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Abstract
A novel approach for supervised classification is presented which sits at the intersection of machine
learning and dynamical systems theory. At variance with other methodologies that employ
ordinary differential equations for classification purposes, the untrained model is a priori
constructed to accommodate for a set of pre-assigned stationary stable attractors. Classifying
amounts to steer the dynamics towards one of the planted attractors, depending on the specificity
of the processed item supplied as an input. Asymptotically the system will hence converge on a
specific point of the explored multi-dimensional space, flagging the category of the object to be
eventually classified. Working in this context, the inherent ability to perform classification, as
acquired ex post by the trained model, is ultimately reflected in the shaped basin of attractions
associated to each of the target stable attractors. The performance of the proposed method is here
challenged against simple toy models crafted for the purpose, as well as by resorting to well
established reference standards. More precisely, we achieved an accuracy of 98.06% on the MNIST
test set and 88.21% on the Fashion MNIST test set. Although this method does not reach the
performance of state-of-the-art deep learning algorithms, it illustrates that continuous dynamical
systems with closed analytical interaction terms can serve as high-performance classifiers.

1. Introduction

Machine learning (ML) [1, 2] and deep learning (DL) [3–5] stand at the forefront of global technology use
and research [6]. In an age where data complexity is ever-increasing, these tools excel in uncovering novel
patterns, thereby enabling the achievement of groundbreaking results. Their profound impacts are indeed
felt across myriad of disciplines, from medicine to optimization, physics, partial differential equations and
finance [7–14]. The escalating sophistication of ML and DL technologies poses pressing challenges, chiefly in
the realm of interpretability [15], pointing to the need for novel technical solutions that could contribute to
elucidate the process that underlies decision making, which is often obscured from our understanding.

In standard approaches to dense neural network training one seeks to optimise the weights that link pairs
of neurons associated to adjacent layers. This is achieved by computing the gradient of the imposed loss with
respect to the weights. This procedure amounts to operate in the so called direct space. Alternatively, the
learning can be reformulated in reciprocal space, the spectral attributes (eigenvalues and eigenvectors) of the
underlying transfer operators being the actual target of the optimisation. This procedure introduced in [16]
allows for a substantial compression of the space of trainable parameters. Eigenvalues do provide a reliable
ranking of the nodes, an observation which can be used, downstream of training, to prune unessential
computing units and return a significantly compressed network, with almost identical classification abilities
[17]. Neural networks, in their original conception, are static entities. As such, they do not incorporate time
as a distinctive algorithmic element.

To fill this gap, neural ordinary differential equations (Neural ODEs) [18, 19] have been proposed as a
prime example of the intersection between dense neural networks and dynamical systems. Neural ODEs
illustrate that the information flow within a neural network can be seen as the evolution of a system over
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time. Unlike traditional networks that have a fixed number of hidden layers, these models parametrize the
derivative of the hidden state, using a neural network to determine the layer’s depth dynamically. The
model’s output is calculated using a differential equation solver, allowing it to adapt to different inputs and
balance numerical precision with computational speed. The training process is enhanced by a scalable
method for backpropagation through any ordinary differential equation (ODE) solver that implements a
strategy known as Adjoint Method [20]. A correspondence can be drawn between Neural ODEs and
Skip—Connection Neural Networks [21, 22] where the skip connection acts from one layer to the following
one. Notably, the weights should be the same for every step for the equivalence to hold. Relevant is also the
setting of Liquid Time-Constant Networks [23] which implement the biologically inspired idea of an
intrinsic relaxation time of activation and continuous time recurrent neural network [24–26].

Working in this setting, we here propose a variant of the Neural ODEs which accommodates for an
analytical expression of the computing non linear kernel. Further, and by leveraging on the spectral
formulation of the coupling operator, the untrained model is a priori furnished with a set of stationary stable
attractors. Classifying implies shaping the basin of the planted attractors, in such a way that items belonging
to different categories, supplied as an input, will be eventually directed towards distinct targets. These latter
will uniquely flag the class of pertinence of the object to be eventually classified. The ability of the system to
cope with a given classification task will be therefore inherited by the characteristics of the basin of
attractions, as sculpted upon training. In our view, this paves the way for a better conceptual grasping of the
overall decision making process, in terms of a genuine dynamical system that flows in time, by funnelling
different input towards their deputed destination site.

More concretely, we will focus on image classification tasks. The network which defines the backbone of
the examined dynamical model is made of N nodes, N denoting the number of pixels of the images to be
classified. Each node is assigned with a double well potential and decorated with a scalar and continuous
state variable which can explore the landscape of the assumed potential. Nodes are then sensing its nearest
neighbours, as stipulated by a linear coupling term. The web of inter-nodes connections is stored in a N ×N
adjacency weighted matrix, whose elements represent the target of the training process. The above matrix is
formulated in reciprocal domain: a subset of suitably tailored eigenvectors is assigned to its kernel and define
the attractive poles for the globally coupled dynamics. The eigenvalues populate a specific interval of the real
axis that yields stability of the crafted attractors, as dictated by a linear stability analysis. In essence the model
to be trained is an extended collection of interacting units subject to contrasting tendencies: local reactions
force the system towards the minima of the potential, while global, spatially (across nodes) extended,
interactions make the system to evolve towards complex heterogeneous stable states. The algorithmic scheme
proposed will be denoted in short SA-nODE, Stable Attractors for Neural Networks Classification via
Ordinary Differential Equations. The computational complexity of SA-nODE, after the training process is
complete, is quantified as O(N2), resulting from simple matrix-vector multiplication during the integration
of the dynamics, where N represents the size of the input. Additionally, SA-nODE offers an advantage in
terms of memory storage. Like nODE models, SA-nODE has a fixed number of parameters that do not
increase with the depth of the neural network.

After having established the theoretical background for the proposed methodology, we will turn to
presenting an extensive collection of tests. These include exploring the impact of random perturbations on
the algorithm’s performance. In conclusion, this manuscript present: (i) a dynamical system where stable
attractors are embedded into the dynamics; (ii) how to use spectral training techniques for transforming
such a dynamical system in a image classification algorithm. The paper is organized as follows: In section 2,
we will formulate the model, including the strategy to embed stable attractors. Section 3 details our
experimental setup and explains the training approach employed. In section 4, we present results from a
synthetic dataset composed of letters of size 7× 7 [27]. Section 5 demonstrates the performance of the
algorithm on two well-known benchmark datasets, namely MNIST and Fashion MNIST. In section 6, we
interpret the implications of our results and conclude our manuscript.

2. The model

In this section, we will introduce the basic principles that underlie the functioning of SA-nODE. As
anticipated, the proposed classification model is a learnable autonomous dynamical system, composed of N
interacting neurons, which can be cast in the general form:

⃗̇x(t) = F⃗ (⃗x) , (1)

where x⃗ ∈ RN, and F⃗(⃗x) =−∇⃗V(⃗x(t),a,γ)+βAx⃗(t). The vector x⃗ has entries of O(1), while ⃗̇x(t) represents
the derivative with respect to time of x⃗(t). V(⃗x(t),a,γ) : RN → R is a scalar field, i.e. a potential; with ∇⃗ we
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define the gradient operator. The adjacency matrix describing the graph is A ∈ RN×N. Such a matrix
encapsulates information on existing (weighted and sign sensitive) interactions between the nodes of the
network. β, γ and a are parameters of the system.

2.1. Planting the attractors
As anticipated, we postulate a double well potential, expressed as V(⃗x(t),a,γ) = γ(⃗x2(t)− a21⃗)T

(⃗x2(t)− a21⃗). In this formulation, each element of x⃗2 is denoted as x2i , i ranging from 1 to N. In the
uncoupled limit (β= 0), each node asymptotically approaches one of the two available equilibria,
respectively locates in±a. The uncoupled model displays hence 2N distinct attractors, i.e. the whole set of
independent combinations obtained by permuting the two above equilibria across the collection of N
available nodes. These latter are no longer solutions of the examined model when β is made different from
zero. In the following, we choose β = 1√

N
. This scaling is in line with the model proposed in [28, 29], where

the authors assume that the entries of A are independently and identically distributed as O(1) variables from
a standard Gaussian distribution. The value of γ, which sets the strength of the potential, will be
self-consistently adjusted through training. It should be emphasized that a prototypical double well potential
is found to emerge in models relevant to computational neuroscience, as follow the intertwined interaction
between distinct families of excitatory and inhibitory neurons [30]. In this respect, the simplified model that
we have here formulated unlocks a perspective view full of captivating biomimetic implications.

As previously indicated, the matrix A is a critical component as it incorporates the structural details of
the network’s topology. Assume A to be represented as A=ΦΛΦ−1, where Φ belongs to the set of real
matrices RN×N and Φ−1 signifies its inverse. Within this framework, the matrix Φ comprises the eigenvectors
of A, arranged as its columns. Meanwhile, the matrix Λ, also in RN×N, is a diagonal matrix containing A’s
eigenvalues. For ease of reference, we denote the columns of Φ as ϕ⃗(l), where l ranges from 1 to N. This
approach of decomposing the interaction matrix mirrors the spectral approach to machine learning, as
outlined in [16, 17, 31–33]. The whole idea of SA-nODE is to a priori plant a congruous number of non
linear stable attractors within the full untrained model. Indeed the k= 1, . . . ,K columns of matrix Φ, where
K stands for the total number of classes to be eventually categorised, correspond to our identified attractors.

To reach our goal we assign the entries of the selected vectors ϕ⃗
(k)

to take values±a, namely the positions of

the fixed points of the a-spatial dynamics (β= 0). In formulae, we require

(
ϕ⃗
(k)
)

i

=±a, ∀i = 1, . . .,N.

Further, we place the target vectors ϕ⃗
(k)

in the kernel of A. In other words, the matrix Λ has eigenvalues
λ(k) = 0, ∀k= 1, . . .,K, for satisfying the property that the corresponding eigenvectors sits in the kernel of A.

Thus, in light of the above prescriptions, x⃗kst = ϕ⃗
(k)

k= 1, . . . ,K are stationary solutions ( ˙⃗x= 0) of the
examined model: when the solution aligns to x⃗kst the linear inter-nodes coupling term disappear, by
construction. Further the individual components of x⃗kst are chosen in such a way−∇⃗V(⃗xkst,a,γ) = 0, thus
yielding the sought condition ˙⃗x= F⃗(⃗xst) = 0.

However, merely planting attractors is insufficient. Our objective is to enforce asymptotic stability,
following the procedure detailed above.

2.2. Enforcing linear stability

To investigate the linear stability, we introduce a perturbation δx⃗ around ϕ⃗
(k)
. Each component of the

perturbation is defined as follow: δxi = xi −ϕ
(k)
i , with δxi representing a small deviation from the state ϕ

(k)
i .

The model, i.e. equation (1), is then linearized around ϕ⃗
(k)
, leading to the following expression for each

component:

δẋi = f
(
ϕ
(k)
i

)
+ f ′

(
ϕ
(k)
i

)
δxi+

β
N∑

j=1

Aijϕ
(k)
j +β

N∑
j=1

Aijδxj +O
(
δx2i
)
,

(2)

where f(ϕ
(k)
i ) =−∂V(⃗x,a,γ)

∂xi

∣∣∣∣
xi=ϕ

(k)
i

and f ′(ϕ
(k)
i ) identifies the derivative with respect to the variable xi.

Higher-order terms in δxi are neglected in this treatment. In (2), the term f(ϕ
(k)
i ) = f(±a) = 0 by
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construction, as well as βAϕ⃗
(k)

= 0⃗. Equation (2) can, therefore, be further simplified to:

δẋi = f ′ (±a)δxi +β
N∑

j=1

Aijδxj. (3)

To proceed with the linear stability analysis, we aim to express δxi in the basis of eigenvectors of A. In this

context, δxi with
∑

α cαϕ
(α)
i , with Aϕ⃗

(α)

=Λϕ⃗
(α)

, where, we recall,Λ is diagonal.
By substituting δxi with the expression above, we obtain an equation for the evolution of coefficients cα.

This equation is given by:

N∑
α=1

ϕ
(α)
i

{
ċα −

(
f ′ (±a)+βλ(α)

)
cα
}
= 0, ∀α. (4)

The condition for a stable solution of the differential equation ċα = (f ′(±a)+βλ(α))cα is thus provided

by λ(α) < 8a2γ
β , ∀α. From the solution of the differential equation, we can immediately observe that if

λ(α) < 8a2γ
β , ∀α, then ϕ⃗

(k)
is a stable attractor of the dynamics, meaning that perturbations decay

exponentially with time around it. Conversely, if there exists at least one λ(α) > 8a2γ
β then the attractor ϕ⃗

(k)

becomes unstable, as a small perturbation grows exponentially with time. Moreover, in the case of stability,
we can define ts =

1
min |f ′(±a)+βλ| , which indicates the characteristic time scale for an imposed perturbation

to vanish.
In conclusion, we have examined the linear stability of the imposed attractors, the eigenvectors of the

coupling matrix assigned to its kernel. The analysis yields an upper bound for the set of eigenvalues λ(α), a
condition that should be enforced for the attractors to prove stable to external perturbations.

3. Training the model and the metric of convergence

Following the analysis carried out above, we are now in a position to introduce the training process that the
algorithm must undergo to learn to classify images. Without loss of generality, we fix the parameters a at 0.5
and let γ to be trainable. From the observations made in the previous section, we constrain the eigenvalues of

the matrix during the learning process to take any value in the range (−∞, 8a
2γ
β ). As an initial condition for γ

we opt for a value equal to 0.4, while trainable eigenvalues are initialized asN (−5,1), i.e. a normal
distribution with mean equal to−5 and variance equal to 1.

With this stated, we construct a statistical learning model where only the components of the matrix Φ,
which are not the embedded eigenvectors, as well as the non-zero eigenvalues can be self-consistently
learned. In other words, the first K columns of matrix Φ, those identifying the embedded attractors, are not
to be learned, just as the first K eigenvalues of the matrix Λ, which are fixed to be zero by construction. As an
initial condition for the non-embedded eigenvectors, we opt for orthogonal random eigenvectors.

As our system evolves over time, the values of x⃗ are updated. The updating is performed by an Euler
algorithm implemented as a recurrent neural network, following the scheme depicted in figure 1. Identical
layers made of N nodes are mutually linked by a linear coupling matrix A, computed via its spectral
decomposition, which contains the parameters to be trained. Non linear filters acting on each node follow
the interaction term here postulated, i.e. the symmetric double well potential. Time flows along the
horizontal axis, two successive layers of the imposed feedforward deep architecture being separated by a finite
amount,∆t<< 1. By operating in this framework, enables us to resort to standard optimization tools, as
routinely employed within the machine learning community, to train the proposed dynamical model. By
choosing∆t sufficiently small we make sure that the trained discrete model behaves like its continuous
counterpart. In concrete terms, we therefore train an ensemble made of continuous and linearly coupled
ordinary differential equations, which display a set of assigned asymptotic attractors, to operate as genuine
classifier. In the annexed appendix A, we consider a variant of the integration method that makes use of a
Runge–Kutta scheme. The underlying idea is identical to what previously illustrated, except for the fact that
for the deployment on an equivalent recurrent neural network one needs to accommodate for multiple
evaluations of the updated state (namely account for additional layers), as following the prescription of the
employed numerical algorithm. Tests on the convergence of the algorithm are enclosed in the
aforementioned appendix A.

The parameter space for optimization resides in R(N+1)(N−K)+1, where K, we recall, denotes the number
of classes in our classification problem, and the singular dimension relates to the parameter γ. In practice, we
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Figure 1. Panel (a): Schematic representation of the dynamical model employed. Each neuron is uniquely associated with a single
pixel of the image to be classified. The local dynamics is driven by a double well potential, as pictorially depicted. Panel (b):
Schematic representation of the discrete Euler version of the examined continuous dynamical model, implemented as a recurrent
neural network.

take a datasetD = (⃗x,y)( j)∈[1,...,|D|] of size |D|, where x⃗( j) is an input datum, and y( j) represents the target,

i.e. a number that ranges from 1 to K. This target y is mapped into our attractor ϕ⃗
(y( j))

of the dynamics. In

other words, the target y= 1 is the first eigenvector ϕ⃗
(1)
, the target y= 2 is the second eigenvector ϕ⃗

(2)
and so

on. Each analysed dataset is split into a training and a test sets.

The objective of the training is to minimize the loss function L= 1
|D|
∑|D|

j=1(⃗x
∗( j) − ϕ⃗

(y( j))

)T

(⃗x∗( j) − ϕ⃗
(y( j))

). x⃗∗ is the value of x⃗∗ = x⃗(T), when T is large enough, i.e. the dynamical system in (1) reaches
its stationary state. In other words, we give as an initial condition to our dynamical system the input datum,
i.e. x⃗(0) = x⃗( j), and let it evolve for a time T large enough. As anticipated, and in the minimal scheme here
discussed, the evolution of the system is performed using Euler’ algorithm, i.e. x⃗n+1 = x⃗n + F⃗(⃗x)∆t, where∆t
is the integration step and n is the index for the nth iteration. The maximum number of iterations is fixed a
priori. Given a time T, and chosen the value for∆t, the total number of iterations is defined as nmax = ⌊ T

∆t⌋.
Reached the time T, the value of x⃗∗( j) = x⃗( j)(T) is used for optimizing the loss function. The optimization
process can be facilitated using Adam algorithm [34] (with default learning rate).

Once optimal weight configuration is attained via Adam, we can proceed to evaluate the dynamical
system’s performance for classifications on test set elements. Importantly, these test set elements are a subset
of the datasetD that the system has never encountered during the training process. The number of epochs
for each analysis in this manuscript is fixed at 700 and mini-batch size equal to 250. The hyper-parameters
were systematically optimized to achieve the best performance. The code for reproducing the result can be
downloaded from [35].

To evaluate the effectiveness of our algorithm, we must compute a metric defining the system’s
performance. We opt to compare the output images with their corresponding targets. To this end, we
compute the overlap between the final state and the corresponding target. Mathematically, we define such
overlap as:

mf =
1

|Dtest|

|Dtest|∑
j=1

(⃗
x∗( j)

)T
ϕ⃗
(y( j))

Na2

=
1

|Dtest|

|Dtest|∑
j=1

1

Na2

N∑
i=1

x∗( j)i ϕ
(y( j))
i , (5)
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where |Dtest| is the cardinality of the test set.mf can be seen as a sort of averaged magnetization of the system,
as well described in disordered systems [36].

As alternative measure of the convergence to the deputed attractors, we introduce the Mean Squared
Error (MSE), which can be monitored over time t. The MSE is defined as:

MSE(t) =
1

B

B∑
m=1

(
x⃗(t)(m) − ϕ⃗

(y(m))
)T(

x⃗(t)(m) − ϕ⃗
(y(m))

)
(6)

wherem stands for themth instance, and B= |Dsample| denotes the sample size. Remark that x⃗(t) represents
the time evolution of the trained model, for any given item supplied as an input.

To enhance the complexity of the simple datasets used in our preliminary evaluation (see below for a
discussion on this issue) and to mimic real-world scenarios where data may be subject to noise, we introduce
uniform noise to individual pixels, chosen randomly. This alteration effectively dirties the image to be
processed, offering a more realistic portrayal of what might be encountered in practical applications. By
adjusting the number of pixels to be corrupted with ϵ ∈ [0,1], the level of noise can be controlled, thereby
allowing for systematic studies of noise resilience in the proposed model. In other words, the number of
pixels corrupted, ζ , is ζ = ϵN, where N is the size of the system, i.e. the number of total pixels of an image.

This deliberate induction of noise will be inserted into the training set and/or the test set. In such cases,
we use ϵtrain to define the level of noise injected into the training set, which means that the model is trained
with images that are corrupted with a particular level of noise, equal to ϵtrain. Similarly, we use ϵtest to define
the level of noise injected into the test set, once a particular model has been trained with its own level of noise.

4. Letter dataset

In this section, we present a synthetic dataset constructed through binarized ASCII characters, specifically
tailored to our experimental requirements. Specifically, the chosen set involves five letters, from ‘A’ to ‘E’, each
formulated as 7× 7 in grey scale, see figure 2. This synthetic dataset provides a valuable resource for
validating our algorithm’s performance under various noise conditions, introduced as follows the procedure
highlighted above. At this stage the objective is not to benchmark the performance of our learning model
against conventional metrics of accuracy and efficiency, but rather demonstrating the functionality of the
continuous dynamical model as a viable image classifier. In figure 2 the bottom row display the target pattern
associated to each letter. Following the dictates of the proposed framework, the (arbitrary) patterns that
define the attractors are composed by assigning to each pixel value±a, these latter identifying the location of
the two wells of the non linear reaction term. The middle row of figure 2 presents the noisy version of the
letters.

As an initial analysis, we focused on the scenario where the model was trained on noise-free images
(ϵtrain = 0.0). It should be remarked that this defines a rather academic condition, where train and test sets
are made of identical reservoirs, populated with multiple copies of the same (no noise) letters. As such, and
for this preliminary case study, we are not really probing the ability of the system to generalize beyond the
limited set of images processed under training. The detailed outcomes of this investigation are delineated in
figure 3, blue line. The overlap between the final state and the target, i.e. the metricmf, reaches an impeccable
score of 1.0. However, a discernible decrease in performance is observed as the noise level in the test images
incrementally rises. The downgrade in the recorded performance is monotonous with the increase of ϵtest and
yields an an overlap of zero at ϵtest = 1.0.

We then transitioned our focus to assess the model’s prowess when trained with images bearing a noise
level of ϵtrain ̸= 0. The figure 3 offers a multidimensional perspective on the model’s performance, by
comparing various levels of noise during both training and testing. With a modest training noise of
ϵtrain = 0.1, the model still maintains near-ideal precision for low-noise testing, but the decline in
performance manifests more gradually when compared to previous observations. As we escalate the training
noise, these trends persist, up to a given threshold in ϵtrain, above which the images are too corrupted to be
correctly classified.

In figure 4 Panel (a), we report the trend displayed by the MSE over time t for the model with ϵtrain = 0.3.
The MSE is evaluated on various test sets, identified by the level of noise introduced in the test set, namely
ϵtest. As a first remarkable observation, we notice that the MSE reaches a stable asymptotic plateau which
indirectly points to the convergence of the underlying dynamical model. The ability of the system to classify a
given datum supplied as an input, is stably maintained across time and not just referred to the limited
horizon of the training time. Further, for ϵtest ⩽ 0.3, the MSE decreases approaching zero exponentially fast.
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Figure 2. Representation and corresponding targets (asymptotic attractors) of the letters ‘A’, ‘B’, ‘C’, ‘D’, and ‘E’ as 7× 7 grey scale.
The top row illustrates the representation of each letter, enclosed within rectangular borders. The middle row displays the same
letters but with a noise factor of ε= 0.2 applied, introducing slight distortions. The bottom row presents the target pattern for
each letter, with the black line of the target for ‘B’ starting immediately after the line of the target for ‘A’, the target for ‘C’ starting
after ‘B’, ‘D’ after ‘C’, and ‘E’ after ‘D’, each surrounded by a sea of white pixels. This configuration allows for precise mapping to
each corresponding letter, serving as the planted attractors within the matrixΦ, as illustrated in the main body of the paper.
Recall in particular that the attractors are shaped by employing the two entry values±a. Here,−a refers to pixel colored in white,
black pixels are associated to a.

Figure 3. The figure displays the relationship betweenmf and the testing noise ϵtest for various levels of training noise, for 5
classes. Each line represents a different training noise level, ranging from 0.0 to 1.0, with a corresponding color code. The
horizontal line illustrates a reference point. For this analysis we set T= 40.0,∆t= 0.1.

Conversely, for ϵtest ⩾ 0.4, the MSE stabilizes at non-zero values: trajectories within the phase space do not
align with the anticipated attractors. A detailed analysis reveals instead that, for ϵtest ⩾ 0.4, the recorded MSE
displays a bimodal distribution, see 4 Panel (b), with a significant fraction of images that are indeed correctly
classified, also for noise amount considerably larger that the one imposed during training. From a more
fundamental point of view, the displayed bimodal distribution is reminiscent of a metastable phase
associated to a first order phase transition, that putatively separates the regime where SA-nODE works
properly from that where predictions are found to be inaccurate.
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Figure 4. Panel (a): the temporal evolution of the Mean Squared Error (MSE) is displayed, across a sample of 2000 images ‘D’, for
various ϵtest values, at a fixed ϵtrain = 0.3. For scenarios where ϵtest < ϵtrain, the MSE tends towards zero as time t approaches
infinity. Conversely, when ϵtest ⩾ ϵtrain, the temporal estimate of the MSE increases with added noise. For this analysis we set
∆t= 0.1. Panel (b): the histogram of the MSE associated to different trajectories for ϵtrain = 0.3 and ϵtest = 0.6. A significant
fraction of the supplied images are correctly classified. For visual clarity, all non-zero values are designated as 1.

Figure 5. In the three-dimensional figure presented, the x-axis delineates the variance, σA, of the Gaussian perturbation applied
to a specific component of the coefficient vector c⃗(A) corresponding to the A letter, the y-axis displays the index j of the perturbed
component from the vector c⃗(A), and the z-axis represents the sample Mean Squared Error (MSE) value. Notice that the original
image can be written as x⃗(A) =Φ c⃗(A), whereΦ signifies the transformation matrix. Consequently, by leveraging the inverse ofΦ,
we can derive the coefficient vector c⃗(A). In this representation, we introduce a perturbation exclusively to one component of the
vector c⃗(A) at a given instance and compute the corresponding MSE. The indices on the y-axis are systematically arranged based
on the ascending magnitude of the MSE, thereby illustrating the differential impact of perturbations across various components
of c⃗(A) on the overall error in the reconstructed image.

Upon training, one obtains a basis of the scanned multi-dimensional space which is tailored to the
problem at hand. The basis is formed by the column vectors of matrix Φ. Every supplied item x⃗ can be
decomposed by using the aforementioned basis. The set of obtained coefficients, c⃗=Φ(−1)⃗x returns a
complete and equivalent representation of the analysed datum x⃗. This framework can be used to probe the
model’s robustness and vulnerability to external source of disturbance from a different perspective,
alternative to perturbing each individual pixel (which amounts to operate with the canonical basis
viewpoint). More specifically, we can proceed by perturbing individual eigen-directions—or punctually alter
each coefficient c⃗ of the above expansion. In doing so, several pixels get simultaneously modulated by the
external noise source, following a pattern of correlated activation that indirectly stems from the
accomplished training. In doing so we empirically, senses the size of the basins of attraction, post training, by
using a correlated version of noise that is self-consistently shaped by the learning protocol.
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Figure 6. Analysis of model robustness by examining the fraction f of coefficients that can be simultaneously perturbed with
Gaussian noise (σA) without exceeding a 5% degradation in MSE. 1− f, conversely, is related to the number of sensitive
eigen-directions (the smaller the better). The primary objective is to ascertain the threshold beyond which the cumulative effect of
these perturbations impedes the accurate classification of a reconstructed image (here letter A). This analysis is carried out for
different choices of ϵtrain. A discernible observation from the figure suggests the existence of an optimal noise level up to which the
perturbations remain inconsequential for the classification task. In this specific instance, the optimal value is identified as
ϵtrain = 0.3.

Figure 5 reports on this analysis, where the robustness of each eigen-direction to a Gaussian perturbation
N (0,σ) is probed. The MSE, calculated in a steady state, serves as a benchmark metric. We observe that, for a
model trained with ϵtrain = 0.3, many coefficients are resilient to individual perturbations. Stated different
only few directions can trigger the system unstable. In fact, the vast majority of imposed collective
eigen-perturbations do not affect the ability of the system to carry out the assigned classification task. In a
world where images are frequently subjected to noise and interference, understanding noise resistance
through coefficient perturbation can guide the implementation of resilient designs and/or information
compression strategies, ensuring that essential information is preserved despite reductions.

Figure 6 shows how the addition of noise in the training process results in a marked increase in the
model’s robustness, which can be assessed in reciprocal space. Specifically, we reason as follows: let us focus
on the letter A. The coefficients in the reciprocal space of this data can be perturbed with a Gaussian
distribution of variance σA, causing a degradation of the MSE. As shown in figure 5, several modes are, in
principle, robust to perturbations applied to individual coefficients. However, from this analysis it is not
obvious to anticipate what could happen when a fraction f of the coefficients gets simultaneously perturbed
with Gaussian random noise of variance σA and how this collective perturbation eventually reverberates on
the recorded MSE.

To understand the effect of training with noise ϵtrain, we fix the degradation of the MSE at 5% and the
perturbation amplitude σA. A natural question hence arises: how many coefficients can be perturbed
without exceeding the 5% degradation threshold in the MSE? Alternatively, what fraction (1-f ) of the
eigenvectors must not be perturbed? This latter fraction is, in our view, a measure of the network’s
robustness. Indeed, if it is low, only a few coefficients need to remain unperturbed, while the remaining f can
be perturbed simultaneously without causing a degradation greater than 5% of the MSE. The result of this
analysis is reported in figure 6 against different training-noise amplitudes. Such representation shows the
existence of an optimal training-noise (ϵtrain = 0.3) level. With this latter choice, almost 70 % of the
eigenvectors ca be perturbed with a maximal strength of the imposed noise (σA = 1.0) without observing a
relative difference in the MSE larger than 5 %. The fraction of relevant eigenvectors is, moreover, consistently
lower with respect to the other training-noises.

Upon completing the analysis of the synthetic dataset, we can now shift our focus to assess the robustness
of Sa-nODE in comparison to the most commonly cited benchmarks in literature: MNIST and Fashion
MNIST (In appendix B we present the robusness of our model under noise condition, for both dataset).
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5. Applying SA-nODE toMNIST and FashionMNIST

In the preceding section we introduced the concept of SA-nODE and applied it to the analysis of a synthetic
dataset, with different grades of imposed noise. To further test the adequacy of the proposed scheme, we turn
to considering the so called MNIST and Fashion MNIST datasets.

The Modified National Institute of Standards and Technology (MNIST) dataset [37] is one of the most
iconic and widely utilized datasets in the field of machine learning, particularly in the domain of pattern
recognition and computer vision. Stemming from a rich history, it has played a pivotal role as a benchmark
dataset, testing a plethora of algorithms and machine learning techniques over the years.

The MNIST dataset consists of a collection of 70000 handwritten digit images. These grey scale images
are uniformly sized at 28× 28 pixels (i.e. N = 784), with digits centered in the frame. The dataset is
subdivided into a training set of 60000 images and a test set comprising 10000 images. Each image is labelled
with the corresponding digit it represents, ranging from 0 to 9.

The simplicity of the dataset, combined with its relatively small size, makes it suitable for beginners to
explore the intricacies of various machine learning algorithms without the need for substantial
computational resources. Furthermore, the dataset’s balanced composition, with an almost equal number of
samples for each digit, ensures that models trained on it are not biased towards any particular digit.

The accuracy of the trained SA-nODE algorithm can be computed from evaluation ofmf, as introduced
above. More specifically, we assumed that an image is correctly classified only if the similarity

m( j)
f = 1

N

∑N
i=1 sign(x

( j)
i )sign(ϕ

(y( j))

i ) is greater than or equal to 95%.
In formulae, the accuracy (H) of our algorithm is formulated as the average over the test dataset (Dtest):

H=
1

|Dtest|

|Dtest|∑
j=1

δ
(
m( j)

f

)
, (7)

where

δ
(
m( j)

f

)
=

{
1 if m( j)

f ⩾ 0.95

0 otherwise.
(8)

This allows us to account for images that exhibit minimal pixel differences from the correct attractors,
while excluding those with more than 5% of corrupted pixels. This refined metric provides a comprehensive
evaluation of our algorithm’s classification capabilities, in terms of reported accuracy.

In such conditions, the accuracy achieved by SA-nODE is 98.06%. Among the 104 test images, 9776, an

overwhelming majority, are perfectly classified withm( j)
f = 1, indicating that no pixels are corrupted in the

output images. In other words, the 9776 initial conditions have converged to the attractors within a specified
maximum time frame and the state achieved corresponds accurately with the classification requirements.

Furthermore, 30 images exhibit 0.95⩽m( j)
f < 1, and the remaining images, though a small fraction, have

m( j)
f < 0.95.
To provide a comprehensive visual insight into the varying degrees of pixel-wise similarity, three cases

typical examples are provided in Figure 7: Case A shows the perfect classification, thusm( j)
f = 1, with no

corrupted pixels. Case B displays an instance in the range 0.95⩽m( j)
f < 1, showcasing output images with

minimal pixel differences, while maintaining accurate classification. Case C indicates potential
misclassification, without necessarily having corrupted pixels or overlapping attractors. In this particular
instance, we can observe the algorithm’s uncertainty as it produces an output that is a combination of the
targets for both a three and a seven. We present a confusion matrix, other analyses and examples of
misclassified images in appendix C.

As a second application, we consider Fashion MNIST dataset. This is specifically designed as a drop-in
replacement for the classical MNIST dataset, albeit with a contemporary twist. Instead of handwritten digits,
Fashion MNIST encompasses a variety of images pertaining to clothing and fashion articles. Introduced by
Zalando, an e-commerce company, [38] the dataset responds to the criticism that MNIST was considered too
easy, or even overused, in the deep learning community. While the images in the Fashion MNIST might
appear simple, the subtle nuances between certain clothing categories make classification a more challenging
task than distinguishing between handwritten digits.

Fashion MNIST consists of 70000 images, representative of 10 distinct fashion categories, such as
t-shirts, trousers, pullovers, dresses, coats, sandals, and more. Similar to the MNIST dataset, these grey scale
images are standardized to a size of 28× 28 pixels. The dataset is neatly split into 60000 training images and
10000 test images. Each image is associated with a label that denotes one of the ten categories.
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Figure 7. Illustration of three scenarios where the model classifies images. (A) This scenario represents the epitome of accurate

classification, wherem
( j)
f = 1. It showcases flawless categorization with no corrupted pixels in the output targets. (B)In this case,

0.95 ⩽ m
( j)
f < 1, demonstrating targets with minimal pixel differences. Despite these slight variations, the model maintains

accurate classification, highlighting its robustness. (C) Indicates potential misclassification or the presence of overlapping

attractors, wherem
( j)
f < 0.95. For this analysis we set T= 120.1,∆t= 0.1.

SA-nODE achieves an accuracy of 88.21%. More precisely, among the 104 test images, 8740, an

overwhelming majority, are perfectly classified withm( j)
f = 1, indicating that no pixels are corrupted in the

output images. Furthermore, 81 images exhibit 0.95⩽m( j)
f < 1, and the remaining images, though a small

fraction, havem( j)
f < 0.95. We present a confusion matrix, other analyses and examples of misclassified

images in appendix C.

6. Conclusion

We have here proposed a variant of the Neural ODEs architecture, which accounts for a closed analytical
expression of the imposed reaction term. Individual nodes are in particular assumed to be subject to a local
reaction which follows from a prototypical double well potential. As such, the uncoupled dynamics can
accommodate for two symmetric equilibria. These latter solutions define a minimal alphabet that we use to
construct a set of arbitrarily crafted attractors of the coupled (spatially extended) system dynamics. The
coupling among computing nodes, each associated to a pixel of the image to be classified, is linear and
topologically encoded in an adjacency weighted matrix, whose elements represent the target of the training
process. This latter matrix is formulated in reciprocal domain and the target attractors are assigned to belong
to its kernel. Stationary stability is a priori granted by forcing the trained eigenvalues to populate a given
domain, as stipulated by a linear stability analysis. Classifying amounts to shaping the basin of the planted
attractors, so that different items will be eventually directed towards distinct targets, depending on their
specific category of pertinence. In essence, SA-nODE, as we chose to denote the algorithm, is made of a finite
set of particles or spins, each of which jumping between two allowed states, identified by the positions of the
symmetric potential wells. Because of mutual (linear) interactions, and following spectral training, the
particles are eventually frozen in a heterogeneous (in the space of the pixel) and stationary stable pattern,
yielding an image that is uniquely representative of the processed element. The proposed classification
strategy has been successfully tested against mock and reference datasets, as reported in the main body of the
paper (we recall that SA-nODE achieved an accuracy of 98.06% on the MNIST test set and 88.21% on the
Fashion MNIST test set). The interest of SA-nODE resides in having constructed a simple, dynamically
sound model, which yield competitive classification scores. The model takes a closed, compact and intuitive
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form, which can be further dissected by leveraging on the vast arsenal of non-linear dynamics tools, to shed
light, from a different angle, on the inherent ability of neural networks to effectively learn and decide. We
anticipate that other models, including several of biomimetic inspiration, thus relevant to computational
neuroscience, could be proposed, which yield dynamically assisted classification via stable attractors. We will
report in future works on these possible extensions.
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Appendix A. Converge to the continuous model

To challenge numerical convergence, we varied the integration timesteps,∆t, and recovered the results
reported in figure 8. We can hence utterly conclude that the reported analysis provides a faithful
representation of the underlying continuum dynamical system. These numerical integrations were carried
out using the fourth-order Runge–Kutta method [39]. This method is employed for its precision, having a
truncation error of O(∆t4), where∆t is the time step of the integration.
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Figure 8. The plot showcases the MSE at t= 10 as a function of the chosen time step∆t for numerical integration, employing the
fourth-order Runge–Kutta method.

Table B1. This table delineates the performance accuracy of two distinct models, SA-nODE and MLP, when trained under varying levels
of noise (ϵtrain) an tested in the case ϵtest = 0.0. The accuracy metrics are separately catalogued for two datasets: MNIST and Fashion
MNIST. Each cell indicates the model’s accuracy, i.e. equation (7), facilitating a comparative assessment of the models’ robustness and
adaptability in the presence of noise-induced perturbations in the input data during training process.

MNIST Fashion MNIST

ϵtrain HSA-nODE HMLP HSA-nODE HMLP

0.0 0.9806± 0.0014 0.9825± 0.0013 0.8821± 0.0032 0.8955± 0.0030
0.1 0.9766± 0.0015 0.9730± 0.0016 0.8788± 0.0033 0.8825± 0.0032
0.2 0.9692± 0.0017 0.9641± 0.0018 0.8685± 0.0035 0.8745± 0.0033

Appendix B. MNIST and FashionMNIST trained with noises images

We explore the influence of introducing pixel errors into images on the accuracy of our classification
algorithm. Specifically, our focus lies in investigating the potential expansion of the basin of attraction
MNIST and Fashion MNIST. In table B1, we delineate the behaviour of classification accuracy in the MNIST
and Fashion MNIST datasets when trained under varying noise conditions—specifically, with ϵtrain = 0
(without noise) and ϵtrain ̸= 0 (with uniform random noise). Interestingly, SA-nODE model performs
slightly better than MLP in the presence of noise only for MNIST dataset. For the MNIST dataset, the
SA-nODE’s robustness is evidenced by its competitive accuracyH relative to the MLP at almost all noise
levels. The MLP has one hidden layer, 512 neurons and ReLU activation function, and an output layer with
softmax activation and 10 neuron. In this case we used a categorical cross-entropy loss function.

Appendix C. Confusionmatrix, precision, recall, F1 score andmisclassified images

The confusion matrix for the MNIST test set using SA-nODE is shown. Each output was compared with all
possible attractors, and the matrix was filled based on the highest overlap for each case, in contrast to the
metric described in the main text, i.e. equation (7).

C.1. MNIST
The confusion matrix for MNIST reads:
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MNIST Class 0 Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Class 7 Class 8 Class 9

Class 0 968 0 2 0 1 3 1 1 2 2
Class 1 0 1124 0 1 0 0 2 1 2 3
Class 2 1 2 1012 3 4 0 1 7 4 1
Class 3 0 3 4 992 2 15 0 4 1 4
Class 4 0 0 2 0 964 0 4 0 1 5
Class 5 1 1 0 5 0 864 1 1 3 3
Class 6 4 2 1 0 0 3 945 0 1 2
Class 7 3 0 8 4 2 1 0 1012 3 5
Class 8 1 3 3 3 1 5 3 0 955 2
Class 9 2 0 0 2 8 1 1 2 2 982

In this case, the overall accuracy (the trace of the matrix normalized to the test set dimensionality) is
98.18%, which is higher than the 98.06% accuracy mentioned in the main text. This difference arises because
our definition of accuracy, i.e. (7), was specifically designed to demonstrate that the stable attractor was
reached (or almost reached) within the fixed integration time.

Given the confusion matrix, it is possible compute for each class the precision, the recall and the F1 Score
metrics. We report them in the matrix below.

MNIST classes Precision Recall F1 score

Class 0 0.9878 0.9878 0.9878
Class 1 0.9903 0.9921 0.9912
Class 2 0.9806 0.9778 0.9792
Class 3 0.9822 0.9678 0.9749
Class 4 0.9817 0.9877 0.9847
Class 5 0.9686 0.9829 0.9757
Class 6 0.9864 0.9864 0.9864
Class 7 0.9844 0.9750 0.9797
Class 8 0.9805 0.9785 0.9795
Class 9 0.9732 0.9820 0.9776

We present below a simple example of misclassified images for the MNIST dataset:
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C.2. FashionMNIST
The confusion matrix for Fashion MNIST reads:

Fashion MNIST Class 0 Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Class 7 Class 8 Class 9

Class 0 835 2 25 27 6 0 118 0 2 0
Class 1 1 983 2 9 3 0 4 0 0 0
Class 2 15 0 792 14 106 0 74 1 4 0
Class 3 23 7 8 879 23 1 28 1 5 0
Class 4 4 3 95 36 792 1 67 0 3 0
Class 5 1 0 0 1 2 976 2 12 2 10
Class 6 113 2 73 29 58 0 693 0 12 0
Class 7 0 0 0 0 1 13 2 946 5 21
Class 8 8 3 4 5 8 3 12 0 965 2
Class 9 0 0 1 0 1 6 0 40 2 967

Again, the overall accuracy (the trace of the matrix normalized to the test set dimensionality) is 88.28%,
which is higher than the 88.21% accuracy mentioned in the main text. This difference arises because our
definition of accuracy, i.e. (7), was specifically designed to demonstrate that the stable attractor was reached
(or almost reached) within the fixed integration time.

Given the confusion matrix, it is possible compute for each class the precision, the recall and the F1 Score
metrics. We report them in the matrix below.

Fashion MNIST classes Precision Recall F1 score

Class 0 0.8350 0.8227 0.8288
Class 1 0.9830 0.9810 0.9820
Class 2 0.7920 0.7873 0.7896
Class 3 0.8790 0.9015 0.8901
Class 4 0.7920 0.7912 0.7916
Class 5 0.9760 0.9702 0.9731
Class 6 0.6930 0.7071 0.7000
Class 7 0.9460 0.9575 0.9517
Class 8 0.9650 0.9554 0.9602
Class 9 0.9670 0.9508 0.9588
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We present below a simple example of misclassified images for the Fashion MNIST dataset:

Appendix D. Invertibility of the SA-nODE algorithm

Invertible machine learning models can be used for data compression (or related problems [40]), enabling
high-fidelity data decompression or synthetic data generation. Invertibility also aids in model interpretability
by maintaining information throughout the network’s layers, which can illuminate the model’s decision
processes. With these applications in mind we set we begin with an image, represented as x⃗(t= 0), serving as
the initial condition of our dynamics. This image is allowed to evolve in accordance with its inherent
dynamical laws. Post-training, it is constructively known that the image concludes its dynamical trajectory at
an attractor.

A pivotal question arises at this juncture: Having the output of our classification algorithm (x(T)), is it
possible to reconstruct the originating image (x(0))?

Addressing this question, we find that SA-nODE possesses a mechanism for reversing its dynamics. By
employing a straightforward transformation, τ = T− t [41, 42], which effectively reverses the dynamics of
the system, we can integrate the dynamics backwards and recapture the initial image. The modified
evolutionary law for this backward integration becomes ⃗̇x=−F⃗(⃗x), with the derivative now taken
concerning the variable τ . It is noteworthy to mention that the choice of T in the transformation τ = T− t is
crucial. T should not be excessively large, but large enough to ensure that the system has reached the
attractor, as illustrated in figure 9.
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Figure 9. The figure depicts the temporal evolution of the 784 pixels of an MNIST image corresponding to the digit 0. Notably, all
curves converge to distinct clusters in the positive and negative planes once t> Tinv = 3.2, where Tinv stands for the time where
the inversion takes place. For this analysis we set∆t= 0.01.

Figure 10. The figure illustrates the process of reversing the time arrow for an MNIST image corresponding to the digit 0. The
classification can be easily verified by the image on the right, while the recovered image can be seen at the bottom on the left of the
figure. For this analysis we set∆t= 0.0001, Tinv = 3.2.

Figure 11. The figure depicts the temporal evolution of the 784 pixels of an Fashion MNIST image corresponding to trousers in
figure 12. Notably, all curves converge to distinct clusters in the positive and negative planes once t> Tinv = 4.0. For this analysis
we set∆t= 0.01.

Figure 9 and 10 (resp. 11 and 12) provide a graphical representation of the journey from a starting image
to the recovered image, obtained via the backward dynamic integration. Notably, the figures obtained closely
resembles the input image, with any discernible differences likely attributed to numerical errors inherent in
the integration process.
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Figure 12. The figure illustrates the process of reversing the time arrow for Fashion MNIST image. The classification can be easily
verified by the image on the right, while the recovered image can be seen at the bottom on the left of the figure. For this analysis
we set∆t= 0.00001, Tinv = 4.0.
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