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Abstract 
Beno ît  Mandelbrot ,  the  fa ther  of  Frac ta l  Geometry ,  deve loped a  
mul t i f racta l  model  for  descr ib ing pr ic e  changes.  Despi te  the  commonly  
used mode ls ,  such as the  Brownian motion,  the  Mutifr acta l  Mode l  of  Asset  
Return (MMAR) takes in to account  sca le -consi s tency ,  long- range 
dependence and heavy ta i l s ,  thus hav ing a  grea t  f lex ib i l i ty  in depic t ing the  
rea l -market  pecul iar i t ies .  In sec t ion 2 a  review of  the  mathematic s involved 
into mul t i f r acta l s  i s  presented ;  Sec t ion 3 i s  addresses to the  ex tens ion of  
mul t i f racta l i ty  towards  stochas t ic  processes ,  in troduc ing the  cruc ia l  
concept of  loca l  H ölder  exponent of  a  funct i on.  F ina l ly ,  Sect ion 4 deeply  
ana lyzes the  mathemat ica l  proper t ie s  of  the  sca l ing func t ion which dr ives 
the  “wi ldeness”  of  the  process .  The proof  of  Theorem 4.4  i s  unpubl i shed 
and the genera l i za t ion of  Mandelbrot ' s  re su l ts ,  which highl ights a  possible  
a l te rna t ive  motiva t ion for  the  presence of  heavy ta i l s  and a  connect ion wi th  
the  Extreme Va lue Theory .  Sect ion 5 i s  devoted to the  ana lys is  of  the  
connect ion be tween the sca l ing func t ion ,  Mult i f r acta l  Forma l i sm and Large  
Deviat ion Theory ,  suggest ing  possible  w ays in order  to e s t imate  the  
quant i t ie s  involved.  F ina l ly  in  Sect ion 6 the  MMAR i s  presented ,  l i s t ing a l l  
the  theorems tha t  make  i t  a  su i tab le  mode l  for  f inanc ia l  model l ing.  
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1 Introduction

The development of this work is based on the ideas of Mandelbrot about market

misbehavior. He, together with Laurent Calvet and Adlai Fisher, developed a model

di�erent from the ones prevailingly used on Classical Finance. It is based on fractals and

multifractal measures. The model �rstly appeared in 1996 (see [5], [6] and [7]). In 2003

it was developed by Mandelbrot himself in [17] and then implemented by the other two

authors after Mandelbrot's death in [8].

The model, namely aMultifractal Model of Asset Returns (MMAR), is anchored

on the assertion that market time is relative in a certain sense. Financial markets would

work according to an intrinsic "trading time", distinct from the linear physical time. That

time accelerates the clock in high-volatility periods and slows down during those moments

of placidity. In mathematical terms, we can write an equation showing the relationship

between the two time structures and use it in order to generate the same irregularities of

real �nancial prices. That phenomenon highlights a very important involvement already

known by the most part of the �nancial practitioners. They often refers to a "fast" market

and "slow" market on the strength of their volatility's perception in that moment.

Figure 1: Which are the daily/weekly/mountly records?

Analogously, following a popular opinion, �nancial prices' patterns have all the same

aspect: Without a caption about data's time-scale, none can state with certainty if the

graph is taken by the last ten minutes, ten days, ten weeks and so long. Hence markets
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are scale-invariant. This quality de�nes the charts as fractal1 curves and many powerful

tools of mathematical analysis become available.

With regard to �nancial markets, scale-invariance means that the price evolution pro-

cess can be described in terms of minutely, hourly, or daily recorded data, but the main

property of the process, like the distribution of the price variations, will always be of the

same general form, with only a scale parameter that needs to be adjusted for a change of

the time scale.

However, before going on, we should wonder if we really need a further model to de-

scribe price changes. Thus, other models such as Brownian motions, fractional Brownian

motions or Lévy-stable motions2. able to describe the behaviour of the �nancial markets?

Unfortunately, they are not. Each one has got desirable features (scale-invariance, long-

range dependence, heavy tails, discontinuities, volatility clustering), but no one possesses

all.

Figure 2: Who tells the truth?

1When we refer to a set F as a fractal, we will typically observe:

• F has a �ne structure, that is it owns details on arbitrarily small scale;

• F is too irregular to be described in traditional geometrical language, both locally and globally;

• Often F has some form of self-similarity, not only exact but also approximate or statistical;

• Usually, its fractal dimension (de�ned in some way) is grater than its topological dimension;

• In most cases, a fractal is de�ned in a very simple way, usually recursively.

2From now on these processes will be identi�ed with BM, FBM and LSM. If they are standard, we

will put an 'S' before, e.g. SBM.
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The MMAR aims at integrating all those features a �nancial time-series exhibits. As

a matter of fact we will show that, starting from a stochastic process having long-range

dependence (like a FBM with 1
2
< H < 1) and using a multifractal measure3 in order

to create a compounded process, we will be able to get a new process which has both a

long-range dependence and heavy tails.

2 Binomial, multinomial and canonical measures

In order to understand the MMAR, which is based on multifractality, few preliminary

notions such as binomial and multinomial measures are required. In the following, we

will introduce the simplest multifractal, the (Bernoulli) binomial measure on the compact

interval [0, 1] ⊂ R. Furthermore, we will construct further multifractal measures which

derive from the former.

The recursive construction of the binomial measure involves an initiator and a gen-

erator. The initiator is the interval [0, 1] itself on which a unit of (probability) mass

is uniformly spread. This interval will recursively split into halves, leading to, at the

k-th stage, dyadic intervals of length 2−k. The generator consists in a single parameter

0 < u0 < 1 and u0 6= 1
2
, named multiplier, which at each stage is spread over the halves

of every dyadic interval, with unequal deterministic proportions.

Let u0 be a multiplier and be u1 its ones' complement. At stage k = 0, we start the

construction with the uniform probability measure on [0, 1], that is

f0(t) =

θ0 ([0, 1]) = 1 if t ∈ [0, 1]

0 if t /∈ [0, 1]
.

At the step k = 1,4 the measure θ1 uniformly spread mass equal to u0 on the subinterval

3Given a mass distribution θ : Rn → R and an open n-ball B(x, r) of radius r ∈ R, x ∈ Rn, a
multifractal measure is an entity such that

θ
[
B(x, r)

]
≈ rα ,

with α ∈ R. Hence this de�nition involves a power-law, creating a power-law distribution (like Pareto's

and Lévy-stable ones).
4We omit the case t /∈ [0, 1], since we are introducing a measure on [0, 1].
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[
0, 1

2

]
and mass equal to u1 on

[
1
2
, 1
]
, that is

f1(t) =

θ1

([
0, 1

2

])
= u0 if t ∈

[
0, 1

2

)
θ1

([
1
2
, 1
])

= u1 if t ∈
[

1
2
, 1
] .

Here, is trivial to see that the mass is preserved. In fact

θ1

([
0,

1

2

])
+ θ1

([
1

2
, 1

])
= u0 + u1 = 1 .

In step k = 2, the set
[
0, 1

2

]
is split into two subintervals,

[
0, 1

4

]
and

[
1
4
, 1

2

]
, which respec-

tively receive a percentage u0 and u1 of the total mass θ1

([
0, 1

2

])
. Applying the same

procedure to the dyadic set
[

1
2
, 1
]
, we obtain

f2(t) =



θ2

([
0, 1

4

])
= u0 · u0 = u2

0 if t ∈
[
0, 1

4

)
θ2

([
1
4
, 1

2

])
= u0 · u1 = u0 · u1 if t ∈

[
1
4
, 1

2

)
θ2

([
1
2
, 3

4

])
= u1 · u0 = u0 · u1 if t ∈

[
1
2
, 3

4

)
θ2

([
3
4
, 1
])

= u1 · u1 = u2
1 if t ∈

[
3
4
, 1
]
.

As we can see the total mass is preserved since

22−1∑
i=0

θ2

([
i

22
,
i+ 1

22

])
= u2

0 + 2 · u0 · u1 + u2
1 = (u0 + u1)2 = 1 .

We want to ascertain that the procedure works even for f3(t).

f3(t) =



θ3

([
0, 1

8

])
= u0 · u0 · u0 = u3

0 if t ∈
[
0, 1

8

)
θ3

([
1
8
, 1

4

])
= u0 · u0 · u1 = u2

0 · u1 if t ∈
[

1
8
, 1

4

)
θ3

([
1
4
, 3

8

])
= u0 · u1 · u0 = u2

0 · u1 if t ∈
[

1
4
, 3

8

)
θ3

([
3
8
, 1

2

])
= u0 · u1 · u1 = u0 · u2

1 if t ∈
[

3
8
, 1

2

)
θ3

([
1
2
, 5

8

])
= u1 · u0 · u0 = u2

0 · u1 if t ∈
[

1
2
, 5

8

)
θ3

([
5
8
, 3

4

])
= u1 · u0 · u1 = u0 · u2

1 if t ∈
[

5
8
, 3

4

)
θ3

([
3
4
, 7

8

])
= u1 · u1 · u0 = u0 · u2

1 if t ∈
[

3
4
, 7

8

)
θ3

([
7
8
, 1
])

= u1 · u1 · u1 = u3
1 if t ∈

[
7
8
, 1
]

,

and total mass still preserves

23−1∑
i=0

θ3

([
i

23
,
i+ 1

23

])
= u3

0 + 3 · u2
0 · u1 + 3 · u0 · u2

1 + u3
1 = (u0 + u1)3 = 1 .
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This procedure can generate an in�nite sequence of measures.

At step k + 1, we assume that the measure θk has been de�ned. To construct θk+1,

consider a dyadic interval
[
t, t+ 2−k

]
, where t is the dyadic number of the form:

t = (0.η1η2 . . . ηk)2 =

(
k∑
i=1

ηi · 2−k
)

10

for a �nite k and η1, η2, . . . , ηk ∈ {0, 1} (hence we are using the counting base b = 2).

Then we uniformly spread a fraction u0 and u1 of the mass θk
([
t, t+ 2−k

])
on the subin-

tervals
[
t, t+ 2−(k+1)

]
and

[
t+ 2−(k+1), t+ 2−k

]
. The repetition of this scheme to all the

subintervals de�ne the measure θk+1.

Let ϕ0 and ϕ1 denote the relative frequencies of 0's and 1's (that is ϕ1 = 1 − ϕ0) in

the �nite binary development t = (0.η1η2 . . . ηk)2. The so-called pre-binomial measure in

the dyadic interval
[
t, t+ 2−k

]
, takes the value5

θk
([
t, t+ 2−k

])
= uk ·ϕ0

0 · uk ·ϕ1

1 . (1)

Because of the conservation of the mass at each stage, we can write

2k−1∑
i=0

θk

([
i

2k
,
i+ 1

2k

])
= (u0 + u1)k = 1 .

The iteration of the procedure generates an in�nite sequence of random measure {θk}
that weakly converges to the binomial measure θ, that is

θk
d→ θ .

In fact, setting the length ∆t =
(
t+ 2−k

)
− t = 2−k, pre-binomial measure redistributes

mass among the dyadic intervals, but the total mass is always preserved at each stage

since u0 + u1 = 1.

Note that the binomial measure has important features common to many multifractal

(measures): It is continuous but also a singular probability measure; it thus has no den-

5Take as an instance θ3
([

1
8 ,

1
4

])
= u20 ·u1. Since 1

8 = 0.12510 in base 10 (usual decimal representation),

but in base 2 is equal to t = 0.0012, we can see that the relative frequency of 0's is ϕ0 = 2
3 and that the

relative frequency of 1's is ϕ1 = 1
3 , using (1) we have

θ3

([
1

8
,

1

4

])
= u

3· 23
0 · u3·

1
3

1 = u20 · u1 ,

as expected.
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sity6.

This construction can receive several extensions. At each stage the interval can be

split not in two but in b ∈ N : b > 2 intervals of equal size. Subintervals, indexed from left

to right by j (0 ≤ j ≤ b − 1), receive fraction of the total mass equal to u0, u1, . . . , ub−1.

For conserving mass the multipliers have to be such that

b−1∑
j=0

uj = 1 .

Thus the multinomial measure on the b-adic interval
[
t, t+ b−k

]
follows the conservation

rule
bk−1∑
i=0

θk

([
i

bk
,
i+ 1

bk

])
=

(
b−1∑
j=0

uj

)k

= 1 .

Here, the measure is computed as

θk (∆t) =
b−1∏
j=0

u
k ·ϕj
j . (2)

where ∆t = b−k and t is the b-adic number

t = (0.η1η2 . . . ηk)b =

(
k∑
i=1

ηi · b−k
)

10

for a �nite k and η1, η2, . . . , ηk ∈ {0, 1, . . . , b − 1}, and ϕj are the relative frequencies of

the digits of the representation in base b.

Moreover another discrete extension is easy to get, making the allocation of the mass

random. Hence the multiplier of each subinterval is a sequence of independent and iden-

tically distributed (positive) random variables {Uj}. As for the previous cases, we need

to assume that the mass is preserved at each stage of the construction, that is

b−1∑
j=0

Uj = 1 ,

6As a matter of fact, since u0, u1, ϕ0, ϕ1 ∈ (0, 1), the limit

lim
k→∞

θk
([
t, t+ 2−k

])
= lim
k→∞

(uϕ0

0 · u
ϕ1

1 )
k

= 0

being 0 < uϕ0

0 · u
ϕ1

1 < 1.
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leading to the obvious fact 0 ≤ Uj ≤ 1. Taking the expectation of the sum, we get an

expression for the expected value of the single random variable, that is7

E (U) =
1

b
.

for all j. The resulting measure is called microcanonical measure. Given a date t =

(0.η1η2 . . . ηk)b and a length ∆t = b−k, the measure of the b-adic cell
[
t, t+ b−k

]
satis�es

θk (∆t) = Uη1 · Uη1η2 · ... · Uη1η2...ηk (3)

where η1η2 . . . ηk is one of the elements (it is a b-adic number) of the ordered selection

with repetition8 made with b digits. Because of its property, it follows

θk (∆t)q =
(
Uη1 · Uη1η2 · ... · Uη1η2...ηk

)q
= U q

η1
· U q

η1η2
· ... · U q

η1η2...ηk

for all q ≥ 0. Taking the expectation of this expression and considering the fact that the

multipliers are independent (and hence their q-th power are independent as well), we get

E
[
θk (∆t)q

]
= E

(
U q
η1
· U q

η1η2
· ... · U q

η1η2...ηk

)
=

= E
(
U q
η1

)
· E
(
U q
η1η2

)
· ... · E

(
U q
η1η2...ηk

)
.

Since, in addiction, the random variables are identically distributed, the previous expres-

sion becomes the following scaling rule

E
[
θk (∆t)q

]
= E

(
U q
η1

)
· E
(
U q
η1η2

)
· ... · E

(
U q
η1η2...ηk

)
=

= E (U q) · E (U q) · ... · E (U q)︸ ︷︷ ︸
k times

=
[
E (U q)

]k
.

Setting τ(q) ≡ − logb [E (U q)] − 1 (which is named scaling function), the expression can

be written as9

E
[
θk (∆t)q

]
= ∆tτ(q)+1 (4)

7Since the unit mass is preserved, we have E
(∑b−1

j=0 Uj

)
= E(1), and hence

E

b−1∑
j=0

Uj

 = E (U0) + E (U1) + ...+ E (Ub−1) = E (U) + E (U) + ...+ E (U)︸ ︷︷ ︸
b times

= 1 .

8Hence the set {η1, η2, . . . , ηk} can originate D′b,k = bk ordered selections with repetition.
9In fact, since ∆t = b−k, we have

E (Uq)
k

=

(
1

b

)log1/b[E(Uq)k]
=

(
1

b

)−k·logb[E(Uq)]
=
(
b−1
)−k·logb[E(Uq)] =

=
(
b−k
)−1·logb[E(Uq)] = ∆t− logb[E(U

q)] = ∆t− logb[E(U
q)]−1+1 = ∆tτ(q)+1 .

7



which is the typical behaviour of a multifractal measure10.

Finally we are able to introduce the last multifractal measure, which will be the one

involved in the Multifractal Model of Asset Returns. If, given a sequence of indepen-

dently and identically distributed (positive) random variables, each iteration conserves

probability mass only "on average" in the sense that

E

(
b−1∑
j=0

Uj

)
= 1 ,

we obtain a less restrictive case on multipliers, leading just to the positivity of them

Uj ≥ 011.

The corresponding measure is then called canonical measure and its total mass, de-

noted as Υ, is generally random. As a matter of fact, if we consider such a measure that

has started with mass 1 in [0, 1], and has continued over in�nite many stages, because of

the lack of an exact conservation, the ultimate mass is not identical to 1, but is a random

variable Υ.

An alternative way to see Υ is to add the masses in the b subcells of length 1
b
. In

the �rst stage, the j-th interval is given the mass Uj. Ultimately, it contains the mass

Υj ·Uj, the quantities Uj and Υj being statistically independent. Hence, the total sum of

the partial masses can be written as

b−1∑
j=0

Υj · Uj
d∼ Υ ,

meaning they have the same distribution. Thus Υ is the �xed point of the operation

of randomly weighted averaging using as weight the random quantities Υj (which are

inevitably identically distributed).

10See the analogy with the de�nition of multifractal that is, for an open ball with centre x ∈ Rn and

radius r,

θ[B(x, r)] ≈ rα .

Of course, since the microcanonical measure is a random measure, the relationship is valid for its expected

value.

11Note that, since
∑b−1
j=0 Uj = 1 ⇒ E

(∑b−1
j=0 Uj

)
= 1 (but the converse is not true), we have that the

expectation of the random variables are all equal to

E(U) =
1

b

even in this case.
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Thus, given a time t = 0.η1η2 . . . ηk, at the k-th stage, the canonical measure of a

b-adic interval surely generate the same e�ect as the microcanonical measure, that is

θk (∆t) = Uη1 · Uη1η2 · ... · Uη1η2...ηk .

However, in contrast to the previous case, that is not all: Each stage is also subjected to

the same process as has been for [0, 1]. Therefore, the measure does not reduce to (3),

but instead takes the form:

θk (∆t) = Υη1η2...ηk ·
(
Uη1 · Uη1η2 · ... · Uη1η2...ηk

)
(5)

Since Υη1η2...ηk

d∼ Υ and it is independent from Uj for all j, similarly as for the micro-

canonical measure, we can write

E
[
θk (∆t)q

]
= E (Υq) · [E (U q)]k ,

where the new moment prefactor E (Υq) re�ects high frequency e�ects due to scales lower

than b−k.

Setting c(q) ≡ E (Υq), we �nally get the sought expression

E
[
θk (∆t)q

]
= c(q) ·∆tτ(q)+1 . (6)

3 Multifractal processes and local Hölder exponents

Now the concept of multifractality can be extended to stochastic process. Because of

the previous introduction on multifractal random measures, we �nd convenient de�ning

multifractal processes in terms of their moments. Nevertheless, we have to remark that

dealing with measures rather than stochastic process may be similar, but it is not the

same thing. In the following, we will discuss about those discrepancies.

De�nition 3.1. Given a �ltered probability space (Ω,F ,P), every real sto-chastic process

{Y (t)}t∈ [0,+∞) de�ned on it is called a multifractal process, if it has stationary increments

and satis�es the following properties:

(a) Y (0) = 0 almost surely;

(b) The expectation of its absolute increments raised to the q-th power are such that

E
[
|Y (t)− Y (s)|q

]
= c(q) · |t− s|τ(q)+1

where q ∈ Q ⊆ R and c, τ : Q→ R.

9



Thank to the de�nition, setting s = 0, we get

E
[
|Y (t)|q

]
= c(q) · tτ(q)+1 . (7)

Such a de�nition of multifractal process extend the one of self-a�ne process whose BM

and FBM belong to12.

In order to study further properties of τ(q) and to be allowed to use some results of

multifractal formalism introduced in the previous chapter, we need the de�nition of local

Hölder exponent of a function. This is connected with Hölder function, but it characterizes

the smoothness of a function at a given point.

De�nition 3.2. Let g : R ⊇ A → R be a function de�ned on a neighborhood of a given

point t0. The number

α (t0) := sup
{
β > 0 : |g (t0 + h)− g (t0)| = O

(
|h|β

)}
(8)

as h→ 0, is called the local Hölder exponent of g at t0.

We note that α (t0) is non-negative if and only if the function g is bounded around

t0. In this work, we will consider only this case. Local Hölder exponent is a notion that

can be well applied to functions and measures, deterministic or stochastic, with some

adjustment. It can be proven that BM and FBM have local Hölder exponent equal to 1
2

and H respectively13). As a matter of fact, continuous stochastic process are characterized

by a unique Hölder exponent. Di�erently, in the following we will examine the case when

a continuum of Hölder exponent is allowed.

From De�nition 3.2 it easy to see that, for a continuous function g(t), the Hölder

exponent at time t = t0 can be computed as

α (t0) = lim sup
h→0

log|g (t0 + h)− g (t0)|
log|h|

.

This expression suggests a method for estimating the probability that a point, randomly

chosen on the interval [0, 1], will have a given Hölder exponent. An essential simpli�cation

12A self-a�ne process is a process such that, given a ∈ R

{Y (a · t)}t≥ 0
d∼
{
aH · Y (t)

}
t≥ 0

with H ∈ R : 0 < H < 1.
13See [9].
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for both, analytical and empirical study, is to replace the previous continuous limit by a

discrete one.

Given the set [0, 1] ⊂ R, we iteratively subdivide the interval in bk equal size pieces, k

denoting the stage in the sequence of subdivision. At each stage, at point t = ti ∈ [0, 1],

we compute the �nite quantities
∣∣g (ti + b−k

)
− g (ti)

∣∣ for each bk subdivision. We de�ne

coarse Hölder exponent, the following quantity

αk (ti) :=
log
∣∣g (ti + b−k

)
− g (ti)

∣∣
log (b−k)

,

and hence the Hölder exponent at point ti is given by

α (ti) := lim inf
k→∞

αk (ti) .

From the de�nition we see that, varying the length of the interval ∆t = b−k, we can

�nd di�erent values of α (ti). Partitioning the range of them into small non-overlapping

intervals (αj, αj + ∆α], and denoted by Nk(αj,∆α) the number of coarse Hölder expo-

nents contained in each interval (αj, αj + ∆α], as k →∞, the ratio Nk(α,∆α)
bk

converges to

the probability that a randomly selected point ti has local Hölder exponent equal to α (ti).

Even if this approach of representing the distribution of di�erent Hölder exponents is

correct, it will fail in a multifractal contest, since it is not able to distinguish between

multifractal and unifractal processes. As a matter of fact, multifractals, allowing di�erent

values of α, typically have that a single Hölder exponent which predominates (called α∗),

in the sense that the set of points Tα∗ ⊂ [0, 1] with exponent α∗ "usurps" all of the

Lebesgue measure. Di�erently, most of a multifractal measure concentrates on a set of

instants with Hölder exponent di�eren from α∗. In order to distinguish between the two

cases we need the following function.

De�nition 3.3. Given a function g : [0, 1] ⊇ A → R, using the same iterative proce-

dure used to compute coarse Hölder exponents and using the same notation, we de�ne

multifractal spectrum14

f(α) := lim
∆α→0

lim inf
k→∞

log [Nk(α,∆α)]

log
(

1
b−k

) = lim
∆α→0

lim inf
k→∞

log [Nk(α,∆α)]

log (bk)
. (9)

If the limit exists and is positive (on a support larger than a single point), we call the

function g a multifractal.
14This de�nition of multifractal spectrum has been developed for this particular purpose. For a general

geometric de�nition see [9].
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Of course the same de�nition can be applied substituting g with a random function,

such as one of the (random) measures θ de�ned in Section 2.

This approach tells us that there exist di�erent fractal local scaling behaviors as mea-

sured by di�erent local coarse Hölder exponents, being so not uniform in general. In

other words, α(t) is typically not constant in t but assume a whole range of values, thus

imprinting a rich structure on the object of interest. This structure can be characterized

either in geometrical terms making use of the concept of dimension, or in statistical terms

based on sample moments. A tight connection between these two descriptions will emerge

from the multifractal formalism.

In fact, many authors interpreted f(α) as the Hausdor� dimension of the set of points

having local Hölder exponent equal to α. For any α ≥ 0, we can de�ne a set Tα of instants

with Hölder exponent α. As any subset of the real line, Tα has Hausdor� dimension

0 ≤ dimH (Tα) ≤ 115.

Since we have shown that the microcanonical and canonical measure are self-similar

random measures, using the multifractal formalism it can be proved that (see [9])

f(α) = dimH (Tα) (10)

holds true. Thanks to the same result, it also follows that f(α) is also the Legendre

15Let {Ai}i∈N be a countable collection of sets of diameter at most equal to δ > 0 that cover A ⊆ Rn.
This means that

A ⊂
∞⋃
i=1

Ai : 0 ≤ diam (Ai) ≤ δ

for all i ∈ N. If the previous statement holds, we say that {Ai}i∈N is a δ-cover of A. Given s ∈ R+
0 , for

any δ > 0 we de�ne

Hsδ(A) := inf

{ ∞∑
i=1

[
diam (Ai)

]s
: {Ai}i∈N is a δ-cover of A

}
.

Then the s-dimensional Hausdor� measure is the measure given by

Hs(A) := lim
δ→0+

Hsδ(A).

Moreover, we de�ne Hausdor� dimension of a set A ⊆ Rn the following quantity:

dimH(A) := sup{s : Hs(A) > 0} = sup{s : Hs(A) =∞} .

12



transform16 of the scaling function. In fact

f(α) = τ ?(α) = inf
q ∈R

{
q · α− τ(q)

}
with τ(q) ≡ − logb [E (U q)]− 1 and τ ?(α) denotes its Legendre transform.

For our �eld of interest, closed-form expressions for f(α) depends on the densities of

the random variables {Uj} involved in the multifractal measure θ. However, in order to

�nd them, an important theorem of Large Deviation Theory is required. We will examine

that properties in the following sections.

4 The properties of the scaling function τ (q)

In the following we will be interested in analyzing all the relevant properties of the

scaling function τ(q); particularly, we are interested in its zeros and in its concavity/con-

vexity.

Let we take its explicit form

τ(q) = − logb [E (U q)]− 1 ,

where U is one of the {Uj} i.i.d. random variable with j = 0, 1, ..., b − 1. Since these

variable are discrete17 the q-th moment can be also written as

τ(q) = − logb

(
b−1∑
j=0

Pr {Uj = uj} · uqj

)
− 1

where uj are the values taken by the random variables.

Theorem 4.1. : The points (0,−1) and (1, 0) are respectively the intercept and a zero

for the scaling function τ(q).

Proof. Setting q = 0, we get

τ(0) = − logb

(
b−1∑
j=0

Pr {Uj = uj} · u0
j

)
− 1 = − logb

(
b−1∑
j=0

Pr {Uj = uj}

)
− 1 =

= − logb (1)− 1 = −1,

16Given a concave function h : R→ R, with h ∈ C2(R), we de�ne the Legendre transform of h(x) the

function

h?(α) := inf
x∈R
{α · x− h(x)} .

17The sequence of random variables {Uj} is now assumed to be discrete, but with little e�ort they can

be associated with a continuous density. For that eventuality, see [6].
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hence the point (0,−1) is the intercept of the scaling function. Studying the �rst moment

of the random variable, which corresponds to the value q = 1, we �nd

τ(1) = − logb

(
b−1∑
j=0

Pr {Uj = uj} · uj

)
− 1 = − logb

(
1

b

)
− 1 =

= −(−1)− 1 = 0,

since E(U) = 1
b
. Thus the point (1, 0) is one of the zeros of the function τ(q).

On the existence of other zeros, it will be discussed later.

Theorem 4.2. : The scaling function τ(q) is non-decreasing if the measure is microcani-

cal; if the measure is canonical the function might exhibit both increasing and decreasing

regions.

Proof. Let we study the �rst derivatives of τ(q).

τ ′(q) =
d
[
− logb

(∑b−1
j=0 Pr {Uj = uj} · uqj

)
− 1
]

dq
=

= − 1∑b−1
j=0 Pr {Uj = uj} · uqj

· logb(e) ·
b−1∑
j=0

Pr {Uj = uj} · uqj · ln(uj) =

= − logb(e) ·
∑b−1

j=0 Pr {Uj = uj} · uqj · ln(uj)∑b−1
j=0 Pr {Uj = uj} · uqj

.

Since b ∈ N\{0, 1}, − logb(e) is always negative. Moreover, since Uj ≥ 0 for all j, all

the moments of the random variable are positive (they would be exactly equal to zero

only in the degenerate case, that is if the random variables were all null), and hence

the denominator is positive. The only entity whose sign may vary is the numerator of

the fraction, whose positivity/negativity is due to the quantities ln(uj). If we consider

the microcanical measure, that is 0 ≤ Uj ≤ 1, the logarithms are all negative, making

the numerator negative as well. In this case, we �nd τ ′(q) ≥ 0, being so non-decreasing.

However, we have to underline that, if the measure is canonical, hence allowing Uj ≥ 0, we

are not be able to state, a priori, where the scaling function is increasing or decreasing.

Theorem 4.3. : Regardless the measure is microcanical or canonical, the scaling function

τ(q) is convcave.
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Proof. : We decide to study the concavity/convexity of τ(q) through the second derivative.

τ ′′(q) =
d2
[
− logb

(∑b−1
j=0 Pr {Uj = uj} · uqj

)
− 1
]

dq2
=

= − logb(e) ·
∑b−1
j=0

∑b−1
i=j+1 Pr {Uj = uj} · Pr {Ui = ui} · uqj · u

q
i · [ln (uj)− ln (ui)]

2(∑b−1
j=0 Pr {Uj = uj} · uqj

)2 .

Since the fraction is always positive, the second derivative is always negative (so, despite

the monotonicity which may vary depending on the values taken by the random variables

Uj, here we have found a �stronger" property). Hence τ ′′(q) < 0 and the scaling function

is always concave.

The last features we are interested in investigating is the existence of asymptotes for

the function τ(q).

Theorem 4.4. : Regardless the measure is microcanical or canonical, the scaling function

τ(q) is asymptotic linear both for q → −∞ and q → +∞.

We have to compute the following limits,

lim
q→+∞

τ(q) = lim
q→+∞

− logb

(
b−1∑
j=0

Pr {Uj = uj} · uqj

)
− 1 =

+∞ if 0 ≤ Uj ≤ 1

−∞ if Uj ≥ 0

and

lim
q→−∞

τ(q) = lim
q→−∞

− logb

(
b−1∑
j=0

Pr {Uj = uj} · uqj

)
− 1 = −∞.

Because of these results, we might have at most two oblique asymptotes, one for q → −∞
and one when q → +∞. Hence, since the previous limits are necessary conditions but not

su�cient, we have two compute

lim
q→+∞

τ(q)

q
= lim

q→+∞

− logb

(∑b−1
j=0 Pr {Uj = uj} · uqj

)
− 1

q
=

= lim
q→+∞

− 1

ln(b)
·

ln
(∑b−1

j=0 Pr {Uj = uj} · uqj
)

+ 1

q
=

= lim
q→+∞

− 1

ln(b)
·

ln
(∑b−1

j=0 Pr {Uj = uj} · eln(uqj)
)

+ 1

q
=

= lim
q→+∞

− 1

ln(b)
·

ln
(∑b−1

j=0 Pr {Uj = uj} · eq · ln(uj)
)

+ 1

q
.
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Since, as q → +∞

ln

(
b−1∑
j=0

Pr {Uj = uj} · eq · ln(uj)

)
∼ ln

(
Pr {Umax = umax} · eq · ln(umax)

)
,

where Umax = maxj{Uj}, the previous limit becomes

lim
q→+∞

τ(q)

q
= lim

q→+∞
− 1

ln(b)
·

ln
(
Pr {Umax = umax} · eq · ln(umax)

)
+ 1

q
=

= lim
q→+∞

− 1

ln(b)
· ln (Pr {Umax = umax}) + q · ln (umax) + 1

q
=

= − ln (umax)

ln(b)
= − logb (umax) <∞ .

To ascertain that there really is an oblique asymptote, we have to solve this further limit

lim
q→+∞

τ(q)−
[
− ln (umax)

ln(b)

]
· q = lim

q→+∞
τ(q) +

ln (umax)

ln(b)
· q =

= lim
q→+∞

−
ln
(
Pr {Umax = umax} · eq · ln(umax)

)
+ 1

ln(b)
+

ln (umax)

ln(b)
· q =

= lim
q→+∞

− ln (Pr {Umax = umax}) + q · ln (umax) + 1

ln(b)
+

ln (umax)

ln(b)
· q =

= − ln (Pr {Umax = umax})
ln(b)

− 1

ln(b)
=

= − logb (Pr {Umax = umax})− logb(e) <∞ .

Thus, for q → +∞, the scaling function τ(q) is asymptotic to the straight line with

equation

a1(q) = − logb (umax) · q − logb (Pr {Umax = umax})− logb(e) .

Let we examine the components of the equation: �rstly, − logb(e) is always negative;

secondly, − logb (Pr {Umax = umax}) is always positive (the least Pr{Umax = = umax}, the
higher the summand). So the intercept of the asymptote a1(q) can be both negative or

positive, depending on the odd of the event Umax = umax. Eventually, the rate of growth

− logb (umax) is positive if we are dealing with microcanical measures (0 ≤ Umax ≤ 1), but

becomes negative if the measure is canonical (Umax ≥ 1).

The same procedure has to be repeated for q → −∞.

lim
q→−∞

τ(q)

q
= lim

q→−∞

− logb

(∑b−1
j=0 Pr {Uj = uj} · uqj

)
− 1

q
=

= lim
q→−∞

− 1

ln(b)
·

ln
(∑b−1

j=0 Pr {Uj = uj} · eq · ln(uj)
)

+ 1

q
.
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Because, as q → −∞

ln

(
b−1∑
j=0

Pr {Uj = uj} · eq · ln(uj)

)
∼ ln

(
Pr {Umin = umin} · eq · ln(umin)

)
,

where Umin = minj{Uj}, the limit becomes

lim
q→−∞

τ(q)

q
= lim

q→−∞
− 1

ln(b)
·

ln
(
Pr {Umin = umin} · eq · ln(umin)

)
+ 1

q
=

= lim
q→+∞

− 1

ln(b)
· ln (Pr {Umin = umin}) + q · ln (umin) + 1

q
=

= − ln (umin)

ln(b)
= − logb (umin) <∞ .

The limit for the existence of the intercept is

lim
q→−∞

τ(q)−
[
− ln (umin)

ln(b)

]
· q = lim

q→−∞
τ(q) +

ln (umin)

ln(b)
· q =

= − logb (Pr {Umin = umin})− logb(e) <∞ .

Hence, even for q → −∞, the scaling function τ(q) has another slant asymptote, that is

a2(q) = − logb (umin) · q − logb (Pr {Umin = umin})− logb(e) .

Here, the behaviour of the intercept is the same of the previous case. Nevertheless, the

slope of the asymptote is always positive, since necessarily 0 ≤ Umin ≤ 1, both in the

microcanonical case and the canonical one.

Then, we summarize all the properties of the scaling function that have been found:

• The point (1, 0) is a zero for τ(q);

• The point (0,−1) is the intercept of τ(q);

• If the measure is microcanonical, the function is non-decreasing;

• The function is concave;

• The function is asymptotical linear. Particularly, when q → +∞

τ(q) ∼ − logb (umax) · q − logb (Pr {Umax = umax})− logb(e) ,

and

τ(q) ∼ − logb (umin) · q − logb (Pr {Umin = umin})− logb(e) ,

when q → −∞.
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These properties allow us to infer another property of τ(q) if a canonical measure is

involved. Since the function is always concave and also asymptotic, for q → +∞, to the

straight line which has a negative slope, thus it must have a "cap" form, such as
⋂

.

Moreover, since the function as a zero for q = 1, there must exist another one, which is

usually addressed as qcrit, that is

qcrit := {q > 1 : τ(q) = 0}

which is present, we remark, only for canonical measures. This entity has a great impact

on the �niteness of the moments of the measure. As a matter of fact Mandelbrot in [17]

showed that, for q > 1, the moments of the measure are �nite if and only if τ(q) > 0.

That eventuality occurs only for 1 < q < qcrit.

Figure 3: Possible shapes of τ(q). Red dots are di�erent qcrit.

As a matter of fact, since the q-th moment of a canonical measure is given by

E
{

[θ (∆t)]q
}

= E (Υq) ·∆tτ(q)+1 ,

its �niteness may depends only on either τ(q) or E (Υq). Since, for �nite q, τ(q) is surely

�nite, hence the "in�niteness" can be achieved only by a particular behaviour of the

random variable Υ which is the random mass on the interval [0, 1] (see Section 2).

Indeed, Guivarc'h proved in [10] that Υ has Paretian tails and allows in�nite moments,
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for those values q ≥ qcrit. Thus, the random variable Υ follows a Pareto's distribution18

of exponent qcrit, that is

Pr{Υ > υ} =

(
υ

υmin

)−qcrit
.

5 Three faces of f (α)

First of all we focus on the shape of f(α); then we will discuss as this entity can be

interpreted form a �nancial and mathematical point of view.

Since for the scaling function the following asymptotic relations hold true

τ(q) ∼ − logb (umax) · q − logb (Pr {Umax = umax})− logb(e) as q → +∞

and

τ(q) ∼ − logb (umin) · q − logb (Pr {Umin = umin})− logb(e) as q → −∞ ,

thus, the slope of the oblique asymptotes are respectively

αmax = − logb (umin) > 0 and αmin = − logb (umax) ≶ 0 .

The relation max/min is inverted since the the slope of the asymptote for q → −∞ is

grater than the one of the asymptote for q → +∞. Moreover, these two values give the

bounds of the support of the multifractal spectrum, that is

f : R ⊃ [αmin, αmax]→ R ,

since they are the least and the highest value α can take. Hence, if the scaling function

τ(q) is de�ned on the entire real line, its asymptotic linear behaviour implies the spectrum

f(α) to be de�ned only on a closed set of values. Furthermore, using Young's Inequality19

18Given a real valued random variable de�ned on the support [xmin,+∞) ⊂ R+, we say it is Paretian

distributed if and if only its cumulative distribution function is so de�ned

FX(x) := 1−
(

x

xmin

)−ω
where ω is a real positive parameter. To say that a random variable follows the Pareto's distribution we

write X
d∼ P(ω, xmin).

19Young's inequality states that, given two concave functions f, h : R → R such that f(α) = h?(α),

thus

α · x ≥ f(α) + h(x) .
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Figure 4: Possible shapes of f(α) for di�erent τ(q).

and the fact that τ(0) = −1 and τ(1) = 0, we can �nd

α · 0 ≥ f(α) + τ(0) → f(α) ≤ 1

and

α · 1 ≥ f(α) + τ(1) → f(α) ≤ α .

Figure 4 illustrates it. Then we will investigate about the coordinates of the maximum

of f(α).

Now we take into account the three possible interpretations of f(α)20.

Given the microcanonical measure,

θ (∆t) = Uη1 · Uη1η2 · ... · Uη1η2...ηk

where ∆t = b−k and t is a b-adic number, let we consider its coarse Hölder exponent

αk (t) :=
log θ

([
t, t+ b−k

])
log (b−k)

=
logb (Uη1 · Uη1η2 · ... · Uη1η2...ηk)

logb (b−k)
=

= −1

k
·
[
logb (Uη1) + logb (Uη1η2) + ...+ logb (Uη1η2...ηk)

]
.

(11)

Since the measure is randomly generated because of the multipliers Uη1 , Uη1η2 , ..., Uη1η2...ηk ,

if we choose a �xed interval [t, t+∆t], the coarse exponents αk(t) are identically distributed

20That is, f(α) can be interpreted as the multifractal spectrum, the Hausdor� dimension of the set of

time having α as Hölder exponent Tα and the Legendre transform of τ(q).
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across the b-adic cells, and hence can be viewed as the realizations of a random variable

αk. In the following, we will use this random variable to study the multifractal spectrum

f(α) of the measure θ, since it can be directly derived from the asymptotic distribution

of αk.

By equation (11) and thanks to the way we de�ned the microcanonical measure, the

coarse Hölder exponent is the sample sum of k i.i.d. random variables. Because of it,

the distribution of αk can be analyzed via limit theorems: (a) Strong Law of Large

Numbers, (b) Central Limit Theorem, and (c) Large Deviation Theory, which will be

then introduced.

(a) Strong Law of large numbers

By the Strong Law of Large Numbers, the sequence of random variable {αk}k∈N converge

almost surely to µα = E
[
− logb(U)

]
, that is

Pr
{

lim
k→∞

αk = µα

}
= 1 .

Moreover, since E(U) = 1
b
, by Jensen's inequality, we have µα ≥ 1. As k increases, we

expect that almost all coarse Hölder exponents are contained in a neighborhood of µα.

However, the other coarse Hölder exponents are also important, and may more than the

ones around the mean. As a matter of fact, if we consider (11), we can see that the

measure can be expressed as

θ
([
t, t+ b−k

])
=
(
b−k
)αk(t)

= ∆tαk(t) ,

Let Θ denote the set of b-adic intervals with Hölder exponents grater than µα+1
2

, for large

values of k, almost all intervals belong to Θ, but their mass∑
t∈Θ

θ
([
t, t+ b−k

])
=
∑
t∈Θ

∆tαk(t) ≤ bk ·∆t
µα+1

2 = b−k·
µα−1

2 ,

tends to zero as k goes to in�nity. Since the mass must conserve, it has to be in those

few b-adic intervals which do not belong to Θ. Since with the Law of Large Numbers

we are dealing with centre of the αk's distribution, information on these "rare events" is

presumably contained in the tail of the random variable αk.

In other words, if αk di�ers from µα, then (αj, αj + ∆α] will not contain µα for small

∆α and the chance to observe other coarse exponents which lie in (αj, αj + ∆α] will

decrease exponentially fast with rate given by f(α).
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(b) Central Limit Theorem

Assuming that − logb(U) has �nite variance σ2
α, we can apply the (Lindeberg-Lévy) Cen-

tral Limit Theorem, which implies that

√
k · αk − µα

σα

d→ N (0, 1) .

If Nk(α) stands for the number of coarse Hölder exponents21 the equal to αk, in terms of

histograms, we have
Nk(α)

bk
∼ 1√

2 · π · σ2
α

k

· e−
(α−µα)2

2·σ2
α/k

as k → ∞. After some arrangements and taking the logarithms22, we found that the

multifractal spectrum

f(α) ∼ 1− 1

2 · ln(b)
·
(
α− µα
σα

)2

(12)

is locally quadratic around the most probable exponent µα.

(c) Large Deviation Theory

Since Large Deviation Theory is not frequently present in textbook on Probability

Theory, we give a brief introduction of it. This branch of Probability Theory deals with

21For simplicity, we write Nk(α) instead of Nk(α,∆α).
22In fact, as k →∞

Nk(α) ∼ bk√
2 · π · σ

2
α

k

· e−
(α−µα)2

2·σ2α/k .

Taking the logarithms

ln
[
Nk(α)

]
∼ ln

(
bk
)
− ln

(√
2 · π · σ

2
α

k

)
− (α− µα)

2

2 · σ
2
α

k

,

and diving by ln
(
bk
)

f(α) =
ln
[
Nk(α)

]
ln (bk)

∼ 1−
ln

(√
2 · π · σ

2
α

k

)
ln (bk)

−
k·(α−µα)2

2·σ2
α

ln (bk)
.

Since the second summand goes to zero as k →∞, we �nd

f(α) ∼ 1−
k·(α−µα)2

2·σ2
α

k · ln (b)
= 1− 1

2 · ln(b)
· (α− µα)

2

σ2
α

.
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the decay of the probability of increasingly unlikely events. It was introduced by the

Swedish mathematician Harald Cramér, generally more famous for his model on insurance

ruin.

Suppose that X1, X2, . . . are independent and identically distributed random variables

with mean E(X) = µX and variance V(X) = σ2
X < +∞. If denote the k-th partial sum

by

Sk :=
k∑
i=1

Xi .

In order to prove the Strong Law of Large Number, the hypothesis of the Borel-Cantelli

Lemma is required to hold, that is
∞∑
k=1

Pr

{
Sk
k
− µX > ∆α

}
<∞ .

with ∆α > 0. However, if such odds are of the order of 1
n
, that is

Pr

{
Sk
k
− µX > ∆α

}
≈ 1

n

the Borel-Cantelli Lemma is not applicable anymore, since they are not summable, and

the Strong Law of Large Numbers fails. Large Deviation Theory �nds out exactly how

fast the large deviation probabilities decay. This depends on �ner features of the random

variable X than merely the �niteness of its variance. Our initial focus is on random

variables satisfying

ln
[
E
(
eq·X

)]
<∞

where q ∈ R and the entire quantity is usually addressed as cumulant generating func-

tion23. In this case the large deviation probabilities decay exponentially and Cramér's

theorem tells us exactly how fast.

Theorem 5.1. (Cramér's theorem) Let X1, X2, . . . be independent and identically dis-

tributed random variables with mean µX , and �nite cumulant generating function for all

q ∈ R. Then, we have

lim
k→∞

1

k
· ln
[
Pr

{
Sk
k
> x

}]
= inf

q ∈R

{
q · x− ln

[
E
(
eq·X

)]}
for any x > µX , and

lim
k→∞

1

k
· ln
[
Pr

{
Sk
k
< x

}]
= inf

q ∈R

{
q · x− ln

[
E
(
eq·X

)]}
for any x < µX .

23It is just the logarithm of the moment generating function.
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We can now apply Cramér's theorem to the random variable

αk := −1

k
·
[
logb (Uη1) + logb (Uη1η2) + ...+ logb (Uη1η2...ηk)

]
,

that is the k-th partial sum of the i.i.d. random variables − logb(U). Thus, we �nd

lim
k→∞

1

k
· ln [Pr {αk > α}] = inf

q ∈R

{
q · α− ln

[
E
(
e−q·logb(U)

)]}
for any α > µα. Calling this quantity as δ(α), we �nd24

δ(α) = inf
q ∈R
{q · α + logb [E (U q)]} .

Since we have set τ(q) ≡ − logb [E (U q)]− 1, the previous expression can be written as

δ(α) = inf
q ∈R
{q · α− τ(q)} − 1 , (13)

which shows that δ(α) + 1 is the Legendre transform of τ(q).

Now, let we come back to the construction of the multifractal spectrum f(α). As we

have done before, we subdivide the interval [0, 1] into bk cells of length ∆t = b−k.

As k →∞, the following heuristic expression

1

k
· ln
[
Nk (αj)

bk

]
∼ 1

k
· ln
(
Pr {αj < αk ≤ αj + ∆α}

)
(14)

has to be postulated25. Since

Pr {αj < αk ≤ αj + ∆α} = Pr {αk ≤ αj + ∆α} − Pr {αk ≤ αj} =

= Pr {αk > αj} − Pr {αk > αj + ∆α} =

= Pr {αk > αj} ·
(

1− Pr {αk > αj + ∆α}
Pr {αk > αj}

)
,

24Due to independence, it follows

δ(α) = inf
q∈R

{
q · α− ln

[
E
(
e−q·logb(U)

)]}
= inf
q∈R

{
q · α− ln(b) · logb

[
E
(
e−q·logb(U)

)]}
=

= inf
q∈R

{
q · α− logb

[
E
(
e−q·logb(U)·ln(b)

)]}
= inf
q∈R

{
q · α− logb

[
E
(
b−q·logb(U)

)]}
=

= inf
q∈R

{
q · α− logb

[
E
(
b− logb(U

q)
)]}

= inf
q∈R
{q · α+ logb [E (Uq)]} .

25This expression holds exactly, for any k, for binomial and multinomial measures since the coarse

Hölder exponents are discrete. In more general cases, like the microcanonical measure, it has to be

postulated.
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expressing in term of tail behaviour, we can apply Large Deviation Theory. Since δ (αj + ∆α) <

δ (αj), applying (13) we �nd26

Pr {αk > αj + ∆α}
Pr {αk > αj}

∼
(
bk
) δ(αj+∆α)−δ(αj)

ln(b)

which hence vanishes as k →∞. Thus the previous expression becomes

Pr {αj < αk ≤ αj + ∆α} ∼ Pr {αk > αj}

as k goes to in�nity. Hence (14) can be rewritten as

1

k
· ln
[
Nk (αj)

bk

]
∼ 1

k
· ln
(
Pr {αk > αj}

)
∼ δ (αj) , (15)

for any αj > µα. Identical argumentations are valid for αj < µα.

Thus, the Large Deviation Theory approach to multifractal spectrum gives us further

information. As a matter of fact, we have shown that f(α) is the limit of

1

k
· logb (Pr {αk > α}) + 1 if α > µα

and
1

k
· logb (Pr {αk < α}) + 1 if α < µα .

We note particularly that f(α) ≤ 1, and it increases for α < µα and decrease for α > µα.

Hence α = µα is a maximum and f(α) is a concave function. Morover, since

f(µα) = inf
q ∈R

{
q · µα − τ(q)

}
and it is minimal when q = 0, thus f(µα) = −τ(0) = 1, having set the function

τ(q) ≡ − logb [E (U q)]− 1. This result receives a simple interpretation in terms of fractal

dimension: The set of instants with exponent µα has Lebesgue measure equal to one (that

is what the Strong Law of Large Number states).

We conclude this section remarking that, throughout the dissertation, we have given

di�erent notions of multifractal spectrum f(α), and that we have linked it with other

quantities by the occasions. Summarizing f(α) can be viewed as:

• The limit of a renormalized histogram of coarse Hölder exponents

f(α) = lim
∆α→0

lim inf
k→0

log [Nk(α,∆α)]

log (bk)
;

26By Large Deviation Theory we have ln [Pr {αk > α}] ∼ k · δ(α), as k →∞.
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• The fractal dimension of the set of instants with Hölder exponent equal to α

f(α) = dimH (Tα) ;

• The limit provided by Large Deviation Theory

f(α) =


limk→∞

1
k
· logb (Pr {αk > α}) + 1 if α > µα

limk→∞
1
k
· logb (Pr {αk < α}) + 1 if α < µα

.

However, it is crucial to highlight that these de�nition may coincide. But there may be

also discrepancies. For a deep analysis of such an eventuality see [11].

However, the previous explanations are based on microcanonical measure. It will be

easy to extend the to the more general canonical case. As a matter of fact, considering

the canonical measure, the coarse Hölder exponent is given by

αk (t) :=
log θ

([
t, t+ b−k

])
log (b−k)

=
logb

[
Υ · (Uη1 · Uη1η2 · ... · Uη1η2...ηk)

]
logb (b−k)

=

= −1

k
· logb (Υ)− 1

k
·
[
logb (Uη1) + logb (Uη1η2) + ...+ logb (Uη1η2...ηk)

]
.

Since when k →∞ the summand − 1
k
· logb (Υ)→ 0, hence the latter does not a�ect f(α).

Then all the previous results on multifractal spectrum are still valid.

6 The MMAR

The Multifractal Model of Asset Returns appeared for the �rst time in the three

paper series [5], [6], and [7], introducing the concept of multifractality to economics. This

model attempts to describe price changes, accounting for several features of �nancial

data: Long memory, fat tails and scale invariance. The authors especially criticized the

GARCH-type representations, the latter assuming that the conditional distribution of

the return (in respect to the information available until today) has a �nite, time-varying

second moment. Neither long-range dependence nor scale invariance can be described with

them. Furthermore, being scale invariance the equivalence between representations of the

model at di�erent time-scales, the authors remark that the absence of an invariance under

scaling implies that, in empirical works, the researcher adds an additional restriction to

the model when choosing the time-scale of the data.
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In this way, temporal heterogeneity is introduced by time-varying conditional second

moments in a discrete time framework. Conversely, multifractality introduces a new source

of heterogeneity through time-varying local regularity in the price path. The concept of

local Hölder exponent is able to describe local regularity. Multifractal processes bridge

the gap between locally Gaussian di�usions and jump-di�usions by allowing a multiplicity

of Hölder exponents.

As a matter of fact, the MMAR generate heavy tails and a divergent variance directly

in the directing process of log-returns. Prices of �nancial asset are seen as a multiscaling

process with long memory and heavy tails. Persistence in volatility is given by the use

of a random trading time, generated as the cumulative distribution function of a random

multifractal measure (which, we remark, can be seen as a random variable).

Additionally, the authors tested and simulated the model generating very realistic

sample paths. It might open the door to new theoretical and applied approaches to asset

pricing and risk valuation. For the proofs of the theorems listed hereinafter, see [5], [6],

and [7].

As we have already sketched, trading time plays a notable robe in transmitting multi-

fractality to �nancial records. We do need a preliminary de�nition regarding a particular

class of stochastic processes.

De�nition 6.1. Let {Z(t)}t∈ [0,+∞) be a stochastic process and θ(t) an increasing function

of the time t. The process

X(t) := Z [θ(t)] (16)

is called a compound process.

Since t denotes the clock physical time, the function θ(t) reproduces the so-called

trading time. We are now able to state the theoretical assumption of the MMAR.

De�nition 6.2. Let X(t) be the stochastic process describing rates of log-return, that is

X(t) := lnS(t)− lnS(0) (17)

where {S(t)}t∈ [0,T ] is the stochastic process leading the price of the �nancial asset, where

T ∈ R+ is the �nal time27. The MMAR bases on the following three hypotheses:
27The reason of the introduction of a �nal time T , rather than taking into account a period [0,+∞),

is due to multifractality which may exist only on bounded intervals. See Section 3.
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H1 {X(t)}t∈ [0,T ] is a compound process

X(t) = BH [θ(t)]

where BH(t) is a fractional Brownian motion with Hurst exponent H ∈ R : 0 < H <

1, and θ(t) is a stochastic measure that leads trading time;

H2 The trading time θ(t) is the cumulative distribution function of a multifractal mea-

sure de�ned on [0, T ]28. Thus, θ(t) is a multifractal process with continuous, non-

decreasing paths, and stationary increments;

H3 {BH(t)}t∈ [0,T ] and {θ(t)}t∈ [0,T ] are independent.

Hence trading time plays a crucial role in the MMAR. Moreover, compounding allows

direct modelling of a process' variability without a�ecting the direction of the increments

or their correlation.

We �rst note that θ(0) must be null due to the de�nition of X(t), which imposes

X(0) = 0. Moreover H2 imposes that θ(t) be the cumulative distribution function of a

self-similar random measure, such as the microcanonical or the canonical.

It is quite natural to expect that trading time θ(t) "transfers" multifractality to X(t),

and that scaling functions τθ(q) and τX(q) may be related. The following theorem ex-

presses this intuition.

Theorem 6.3. Under hypotheses H1, H2, H3, the process X(t) is multifractal, with

stationary increments and scaling function

τX(q) = τθ(Hq) . (18)

Hence, choosing a fractional Brownian motion as compounder and a multifractal mea-

sure to deform time, we are able to "spread" multiscaling to the process of the asset

return X(t). This is one of the most important property of the MMAR. In the following

we analyze the other features of such a process.

Since E
[
|X(t)|q

]
depends on E

[
θ(t)Hq

]
, it is �nite if and if only the process θ(t) has

�nite moment of order Hq. Hence, the trading time controls the moment of the return

X(t).

28All the measure introduced in Section 2 are de�ned on [0, 1]. With little e�ort, they can be extended

to the set of times [0, T ], setting ∆t = b−k · T , being t the usual b-adic number.
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Due to H2, the trading time is generated by a self-similar random measure. It is

crucial to highlight that, whether the measure is microcanonical or canonical, the moments

possess very di�erent features. As a matter of fact, microcanonical measures have a �xed

mass on the interval [0, T ] on which are de�ned. So θ(t) is bounded, and the compound

process X(t) has �nite moments of all order. As Mandelbrot said in [5] and [15], it

generates mild randomness, with relatively thin tails.

On the other hand, being canonical measure depending on the random variable Υ, it

permits the model to have divergent moments. The corresponding process X(t) will be

then wild. Overall, the MMAR has enough �exibility to allow for a wide variety of tail

behaviour, both thin and fat.

We are now interested in martingale property of the MMAR. The following result

follows.

Theorem 6.4. If {BH(t)}t∈ [0,T ] is a standard Brownian motion
(
H = 1

2

)
, the following

properties hold true:

1. If E
[
θ(t)

1
2

]
is �nite, then {X(t)}t∈ [0,T ] is a martingale with respect to its natural

�ltration;

2. If E [θ(t)] is �nite, the increments of {X(t)}t∈ [0,T ] are uncorrelated.

This result is based on the martingale property of the Brownian motion. As it may

be easily imagined, it does not extend when H 6= 1
2
. In this case, the following holds.

Theorem 6.5. If {BH(t)}t∈ [0,T ] is a fracional Brownian motion, and E
[
θ(t)2H

]
is �nite,

the autocovariance function at points t1, t2 of the incremental process V (t) := X(t+∆t)−
X(t), with t ≥ ∆t, is equal to

CV (t1, t2) = cθ(2H) · σ
2

2
·
(
|t1 − t2 + ∆t|τθ(2H)+1

+ |t1 − t2 −∆t|τθ(2H)+1 − 2 · |t1 − t2|τθ(2H)+1
)
,

where σ2 = E [BH(1)2].

If in addiction we postulate t1 ≥ t2 + ∆t, all the absolute values can be removed
becoming

cθ(2H) · σ
2

2
·
[
(t1 − t2 + ∆t)τθ(2H)+1 + (t1 − t2 −∆t)τθ(2H)+1 − 2 · (t1 − t2)τθ(2H)+1

]
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Consistently, if H = 1
2
(that is a SBM), we �nd that the autocovariance function of the

incremental process vanishes. In fact τθ
(
2 · 1

2

)
= τθ(1) = 0, and hence

CV (t1, t2) = cθ(1) · σ
2

2
·
[
(t1 − t2 + ∆t)1 + (t1 − t2 −∆t)1 − 2 · (t1 − t2)1

]
= cθ(1) · σ

2

2
· (t1 − t2 + ∆t+ t1 − t2 −∆t− 2 · t1 + 2 · t2) = 0 .

Thus the persistence of CV is determined by the sign of τθ(2H). Since the scaling function

τθ(q) has the same sign of q − 1, when H > 1
2
(the FBM has long-range dependence) we

�nd that τθ(2H) is positive, since 2H − 1 > 0, and then the MMAR has long memory29;

on the other hand, if H < 1
2
, the converse is true.

We �nally examine the dependence in the absolute values of return, which indicates

that the MMAR exhibits persistence in volatility. It is convenient to de�ne the autoco-

variance function of the q-th power of the increments, that is

AX(t1, t2, q) := C|V |q(t1, t2) = E
[
|V (t1)|q · |V (t2)|q

]
,

where V (t) := X(t + ∆t) − X(t) is the incremental process. The following theorem is

related to this function.

Theorem 6.6. If {BH(t)}t∈ [0,T ] is a fracional Brownian motion, and E
[
θ(t)Hq

]
is �nite,

the compound process satis�es

AX(t1, t2, q) ≥ Aθ(t1, t2, Hq) · E
[
|BH(1)|q

]2
,

for all 0 ≤ q < qcrit, where the equality holds when H = 1
2
.

A very surprising consequence of this theorem is that the return process has long

memory in the absolute value of its increments, but if H = 1
2
(that is a SBM), the returns

display both uncorrelated increments and persistence in volatility.

The last theoretical property of the MMAR is about its multifractal spectrum.

29Here the de�nition of long memory requires more attenction. As a matter of fact, unlike the fractional

Brownian motion case, the MMAR is multifractal only on bounded intervals of times (and hence t cannot

goes to in�nity, if we want to preserve that property). In this case, long memory can be informally

de�ned stating that the longest (apparent) cycle has approximatively the same length as the interval of

de�nition. In this sense, the c.d.f. of a canonical measure has long memory.
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Theorem 6.7. Under hypotheses H1,H2,H3, the process X(t) has multifractal spectrum

fX(α) equal to

fX(α) = fθ

( α
H

)
. (19)

This theorem shows that the MMAR is multifractal since the trading time is allowed

to have a continuum of coarse Hölder exponents, thus transferring multifractality through

compounding. Moreover, long memory has an interesting geometric interpretation: When

the return process is multiscaling, several sets Tα have non-integer fractal dimension

f(α) ∈ (0, 1). Their elements necessarily cluster in certain regions of the interval of

de�nition, so explaining the alternation of periods of large and small price changes. The

set Tα is also statistically self-similar, in the sense that after proper rescaling, subsets of

Tα have statistically the same relative placement of points than the original Tα. Therefore,

the knowledge of Tα in one period owns important information of Tα in later periods. This

property is another "face" of the long memory involved in the process.

7 A quick comparison

In this �nal section we again take into account the most famous models used for de-

scribing price changes (that is BM, FBM, and LSM), in order to compare their properties

with those of MMAR. Moreover, we will see that the model we have introduced is the

only one able to contemplate a great variety of suitable properties.

First of all, Theorem 6.4 states that when H = 1
2
the process describing asset returns is

a martingale, being so the future unpredictable from the knowledge of past prices. At the

same time, Theorem 6.6 guarantees long memory in the absolute value of returns. That is,

there is not only time heterogeneity in the size of log-returns, but also that heterogeneity

is present on any time scale at which we decide to investigate the data, that is they may

be daily, weekly, monthly, or yearly returns30.

Moreover, the MMAR incorporates important features observed in �nancial time se-

ries, including long tails and invariance under scaling. Multifractality is de�ned by a set

of restrictions on the process' moments as the time scale of observation change (that is

30The simultaneous presence of the martingale property associated with a memory of any sort might

be surprising to many. However, the MMAR is not the only one model to have provided for it: Several

authors have developed the so called FIGARCH models, which present both unpredictability of the future

and memory. Nevertheless, the MMAR is the only one model to own that property, being scale-invariant

as well.
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the parameters of the model vary, but the structure of it does not modify). Furthermore,

it is integrated in the model through trading time, a random distortion of clock time that

leads to strong changes in volatility.

In addiction, the MMAR allows the possibility for returns to be uncorrelated, but does

not impose it: The model has got enough �exibility to satisfy the martingale property in

some cases and and long memory in its increments. But, perhaps, the main advantage of

this model over alternatives is the property of scale-invariance. Because of this property,

the whole information contained at di�erent frequencies can be used to identify and test

the model.

The following table summarizes what just stated, with the convenience to report part

of Table 1.1 allowing the comparison with the SBM, FBM, and LSM.

Table 3.1: Comparison of the MMAR with BM, FBM and LSM.

SBM FBM LSM MMAR

Distribution of increments Gaussian Gaussian L-stable Gaussian

Independence of increments X × X Xd

Stationarity of increments X X X X

Mean of the process 0 0 ∞ or 0a 0

Covariance of the process �nite �nite in�nite �nite

Semi-martingale X × X Xd

Self-a�nity/uniscaling X X Xb X

Multiscaling × × × X

Long-range dependence × Xc × Xc

Continued on next page
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Continued from previous page

SBM FBM LSM MMAR

Heaviness of the tails × × X Xe

a See [4].

b See [9].

c The process has long-range dependence if and only if 1
2 < H < 1.

d The process has independent increments and is a martingale if and only if H = 1
2 .

e Tails become heavy for those q-th absolute moments with q ≥ qcrit.

The compatibility with the martingale property of returns and the long memory are

given by Theorem 6.4 and Theorem 6.6 respectively. Otherwise, scale-invariance and

multiscaling are consequence of the de�nition of multifractal processes. They respectively

correspond to the time-invariance and non-linearity of the scaling function τ(q). Moreover,

the multiscaling properties of the MMAR contrast with the unique scale contained in all

the previous �nancial models.

The main disadvantage of the MMAR is the dearth of applicable statistical methods,

although the authors of it � Mandelbrot, Calvet and Fisher � introduced few innovative

tools able to be used for models being both time-invariant and scale-invariant.

Furthermore, the connection with the multifractal spectrum is also crucial. As a

matter of fact, the former, f(α), can be seen as a renormalized density obtained as the

limits of histograms. In an alternative, f(α) is viewed as the fractal dimension of the

set of instants Tα with local Hölder exponent α. The statistical self-similarity of the set

Tα is closely related to the long memory. In addiction, for a large class of multifractal

measures, the spectrum can be explicitly derived from Large Deviation Theory through

the Legendre transform. This allow the researcher to relate an empirical estimate of the

spectrum back to a particular construction of the multifractal. On this direction goes the

other paper of the authors [7].

The consequences on the MMAR can be so interpreted. The heterogeneity of the local

scales along the price process is entirely given by the trading time θ(t). Moreover, the
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multifractal spectrum of the price is derived from the of the trading time by a very simple

transformation.

Other practical aspects are of great interest to �nancial economics. Those are mainly

the consequences of using a multifractal process and multifractality as underlying as-

sumptions: The clear non-classic Brownian (mis)behaviour of the multifractal processes

has enormous implication over the risk-adverse investors' decisions and the pricing of

derivatives.

8 Conclusion and future development

Local Hölder exponent is a notion that can be well applied to functions and mea-

sures, deterministic or stochastic, with some adjustment. As a matter of fact, continuous

stochastic process are characterized by a unique Hölder exponent. Di�erently, for the

MMAR a continuum of Hölder exponent is allowed.

De�ning log-returns in the following way

X(t,∆t) := X(t)−X(t−∆t),

where X(t) is de�ned as in (17), we have

|X(t,∆t)| ∼ ∆tα(t) (20)

for all t, as ∆t → 0. In the standard Brownian motion and in the standard fractional

Brownian motion cases, the local variation are always proportional to ∆t
1
2 and to ∆tH

respectively. On the other hand, multifractal processes generate variety in local regularity

while �lling with a continuum of values of α(t). The Legendre transform of τ(q) (addressed

as multifractal spectrum) is the main tool for describing the distribution of local Hölder

exponents.

Because of the asymptotic relations of τ(q), the slope of the asymptotes αmax and

αmin give the bounds of the support of the multifractal spectrum, that is

τ ? : R ⊃ [αmin, αmax]→ R ,

since they are the least and the highest value α can take. Hence, if the scaling function τ(q)

is de�ned on the entire real line, its asymptotic linear behaviour implies the multifractal

spectrum τ ?(α) to be de�ned only on a closed set of values.
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Since (20) holds, the largest the range of possible α(t), the riskiest is the asset since

the coarse Hölder exponents can take more values. It conveys a more variability of the

log-returns, and hence an higher uncertainty in the magnitude of future price variations.

Moreover, the least the value of αmin, which is related to the random variable Umax, the

riskiest the asset should be considered.

The asymptotic behavior of the scaling function and the connection with the αs

through the Legendre transform should lead to reconsider the information connected with

the higher moments of the log-returns' distribution. As a matter of fact, the right asymp-

tote of τ(q) might have positive or negative slope according to the intrinsic riskiness of

the asset. Since this quantity is linked to the higher moments of the distribution, more

consistent estimation techniques31 ought to be developed being αmin the most ruinous

local exponent that can occur.

Moreover, a more in-depth study of the link with the distribution of Umax is surely

necessary. Since Uj are considered to be random, a proper distribution should be chosen

a priori32 for practical purpose. Subsequently, the distribution of max{Uj} would require

special attention since the maximum value of umax de�nes αmin.

Finally, since asymptotic behaviour of the scaling function is related to the maximum

value of the random generators, the explanation given for the presence of, and the subse-

quent capability to generate, heavy tails in the process might be related with the Extreme

Value Theory. A more deep analysis of this connection could be a possible way to develop

and discover new properties of the MMAR.

31The authors in [7] suggested a procedure for the values of the scaling function based on multiple

regressions at di�erent time-scales

E
[
lnP (q,∆t)

]
− ln(T ) = ln cX(q) + τX(q) · ln(∆t) ,

where P (q,∆t) :=
∑N
i=1

∣∣X(i∆t,∆t)
∣∣q, having divided the interval [0, T ] into N subintervals of length

∆t.
32In [6], the authors analyzed di�erent possibilities for the multipliers' distribution. Mandelbrot proved

that, in order to have canonical measure and hence allowing fat tails, the most immediate distribution

to be chosen is the log-normal.
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