping the road graph network according to scenarios with
multiply connected critical areas, (b) computed multiple TFR
in consecutive time slots taking into account the evolution of
road graph, junction redistribution and traffic flow data. The
presented solution takes into account static, historical, real-
time/dynamic, and forecasting information, in a functional
model, where TFR processes (multiple simulations, predic-
tions, data transformations) are integrated with the business
logic of visualization and user interaction made available to
decision makers. The solution has been validated by different
road graph solutions and each solution on specific KPI and
Criteria which help decision makers to select the road graph
changes creating less problems as to traffic flow in the whole
city over all the addressed time slots. In particular, KPIs are
meant to assess globally any city traffic conditions; therefore,
the impact of changes has to be calculated on the basis of
the computed dense TFR, taking into account various Road
Graphs for each scenario, and all time slots.

Each modified road graph determines some differences
in terms of connectivity features, according to the related
suitable network. The topological properties of betweenness,
centrality and eccentricity metrics are computed in order to
evaluate in a quantitative manner any structural graph modi-
fication for each scenario.Moreover, each scenario also deter-
mines dynamically changes on traffic evolution according to
TFR, on several time slots, so that additional KPIs in terms
of traffic density, traffic flow and saturation degrees are also
considered to compare global traffic conditions and viability
in all time slots of the scenario. Both model and solution have
been validated against real cases of restructuring Florence
city for major maintenance activities.

The architecture of the presented analysis tool has been
based on Snap4City framework, where the business logic is
defined by using Node-RED and Snap4City MicroService

VOLUME 10, 2022 131073



P. Bellini et al.: Vehicular Traffic Flow Reconstruction Analysis to Mitigate Scenarios With Large City Changes

Libraries which allow to interact with Visual Analytic tool for
changing Scenario and selecting both decision support KPIs
and criteria to mitigate traffic aspects. This current solution
has been developed in the framework of Sii-Mobility national
sustainable mobility and transport project.
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