ISSN 2281-4299

e

|I|!|||h 11 -

Mg 4 ¢ A

_ . !

-
I |

.

i
-

-

I DIPARTIMENTO DI INGEGNERIA INFORMATICA
AUTOMATICA E GESTIONALE ANTONITO RUBERTI

SAPTENZA

UNIVERSITA DI ROMA

Branching with Hyperplanes

in the Criterion Space:

the Frontier Partitioner Algorithm for
Biobjective Integer Programming

Marianna De Santis
Giorgio Grani
Laura Palagi

Technical Report n. 3, 2019



Branching with Hyperplanes
in the Criterion Space:
the Frontier Partitioner Algorithm for
Biobjective Integer Programming

Marianna De Santis*, Giorgio Grani*, Laura Palagi*

Abstract

We present an algorithm for finding the complete Pareto frontier of biobjective
integer programming problems. The method is based on the solution of a finite
number of integer programs, each of them returning a Pareto optimal point. The
feasible sets of the integer programs are built from the original feasible set, by
adding cuts that separate efficient solutions. Providing the existence of an ora-
cle to solve suitably defined single objective integer subproblems, the algorithm
can handle biobjective nonlinear integer problems, in particular biobjective convex
quadratic integer optimization problems. Our numerical experience on a bench-
mark of biobjective integer linear programming instances shows the efficiency of
the approach in comparison with existing state-of-the-art methods. Further exper-
iments on biobjective integer quadratic programming instances are reported.

keywords. Multiobjective Optimization; Integer Programming; Criterion Space Search

*Department of Computer, Control and Management Engineering Antonio Ruberti, Sapienza Uni-
versity of Rome. Via Ariosto 25, Rome, 00185
{marianna.desantis@uniromal.it} {g.grani@Quniromal.it} {laura.palagi@uniromal.it}

1



1 Introduction

Most real-world optimization problems in the areas of applied sciences, engineering and
economics involve multiple, often conflicting, goals. In the mathematical modelling of
these problems, under the necessity of reflecting discrete quantities, logical relationships
or decisions, integer and 0-1 variables need to be considered. We are in the context
of multiobjective integer programming (MOIP) and the generic MOIP problem can be
stated as follows:

S y() = min (y1(2),...,yp(2)) (MOIP)

where X C R™ and X NZ" represents the feasible set in the decision space. The image
of X NZ™ under the vector-valued function y : R” — RP represents the feasible set in
the criterion space, denoted by YV = {z € RP : z = y(z) for some x € X'}.

The challenging nature of MOIPs and the need of methods with guaranteed perfor-
mance, motivated the development of exact approaches for multiobjective integer pro-
gramming problems. Algorithms for multiobjective optimization can be divided into
decision space search algorithms, i.e., approaches that search in the space of feasible
solutions, and criterion space search algorithms, i.e., methods that search in the space
of objective function values.

Among the decision space search algorithms, the first branch-and-bound algorithm
for solving multiobjective mixed 0-1 integer programs was proposed by Mavrotas and
Diakoulaki [24], who improved and extended their work in [23, 25]. In [32], the authors
propose a branch-and-bound algorithm for multiobjective integer linear programming
problems extending the bounding procedure introduced in [16]: the aim is to find
separating hypersurfaces in the objective space between the upper and lower bound
sets in order to prune the current node in the enumeration tree. More recently, Belotti
and coauthors proposed advanced branch-and-bound algorithms for biobjective mixed-
integer problems [2, 3]. They focus on the idea of finding the complete Pareto frontier
for a relaxed subproblem, using this information to derive practical fathoming rules. We
further mention [30, 33] as branch-and-bound algorithms for biobjective mixed integer
linear programming problems.

Criterion space search algorithms find non-dominated points by addressing a sequence
of single-objective optimization problems. Once a non-dominated point is computed,
the dominated parts of the criterion space are removed and the algorithms go on looking
for new non-dominated points. One of the first criterion space search algorithm is the
one proposed in [11] from which we take the basic structure of our algorithm. Another
important criterion space search algorithm is the one proposed in [34], improved in [20,
22]. Several contributions in this context have been given by Boland and coauthors [4,
5, 6, 7]. In our numerical experience, we compare our algorithm with the balanced box
method proposed in [4]. The balanced box method maintains a priority queue with
rectangles that are explored in order to detect nondominated points. In [13, 21] new
theoretical insights on how to efficiently update the search region in branch-and-bound
algorithms are given. In particular, in [13], assuming that a set of solutions is already
known, an efficient algorithm to identify a minimal set of search zones that decompose



the search region is proposed.

In the application context, we mention works on biobjective minimum cost flow prob-
lems [26, 28, 31], on network routing problems [29], on the stable robotic flow shop
scheduling problem [12] as well as the assignment problem with three objectives [27].
In this paper, we focus on biobjective integer programming, i.e. Problem (MOIP)
with p = 2. We propose a branch-and-cut algorithm, called the Frontier Partitioner
Algorithm (FPA), that belongs to the class of criterion space search algorithms.

Our contribution.  We provide an Algorithm for biobjective integer problems with
convergence rate |Yxy| + 2 number of single objective integer programs, where |Vy| is
the number of non dominated points. This is the lowest convergence rate for this class
of algorithms to the best of our knowledge.

The approach can be extended to nonlinear convex integer biobjective problems since
the type of cuts introduced to partition the criterion space are linear in the criterion
space and convex in the decision space as long as the objective functions of the prob-
lem are convex. This property allows us to tackle nonlinear convex integer biobjective
problems, under the assumption that an oracle to solve the integer convex subproblems
arising in the branching tree is available. The definition of our cuts relies on a positive
scalar value, easily computable for several classes of problems. In particular, we are
able to address quadratic convex integer biobjective problems as well as second order
cone integer biobjective problems. As far as we know, the first general purpose method
to tackle convex multiobjective integer programs is the heuristic algorithm proposed
by Cacchiani and D’Ambrosio in [10]. In this respect, the Frontier Partitioner Algo-
rithm gives a contribution in the context of exact methods for multiobjective nonlinear
integer programs, defining a criterion space algorithm for nonlinear biobjective integer
programs.

The paper is organized as follows. In Section 2, we give some basic definitions and
concepts of multiobjective optimization, specifically adapted to biobjective integer op-
timization. We further report some assumptions we will need to define the algorithm as
well as some scalarization techniques. In Section 3, we introduce and analyze our algo-
rithm, providing convergence analysis, examples and a discussion on the assumptions.
In Section 4 we introduce possible linear approximations of non linear inequalities and
how to deal with numerical issues. Our numerical experience is presented in Section 5,
where we compare our algorithm with the the balanced box method proposed in [4].
We further report results on biobjective integer quadratic programming instances. Sec-
tion 6 concludes.

2 Notation and Preliminaries

We consider the biobjective integer programming BOIP, i.e. Problem (MOIP) with
p=2

i BOIP

merﬁngn(yl(x)ayZ(w))a ( O )

where X C R™ and the functions 1,2 : R — R are continuous.

3



Definition 2.1. A feasible solution v € X NZ" is weakly efficient for Problem (BOIP),
if there is no feasible point z € XNZ", such that y;(z) < y;(x) fori=1,2. Ifzx € XNZ"
is weakly efficient then y(z) is called a weakly non-dominated point.

Definition 2.2. A feasible solution v € X NZ" is efficient (or Pareto optimal) for
Problem (BOIP), if there is no feasible point z € X NZ", such that y;(z) < y;(x) for
i=1,2 and y(z) # y(2). If x € XNZ" is efficient then y(z) is called a non-dominated
point. The set of all non-dominated points Yy C Y is called efficient frontier (or Pareto
frontier).

Definition 2.3. The ideal objective vector of Problem (BOIP) is the vector y'@ € R?
defined component-wise as

Yt = Inin yi(x), i=1,2. (1)
In the following we use the following notation. Given a vector x € R", z; is the
i—th component and we use the sets RY; = {z € R" :2; >0,i=1,...,n}, Ry, =
{reR":2;>0,i=1,..,n}and Z%y={x € Z" : 2; > 0,i = 1,...,n}.

2.1 Assumptions

Our goal is to design an algorithm able to produce the entire Pareto frontier Vy of
Problem (BOIP). In order to achieve our aim we introduce a basic assumption on
problem BOIP.

Assumption 2.4 (Existence of the ideal vector). We assume that the ideal objective
vector yll-d, 1= 1,2 exists and is finite.

In the definition of our algorithm we need that it is assumed that a positive value exist
that underestimate the distance between the image of two integer feasible points of
(BOIP). We then give the following class of functions.

Definition 2.5 (Positive y-function). A function f : R™ — R is a positive y-functions
over X N Z"™ if there exists a positive v € R such that |f(z) — f(z)] > ~, for all
x,z € X NZ™ with f(z) # f(2).

We will widely use the following assumption.

Assumption 2.6 (Positive gap value). The functions y; : R™ — R, ¢ = 1,2 in Prob-
lem (BOIP) are positive y-function as in definition 2.5.

Note that, if 7; were zero for some ¢ € {1,2} we would have that y;(x) is constant for
all z € X NZ"™. In Section 3.3 we will show that Assumption 2.6 is not restrictive and
the algorithm can be applied to several classes of biobjective problems.

Under Assumption 2.6 and the Assumption 2.4, we can prove that the Pareto frontier is
finite which is a commonly used assumption when defining exact algorithms for MOIP
(see, e.g., [30, 4, 3]). We need this result to prove the convergence of our Frontier
Partitioner Algorithm in Section 3.1.



Proposition 2.7. Let Assumptions 2.4 and 2.6 hold. Then, the Pareto frontier Yy is
a finite set.

Proof. Under Assumption 2.4, there exist & € arg /’\r{mZn yi(x), i =1,2.
m n

Hence there exist the values My = y1(22) and My = y2(21) such that the Pareto frontier

Yy C Y is contained in the box [yi¢, M;] x [y&, My] and hence it is bounded. Each
. __q0d

objective function y; can attain at most M distinct values, so that the cardinality

of the Pareto frontier, obtained as the combination of the two, is finite and at most

(My — yi® + 1)(My — i + 1)
Y172 '

2.2 Scalarization techniques

To properly discuss our method we need a scalarization technique which allows to find
a Pareto point of (BOIP), known as scalarized problem. We refer the interested reader
to [15] for a complete overview of scalarization techniques.

We call a scalarized problem as Inner Scalarized program (ISP) and we will focus on
three main scalarization problems reported below. To prove convergence of our FPA
algorithm we will need an assumption on the scalarized problems generated during
the partitioning of the region (Assumption 3.1) which requires at least that the (ISP)
is bounded. Hence in the following for each scalarized problem, we show that this
property holds.

Definition 2.8 (Weighted-sum ISP). Given (BOIP), the weighted-sum scalarization
problem (ISPy ) is defined as

dnin Ay (2) + Agy(x), (ISPw)

where A; > 0, fori=1,2.

It is well known that under a proper choice of the weights the solution of the scalarized
problem (ISPyy) leads to an efficient solution as reported in the following proposition.

Proposition 2.9 (Proposition 3.9 [15]). Let A1, 2 > 0, then each solution of Prob-
lem (ISPyw) is an efficient solution for Problem (BOIP).

We observe that the converse is true only under proper convexity assumptions. Since
integer multiobjective optimization problems are non-convex we cannot expect to find
all efficient solutions by weighted sum scalarization as pointed out in Chapter 8 of [15].
Nevertheless as we mentioned above, we only need to ensure that (ISPy) is bounded
and this easily follows from Assumption 2.4 as reported in Remark 2.10 below.

Remark 2.10. Under Assumption 2.4 problem (ISPy ) is bounded. Indeed, assume by
contradiction that (ISPy ) is unbounded. Then, for all M > 0 there exists x € X N Z"
such that A\y1(x) + Aaye(x) < —M. We get a contradiction from Assumption 2.4, as
yi(z) > i, ya(z) >yt and Ai, he > 0.



In the following we define two further scalarized problems that will be used in order to
define an improved version of our algorithm.

Definition 2.11 (Lexicographic ISP). Given (BOIP) and a permutation (i1,i2) of the
set {1,2}, the lexicographic scalarization problem is defined as

. id
i {u @) v(e) = o}

id _ : .
where ;8 = Jain. yiy (z).

In the following we denote the lexicographic scalarization problem as:

tex_min (3, (2), i, () (15Py)
We note that addressing Problem (ISPy) requires the solution of two single-objective
mixed integer programming problems.
A well known result is the following.

Proposition 2.12 (Lemma 5.2 [15]). Each solution of Problem (ISPpr) is an efficient
solution for Problem (BOIP).

Also for the (ISPy) we can prove boundedness under Assumption 2.4 as explained below
in Remark 2.13.

Remark 2.13. Under Assumption 2.4 problem (ISP ) is bounded. In fact by Assump-

tion 2.4 we know that there exists finite yi¢ = r/’r\lfinZ yi(z), for each i € {1,2}. This
reXNLr

; : id : . — ,id
implies that y;¢ < Lain {yil () 2y, (x) = yiy }
We further define a new scalarization which is a suitable weighted-sum strongly related

to the lexicographic scalarization problem.

Definition 2.14 (Custom weighted-sum ISP). Let & € X N Z"™ be any solution of
Problem (ISPpr) with respect to the permutation (i1,i2) of the set {1,2}.
The custom weighted-sum scalarization problem is defined as

Jain Ay (z) + Agya(2), (ISP¥)

where (A\§, \3) belongs to the set {(\1,\2) € RZ,: 2 € arg xen}\lf%lﬁ Ay1(x) + Aaya(z)}.

For sake of simplicity it is not explicitly required that A; + Ay = 1, since this property
can be gain by simple normalization.

The underlying idea of the custom weighted-sum scalarization is to reduce the compu-
tational complexity of the lexicografic rule, as one solution can be obtained by solving
only one ILP instead of two as needed by (ISPz).

Note however that the custom weighted-sum problem cannot be always defined, as the
existence of the weights in the definition of Problem (ISP*) is not always guaranteed.

6



In the following we prove that this is the case when both Assumption 2.4 and Assump-
tion 2.6 are satisfied. From an algorithmic point of view, we will see that the existence
of such weights allows us to take advantage of the properties of both weighted-sum and
lexicographic method and to significantly improve the complexity of our algorithmic
framework.

Let us now describe a way to derive suitable weights for (ISP*). Given a permutation
(i1,12) of the set {1,2} let

P = arglex xerér\lflrI]lZn (i, (), Yin (2))

Let & € P and y;(&) = ;. For each € P we have that y;(x) = ;. Further let

Uiy = arglex min (yiy (), yi ().
By proposition 2.12 both gy and ¢ are non-dominated points of (BOIP).
Let v = min;—1 2 {7} > 0 and € € (0,7). We define \* € R% as

v —€
AN =9 U0 U
1, if 7 = is

,ifi=1dy

(2)

We now show that under simple assumptions it is always possible to derive weights for

(ISP*).

Theorem 2.15. Given (BOIP), let Assumption 2.4 and Assumption 2.6 hold. Given
a permutation (i1,iz) of the set {1,2} there exists weights \* € R such that X} < X},
and
. . . — . *T
arglex min (y;, (), 4i,(2)) = arg_min A"Ty(z)
Proof. Without loss of generality we fix 44 = 1 and 42 = 2. Define ¢, 41 and \* € ]R2>0

as in (2). Let z* € arg min \*Ty(z). Since \* € R?, the solution x* does not
TEXNZ™ >0

change with a normalization coefficient, so that by proposition 2.12 y(z*) = y* is a
non-dominated point. Further we have that A*Ty(z*) < M*Ty(z) V 2 € X NZ", and,

in particular, A*T (§ — y*) > 0 and from the definition of A\* we get

v —€ ~ * ~ *
—— ()1 — Y1) + 92 —y3 > 0. (3)
Yy — U1

Taken into account that both § and y* are non-dominated points for (BOIP) and that
¢ is in P only one of the following situations may occur

() y7 <91 and y3 > o

(i) yi =91 and y3 = Jo



We show that only case (ii) holds and this implies the theorem. Indeed, we need to
prove that (i) cannot happen. Assume by contradiction that (i) holds. Then, we would
have §, <y < 1 implying

11— U1 >0 — 1 (4
Using (4) within (3) we get v — € + g2 — y5 > 0. Since y5 — g2 > v we have vy — e >
and hence ¢ < 0 which leads to a contradiction.
We now prove that we have an infinite number of vector weights that can be used.

o= =

Proposition 2.16. Given (BOIP), let Assumption 2.4 and Assumption 2.6 hold.
Given a permutation (i1,i2) of the set {1,2} and given weights \* € R%, such that
Af, <A, and

11 —

arglex min (3, (0),yia (@) = arg_mmin XTy(z) (5)

Then the vector weights X = (aX}, \5) satisfy (5) for every a € (0,1].

Proof. Without loss of generality we set i1 = 1 and iy = 2 and we call A¥ = )\%)\* =
2

()\f(, 1)T, since we know from Theorem 2.15 that \] < AJ and then )\f < 1. In the next
we will call z* a generic element of the set arg Iﬁl{in NTy(z).
xre

NZ™

- - T -
Consider weights A = <)\1, 1) . We want to show that if 0 < A\; < A] then
arg min A'Ty(z) = arg min ATy(z)
reEXNZ™ TEXNZ™

By contradiction suppose that it exists a feasible point & such that ATy(z) < ATy(z*).
This implies .

y2(27) = y2(2) = M1 (1.(Z) = y1(27)) (6)
By the very definition of 2* we know that A\¥ Ty(z*) < A¥Ty(Z) and therefore

Yo (%) — 12(%) < A (11 (2) — 1 (™)) (7)

Combining (6) and (7) we get y1(Z) > yi(z*). From Proposition 2.12 we have that
both Z and z* are efficient points, then from the hypothesis on A* it must happens that
y1(Z) < y1(2*) and y2(Z) > ya(z*), generating a contradiction. 0

We now want to show that for a certain family of subsets of X N Z™ it exists a vector
of weights suitable for the subproblems defined over the subsets of this family.

Proposition 2.17 (A-Inheritance). Given (BOIP), let Assumption 2.4 and Assump-

tion 2.6 hold. Given a family Q0 of subsets of X N Z™ such that the Pareto frontier

of mi}{l (y1(2),y2(x)) C YN and given a permutation (i1,i2) of the set {1,2}, then the
BAS

weight vector \* € R derived by (2) is such that X;, < X, and

arg lexgéi?r_;(yil(gzc),yi2 () = argiréi?r{l NTy(z), YHeQ



Proof. For any set H € Q we derive weights A from (2). Since Assumption 2.4 and
Assumption 2.6 hold these weights are such that

arglex min(y;, (x),yi,(z)) = argmin )\HTy(x)
TEH TEH

Since H € Q then mig (y1(x),y2(x)) € Yy. This implies that A}t > \i and A}t =\ = 1.
re
All the hypothesis of Proposition 2.17 are satisfied and therefore

arg lex ﬁiﬁ(yil (2),yi,(x)) = arg 2%171{1 N Ty(z)

Since this is valid for any H € ) the theorem is true. 0

Refer now to (ISP) as a scalarized problem chosen among (ISPy), (ISPz) and (ISP*).
Under Assumptions 2.4 and 2.6 by Proposition 2.7 the Pareto frontier is finite. Using
Remarks 2.10 and 2.13, we have that any of the (ISP) problems either has an optimal
solution which is an efficient solution for problem (BOIP), or it is infeasible and hence
(BOIP) too. This property turns out to be crucial when proving well-posedness and
convergence of FPA (see the proof of Theorem 3.7).

In the definition of our algorithm we can use also other scalarization techniques which
guarantee that the scalarized problem either has a solution or it is infeasible. In par-
ticular compromise programming with a norm ¢, with 1 < p < oo can also fit in this
setting. However the scalarization techniques proposed above present the advantage
that the corresponding scalarized problem belongs to the same class of the original
(BOIP). In other words if BOIP has linear objective functions the scalarized problem
is an ILP, if BOIP has quadratic objectives, the scalarized problem is an IQP and more
in general the objective function of the scalarized problem maintains the structure of
the original ones in (BOIP).

3 The Frontier Partitioner Algorithm

In this section we introduce the Frontier Partitioner Algorithm FPA. Convergence and
finiteness of the algorithm is analyzed in Section 3.1.

The FPA uses a “divide and conquer” approach to explore the Pareto frontier of (BOIP).
Starting from a non-dominated solution the method builds two subproblems where the
chosen non-dominated point and all its dominated points are infeasible. Hence the key
ingredients of FPA are

e the construction of subproblems using properly defined inequalities,
e the computation of non-dominated solutions at each node of the branching tree.

At a generic node k in the branching tree the subproblem (BOIP¥)

min  y(x) (BOIP*)
xeXkNZ™



is constructed, being X* C X the set obtained intersecting X with properly defined
inequalities. For k = 0, i.e. at the root node, we define (BOIPY)=(BOIP) and A° = X.
For k > 0 the definition X'* is clarified below.

In order to compute a non-dominated solution of (BOIP¥) we can use any scalariza-
tion proposed in Section 2.2 to get (ISP¥). We need the following assumption on the
scalarized problem (ISP*).

Assumption 3.1 (Solvability of the scalarized problem). There exists an oracle that
either returns an optimal solution of (ISP) or it certifies the infeasibility of problem

(ISP*).

In other words an oracle is an algorithm able to solve (ISP¥). From the point of view
of implementation using an oracle means calling a suitable solver.

In case (ISP¥) has a solution, two children nodes in the branching tree are produced.
Let 2% € X* N Z" be an optimal solution of (ISP)* and §* = y(z¥).

Let €; € (0,7;], i = 1,2 where ~; satisfy 2.6. We consider the inequalities
yi(z) <gF — e, i=1,2. (8)

Remark 3.2. The inequalities y;(z) < Qf —€i, 1 = 1,2 cut the non-dominated solution
9% and they are linear in the criterion space. Furthermore, they are convex (linear) in
the decision space as long as the functions y;(x), i = 1,2 are convez (linear).

From (BOIP)*, using inequalities (8), we define the two children nodes of node k as
follows:

min  y(z) XP =X n{z eR" : yi(x) <97 — e},
zeXFNzZn

min  y(x) XY =xFn{z eR" : yolz) < 95 — e}
zeXFNzZn

The Frontier Partitioner Algorithm produces iteratively a finite list of BOIPs.

Remark 3.3. At a generic node k > 0 of the branching tree, the feasible region X* is
obtained from the original X adding at most two inequalities. Each inequality takes the

form y;(x) < const; with i = 1,2, being const; = 01<n'i2k §] — €. Hence, letting m be the
<<

number of constraints defining X, the number of constraints of X* is at most m+2 for
all k, as there will be at most two non-redundant constraints.

The scheme of the Frontier Partitioner Algorithm FPA is reported in Algorithm 1.

10



Algorithm 1: FPA algorithm
Input: £ = {(BOIP)O}, X0 = X, YNy = @, v >0, € € (O,’)’Z‘],i =1,2
Output: the Pareto frontier Yy of (BOIP)
while £ # () do
Select a node (BOIP)* € £ and delete it from £
Derive (ISP)* from (BOIP)*
Solve (ISP)F.
if (ISP)* has a solution * then
Set Yy =Yy U {@k}, where % = y(ﬂﬁk)
Build (BOIP)¥, i = 1,2 from (BOIP)*
(BOIP)¥ := min {y(x) cxexfnzn
Where XF = X*N{z e R" : y;() < 9% — &}, i = 1,2,
Add the new nodes (BOIP)} and (BOIP)k to L;
end

——

end
Return Yy

We prove in Section 3.1 that under suitable assumptions FPA is well posed and termi-
nates finitely, returning the entire Pareto frontier Vy.

The BOIPs generated are related to those that would be built applying the approach
proposed in [11, 21, 13].

In particular in [11] the BOIPs are generated by using the weighted-sum scalarization
method and the existence of an oracle for solving BOIP is assumed. In [21] the authors
present a method which identifies a region where it is possible to find further non-
dominated points. The region is updated iteratively each time a new non-dominated
point if found. To this aim they construct a list U of local upper bounds and keep it
updated according to the new non-dominated points found. It is mentioned how to
use this list of local upper bounds in order to define an algorithm for multiobjective
combinatorial optimization. At each iteration k, a local upper bound u* € U is selected
and the subproblem P(u*) is built by adding to the feasible region XNZ" the constraints
y(z) < uF. Problem P(u*) is solved, the list & is updated and a new efficient point is
eventually found. In case p = 2, the inequalities y(z) < u* are strongly related to the
inequalities introduced in (8), as u* € U is built by using components of non-dominated
points found so far, so that they read as y;(z) < g] for some j = 1,...,k and for all
i = 1,2. We underline that FPA does not need to construct the list &/ and hence it
does not need any algorithmic procedure to keep U updated and filter dominated local
upper bounds as needed in [21, 13]. Furthermore, in [21] minor details on how to
address the solution of the integer subproblem P(u*) are given. Indeed, handling strict
inequalities is not allowed when using standard MISP softwares such e.g. CPLEX [19],
Gurobi [18], SCIP [17], Couenne [1] or Bonmin [8]. In this respect, the definition of ;
and of ¢; € (0,7;], i = 1,2 in (8) is crucial to obtain scalarized problems which satisfy
Assumption 3.1, namely for which an oracle exists using standard available softwares.
The main contribution of the paper stays in the emebdding the new custom weighted-

11



sum scalarization procedure within the divide-and-conquer procedure. The use of the
new scalarization allows to prove that exactly |Vxn|+ 2 nodes are generated as reported
in the next Section.

3.1 Convergence Analysis

As a first step in the convergence analysis of the Frontier Partitioner Algorithm, we
prove that the cuts used in Algorithm 1 induce a partition of the decision space.

Proposition 3.4. Let Assumption 2.6 holds. Then XF N XFNZ" =0 for all k in
Algorithm 1.

Proof. Let ¥ € X% N 7Z" be an efficient point for (BOIP)¥ corresponding to the
non-dominated value j*. Assume by contradiction that XF N X¥ N Z" # (. Then
T € XFNXFNZ" exists and satisfies y;() < yi(#), for i = 1,2 as ¢; > 0 by assumption.
This contradicts the fact that 2* is an efficient solution for (BOIP)F. 0

Remark 3.5. Under Assumption 2.6, we have that y(z) # 9* for any x € XF nz"
and any x € XY NZ". Therefore, the inequalities used to define Xl-k, i =1,2 exclude
all the efficient solutions & such that J* = y(&).
Since |y;(z) — §F| > v for i = 1,2, we have that

Vi o= {F U vt u o

where y]]i;i, i = 1,2 denote the Pareto frontier of the children nodes of (BOIP).
Therefore, the Pareto frontier is recursively obtained as Yy = {j°} U y]%l U y?f.

In the following proposition, we prove that every node tackled in Algorithm 1 either
can be pruned or it yields a yet unknown Pareto point.

Proposition 3.6. Let §j € V% be a non-dominated point of (BOIP)*. Then, the child
problem (BOIP)¥

min  y(x)
st. zeXrPn{y(x) <4 —e) (9)
x €L

with i = 1,2 is either infeasible or any of its optimal solutions is efficient for (BOIP)F,
leading to a new non-dominated point § # 4.

Proof. 1f problem (9) is infeasible there is nothing to prove. W.Lo.g. let i = 1 and let
Z be a solution of (9) (case i = 2 can be proven identically). By contradiction, assume
that Z is not efficient for (BOIP)*. Then, € X¥ N Z" exists such that v;(%) < v;(%),
for i = 1,2 and y(Z) # y(z). In particular, we have that

(@) <yp(@) < —ea

so that Z is feasible for (9). Since y(Z) # y(Z), we necessarily have that either y;(Z) <
y1(Z) or y2(Z) < y2(x), contradicting the fact that z is efficient for (9). Furthermore,

12



we have that y(x) # ¢ for any point x feasible for (9) as stated in Remark 3.5, so that
Z leads to a non-dominated point y(z) = § # 9. 0

Now we are ready to prove the finite convergence of Algorithm 1.

Theorem 3.7. Let Assumptions 2.4, 2.6 and 3.1 hold. Algorithm 1 returns the com-
plete Pareto frontier Y of (BOIP) after generating exactly 2|Yn|+ 1 (BOIP*).

Proof. At each iteration k of the FPA a node (BOIP)¥ is chosen and the corresponding
(ISP)¥ is built.

Assumption 3.1 allows us to solve Problem (ISP)*. Using Remark 2.10, we have that
either (ISP)* has a solution or it is infeasible. If (ISP)* is infeasible, we conclude
that X* N Z" does not contain any efficient point and the node (BOIP)* is pruned.
Otherwise we have that the returned solution of (1SP)* is efficient for (BOIP)*, giving
us a non-dominated point §*. Using Proposition 3.6, we have that §* belongs to the
Pareto frontier of (BOIP). By Proposition 3.4 and Remark 3.5, the non-dominated point
§* € Y cannot be detected again by addressing any subsequent node in the branching
tree and the inequalities induced by ¢* do not cut any yet unknown Pareto point.
Summarizing, whenever a node is addressed, either we get a new non-dominated point
or we detect infeasibility and the node is pruned. Therefore since FPA produces exactly
two children for each non-dominated point of (BOIP), we have that the branching tree
has exactly 2|)x|+1 nodes (including the root node) so that exactly 2|Vx|+1 (BOIP¥)
are generated. 0

We now show that the use of different scalarization techinques may lead to a different
number of solutions of inner scalarized programs (ISP), namely to a different number
of oracle calls, which represent the main computational burden. In particular we will
show that the use of the custom weighted-sum problem allows us to define an improved
version of FPA, called FPA*, able to detect the complete Pareto frontier after having
addressed only |Vy| + 2 integer programs.

Before describing the special case of the FPA with the custom weighted-sum scalariza-
tion, we report the results that follows directly from Theorem 3.7. In particular for
the FPA with (ISP) obtained by the weighted-sum scalarization technique we have the
following results that has already been proved in [11].

Corollary 3.8. If (ISP@V) as defined in (2.12) with strictly positive weights A; > 0 is
used to define the scalarization program then Algorithm 1 returns the complete Pareto
after having addressed 2|Yn|+ 1 ISPs of which |Yn| + 1 must have empty feasible set
and after having called the oracle 2|Yn|+ 1 times.

Proof. The proof is straightforward consequence of the construction of the (ISPy) in
the branching tree. 0

When using (ISPr) or (ISP*) as scalarized problems we obtain a drastic reduction of
the number of (BOIP*) tackled by the algorithm.

Corollary 3.9. If either (ISPr) or (ISP*) is used to define the scalarization, then at
least one of the two subproblems (BOIP?), 1 = 1,2 has empty feasible set, so that the
number of generated BOIPs is |Yn|+ 1, where only one problem is empty.

13



Proof. Every time a subproblem (ISP*) is solved and a new Pareto point is found, the
algorithm creates two subproblems (BOIP)¥, i = 1,2, from (BOIP)* according the

77
formulas (BOIP)¥ := min {y(:c) cxeXFn Z"} and XF == XFn{z e R" : y;(z) < §F —
€;} i = 1,2. By the definition of lexicographic method we already know that Xi’; =0,
where (i1,is) is the permutation of set {1,2} adopted by (ISP¥). As a consequence
we can always deprecate one subproblem out of the branching procedure, leading to

|Vn| + 1 problems of type (BOIP*) and just one of them, i.e. the last, has empty
feasible set. 0

Remark 3.10. If the lexicographic problem (ISP ) is used as the scalarization tech-
nique in FPA, then Algorithm 1 returns the complete Pareto after 2|Yn|+ 1 oracle calls
for the solution of single objective scalarized problems, with only one of them being in-
feasible. This is due to the fact that every time we tackle problem (ISPIE) we have to
solve two integer problems if the feasible set is not empty or just one if the problem is
infeasible - we need to check infeasibility.

For the special case of linear BOIPs, a criterion space search algorithm that solves
2|Yn| — 1 integer programs has been defined in [30] and, as far as we know, this was
the best complexity result.

When (ISP*) is used as scalarization techniques it is possible to reduce drastically the
number of oracle calls tackled by exploiting the properties of the scalarized problem.
The weights defined in (2) allow us to define an algorithm that detects the nondomi-
nated points of (BOIP) in decreasing order with respect to y;, (). This means that at
every node of FPA only one subproblem (BOI P)f“' needs to be produced, as the other
one is infeasible by construction.

In the following we present the FPA*, which is a particular version of FPA where we
take advantage of the structure of (ISP*) to reduce the number of oracle calls as far as
possible.

14



Algorithm 2: FPA*
Input: (BOIPY) = (BOIP), X' = X, Yy =0, v > 0, & € (0,7:],i = 1,2
{i1,12} permutation of (1,2), k=0
Derive the ideal vector 3¢ and custom weights as in (2) from (BOIP)
Output: the Pareto frontier Yy of (BOIP)
Solve (ISP*)? and let 2" be one of its solutions
while (y;, (z*) > y¢) do
Derive (ISP*)* from (BOIP)*
Solve (ISP*)* and let &* be one of its solutions
Set Yy = Yy U {@k}, where g% = y(&¥)
Build (BOIP)**! from (BOIP)*
(BOIP)*! := min {y(az) cx e XMn Z”}
Where X*1:= XF N {z e R" : y; (z) < §F — €},
Set k =k +1;
end
Return Yy

Theorem 3.11. Let Assumptions 2.4, 2.6 and 3.1 hold. Algorithm 2 returns the
complete Pareto frontier Yy of (BOIP) after having addressed |Yn|+2 single-objective
integer programs.

Proof. Algorithm 2 is exactly FPA customized over (ISP*). By Corollary 3.9 if we use
FPA we will address |Vn|+1 (ISP*)s, where exactly one has empty feasible set. By using
FPA* we address the problems sequentially by changing the level of the 4;-th function.
Since in the first step of the algorithm we derive the ideal vector, we know that the
i1-th function will end up at that value, in other words the last point found by the
algorithm will be the extreme point with the lowest value of the i;-th function. Since
in the while-loop a stopping criterion on the 7;-th function is introduced, the algorithm
will stop before tackling an empty subproblem. Under these considerations FPA* will
stop after having addressed | Vx| (ISP*)s.

Every time we solve the program (ISP*k) we have to solve only one integer problem.
According to Proposition 2.17 and Remark 3.5, if we use formulas (2) with a fixed
permutation we need only to solve two integer problems to find custom weights valid
for all the subproblems. In the end the algorithm will get exactly |Vn| + 2 single-
objective integer programs and therefore |Vy| + 2 solver calls. 0

3.2 Toy example

In this section we show the behavior of algorithm FPA* on the following simple example
proposed in [15] (example 8.6)

i , , 10
xerglflr?ZQ(xl x2) (10)

15



where X is the polyhedral set defined as
X ={z €R%y: 2w + 3wy > 11, 2y <4, x5 < 4}.

For this instance we have «; = 1 for ¢ = 1,2 and we set ¢, = 1. The Pareto frontier
is Yv = {(0,4); (1,3); (3,2); (4,1)}. As pointed out in [15] there is no setting of the
weights A € R? such that the point (3,2) is a solution of the weighted-sum problem.
We show that our approach is able to detect the full Pareto frontier Vy.

The criterion space ) of Problem (10) is represented in Figure la. At every iteration,
in order to produce new non-dominated points of Problem (10), we use as scalarization
the custom weighted sum method with \* = (352, 1)T and a = 0.3, so that we address

7
the single-objective integer problem (ISPx)*:

min
reXxknz2

xr1 + 9.

In Figure 1, we report the iterations of FPA on Problem (10). In particular Figure 1b
reports the solution of (I1.SPx)°.

The first non-dominated point found by FPA is (4,0).

Figure 1c reports the regions Xlo = {:U € ]R2>0 12201 +3x0 > 11, 21 <4, 9 < 4,21 < 3}
and X20 = {x € R2>0 12w + 310 > 11, 1 <4, 19 < 4,29 < —1} of the two children
nodes (BOIP)Y, (B_OIP)S generated. As expressed in Theorem 3.11 XY is empty and
then automathically pruned. By solving (ISP){ in Figure 1d we get the non-dominated
point (3,2). By reapplying the procedure in Figure le we get the point (1,3). Finally
in Figure 1f we find the last Pareto point e we get the full Pareto front.

3.3 Discussion on the assumptions

In this section we present some classes of functions that easily satisfy Assumption 2.6.
As a first step we look for sufficient conditions to have v > 0 and e € (0,~] computable
whenever f(z) # f(z) for all z,z € X NZ" (Assumption 2.6).

Proposition 3.12. Assume that f : Z" — Z. Then ~v > 1.

Proof. Since the image of XNZ™ under f is a subset of Z, we have that |f(z)— f(z)| > 1,

for all z,z € X NZ" such that f(x) # f(z). 0

Remark 3.13. As a matter of example of functions satisfying the condition in Propo-
sition 3.12 we have all the polynomials with integer coefficients and in particular f(x) =
Tz with c € Z™ and f(x) = 27Qz + Tz with Q € Z™*" and c € Z".

We now look for larger classes of functions for which v > 0. We focus on functions
defined on rational domains.

Proposition 3.14. Let f(x) : Z™ — R be a polynomial with rational coefficients,
f(x)#0. Thenr € N, r # 0 exists so that v > %

16



—

z1

(e) third non-dominated point found (f) the complete Pareto frontier

Figure 1: The Frontier Partitioner Algorithm applied to Problem (10)

17



Proof. Let f(x) = > j_oarqr(x), where qi(z) = [, 2;"* and m;y, € N, for k =
0,...,8,9=1,...,n. We have gx(x) € Z, for k = 0,...,s and for all z € Z". Since
r € N, r # 0 exists such that ray € Z, k =0, ..., s, we have that g(z) = r f(z) satisfies
the assumption of Proposition 3.12 and

f(@) = f() = = Va,ze XNL": f(x) # f(2).

S| =

0

Remark 3.15. Proposition 3.14 holds when f(z) = 27Qx + cTx, where @ € Q™ ™ and
ce Q™.

Remark 3.16. Of course Proposition 3.14 holds when f(x) is a rational linear func-
tion: f(x) =cTz, c € Q™.

Note that the value r € N used in Proposition 3.14 is easily calculable as the least
common multiple of the denominators of the rational coefficients.

Proposition 3.17. Let f(x) = || Az +b||2 and assume that A € Z™*™ and b € Z"™ and
that

7= max ||Az+0b|3eR, < oo
TEXNZ"

Then v > o + 1 — /2.
Proof. Since A € Z™*™ and b € Z" we have that (Az +b) € Z™ for all x € X NZ".
Therefore for all z,z € X NZ" such that f(x) # f(z) we get

[f (@) = f(2)] = [[[Az + blj2 — | Az + bl = [[lv]l2 — [[w][2]

with v,w € Z™ such that v # w and they differ exactly for one component, which is
the least difference possible. We can assume w.l.o.g. that v; = w; for all ¢ # j and
w; = vj + 1 and we finally get

m

[f(@) = F = | [Dov2— | D v+ 20 +1) = V]ol2 +1—/]v]
=1 =1

Let g(z) = || Az + b||3, the function /g + I — /g is monotonically decreasing hence it
attains its minimum value at its upper bound v and

f(z) = f() 2 Vo+1-Vo, Va,zeXNZ": f(z) # f().

a
In Table 1, we report some classes of objective functions that can be considered
when using integer programming solvers such as CPLEX [19], Gurobi [18], SCIP [17],
Couenne [1] or Bonmin [8], in order to deal with problem (ISP)*. In particular,

e if both y;(x) i = 1,2 are linear, then (ISP)* is an Integer Linear Program (ILP)

18



e if one y;(z) is written as || Az +b||2, then (ISP)¥ is an Integer Second Order Cone
Program (ISOCP)

e if one y;(x) is convex quadratic, then (ISP)* is a Quadratically Constrained
Quadratic Integer Program (QCQIP)

e if one y;(z) is general convex, then (ISP)* is a Convex Integer Program (CIP).

| yi(z) = ‘ v > | oracle |
cTx with c € Z" 1 ILP
cTx with c e Q" % ILP
|Az + b||o with A € Z"*™ b e Z™ v+ 1—+5 | ISOCP
2TQr 4+ cTx with Q = 0, Q € Z"*™, c € 7™ 1 QCQIP
2TQx + Tz with Q = 0, Q € Q"*™, ¢ € Q™ 1 QCQIP
1 2" — 7., convex 1 Ccip

Table 1: Classes of functions that satisfy Assumptions 2.6 and 3.1. In the table we
denote with r the least common multiple of the denominators of the rational coefficients
used in Proposition 3.14. We denote with © the value defined in Proposition 3.17.

Remark 3.18. For the classes of functions mentioned above, we can set €; € (0,7;]
to the values reported in Table 1, as they represent valid lower bounds on ~;.

4 Computational aspects

Tackling non linear problems leads to further issues than the ones of integer linear
programming. This is due to the fact that non linear functions have often a tough
structure which is not well addressed by standard software. On the other hand they
can also lead to numerical instabilities.

In the following we propose two way to lighten the computational burden. In par-
ticular in Subsection 4.1 we discuss about approximations of non linear sets, whereas
in Subsection 4.2 we describe possible procedure to deal with numerical instabilities,
presenting a new algorithm derived from a combination of FPA and FPAx.

4.1 Circumventing nonlinear inequalities

In the Frontier Partitioner Algorithm new nodes are built adding inequalities to the
feasible set in the decision space. More specifically, at a generic node k, the set X*NZ"
is intersected with the following set:

C={xeR": yi(z) <9} — &}, (11)

19



being i = 1 or i = 2 and §* the non-dominated point found at node k. When y;(x)
is convex nonlinear we are introducing a nonlinear cut, as the set in (11) is defined
according to a nonlinear inequality. However, we do not necessarily need to add non-
linear inequalities: for our purposes, it would suffice to define a valid formulation for
the integer set {x € Z" : y;(x) < g; — €}, or, in other words, it would suffice to find
a matrix A € R™*" and a vector b € R™ such that

{r eZ" : Az <b} ={x € Z" : yi(x) <9 — &}

However, from a practical point of view, it is not yet clear how to easily generate a
valid formulation. It is the purpose of this section to investigate on the use of linear
inequalities within FPA.

Under the assumption that y; : R™ — R is convex and continuously differentiable, we
have that
Vyi(#)T (@5 — @) > 5i(2%) — yi(2) > &

Therefore, we can think of defining Xf intersecting X% with the halfspace
{z eR" : Vyi(@")T (3" — 2) > e}

The resulting FPA, may eventually not terminate with the entire Pareto frontier, as
we are not guaranteed to cut all the efficient solutions associated to the current non-
dominated point. On one hand we loose the exactness of the method, on the other we
have the advantage of dealing only with linear constraints.

For the specific class of problems where the objectives are strictly convex quadratic
forms, we can prove the following result:

Proposition 4.1. Let y;(x) = 27Qx, with Q = 0. Then
cnzZ"cotne™
where

1
ol = {x ez - ||QY24||) < Vi ei}

and o {x €7 1 |QY%]u < \/ﬁ}
Proof. We have that
{zeZ: y(x) <9 —e} ={xeZ":27Qx <y — ¢}
={z ez : |Q"?2| < i — &}
—{z ez QY2 < Vi —a) = C N

Using the relations between norms /n||z|l2 < ||z||; and ||z||2 > ||z||c we have that

Cnzr CC' ={zeZ": Q" x| < Vi -}

cnzr CC*®= {3: ez . ||Q1/2$||Oo < Vi — EZ'}
20



hence we get the result. 0
Note that both C!, C* are defined by 2n linear inequalities. Hence, in the specific case
of problems where the objective functions are strictly convex quadratic forms, (BOIP)*
can be generated using these 4n linear inequalities. Again, the resulting FPA will be a
heuristic approach, as we are not guaranteed of cutting all the efficient solutions asso-
ciated to the the non-dominated points found so far. However, we have the advantage
of dealing, at every node, with a quadratic integer programming problem, that can be
handled more efficiently with respect to a quadratically constrained quadratic integer
programming problem (see, e.g., [9]).

4.2 Managing numerical instabilities

FPAx offers a really tight bound with respect to the number of integer problems to be
solved in order to get the Pareto front. From a numerical point of view it works very
well for linear biojective integer problems, but it suffers when the functions become
nonlinear. This is due mostly to the inability of available software to solve nonlinear
problems when one of the two weights is near to zero. This is immediately clear when
dealing with quadratic problems. In fact even if singularly the quadratic matrices in the
objectives are positive semidefinite (then theoretically solvable) their sum can some-
times be rejected by the software and marked as non convex. From our experience it
seems that the algorithms responsible to certify semidefiteness end up finding minimum
eivenvalues of the order of —107!6 and therefore neglecting convexity.

We proposed two strategies to deal with numerical instabilities:

e iterative weights updating
e FPA and FPA* combination.

The first adjustment can be made quickly with almost no computational cost. We
just need to put ourselves in the hypothesis of Theorem 3.11. We can update the
weights of the single (ISP*k) at each iteration, by maintaining an approximation of the
ideal vector of each subproblem. For further details about why this will lead to higher
weights we redirect to the proof of Proposition 2.17, where the central point is that
the starting weights are small than the ones of the subproblems. Since in this context
the two objectives are following a specific order, to reduce the slope of the weights we
just need to consider a lower bound to the ideal point ylk for each (BOIPF). For the
root node - k£ = 0 - we just take the ideal ylo = y'd as defined in Definition 2.3. For
k>0 we put (yF)i, = (30)i, and (yF);, = yf;l. At each step we are returning a new
non dominated point, which is the extreme point of (BOIP¥) in the corner defined by
the lexicographic order adopted (i1,72). With the procedure above we can iteratively
reduce the imbalance between weights.

The second strategy adopted attempts to mix up FPA with weighted sum and FPAx.
The procedure is simple and it is described in Algorithm 3.

We would like to use the custom weighted sum scalarization as soon as possible. In other
words when addressing a new subproblem (BOIP¥) we calculate the weights needed to

21



obtain (ISP*). Since we are trying to reduce as possible numerical difficulties we include
the imbalance reduction discussed above, in this way we associate a point yf which is
an approximation of the ideal point of (BOIP¥). Starting from yF we can derive the
weights w needed by the custom weighted sum method by normalizing the ones in (2),
opportunely checking the order of the functions used. If w,,;;, = min{w,ws} is too
small numerical issues could arise, therefore we just apply Algorithm 1 with a more
suitable scalarization, say weighted sum method (ISPyy) with weights (0.5,0.5)T. In the
case Wy satisfies our tollerance, the algorithm applies (ISP*) directly, solving fewer
problems.

The number of oracle calls of Algorithm (3) lies between | Yy |+3 and 2|Yy|+1. It really
depends on the nature of the problem and on the value of the tolerance, as discussed
in Section 5.

22



Algorithm 3: Stable (FPA SFPA)
Input: (BOIP),v; >0, ¢ € (0,v],i=1,2,6 € (0,1)
Output: the Pareto frontier Yy of (BOIP)
Initializzation: (BOIP)? = (BOIP), L= {(BOIP)’}, X=X, Yy =10
Find: 3¢, then put ylo =y
while £ # () do

Select a node (BOIP)* € £ and delete it from £

Using yf , calculate w by normalizing (2) following the order (i1, i) if

min {w;,, w;, } <6 then

Derive (ISP;,) from (BOIP)® with weights (0.5,0.5)T

Solve (ISP%,).

if (ISP%,) has a solution #* then

Set Yy =Yy U {;&k}, where 9% = y(2¥)

Build (BOIP)¥, i = 1,2 from (BOIP)*

(BOIP)Y := min {y(m) e XFNIn

Put ()1 = (yf)1 and (3")2 = y5
(BOIP)% := min {y(m) crxeXynzn
Put (y%)> = (yf)2 and ()1 = yi
Where XF .= XN {z e R" : y;(z) < 9F — ¢}, i =1,2,

Add the new nodes (BOIP)} and (BOIP) to L respectively with

ylk1 and ny;

M~ =

end

else

Derive (ISPx)* from (BOIP)*

Solve (ISP*)k.

if (ISP*)* has a solution i* then

Set Yy =Yy U {;&k}, where 9% = y(2¥)
Build (BOIP)% from (BOIP)*

(BOIP)';?1 = min {y(w) rx € Xﬁ N Z"}
k‘i ki
Put (y,")i, = (yf )iy and (y," )i, = ui
Where Xi]i =Xk {z eR" : y,(z) < Qfl —€}, 1=1,2,
Add the new nodes (BOIP)?1 to L;
end

end
end
Return Yy

Adopting one scalarization technique or the other can significantly change not only
the theoretical performances, but also the overall software interaction. There are two
major aspects we want to focus on:

23



e certification of emptiness
e warm starts.

The first point can be exploited easily. By looking at the results in Theorems 3.7
it could seem that the choice on the scalarization technique is no big deal. By the
way certification of emptiness is a huge problem in integer programming. In fact it is
common to spend more time trying to certify infeasibility than to solve an analogous
feasible problem. Generally speaking it depends a lot on the structure of the instance
we are addressing and which one will perform better it is not clear apriori. Of course
if there are not numerical instabilities then the custom weighted sum scalarization
performs usually a lot better.

On the other hand it is known that to start from a feasible solution (or partially
feasible) can help significantly the computational time. The speedup is usually around
15%. If we are using Algorithm 1 with weighted sum method (ISPyy) as scalarization
technique, then warm start and partial tree recovery lose their advantage after solving
few problems. This is due to the fact that the regions addressed by the subproblems
are less related the one to the other the deeper we go in the branching tree. This forced
us to remove warm starts when using weighted sum. Surprisingly, when dealing with
custom weighted sum and lexicographic method, warm starts become game changers.
The feasible region of a subproblem is in fact always contained in the one of the father
and most importantly they are always addressed sequentially.

5 Numerical results

To test the performance of our algorithms, we considered biobjective integer linear
instances (see Section 5.1) and biobjective integer convex quadratic instances (see Sec-
tion 5.2). Algorithm FPA, FPA* and SFPA are implemented in Java and uses as oracles
respectively the MILP and MIQP solvers of CPLEX 12.7.1 to address the scalarized
problem (ISP)* at each node. All our experiments were carried out on an Intel Core
i7 processor running at 2.40 GHz. All running times were measured in CPU seconds.

5.1 Numerical experiments on linear instances
The generic biobjective integer linear programming problem is modeled as
max (clz, dx)
st. Az <b
x € 7%,

We consider two classes of instances. The first one is available at http://home.ku.
edu.tr/~moolibrary/, where instances have three, four and five objectives. In our
experiments, we took only the first two objectives. Parameters are ¢; € Z", i =
1,2, A e Z™"™ and b € Z™. In particular, ¢;; is generated in the ranges [—100, —1]

24



with probability 0.2 and [0,100] with probability 0.8, 7 = 1,...,n and i = 1,2. The
coefficients ay; are generated in the ranges [—100, —1] with probability 0.1, [1, 100] with
probability 0.8 and ag; = 0 with probability 0.1. The right-hand side b, is generated
randomly in the range 100 and >} | ay.

The second class of instances has been randomly generated with ¢; € Z", i =1,2, A €
Z™*™ and b € Z™ and it is publicly available at https://github.com/GiorgioGrani/
Biobjective_Instances. We produced 97 instances: 58 of them have a number of
constraints which is the 83% of the number of variables and their coefficients are chosen
such that ¢;; is generated in the ranges [—100,—1] with probability 0.2 and [0, 100]
with probability 0.8, j = 1,...,n; ¢ = 1,2. The coefficients aj; are generated in
the ranges [—100, —1] with probability 0.05, [1,100] with probability 0.9 and ay; = 0
with probability 0.05. The right-hand side by is generated randomly in the range
(0,32, ar). The remaining 39 instances have exactly 10 constraints each and their
coefficients are chosen such that ¢;; is generated in the range [—100, —1] with probability
0.02, in the range [0, 100] with probability 0.08 and they are set to zero with probability
09,j=1,...,n; i =1,2. The coefficients ay; are generated in the ranges [—100, —1]
with probability 0.2, [1,100] with probability 0.6 and ax; = 0 with probability 0.2. The
right-hand side by, is generated randomly in the range [0, ;" ag.

Note that, for both classes of instances, the condition in Proposition 3.12 is satisfied,
so that v; > 1 and we can set ¢; = 1 for i = 1, 2.

In order to assess the performance of the algorithms considered, we make use of perfor-
mance profiles, as proposed in [14]. Given our set of solvers S and a set of problems P,
we compare the performance of a solver s € S on problem p € P against the best per-
formance obtained by any solver in S on the same problem. To this end, we define the
performance ratio rp s = tp s/ min{t, ¢ : s’ € S}, where ¢, 5 is the computational time,
and we consider a cumulative distribution function ps(7) = {p € P : rps < 7}|/|P|.
The performance profile for s € S is the plot of the function ps.

We compared four algorithms: (FPA*), FPA with weighted sum (FPA-W), SFPA and the
Balanced Box Method (BBM). BBM ha been proposed in [4] and it is one of the most
recent and well behaving algorithms for biobjective problems, it uses lexicographic
method and it divides the region into rectangles. We did not include the FPA with
lexicographic method since BBM exploits a similar idea, so it would be redundant.

In order to study the effect of changing the weight vector in the definition of (ISP{“,V),
we consider three different settings for A € R? within FPA-W, namely

) e {(0.5) (0.25) (0.1)}
0.5/7\0.75)7\0.9/ [

In Table 2 and Table 3, we report the results obtained applying FPA-W, where (ISP’;V) is
defined using one of weight vectors above for every k. For example, in the first columns
of Table 2 and Table 3 we report the results obtained when (ISP%;) is defined using
A= (0.9,0.1)T.

The instances are grouped according to the cardinality of the Pareto frontier |Vy|. In
Table 2 we report the results obtained on the first group of instances, namely those

25



A= (0.1,0.9)T A= (0.25,0.75)T A= (0.5,0.5)T

|Vn| # inst. avg min max avg min max avg min max
<10 66 0.7 0.1 11.6 0.7 0.1 8.2 0.7 0.1 9.2
> 10,< 20 71 8.4 0.2 105.7 8.1 0.2 103.2 8.4 0.2 102.3
> 20,< 30 37 476 04 395.9 46.5 04 392.3 50.3 0.3 414.8
> 30,<40 19 29.0 0.5 130.5 29.3 0.5 132.1 31.1 0.5 155.3

> 40, < 50 16 221.0 06 894.8 2201 0.6 906.6 | 222.1 0.7 8728
> 50,< 65 10 600.5 7.2 23133 | 582.6 7.3 22524 | 6128 7.0 2508.3

Table 2: Comparison on biobjective integer linear programming instances (first group)
- FPA applied with different weight vectors.

A= (0.1,0.9)T A= (0.25,0.75)T A= (0.5,0.5)T
| VN | # inst. avg min max avg min max avg min max
<70 13 13.9 0.9 80.0 13.4 0.9 76.4 277 0.8 253.0
> 70,< 150 16 54.9 5.1 172.1 51.7 5.1 180.8 57.3 5.2 176.4
> 150, < 300 19 213.2 10.3 2092.8 207.2  10.1 2058.1 211.7 10.0 2021.8
> 300, < 500 26 2974 345 963.8 | 2859 29.6 9495 | 3299 299 1574.3
> 500, < 1000 21 1122.8 58.8 3669.2 | 1073.2 59.0 36579 | 118.8 55.2 3607.7

Table 3: Comparison on biobjective integer linear programming instances (second
group) - FPA applied with different weight vectors.

available at http://home.ku.edu.tr/~moolibrary/. In Table 3 we report the results
obtained on the second group of instances, namely those available at https://github.
com/GiorgioGrani/Biobjective_Instances.

In each table, we report the number of instances (# inst.) belonging to a specific range
of |Yn|, the average (avg), the minimum (min) and the maximum (max) CPU time in
seconds needed to detect the entire Pareto frontier. The results obtained using different
weight vectors are all very similar and there is no clear winner. However, looking at
the performance profiles shown in Figure 2, we can see that FPA-W applied with the
weight vector A = (0.1,0.9)T gives slightly better results with respect to the others.

In Table 4 and Table 5, we report a comparison between BBM, FPA* and SFPA. As before,
we group the instances according to the cardinality of the Pareto frontier |Vy| and the
class of instances. In each table, we report the number of instances (# inst.) belonging
to a specific range of | Vx|, the average (avg), the minimum (min), the maximum (max)
CPU time in seconds needed to detect the entire Pareto frontier. According to what

26




1 |
0.8 -
0.6
— BBM
0.4 FPA-W(0.5,0.5)
— FPA-W(0.1,0.9)
0.2 — FPA-W(0.25,0.75)
— FPA*
0- — SFPA
T T T T T T T T
1 2 3 4 5 6 7 8

Figure 2: Performance profiles with respect to CPU time on the first group of instances.

said in Subsection 4.2 it arises that there is no clear winner between BBM and FPA-W
with respect to the second group of instances. The cause is that empty problems are
sometimes easier to solve than non empty ones (first group of instances) and sometimes
they are not (second group of instances). By the way, as expected from theory, FPA*
outperform FPA-W, BBM and SFPA.

In Figures 2 and 3 performance profiles are reported for the first and the second group
of instances respectively. Performance profiles confirms what expressed above.
Another important aspect is the number of oracle calls for each algorithm. In Figures
4 and 5, box plots are reported with respect to the number of oracle calls. For FPA-W
we have chosen the weight vector (0.1,0.9)7 since it preforms slightly better than the
others. It is clear how much FPA* saves solver calls. It is also evident that SFPA oscillates
between the performances of FPA* and FPA-W depending on the problem structure.

5.2 Numerical experiments on quadratic instances

The generic biobjective integer quadratic programming problem is modeled as
min  (27TQ1x + c]z, 2TQax + clx)
st. Az <b

RS Zgo.

We considered a subgroup of the first class of instances used in Section 5.1 (namely
those available at http://home.ku.edu.tr/~moolibrary/), where we took only the
instances with less than or equal to 60 variables. In the objective functions we added
the quadratic term z7Q;z, with @Q; = 0, Q; € Z™*"™, i = 1,2. To obtain positive
semidefinite matrices @Q; we considered the matrices L; € R™ " where h is integer
and randomly chosen in [1,n]. The generic element [ of the matrix L; is chosen to be
0 with probability 0.8 and to be 1 with probability 0.2. Finally we get Q; = L;L]

27



S -
0.8 -
0.6 -
— BBM
0.4 - —— FPA-W(0.5,0.5)
— FPA-W(0.1,0.9)
0.2 - — FPA-W(0.25,0.75)
— FPA*
0 — SFPA
T T T T T T T T
1 2 3 4 5 6 7 8

Figure 3: Performance profiles with respect to CPU time on the second group of in-
stances.

N
150 |
°
o
100 "
50 | T
0 i 1 T

T T T T
BBM  FPA-W  FPA* SFPA

Figure 4: Box plot with respect to the number of oracle calls in the first group of
instances.

28



300 | @
2,000 - L °
1,000
04 1 L T
I I I I
BBM FPA-W  FPA* SFPA
Figure 5: Box plot with respect to the number of oracle calls in the second group of
instances.
BBM FPAx SFPA
|Vn| # inst. avg min max avg min  max avg min max
<10 66 1.0 0.1 15.9 0.3 0.1 2.7 0.3 0.1 3.3
> 10,< 20 71 13.6 0.2 134.7 3.2 0.1 35.2 4.0 0.1 50.2
> 20,< 30 37 76.2 0.3 544.0 16.6 0.2 146.2 24.2 0.2 263.5
> 30,< 40 19 49.0 0.4 255.1 9.7 0.3 46.3 11.0 0.3 41.2
> 40, < 50 16 299.3 0.5 1167.2 76.1 0.4 325.4 | 149.3 0.4 710.7
> 50, < 65 10 830.4 9.6 3298.1 | 237.6 3.1 996.7 | 278.0 5.5 1142.1

Table 4: Comparison on biobjective integer linear programming instances (first group).

BBM FPAx SFPA
|Vn| # inst. avg min max avg min max avg min max
<70 13 131 0.6 55.3 6.2 04 319 | 11.3 0.8 33.7
> 70, < 150 16 57.5 57 1751 | 194 3.3 64.3 | 344 5.0 116.9
> 150, < 300 19 198.2 89 18859 | 62.0 57 589.0 | 190.5 83 1,683.1
> 300, < 500 26 333.3 32.8 1153.0 | 954 152 393.4 | 254.8 31.2 1,073.3
> 500, < 1000 21 1076.6 65.3 3752.4 | 350.7 30.9 1216.1 | 978.1 44.4 2751.3

Table 5: Comparison on biobjective integer linear programming instances (second

group).

29




1+ 1+
r L1
0.8
06 - 0.95 -
0.4
09 FPA-W(0.5,0.5)
— FPA-W(0.25,0.75)
— SFPA
0 |
T T T T T T T T T T
1 2 3 4 5 100.8 101 101.2 101.4 101.6 101.8

Figure 6: Performance profile on quadratic instances.

which is positive semidefinite. As before, ¢;; is generated in the ranges [-100, —1] with
probability 0.2 and [0, 100] with probability 0.8, j = 1,...,n; ¢ = 1,2. The coefficients
ay; are generated in the ranges [—100, —1] with probability 0.1, [1,100] with probability
0.8 and ay; = 0 with probability 0.1. The right-hand side b is generated randomly in
the range 100 and ;" ; ax;. Note that the condition in Proposition 3.12 is satisfied, so
that «; > 1 and we can set ¢; = 1 for ¢ = 1,2. The test problems are publicly available
at https://github.com/GiorgioGrani/Biobjective_Instances.

In Table 6, we group the instances according to the cardinality of the Pareto frontier
|Vn|. We consider six different ranges and for each range of | )|, we report the number
of instances (# inst.) belonging to that range and the average CPU time in seconds
needed to detect the entire Pareto frontier by FPA* (FPA time (s)) or by FPA-W (FPA-W
time (s)) with different weights.

We considered 1 hour of CPU time as time limit for the solution of one instance.

We notice that in the case of quadratic instances the choice of the weights can affect
numerical stability of FPA*.  For this reason we used Algorithm 3 instead of pure
FPA*.

In Figure 6 is reported the performance profile with respect to CPU time for the
quadratic instances.

6 Conclusions

We presented a criterion space search algorithm able to detect the entire Pareto frontier
of biobjective integer programming problems. Using a suitable scalarization technique,
at every node of the branching tree, a single-objective integer programming problem is
addressed.Using as scalarization technique the weighted sum method with a particular
choice of the weights we were able to push down to |Vy| + 2 the number of integer

30



A=(0.1,0.9)7 A =(0.25,0.75)7
| VN | # inst. avg  min max avg  min max
<10 36 3.4 0.0 18.9 3.4 0.0 19.0
>10,< 20 39 25.0 0.4 70.4 27.5 0.4 74.1
> 20,< 30 30 448.3 8.8 5772.8 | bH8T.8 4.5 8203.3
> 30, < 40 31 2714 0.7 1729.3 | 303.3 0.8 1618.8
> 40,< 50 4 2122.2 454.5 3767.0 | 2219.6 407.4 6387.8
> 50, < 65 12 803.6 106.6 3680.5 | 953.6 105.1 3632.4
A= (0.5,0.5)T SFPA
| VN | # inst. avg  min max avg  min max
<10 36 3.8 0.0 18.9 1.5 0.0 9.9
>10,< 20 39 30.3 0.4 75.3 13.4 0.3 49.9
> 20,< 30 30 712.0 4.3 8851.7 96.6 2.0 9923
> 30,< 40 31 401.2 0.9 2402.3 111.8 0.4 558.3
> 40, < 50 4 2806.5 501.6 7371.5 | 895.2 130.3 1705.6
> 50, < 65 12 1557.6 1139 77142 | 439.0 66.2 2133.1

Table 6: Comparison on biobjective integer quadratic programming instances - FPA
applied with different weight vectors and SFPA.

31



problems to be solved in order to get the full Pareto front, where |Vy| is the total
number of non dominated points in the criterion space. This is, in our knowledge, the
best known bound for this class of algorithms.

The inequalities we introduced avoid the detection of known Pareto points and rely on
the definition of a parameter easily calculable for many classes of instances, including
integer convex quadratic instances.

The approach presented works for non linear integer problems, as far as we are able to
satisfy some properties on the function and to provide an oracle able to find a solution.
In particular we applied it to integer convex quadratic programs with rational entries,
which are tackled by commercial software. Non linear problems can present numerical
issues when scalarized, for this reason we proposed an effective Algorithm able to
overcome numerical instabilities but maintaining competitiveness.

We supported our statement by giving both theoretical and computational proof about
efficacy and efficiency of the algorithm.

7 Acknowledgments

The authors acknowledge Prof. Hadi Charkhgard for having kindly provided the code
of the balanced box method [4].

References

[1] Pietro Belotti. Couenne: a user’s manual. Technical report, Lehigh University.

[2] Pietro Belotti, Banu Soylu, and Margaret M Wiecek. A branch-and-bound algo-
rithm for biobjective mixed-integer programs. Optimization Online, 2013.

[3] Pietro Belotti, Banu Soylu, and Margaret M Wiecek. Fathoming rules for biobjec-
tive mixed integer linear programs: Review and extensions. Discrete Optimization,
22:341-363, 2016.

[4] Natashia Boland, Hadi Charkhgard, and Martin Savelsbergh. A criterion space
search algorithm for biobjective integer programming: The balanced box method.
INFORMS Journal on Computing, 27(4):735-754, 2015.

[5] Natashia Boland, Hadi Charkhgard, and Martin Savelsbergh. The l-shape search
method for triobjective integer programming. Mathematical Programming Com-
putation, 8(2):217-251, 2016.

[6] Natashia Boland, Hadi Charkhgard, and Martin Savelsbergh. A new method
for optimizing a linear function over the efficient set of a multiobjective integer
program. FEuropean Journal of Operational Research, 260(3):904-919, 2017.

[7] Natashia Boland, Hadi Charkhgard, and Martin Savelsbergh. The quadrant
shrinking method: A simple and efficient algorithm for solving tri-objective in-
teger programs. Furopean Journal of Operational Research, 260(3):873-885, 2017.

32



8]

[12]

[13]

Pierre Bonami, Lorenz T Biegler, Andrew R Conn, Gérard Cornuéjols, Ignacio E
Grossmann, Carl D Laird, Jon Lee, Andrea Lodi, Francois Margot, Nicolas Sawaya,
et al. An algorithmic framework for convex mixed integer nonlinear programs.
Discrete Optimization, 5(2):186-204, 2008.

C. Buchheim, M. De Santis, S. Lucidi, F. Rinaldi, and L. Trieu. A Feasible Active
Set Method with Reoptimization for Convex Quadratic Mixed-Integer Program-
ming. SIAM Journal on Optimimization, 26(3):1695-1714, 2016.

Valentina Cacchiani and Claudia D’Ambrosio. A branch-and-bound based heuris-
tic algorithm for convex multi-objective minlps. FEuropean Journal of Operational
Research, 260:920-933, 2017.

LG Chalmet, L. Lemonidis, and DJ Elzinga. An algorithm for the bi-criterion inte-
ger programming problem. FEuropean Journal of Operational Research, 25(2):292—
300, 1986.

Ada Che, Vladimir Kats, and Eugene Levner. An efficient bicriteria algorithm for
stable robotic flow shop scheduling. FEuropean Journal of Operational Research,
260(3):964-971, 2017.

Kerstin Déachert, Kathrin Klamroth, Renaud Lacour, and Daniel Vanderpooten.
Efficient computation of the search region in multi-objective optimization. Furo-
pean Journal of Operational Research, 260:841-855, 2017.

E. Dolan and J.Moré. Benchmarking optimization software with performance
profiles. Mathematical Programming, 91:201-213, 2002.

Matthias Ehrgott. Multicriteria optimization, volume 491. Springer Science &
Business Media, 2005.

Matthias Ehrgott and Xavier Gandibleux. Bound sets for biobjective combinatorial
optimization problems. Computers and OR, 34:2674-2694, 2007.

Ambros Gleixner, Leon Eifler, Tristan Gally, Gerald Gamrath, Patrick Geman-
der, Robert Lion Gottwald, Gregor Hendel, Christopher Hojny, Thorsten Koch,
Matthias Miltenberger, Benjamin Miiller, Marc E. Pfetsch, Christian Puchert,
Daniel Rehfeldt, Franziska Schlosser, Felipe Serrano, Yuji Shinano, Jan Merlin
Viernickel, Stefan Vigerske, Dieter Weninger, Jonas T. Witt, and Jakob Witzig.
The scip optimization suite 5.0. Technical Report 17-61, ZIB, Takustr. 7, 14195
Berlin, 2017.

Gurobi Optimization, Inc. Gurobi optimizer reference manual, 2016.

IBM ILOG CPLEX Optimizer, 2018. https://www.ibm.com/products/ilog-cplex-
optimization-studio.

33



[20]

[21]

22]

23]

[29]

[30]

[31]

Gokhan Kirlik and Serpil Saym. A new algorithm for generating all nondominated
solutions of multiobjective discrete optimization problems. Furopean Journal of
Operational Research, 232(3):479-488, 2014.

Kathrin Klamroth, Renaud Lacour, and Daniel Vanderpooten. On the represen-
tation of the search region in multi-objective optimization. European Journal of
Operational Research, 245:767-778, 2015.

Banu Lokman and Murat Koksalan. Finding all nondominated points of multi-
objective integer programs. Journal of Global Optimization, 57(2):347-365, 2013.

George Mavrotas. Effective implementation of the e-constraint method in multi-
objective mathematical programming problems. Applied mathematics and compu-
tation, 213(2):455-465, 2009.

George Mavrotas and Danae Diakoulaki. A branch and bound algorithm for mixed
zero-one multiple objective linear programming. Furopean Journal of Operational
Research, 107(3):530-541, 1998.

George Mavrotas and Danae Diakoulaki. Multi-criteria branch and bound: A vec-
tor maximization algorithm for mixed 0-1 multiple objective linear programming.
Applied mathematics and computation, 171(1):53-71, 2005.

Siamak Moradi, Andrea Raith, and Matthias Ehrgott. A bi-objective column gen-
eration algorithm for the multi-commodity minimum cost flow problem. European
Journal of Operational Research, 244(2):369-378, 2015.

Anthony Przybylski, Xavier Gandibleux, and Matthias Ehrgott. A two phase
method for multi-objective integer programming and its application to the assign-
ment problem with three objectives. Discrete Optimization, 7(3):149-165, 2010.

Andrea Raith and Matthias Ehrgott. A two-phase algorithm for the biobjective in-
teger minimum cost flow problem. Computers & Operations Research, 36(6):1945—
1954, 2009.

Ted K Ralphs, Matthew J Saltzman, and Margaret M Wiecek. An improved algo-
rithm for biobjective integer programming and its application to network routing
problems. Annals of Operations Research, 73:253—-280, 2004.

Ted K Ralphs, Matthew J Saltzman, and Margaret M Wiecek. An improved
algorithm for solving biobjective integer programs. Annals of Operations Research,
147(1):43-70, 2006.

Antonio Sedeno-Noda and C Gonzélez-Martin. An algorithm for the biobjective
integer minimum cost flow problem. Computers € Operations Research, 28(2):139—
156, 2001.

34



[32]

33]

[34]

Francis Sourd and Olivier Spanjaard. A multiobjective branch-and-bound frame-
work: Application to the biobjective spanning tree problem. INFORMS Journal
on Computing, 20(3):472-484, 2008.

Thomas Stidsen, Kim Allan Andersen, and Bernd Dammann. A branch and bound
algorithm for a class of biobjective mixed integer programs. Management Science,
60(4):1009-1032, 2014.

John Sylva and Alejandro Crema. A method for finding the set of non-dominated
vectors for multiple objective integer linear programs. Furopean Journal of Oper-
ational Research, 158(1):46-55, 2004.

35





