
1.  Introduction
Independently by their magmatic/metamorphic and/or meteoric origin, upflow of hydrothermal fluids is favored 
by the increased permeability of rocks. This is caused by fracture networks related to regional fault zones which 
can affect significant crustal volumes (Anderson & Fairley, 2008; Caine et al., 1996; Curewitz & Karson, 1997; 

Abstract  High-temperature geothermal areas are often characterized by widespread surficial 
manifestations, whose location is strictly controlled by sets of faults of regional relevance. The geochemical 
and isotopic signature of the discharged fluids can reveal key information on the geothermal fluids pathway, 
shedding light on the sources and fluid-rock interaction within the geothermal reservoirs. In this paper, 
a geochemical and structural data set from the Larderello geothermal area and surroundings is presented 
and discussed. We constrain the role of transfer and normal faults in controlling the geothermal circulation 
enhanced by a cooling magmatic intrusion underneath the Lago area (SW of Larderello). The structural control 
on the fluids circulation is highlighted by both the location of the CO2 emissions along the fault segments, 
where permeability is enhanced, and their degassing rates, which increase moving away from the core of the 
Larderello geothermal system. The main results unravel the presence of deep regional pathways along which 
endogenous fluids circulate before being discharged in the investigated areas. The peripheral zone emissions 
are affected by interaction with shallow aquifers and condensation processes whereas the CO2 emitted from the 
central areas, located near the core of the geothermal system, was accompanied by high amounts of steam, and 
suffers intense shallow fractionation processes. The latter areas emit medium-to-low normalized-CO2-degassing 
rates (<270 t d −1 km −2) when compared to the extremely high values occurring in the peripheral sectors (up to 
1,300 t d −1 km −2) of the Larderello geothermal systems, possibly suggesting an incipient propagation of such a 
system, likely wider than previously thought.

Plain Language Summary  High-temperature geothermal areas are specific zones on Earth where 
the geothermal gradient is greater than the average global value (∼30°C km −1). This is due to the existence of 
cooling magma source(s) at depth, providing heat that is transmitted to fluid reservoir(s) located at intermediate 
levels continuously and naturally fed by recharging fluids, and sealing rock(s) at shallower levels that maintain 
reservoir temperature and pressure. These geothermal areas commonly show steam-dominated manifestations 
at the surface, accompanied by relevant degassing of carbon dioxide likely originated from different feeding 
systems (biogenic, thermometamorphic, and mantellic). Defining sources, processes, and transport mechanisms 
governing the CO2 emissions from soils is challenging but pivotal to understand the geothermal fluid origin, 
dynamics, and relation with the geological structures. To unravel these processes, we combined geochemical 
and structural measurements performed at the Larderello-Travale-Radicondoli (LTR) geothermal field (Italy). 
Distinct geothermal sectors were investigated according to their geochemical characteristics, CO2 degassing 
rates, and geological-structural features, to understand how CO2 is transported and modified during its journey 
from the deep geothermal reservoir(s) to the surface, exploiting the permeability of fault zones and/or fractured 
rocks. Results suggest that the LTR geothermal system might be wider than previously thought, indicating a 
higher geothermal potential.
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Ganerød et al., 2008; Sibson, 2000). The permeability of fault damage zones depends on fault kinematics since 
the most favorable direction of a fluid flow corresponds to the attitude of the intermediate axis of the local 
active stress field (Faulkner & Armitage, 2013; Faulkner et al., 2010; Sibson, 2000). As a consequence, follow-
ing the Andersonian theory, the damage zone of strike-slip to oblique-slip faults is suitable to channel deep 
fluids from depth to shallow levels, being the intermediate stress axis vertical or close to it (e.g., Rowland & 
Sibson, 2004). For the same reason, damage zones of normal faults are expected to favor the lateral migration of 
fluids (Sibson, 2000). Moreover, strike- and oblique-slip faults, and normal faults can coexist within the same 
regional stress field, when the former play the role of transfer faults. In this case, transfer faults are almost orthog-
onal to the normal faults' orientation and parallel to the main direction of crustal stretching (Bally, 1981; Faulds 
& Varga, 1998; Gibbs, 1984).

Transfer faults are combined to form transfer zones affecting km-wide crustal volumes (Van der Pluijm 
& Marshak,  1996). Transfer zones are characterized by parallel and/or anastomosed fault segments (i.e., the 
transfer faults) at high-angle to the regional trend of the rift (Brogi et al., 2020; Liotta & Brogi, 2020), which 
accommodate the heterogeneous extension, splitting the crust into domains with different amounts of extension 
(Gibbs, 1990) and favoring the development of independent tectonic depressions (Alçiçek et al., 2013, 2018; 
Martini & Sagri, 1993). The orientation of the transfer zones and their propagation into the deeper crustal levels 
might be inherited by pre-existing crustal-scale structures (Liotta,  1991), thus favoring the development of 
permeable rock-volumes that constitute preferential pathways for deep fluids. In such a context, fluid circulation 
is promoted by the hydraulic connectivity between the dominantly vertical and horizontal pathways related to 
strike-slip to oblique-slip and normal faults, respectively (Cox et al., 2001; Faulds et al., 2012; Liotta et al., 2021; 
Olvera-Garcia et al., 2020; Sillitoe & Brogi, 2021).

The northern Tyrrhenian Sea (Bartole,  1995) and southern Tuscany (Martini & Sagri,  1993) are excellent 
examples of the coexistence between transfer and normal fault systems, active since the Miocene (Acocella & 
Funiciello, 2006; Bartole, 1995; Brogi & Liotta, 2008; Liotta, 1991). Then, the diffuse hydrothermal mineraliza-
tion characterizing the area (Tanelli, 1983), triggered by crustal magmatism (Dini et al., 2005; Serri et al., 1993), 
accounts for the continuous development of geothermal systems during ongoing extension. However, the detec-
tion of the structures associated with transfer zones (and related fluid circulation) can result problematic if 
regional uplift and weathering occurred, the latter determining fluvial incisions and valleys developing along 
fault traces (Rossello & Gallardo, 2022), or if almost homogeneous sedimentation developed within the minor 
structural depressions associated with the regional transfer zones (e.g., Brogi et al., 2013). This is the case of 
southern Tuscany, where the progressive uplift induced by extensional tectonics (Dallmeyer & Liotta, 1998) has 
produced incised valleys strictly controlled by faults (including the regional transfer zones), thus masking the 
fault traces at the ground surface.

In this framework, an excellent contribution to detect fault traces is given by both the location of the geothermal 
manifestations (e.g., Liotta et al., 2021) and the isotopic signature of CO2 emissions, which can reveal much on 
their origin. In fact, deeply sourced CO2 (metamorphic and/or magmatic in origin) is usually degassed along 
discrete pathways, rather than degassed evenly throughout a larger volcanic or hydrothermal area (Rahilly & 
Fischer, 2021). The variations in terms of CO2 fluxes can be large, thus a reliable way to estimate these emissions 
from hidden faults is through high density and spatially extensive measurement points employing the accumula-
tion chamber method (e.g., Camarda et al., 2019; Chiodini et al., 1998).

This approach was applied to the transfer zone along which the Larderello geothermal system is developing 
(Liotta & Brogi, 2020), with a twofold goal. The first is to compute a first quantification of the diffuse CO2 
flux emitted from one of the most famous geothermal fields in the world by incorporating measurements 
from both thermally active and cold degassing (hydrothermally altered) soils located near the core and at the 
periphery of the geothermal system, respectively. The second is to bring further elements to define the role 
of the transfer zones in controlling the geothermal fluid pathways. Carbon dioxide fluxes and carbon isotopic 
composition of CO2 in the interstitial soil gas were therefore measured in several areas within the Larderello 
geothermal field to identify the origin of the CO2 and its link with the geothermal reservoir(s), also estimating 
the shallow (biogenic) and deep (endogenous) contributions to the total CO2 emission from the study geother-
mal system.
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2.  Geological and Geothermal Setting
2.1.  Geological Background

The Larderello geothermal system is located in the inner Northern Apennines, a NE-verging Alpine belt deriving 
from the convergence and collision (Cretaceous-early Miocene) of the Adria and European continental margins (Vai 
& Martini, 2001). The collision produced HP-metamorphism (up to 1.5 GPa) related to the eastward stacking of 
the tectonic units of oceanic and continental pertinence (Bianco et al., 2015, 2019; Brogi & Giorgetti, 2012; Brunet 
et al., 2000; Giuntoli & Viola, 2021; Rossetti et al., 2002). Since the early Miocene, the orogenic belt was (and still 
is) affected by eastward propagating extensional tectonics (Barchi, 2010; Brogi, 2020; Carmignani et al., 1995), 
which caused (a) Miocene lateral segmentation of the previously stacked units (e.g., Brogi & Liotta,  2008; 
Carmignani et al., 2001); (b) development of NW-striking Pliocene-Quaternary normal faults, dissecting previous 
structures and forming tectonic depressions filled by continental and marine sediments (Martini & Sagri, 1993). 
The primary effects of crustal and lithospheric-scale extensional tectonics were the opening of the Tyrrhenian 
Basin (Bartole,  1995), the present-day crustal and lithospheric thickness of about 22 and 40 km, respectively 
(Calcagnile & Panza, 1981; Di Stefano et  al.,  2011), and the widespread anatectic and subcrustal magmatism 
developed since the Langhian (Serri et al., 1993; Smith et al., 2011). Magmatism favored the emplacement of felsic 
intrusions at shallow crustal levels (<8 km depth; Serri et al., 1993) mostly along the NE-striking transfer zones 
(Brogi et al., 2021; Dini et al., 2008; Liotta et al., 2015; Spiess et al., 2021) that roughly follow the orientation 
of the minimum compressional axis, as reconstructed from breakout analysis (Mariucci et al., 1999; Mariucci & 
Montone, 2020). In Tuscany (i.e., inner Northern Apennines), the emplacement of magmatic bodies at the shallow 
crustal levels produced widespread meso- and epithermal base ore deposits, exploited for centuries (Tanelli, 1983). 
The present diffuse geothermal anomaly has an average heat flux value of 120 mW m − 2 and local peaks up to 
1,000 mW m − 2, as estimated in the Larderello geothermal system area (Della Vedova et al., 2001).

The Larderello system consists of different geothermal fields. Considering the highest geothermal gradient 
(exceeding 100°C km −1; Batini et al., 2003), the most significant is located in the Lago Basin (Figure 1), from 
where the bulk of electricity production derives (Barbier, 2002). The heat source of the geothermal anomaly is 
thought to be related to a cooling magmatic body at shallow depths (3–6 km) below the Lago Basin, as suggested by 
teleseismic data analyses (Foley et al., 1992), interpretation of deep reflection seismic lines (Accaino et al., 2005; 
Brogi et al., 2005), magnetotelluric studies (Manzella, 2004) and rheological models (Rochira et al., 2018). The 
tectonic and stratigraphic units occurring in the whole Larderello geothermal area have been described by many 
authors, based on fieldwork (e.g., Costantini et al., 2002; Lazzarotto, 1967; Lazzarotto & Mazzanti, 1978; Liotta 
& Brogi, 2020) and borehole logs (e.g., Bertini et al., 2006; Dini et al., 2005; Elter & Pandeli, 1990; Pandeli 
et al., 1991, 1994; Romagnoli et al., 2010). Figure 1 shows the updated geological map of the Larderello geother-
mal area, where the main Neogene-Quaternary normal and transfer faults are reported.

Information on the deeper structural levels (Figure 2) derives from the interpretation of reflection seismic lines, 
displaying the occurrence of a high-impedance seismic reflector, known as the K-horizon (Batini et al., 1978; 
Cameli et al., 1993). This reflector, ranging in depth between 3 and 6 km, is believed to derive from high-pressure 
fluids, entrapped in a fractured active shear zone (Batini et al., 1983) located at the top of the brittle-ductile tran-
sition (Cameli et al., 1993, 1998; De Matteis et al., 2008; Liotta & Ranalli, 1999), where fluids in supercritical 
conditions (Agostinetti et al., 2017; de Franco et al., 2019; Romagnoli et al., 2010) are inferred. The K-horizon 
in the Larderello area shows a dome-shaped geometry with its culmination in correspondence of the Lago Basin 
depocenter (e.g., Brogi et al., 2005), where the highest values of heat flux (up to 1,000 mW m − 2; Della Vedova 
et al., 2001) and  3He/ 4He isotopic ratios (up to 3.2 Ra; Magro et al., 2003) were measured, suggesting that the 
Lago Basin is a preferential area for the escape of mantle-derived fluids (Magro et al., 2003). In this framework, 
the local seismicity (http://cnt.rm.ingv.it) indicates a continuous process of active deformation, thus permitting 
the permeability maintenance and promoting the positive loop triggering fluid-pressure and fractures.

2.2.  Geothermal Background

That of Larderello is the oldest exploited geothermal system in the world for electricity purposes (Batini et al., 2003; 
Romagnoli et al., 2010), with a nowadays-installed capacity of more than 790 MWe (Manzella et al., 2018). It is 
one of the few steam-dominated geothermal systems in the world, which evolved from an initially liquid state to 
its current superheated steam condition thanks to the thermal and structural setting (Gola et al., 2017; Romagnoli 
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Figure 1.  Geological map of the Larderello geothermal area (modified after Liotta & Brogi, 2020) where the main geothermal manifestations are indicated. Location 
of gas emissions, thermal springs, and travertine deposits are from this work, Minissale (2004), geothopica (www.geothopica.igg.cnr.it), and maga databases (www.
magadb.net). The black dashed lines circumscribe the location of most of the geothermal wells (after www.geothopica.igg.cnr.it). Blue dashed lines indicate the 
geological cross sections reported in Figure 2.
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et al., 2010). The liquid phase is presently confined to a few local structures that facilitate the seepage of mete-
oric waters into the reservoir due to the presence of permeable carbonate outcrops (Gola et al., 2017). The field, 
which comprises the areas of Larderello, Travale and Radicondoli (Figure 1), covers a surface area of ∼120 km 2 
(Bertani et al., 2005; Romagnoli et al., 2010) and is characterized by two geothermal reservoirs used for power 
production, confined above by the presence of about 1,000 m thick nearly impermeable formations which act as 
a cap-rock (Miocene-Pliocene clayey and sandy sediments and Cretaceous-Oligocene marly Flysch Units; e.g., 
Batini et al., 2003). The shallow (500–1,500 m b.g.l.) and deep (1,900–4,000 m b.g.l.) reservoirs are hosted in the 
Mesozoic carbonate-anhydrite formations of the Tuscan Nappe and in the Palaeozoic metamorphic successions, 
respectively, having temperatures of 150°C–250°C and >300°C, respectively (e.g., Batini et al., 2003; Bertani 
et al., 1999; Bertini et al., 2006; Bolognesi, 2011; Gianelli et al., 1997; Romagnoli et al., 2010).

Water composition in the liquid-dominated parts of the field is highly variable ranging from NaCl and NaHCO3 
in the north-western sector (Minissale, 1991; Panichi et al., 1974) to CaSO4 in the south-eastern one (Ceccarelli 
et  al.,  1985), depending on the different water-rock interaction after steam condensation (Duchi et  al.,  1992; 
Minissale,  1991). The geothermal steam is mainly consisting of H2O (>90%), CO2, CH4, H2S, H2, and N2, 
with noble gases at ppm levels (Gherardi et  al.,  2005; Magro et  al.,  2003; Minissale et  al.,  1997; Scandiffio 
et al., 1995). Oxygen and hydrogen stable isotope data on H2O indicate meteoric water as the main source of the 
vapor (Craig, 1963; Ferrara et al., 1965), with a minor contribution from shallow perched aquifers (Romagnoli 

Figure 2.  Geological cross sections through the study area (Figure 1), modified from Liotta and Brogi (2020).
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et  al.,  2010). Carbon dioxide at Larderello is about 3–10 wt.% of the total fluid composition (D’Amore & 
Truesdell,  1984; Bertini et  al.,  2006) and is produced by thermo-metamorphic processes also supplied by 
magmatic (mantle-derived) contributions (Gherardi et  al.,  2005; Gianelli et  al.,  1997), as suggested by the 
δ 13C-CO2 values ranging from −7.1‰ to −1.4‰ versus V-PDB (Gherardi et al., 2005). The magmatic contri-
bution is also supported by the  3He/ 4He ratios, which range from 0.5 up to 3.2 Ra measured in both, geothermal 
wells and surface manifestations (Hooker et al., 1985; Magro et al., 2003; Minissale, 2004; Minissale et al., 1997).

3.  Materials and Methods
3.1.  CO2 Flux, Interstitial Soil Gas and Temperature Measurements

A total amount of 648 CO2 flux measurements was carried out in nine different areas of the Larderello geothermal 
field and neighboring zones (Figure 3), following the accumulation chamber method (e.g., Cardellini et al., 2003; 
Chiodini et  al., 1998; Jentsch et al., 2020). In specific degassing areas, interstitial gas samples (n.77) for the 
determination of the δ 13C-CO2 values (expressed as ‰ vs. V-PDB—Vienna-Pee Dee Belemnite) were collected. 
In the Monterotondo Marittimo area (hereafter Monterotondo) previously published data by Venturi et al. (2019) 
and Cabassi et al. (2021), consisting of 35 interstitial CO2 carbon isotopic composition and 89 measurements of 
CO2 flux, respectively, carried out in the area named Monterotondo-S (Figure 3b) were also taken into account.

The investigated areas represent most of the numerous degassing zones related to the Larderello geothermal system 
(Figure 1). Security, danger, and access issues prevented any survey in other degassing sites. Surveyed areas were 
carried out during different years and seasons, always with stable meteorological conditions and away (at least 
1 week) from heavy rains. They were completed in a few hours, depending on the extension of each area, to avoid 
major atmospheric changes that could have affected the soil flux measurements (e.g., Lelli & Raco, 2017). Specifi-
cally, most surveys were carried out in summer (Monterotondo-N, Monterotondo-S, Lagoni-Sasso, Micciano-NW, 
Libbiano, Palazzo al Piano and Montemiccioli), while two areas were investigated in autumn (Sasso Pisano and 
Sasso-Monterotondo) and one in winter (Micciano-SE). The main features and sampling details of each surveyed 
area are reported in Table 1. Field photographs of the investigated areas are reported in Supporting Information S1.

The portable fluxmeter used in this work has a detection limit of ∼0.08 g m −2 day −1 (https://www.westsystem.eu/it) 
and was calibrated at the manufacturing company (West Systems) before each fieldwork through calibration curves 
(Tassi et al., 2016). The equipment consists of a type A cylindrical metal vessel (the accumulation chamber) positioned 
on the ground avoiding rugged morphology to prevent the ingression of air, a Licor Li-820 Infra-Red (IR) spectropho-
tometer, an analogical-digital converter, and a palmtop computer. The accumulation chamber had a volume of ∼2.8 L 
and was equipped with a ring-shaped perforated collector to re-inject the circulating gas through a low-flow pump 
(20 mL s −1), thus guaranteeing the mixing of the soil gas into the chamber which was also favored by a rotating fan. 
The spectrophotometer detector had a sensor operating in the range of 0–20,000 ppm of CO2 (accuracy: 4%). The soil 
gas circulated from the chamber to the IR sensor and vice versa via a pump (∼1 L min −1) and the signal was converted 
by an analogical-digital converter and transmitted to the palmtop computer, where a CO2 concentration versus time 
diagram was plotted in real-time. Next to each soil CO2 sampling point, marked with a portable GPS Garmin GPSmap 
62st and by reference points in the field, soil temperatures were measured using a TERSID thermocouple (dynamic 
range from −20°C to 1,150°C; uncertainty ±0.1°C; Tassi et al., 2016) inserted into the soil for a couple of centimeters 
to avoid wind influence. The spatial distribution and the density of the measurement spots were influenced by rocky, 
irregular, impervious, and steep grounds and, in some cases, by the presence of dense Mediterranean vegetation 
(Table 1). Diffuse soil gas measurements close to the fumaroles were avoided to prevent a large amount of steam and 
dust from entering the IR sensor, although Mg-perchlorate and cellulose nitrate filters were installed.

Interstitial soil gas samples for C-isotopic analyses were collected with a 4 mm inner-diameter stainless-steel tube 
inserted at ∼20 cm depth from selected areas of low, intermediate, and high soil CO2 flux. The tube was connected, 
through a silicone tube and PTFE three-way valve, to a 60 mL plastic syringe. The latter allowed to rinse the 
whole geometry and pump the soil gas to a 12 mL glass vial equipped with a pierceable rubber septum (Labco 
Exetainer®) for isotopic analyses by using the double-needle method (e.g., Tassi et al., 2015; Venturi et al., 2019).

3.2.  Analytical Methods

The carbon isotopic composition of carbon dioxide (δ 13C-CO2 expressed as ‰ vs. V-PDB) was analyzed by 
Cavity Ring-Down Spectroscopy (CRDS) using a Picarro G2201-i Analyzer following the procedure described 
by Venturi et al. (2019). The instrument inlet line was equipped with a Drierite trap and a copper trap to avoid 
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Figure 3.  Locations of the sampled areas. (a) General view of central and peripheral areas with (b) detail of the central areas 
division, and (c–d) of the peripheral areas.
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interferences and remove water vapor and H2S, respectively. Due to the operative ranges of the Picarro G2201-i 
Analyzer, gas samples showing CO2 concentrations higher than 2,000 ppmV were diluted with high-purity chro-
matographic air. Internal standards consisting of CO2 (Air Liquide), with δ 13C-CO2 of −28‰ versus V-PDB and 
−5.2‰ versus V-PDB, respectively, were used to calibrate and test the reproducibility of the Picarro measure-
ments. The analytical error for δ 13C-CO2 was ±0.16‰.

3.3.  Data Processing and CO2 Output Estimation

The statistical distributions of the soil CO2 fluxes were processed by using the Graphical Statistical Analy-
sis (GSA) method (Chiodini et al., 1998), performed according to the procedure proposed by Sinclair (1974). 
This method consists of plotting individual flux points on a cumulative log-probability diagram, evaluating 
the eventual inflection point(s) which determines the number of discrete populations and their proportion. The 

Table 1 
Sampling Location and Date, Number of the CO2 Flux and δ 13C-CO2 in the Interstitial Gas Measurements and Surface of Each Surveyed Area

Site Date

N. points

Surveyed area (m 2) Soil type Vegetation Figures
CO2 
flux

Isotopic 
samples

Central areas

Monterotondo-N September 2019 98 18 27,117 Highly fractured and 
hydrothermally altered rocks 
with scattered loosy soils

Woodland and 
Mediterranean bush

Figure S1 in 
Supporting 
Information S1

Monterotondo-S a August 2017 89 35 20,000 Highly fractured and 
hydrothermally altered rocks 
with scattered loosy soils

Woodland and 
Mediterranean bush

Figure S1 in 
Supporting 
Information S1

Sasso-
Monterotondo

November 2019 75 3 20,237 Rocky and hydrothermally 
altered soils

Mediterranean bush Figure S5 in 
Supporting 
Information S1

Sasso Pisano October 2019 41 8 10,128 Rocky and hydrothermally 
altered soils

Mediterranean bush Figure S5 in 
Supporting 
Information S1

Lagoni-Sasso September 2020 75 - 8,550 Rocky and hydrothermally 
altered soils

Mediterranean bush Figure S9 in 
Supporting 
Information S1

Total 378 64 86,032

Peripheral areas

Micciano-NW August 2019 64 – 2,610 Rocky and hydrothermally 
altered soils

Woodland, 
Mediterranean bush 
and sporadic rushes

Figure S13 in 
Supporting 
Information S1

Micciano-SE February 2020 49 – 2,770 Rocky and hydrothermally 
altered soils

Woodland and 
Mediterranean bush

Figure S17 in 
Supporting 
Information S1

Libbiano July 2018 52 23 1,945 Rocky and hydrothermally 
altered soils

Woodland, 
Mediterranean bush, 
and arable field

Figure S21 in 
Supporting 
Information S1

Palazzo al Piano August 2019 82 8 30,920 Clayey soils Arable field Figure S25 in 
Supporting 
Information S1

Montemiccioli July 2017 112 17 14,970 Rocky and hydrothermally 
altered soils

Woodland Figure S29 in 
Supporting 
Information S1

Total 359 48 53,215

Total 737 112 139,247

 aData from Venturi et al. (2019) and Cabassi et al. (2021).
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GSA approach and the isotopic content of the interstitial gas were used to characterize the source(s) of the 
discharged CO2 at ground level. Kriged distribution maps of the soil CO2 flux were created using the ISATIS © 
software package of Geovariances and then graphically reported using the QGIS software. It is worth noting 
that the inhomogeneous distribution of the measurement points caused by the rough morphology of the sites 
prevented the possibility of obtaining a regular grid, which inevitably affected the semivariogram construction. 
The semivariograms, the cross-validation diagrams, and the standard deviation maps of the studied areas are 
reported in Figures S2–S4, S6–S8, S10–S12, S14–S16, S18–S20, S22–S24, S26–S28, and S30–S32 in Support-
ing Information S1.

The total CO2 output of each investigated area was calculated by applying Sichel's t-estimator (Mi) (David, 1977). 
The estimated CO2 output was derived by multiplying Mi times the area covered by each estimated population. 
In the same way, the central 95% confidence intervals of the CO2 output were used to calculate the uncertainty 
of each population. Where the presence of outliers was recognized, their contribution was added, considering the 
flux over the basal area of the accumulation chamber (i.e., 0.0308 m 2).

4.  Results
4.1.  Soil CO2 Flux and Temperature, and Isotopic Composition of the Interstitial Gases

The main statistical parameters of each soil CO2 population recognized in every area, along with the δ 13C-CO2 
isotopic composition in the interstitial gas, are summarized in Table 2. Information on the data set containing 
coordinates, soil temperature, atmospheric pressure, soil CO2 flux data, and δ 13C-CO2 values for each measure-
ment point are reported in Taussi et al. (2023).

4.1.1.  Central Areas

Among the five central areas of Larderello (Monterotondo-N, Monterotondo-S, Sasso-Monterotondo, Sasso 
Pisano, and Lagoni-Sasso; Figure 3b), the soil CO2 fluxes were ranging from 0.2 to 3,338 g m −2 day −1, except 
for Monterotondo-N where the two highest values were recorded that is, 21,077 and 29,838  g  m −2  day −1 
(Table 2). From a general point of view, the mean values of the entire data sets in the central areas varied from 41 
(Lagoni-Sasso) to 795 g m −2 day −1 (Monterotondo-N), whereas for the other investigated zones (Monterotondo-S, 
Sasso Pisano, Sasso-Monterotondo) the CO2 flux was ranging between ∼118 and ∼201  g  m −2  day −1. The 
δ 13C-CO2 values of the interstitial gas sampled from Monterotondo-N and Monterotondo-S stretched over a wide 
range, from −26.3 up to +3.5‰ versus V-PDB, with a mean value of −4.32‰ versus V-PDB (data from Venturi 
et al., 2019 included) (Table 2). Values from −15.3‰ to −1.8‰ versus V-PDB (mean = −5.61‰ vs. V-PDB) 
were recorded at Sasso Pisano, while narrower ranges were registered at Sasso-Monterotondo (between −3.9‰ 
and −0.3‰ vs. V-PDB) even though here only three samples were analyzed (Tables 1 and 2). Soil temperatures 
in these areas were widely varying, from 10°C to 99°C, with a mean value of 31°C ± 14°C. Soil temperatures 
higher than 50°C were mainly measured at Monterotondo-N (>20 points) and, more rarely, in the other central 
areas.

4.1.2.  Peripheral Areas

The peripheral areas (Figures 3c and 3d) generally showed higher CO2 flux values when compared to those 
registered in the central areas, spanning between 0.5  g  m −2  day −1 (Micciano-SE) up to 72,200  g  m −2  day −1 
(Micciano-NW), with mean values ranging from 26 (Micciano-SE) to 2,211  g  m −2  day −1 (Micciano-NW), 
respectively (Table 2). At Libbiano and Montemiccioli, the mean values are 1,673 and 1,254 g m −2 day −1, respec-
tively. The lowest CO2 soil fluxes pertain to Palazzo al Piano (mean value: 130 g m −2 day −1). In the peripheral 
areas, the carbon isotopic composition of soil interstitial gases was analyzed in Libbiano, Palazzo al Piano, and 
Montemiccioli localities (Tables 1 and 2). Samples from Libbiano show relatively homogeneous values, ranging 
between −8.0‰ and −3.9‰ versus V-PDB (mean value: −6.51‰ vs. V-PDB), except for one sample which 
showed a more negative value (i.e., −16.2‰ vs. V-PDB) (Table  2). Palazzo al Piano interstitial gases have 
δ 13C-CO2 values ranging between −19.7‰ and −2.5‰ versus V-PDB with a mean value of −11.50‰ versus 
V-PDB (Table 2). Finally, Montemiccioli shows values similar to those measured at Libbiano, spanning between 
−12.5‰ and −2.0‰ versus V-PDB (mean value: −6.48‰ vs. V-PDB) (Table 2). Soil temperatures recorded in 
these peripheral areas range in a narrow interval (i.e., 20°C–40°C; Table S1 in Supporting Information S1) and 
have a mean value of 28°C ± 6.5°C (i.e., similar to that of the air at the time of the surveys).
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Table 2 
Estimated Parameters, Partitioned CO2 Flux Populations and δ 13C-CO2 Values in the Interstitial Gases From the Study Areas

Site Population N. measures Proportion (%)

CO2 flux (g m −2 day −1)

N. analyses

δ 13C-CO2 (‰ vs. V-PDB)

Min Max Mean St. dev. Median Min Max

Central areas

Monterotondo-N A 14 14 0.2 2.1 1.3 ±0.6 1.4 1 −10.2

B 64 66 2.9 212 51.5 ±62.9 24.1 14 −26.3 +2.2

C 18 18 268 5,535 1,315.3 ±1,496.4 763.1 3 −1.0 +0.05

Outliers 2 2 21,077 29,837 – – – – –

Total 98 100 0.2 29,837 794.9 ±3,719.8 28.2 18 −26.3 +2.2

Monterotondo-S a A 30 34 1.4 7.3 4.0 ±1.7 4.2 15 −16.1 −0.53

B 44 49 7.5 246 49.0 ±47.9 32.9 14 −13.7 +3.5

C 15 17 260 2,144 779.3 ±571.4 557.1 6 −10.7 +0.70

Total 89 100 1.4 2,144 156.9 ±364.6 23.1 35 −16.1 +3.5

Sasso-Monterotondo A 14 19 0.3 2.2 1.3 ±0.6 1.3 – –

B 51 68 3.0 137 29.9 ±33.6 15.2 – –

C 9 12 207 802 441.4 ±204.1 412.5 2 −2.0 −0.28

Outlier 1 1 3,338 – – – 1 −3.9

Total 75 100 0.3 3,338 118.0 ±407.4 14.4 3 −3.9 −0.28

Sasso Pisano A 24 59 0.3 28 10.0 ±8.8 6.6 1 −8.3

B 17 41 44 1,116 470.0 ±372.0 281.3 7 −15.3 −1.8

Total 41 100 0.3 1,116 200.7 ±328.7 20.5 8 −15.3 −1.8

Lagoni-Sasso A 32 43 1.0 18 9.3 ±4.5 8.2 – –

B 42 56 22 200 52.3 ±40.1 37.2 – –

Outlier 1 1 545 – – – – –

Total 75 100 1.0 545 40.6 ±69.6 23.7 – –

Peripheral areas

Micciano-NW A 15 23 4.7 41 24.8 ±12.2 28.9 – –

B 40 63 49 497 151.3 ±106.7 121.6 – –

C 7 11 974 3,368 2,133.5 ±1,100.3 1,361.8 – –

Outliers 2 3 47,940 72,200 – – – – –

Total 64 100 4.7 72,200 2,210.9 ±10,719.2 91.3 – –

Micciano-SE A 42 86 0.5 26 8.6 ±7.0 6.5 – –

B 7 14 46 436 129.9 ±140.2 75.7 – –

Total 49 100 0.5 436 25.9 ±65.8 10.1 – –

Libbiano A 51 98 3.0 5,845 637.3 ±1,215.1 168.8 23 −16.2 −3.9

Outlier 1 2 54,513 – – – – –

Total 52 100 0.5 54,513 1,673.4 ±7,573.3 177.5 23 −16.2 −3.9

Palazzo al Piano A 69 84 11 62 33.5 ±13.3 34.3 4 −19.7 −10.8

B 13 16 65 3,462 640.1 ±1,017.7 185.3 4 −15.0 −2.5

Total 82 100 0.5 3,462 129.7 ±450.9 37.4 8 −19.7 −2.5

Montemiccioli A 37 33 6.8 22 15.1 ±4.1 15.1 1 −12.5

B 57 51 23 624 136.2 ±148.1 69.7 9 −9.3 −2.0

C 18 16 921 21,435 7,338.3 ±6,844.3 5,038.4 7 −7.6 −6.2

Total 112 100 6.8 21,435 1,253.7 ±3,787.0 50.2 17 −12.5 −2.0

 aData from Venturi et al. (2019) and Cabassi et al. (2021).
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4.2.  CO2 Flux Populations and Distribution Maps

4.2.1.  Central Areas

A polymodal distribution of the cumulative frequency plot of the lnɸCO2 flux data characterizes the central areas 
of Larderello (Figure 4), suggesting the presence of multiple different (log)normal populations discretized by 
inflection points.

Figure 4.  Cumulative frequency plots (ln-values) of soil CO2 measurements of the central areas from the Larderello geothermal field: (a) Lagoni-Sasso; (b) Sasso 
Pisano; (c) Sasso-Monterotondo; (d) Monterotondo-N; (e) Monterotondo-S (after Cabassi et al., 2021). The inflection points are reported as blue arrows and the 
different background colors allow to distinguish the different populations. The red lines represent theoretical (log)normal distributions.
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Moving from North to South, at Lagoni-Sasso and Sasso Pisano (Figures 4a and 4b), one inflection point in 
each plot is recognized at lnɸCO2 2.89 and 3.34 g m −2 day −1 (i.e., ∼18 and ∼28 g m −2 day −1), respectively. 
Three populations are evidenced in the cumulative frequency diagram of Sasso-Monterotondo (Figure  4c) 
and Monterotondo-N (Figure 4d), with inflection points at lnɸCO2 0.80 and 4.92 g m −2 day −1 (i.e., ∼1.3 and 
∼137 g m −2 day −1) and at lnɸCO2 0.74 and 5.36 g m −2 day −1 (i.e., ∼2.1 and ∼212 g m −2 day −1), respectively. 
The latter values are quite in agreement with the CO2 flux populations recognized by previous studies from 
Monterotondo (Figure 4e; Cabassi et al., 2021; Taussi et al., 2022). The inflection points identified in Figure 4 
discretize low, intermediate, and high flux populations (namely A, B, and C, respectively) (Table 2). The mean 
values of population A, which represents 14%–59% of the data sets, range between 1.3 and 10 g m −2  day −1 
(Table 2). The intermediate (32%–56% of the measurements) populations (B) have mean values generally rang-
ing from 30 to 85 g m −2 day −1, except for Sasso Pisano where population B represents 41% of the data set and 
has a mean flux value of 470 g m −2 day −1. Eventually, the higher flux populations (C) at Sasso-Monterotondo, 
Monterotondo-N, and Monterotondo-S (12%, 18%, and 17% of the data sets, respectively) have mean values 
between 441 and 1,315 g m −2 day −1. The Monterotondo-N CO2 fluxes have two outliers (recognized through 
box-plots; not presented) defined by the highest emitting sites recorded among all the measurements of the central 
areas (i.e., 21,077 and 29,837 g m −2 day −1, respectively). Two other outliers were related at Sasso-Monterotondo 
(i.e., 3,338 g m −2 day −1) and Lagoni-Sasso (i.e., 545 g m −2 day −1) (Table 2).

The distribution maps of the CO2 fluxes in the central areas (Figure 5) show that the highest values refer to differ-
ent portions of Monterotondo (Figure 5b) and the northern part of Sasso Pisano (Figure 5a). High values (i.e., 
>100 g m −2 day −1) were also found in the northern part and the central-southern portion of Sasso-Monterotondo 
(Figures 5a and 5b), while only five high-flux spots were measured at Lagoni-Sasso (Figure 5a).

Even though the point data density for carbon isotopic values of the interstitial gas (Figure 6) is not as high as CO2 
flux measurements, it is still remarkable that the results show a strong heterogeneity across the Monterotondo 
areas, especially in Monterotondo-S (Venturi et al., 2019).

4.2.2.  Peripheral Areas

Among the peripheral areas different soil CO2 flux statistical log-normal populations can be identified in the 
cumulative frequency plots of Figure 7.

At Micciano-NW two inflection points at lnɸCO2 3.72 and 5.91 g m −2 day −1 (i.e., ∼41 and ∼368 g m −2 day −1, 
respectively) discretize three different populations (Figure 7a). The lower flux population (A), which represent 
23% of the data set, has a mean value of 25 g m −2 day −1, the intermediate flux population (B), 63% of the data 
set, shows a mean value of 151 g m −2 day −1, while the higher flux population (C) (11%) has a mean value of 
2,133 g m −2 day −1 (Table 2). Two outliers occur at Micciano-NW, emitting 47,940 and 72,200 g m −2 day −1, 
respectively. Differently, in the nearby Micciano-SE, much lower fluxes pertain to two statistical populations 
defined by one inflection point at lnɸCO2 3.25 g m −2 day −1 (i.e., ∼26 g m −2 day −1), were recorded (Figure 7b). 
Population A has values ranging between 0.5 and 26 g m −2 day −1 (mean value: 8.6 g m −2 day −1) whilst popu-
lation B ranges from 46 to 436 g m −2 day −1 (mean value: 130 g m −2 day −1) (Table 2). At Libbiano, a single 
statistical population (A) was identified (Figure 7c) with values spanning from 3.0 to 5,845 g m −2 day −1 (mean 
value: 637 g m −2 day −1), with the maximum measured flux (i.e., 54,513 g m −2 day −1) recognized as an outlier of 
the data set. It is worth noting that at Libbiano, the presence of overlapping population cannot be ruled out, but 
the low number of measurements (n.52) make difficult to statistically discretize robust and significative popu-
lations. The Palazzo al Piano cumulative frequency plot (Figure 7d) underlines the presence of two statistical 
populations (A and B) discretized by an inflection point at lnɸCO2 4.13 g m −2 day −1 (i.e., ∼62 g m −2 day −1). 
The two recognized populations have mean values of 33 and 640 g m −2 day −1 and represent 84% and 16% of 
the data set, respectively. Finally, the Montemiccioli data set shows a polymodal distribution (Figure 7e) char-
acterized by the presence of at least three populations, evidencing two inflection points at lnɸCO2 3.08 and 
6.44 g m −2 day −1 (i.e., ∼22 and ∼624 g m −2 day −1), respectively. These inflection points discretized a low-flux 
population (A) represented by 37% of the data set, an intermediate-flux population (B) which constitutes a major 
part of the measurements (57%), and a high-flux population (C; 18%). The values of population A range between 
6.8 and 22 g m −2 day −1, with a mean value of 15.1 g m −2 day −1. The intermediate values (population B) span 
between 23 and 624 g m −2 day −1 (mean = 136 g m −2 day −1), while the high-flux population C shows values from 
921 g m −2 day −1 up to 21,435 g m −2 day −1 and a mean of 7,338 g m −2 day −1.
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Figure  8 shows the spatial distribution of the CO2 fluxes measured in the peripheral areas of Larderello. At 
Micciano (Figure  8a), higher fluxes characterize the NW area with respect to the SE one, where only three 
points exceed 100 g m −2 day −1. However, the different periods of the surveys (i.e., summer vs. winter; Table 1) 
might have magnified the differences between the two areas (Klusman et al., 2000). At Palazzo al Piano, the 
higher fluxes (>100 g m −2 day −1) are clustered in the central part of the investigated area (Figure 8b). Soil CO2 
fluxes at Libbiano are mostly higher than 100 g m −2 day −1 (Figure 8c) and are homogeneously distributed in the 
investigated area. The lower fluxes were measured in the NE portion, where a wooded area is present. Also at 
Montemiccioli the higher fluxes are quite homogeneously distributed, although in the southern portion they seem 
to be preferentially distributed along an NS alignment (Figure 8d).

Figure 5.  Distribution maps of soil CO2 flux in the Larderello central areas (from North to South: Lagoni-Sasso, Sasso 
Pisano, Sasso-Monterotondo, Monterotondo-N, and Monterotondo-S. The data from Monterotondo-S are from Cabassi 
et al. (2021)). Faults are also reported after Figure 1 and Taussi et al. (2022).
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The relatively homogenous isotopic composition of soil gases across the hydrothermalized area of Libbiano 
(Table 2) is highlighted in Figure 9a, with the most negative value located in the northern part of the zone, 
measured in an agricultural field. Similar values and a homogeneous distribution throughout the investigated 
area are also reported for Montemiccioli (Figure 9b). Palazzo al Piano interstitial gases have the less negative 
δ 13C-CO2 values occurring in a small area (∼18 × 10 m) at the center of the investigated zone, where the highest 
fluxes were also measured (Figure 8b), while the other more negative values were recorded in correspondence of 
a maize field (Figure 9c).

Figure 6.  Dot maps of interstitial soil gas δ 13C-CO2 collected at 20 cm of depth in the Larderello central areas (from North 
to South: Lagoni-Sasso, Sasso Pisano, Sasso-Monterotondo, Monterotondo-N, and Monterotondo-S (data from Venturi 
et al., 2019)).
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4.3.  CO2 Output Estimations

The estimated total CO2 outputs from the surveyed areas are reported in Table 3. In the central areas, the values 
vary between 0.28 and 7.27 t d −1. The lowest values pertain to Lagoni-Sasso, while the highest one belongs to 
Monterotondo-N. Sasso-Monterotondo and Sasso Pisano release a comparable amount of CO2, that is, 1.51 and 
2.14 t d −1, respectively, whilst 3.15 t d −1 of CO2 were computed for Monterotondo-S (Cabassi et al., 2021).

Figure 7.  Cumulative frequency plots of ln-values of soil CO2 measurements of the peripheral areas of the Larderello geothermal field: (a) Micciano-NW; (b) 
Micciano-SE; (c) Libbiano; (d) Palazzo al Piano; (e) Montemiccioli. The inflection points are reported as blue arrows and the different background colors allow to 
distinguish the different populations. The red lines represent theoretical (log)normal distributions.
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In the peripheral areas, the CO2 output values range from 0.40 t d −1 (Micciano-SE) up to 19.77 t d −1 (Montemic-
cioli). Libbiano has a slightly higher output (1.36 t d −1) than that of Micciano-NW (0.90 t d −1), while Palazzo al 
Piano releases 3.66 tons of CO2 per day.

5.  Discussion
5.1.  Soil CO2 Flux and Interstitial Gas Processes, and Origin of the CO2

5.1.1.  Soil CO2 Flux Interpretation

The soil CO2 fluxes span over wide intervals in the investigated areas and multiple populations occur as shown by 
the cumulative frequency plots (Figures 4 and 7), suggesting the presence of various sources, processes, different 
soil permeabilities, and/or distinct transport mechanisms of the gases through the soil.

In the central areas, the low flux populations (namely A) show mean values in the order of 1.3–10.0 g m −2 day −1, 
with upper threshold values lower than ∼28 g m −2 day −1 (Figure 4; Table 2). These mean and threshold values agree 

Figure 8.  Distribution maps of soil CO2 flux in the Larderello peripheral areas: (a) Micciano; (b) Palazzo al Piano; (c) 
Libbiano; (d) Montemiccioli.
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with a biogenic source (i.e., plant and microbial respiration and organic decomposition; Cardellini et al., 2003; 
Chiodini et al., 2008; Raich & Schlesinger, 1992; Viveiros et al., 2010) and are comparable to those registered 
in other geothermal sites of central Italy, such as Mt. Amiata (Sbrana et al., 2020), Latera (Chiodini et al., 2007) 
and Torre Alfina (Carapezza et al., 2015). On the contrary, populations C, recognized at Sasso-Monterotondo 
(Figure 4c), Monterotondo-N (Figure 4d), and Monterotondo-S (Cabassi et al., 2021), represent an endogenous 
CO2 source, likely linked to magmatic outgassing and/or decarbonation processes of limestones, carbonates and 
calc-silicates occurring in these areas (Gherardi et al., 2005). Eventually, given the intermediate mean values 
computed for populations B, generally comprised between ∼30 and ∼85 g m −2 day −1, they can be related to 
mixing processes between biogenic and endogenous sources, or different transport mechanisms (i.e., diffusive 
or advective) as recognized in a specific area of Monterotondo-N (Taussi et al., 2022). An exception is related to 
population B of Sasso Pisano, where a higher mean value occurs (470.0 g m −2 day −1). In this case, it is possible 
to speculate that the low number of flux measurements (i.e., 44) does not allow a robust statistical interpretation 
of the cumulative plot (Figure 4b), masking possible inflection points of the curve.

In the peripheral areas, low flux populations (A) at Micciano-NW and -SE, Palazzo al Piano, and Montemiccioli 
show mean values between 8.6 and 33.5 g m −2 day −1, and upper threshold values <62 g m −2 day −1 (Table 2) 
argue for a biogenic CO2 source, in agreement with previous studies in central Italy (Carapezza et al., 2015; 
Cardellini et al., 2003; Chiodini et al., 2007; Sbrana et al., 2020). At Libbiano, only one statistical population 
was recognized from the cumulative frequency plot, suggesting a single deep-seated (i.e., endogenous) source, 
given the mean value of 637.3 g m −2 day −1. At Montemiccioli and Micciano-NW, high mean values (i.e., 2,134.5 

Figure 9.  Dot maps of carbon isotopic composition (δ 13C-CO2) in the interstitial gases collected at 20 cm depth at (a) 
Libbiano; (b) Montemiccioli; (c) Palazzo al Piano.
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Table 3 
Soil CO2 Output Estimation From the Study Areas

Site Population
Output 
(t d −1)

Lower limit 
(t d −1)

Upper limit 
(t d −1)

Total normalized 
output (t d −1 km 2)

Endogenous normalized 
output (t d −1 km 2) a

Central areas

Monterotondo-N A <0.01 – –

B 0.96 0.70 1.48

C 6.33 4.45 11.21

Outliers 0.002 – –

Total 7.29 5.16 12.70 268.8 268.8

Monterotondo-S b A 0.025 0.025 0.026

B 0.44 0.35 0.61

C 2.68 2.03 4.16

Total 3.15 2.40 4.81 157.5 156.2

Sasso-Monterotondo A <0.01 – –

B 0.42 0.32 0.61

C 1.09 0.84 1.77

Outlier <0.001 – –

Total 1.51 1.16 2.38 74.6 71.6

Sasso Pisano A 0.09 0.05 0.19

B 2.05 1.46 3.58

Total 2.14 1.51 3.77 211.3 202.4

Lagoni-Sasso A 0.04 0.03 0.05

B 0.24 0.21 0.30

Outlier <0.001 – –

Total 0.28 0.24 0.35 32.7 28.1

Peripheral areas

Micciano-NW A 0.02 0.01 0.03

B 0.23 0.19 0.29

C 0.66 0.44 1.62

Outliers 0.004 – –

Total 0.90 0.64 1.94 344.8 337.2

Micciano-SE A 0.12 0.09 0.19

B 0.27 0.16 1.01

Total 0.40 0.25 1.20 144.4 101.1

Libbiano A 1.36 0.83 2.88

Outlier 0.002 – –

Total 1.36 0.83 2.88 699.2 699.2

Palazzo al Piano A 0.86 0.79 0.96

B 2.80 1.55 9.01

Total 3.66 2.33 9.97 118.4 90.6
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and 7,338.3 g m −2 day −1, respectively; Table 2) are computed for populations C arguing for a purely endogenous 
source.

At Palazzo al Piano, only two populations were recognized. Population B shows a high mean value of 
640.1 g m −2 day −1, suggesting an endogenous, or at least mixed source. These values are focused on a small area 
characterized by the absence of vegetation and small bubbling vents (Tassi et al., 1997; Figure 8b), that is, the 
only indications of hydrothermalism at Palazzo al Piano.

In the two areas of Micciano and Montemiccioli populations B show intermediate mean values (i.e., 151.3 and 
129.9 g m −2 day −1, and 136.2 g m −2 day −1, respectively; Table 2), suggesting that these fluxes are fed by a mix 
of biogenic and endogenous sources.

5.1.2.  Origin and Processes of the Interstitial Gas

The δ 13C-CO2 values of the interstitial gases show a wide range of variability, spanning from −26.0‰ up to 
+3.52‰ versus V-PDB. Looking at Figure 10, two non-parametric distributions, marking the differences between 
the central and peripheral areas, can be highlighted.

Central areas generally show slightly negative up to positive values, mostly grouped between −3‰ and +1‰ 
versus V-PDB. These values testify general enrichment in  13C, only partially overlapping that reported for both 
the fumaroles occurring in the central areas (i.e., from −4.2‰ to −2.3‰ vs. V-PDB, Granieri et  al.,  2023; 
Leila et  al.,  2021; Minissale et  al.,  1997; Tassi et  al.,  2012; Venturi et  al.,  2019), and the typical isotopic 
fingerprint recorded for the Larderello reservoirs geothermal fluids (from −7.1‰ to −1.4‰ vs. V-PDB; e.g., 
Gherardi et al., 2005). The isotopic range is in good agreement with the typical δ 13C-CO2 values derived by 
thermo-metamorphic reactions suffered by carbonate rocks (i.e., −5‰ to +5‰ vs. V-PDB; Venturi et al., 2017 

and references therein). These processes have indeed been recognized as a 
significant process of CO2 production affecting the shallower geothermal 
reservoir where the major thickness of the Mesozoic carbonate and dolostone 
rocks has been highlighted (Gherardi et al., 2005; Gianelli et al., 1997). The 
more negative δ 13C-CO2 values seen in Figure 10 (i.e., <−3‰ vs. V-PDB), 
are representing either a mantle/magmatic source (i.e., −8‰ to −4‰ vs. 
V-PDB; Mason et al., 2017) or a mixing between a strongly negative biogenic 
(i.e., −26‰ vs. V-PDB; Table 2) and an endogenous source, represented by 
the decarbonation processes.

Concerning the peripheral areas, the δ 13C-CO2 values frequently fall in the 
interval −8‰ to −4‰ versus V-PDB, with only a few other points that show 
more negative values, up to −19.7‰ versus V-PDB (Figure 10). In this case, 
the isotopic values of the interstitial CO2 are in good agreement with those 
measured in the free gases spontaneously emitted from the main vent(s) of 
each peripheral area. The latter are comprised between −7.3 (Montemiccioli) 
and −4.7‰ (Palazzo al Piano) versus V-PDB (Minissale et al., 1997; Panichi 
& Tongiorgi, 1975). These values perfectly fall in the isotopic range of the 
Larderello reservoirs geothermal fluids (Gherardi et al., 2005), and closely 
resemble the typical mantle/magmatic signature (Mason et al., 2017). Values 

Table 3 
Continued

Site Population
Output 
(t d −1)

Lower limit 
(t d −1)

Upper limit 
(t d −1)

Total normalized 
output (t d −1 km 2)

Endogenous normalized 
output (t d −1 km 2) a

Montemiccioli A 0.08 0.07 0.08

B 1.01 0.82 1.35

C 18.68 12.45 36.84

Total 19.77 13.34 38.28 1,320.6 1,315.3

Note. The total and endogenous normalized outputs are also reported.
 aIntended as the total output to which the background contribution is subtracted.  bData from Venturi et al. (2019) and Cabassi 
et al. (2021).

Figure 10.  Histograms of the frequency distribution of the interstitial gas 
δ 13C-CO2 values measured in the central (yellow) and peripheral (blue) areas 
of the Larderello geothermal field.
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lower than −8‰ versus V-PDB were recorded at Libbiano (n.1: −16.2‰ vs. V-PDB), Palazzo al Piano (n.5: 
between-19.7‰ and −10.8‰ vs. V-PDB), and Montemiccioli (n.1: −12.5‰ vs. V-PDB). The negative values 
occurring in the former two areas are located in a maize agricultural field where no evidence of hydrothermalism 
occurs (Figures 9a and 9c), suggesting a possible biogenic origin related to C4 plants (i.e., −16‰ to −9‰ vs. 
V-PDB; e.g., Sharp, 2017). On the contrary, at Montemiccioli, no C4 plants are present, likely indicating that the 
−12.5‰ versus V-PDB value is due to a mixing process between a strongly negative biogenic source (e.g., C3 
plants: −33‰ to −23‰ vs. V-PDB; e.g., Sharp, 2017) and a slightly negative endogenous source.

5.1.3.  Reconciling Soil CO2 Flux and Interstitial Gas Interpretations

To reconcile the information derived by the δ 13C-CO2 values of the interstitial gas and the soil CO2 flux popu-
lations, both variables are plotted in Figure 11. In this figure, the δ 13C of the CO2 emitted from the main vent(s) 
collected in the studied areas (Libbiano: Panichi & Tongiorgi, 1975; Montemiccioli, Palazzo al Piano: Minissale 
et al., 1997; Sasso Pisano: Minissale et al., 1997; Tassi et al., 2012; Monterotondo: Venturi et al., 2019; Leila 
et al., 2021; Granieri et al., 2023) is reported as straight vertical bars. The δ 13C-CO2 ranges of the Larderello 
geothermal fluids (Gherardi et al., 2005), and other relevant geochemical features (Gianelli et al., 1997; Mason 
et al., 2017; Panichi et al., 1974; Sharp, 2017) are also plotted for comparison. Despite the high measured CO2 
fluxes (i.e., >200 g m −2 day −1), some differences with the expected carbon isotopic fingerprint are detectable 
(Table 2).

In the central areas, only a few high CO2 flux measurements show a δ 13C-CO2 value close to that of the fumaroles. 
Most of them are characterized by more positive values, also with respect to the isotopic fingerprint of the fluids 
hosted in the Larderello geothermal reservoirs (Gherardi et al., 2005). These differences between the δ 13C values 
of the CO2 of the interstitial gases and that of the free gases can be derived by secondary fractionation processes, 
as observed in many geothermal/volcanic environments such as at Solfatara (Italy; Federico et al., 2010), Vulcano 
(Italy; Camarda et al., 2007), Planchón-Peteroa Volcanic Complex (Chile; Lamberti et al., 2021), and Ohaaki 
(New Zealand; Rissmann et al., 2012) among the others.

In the Larderello central areas, the secondary isotopic modifications seem to be mainly related to either microbial 
consumption at shallow depths (Cabassi et al., 2021; Venturi et al., 2019), resulting in a  13C-rich residual CO2 in 
the interstitial soil gases (e.g., Tassi et al., 2015; Venturi et al., 2019), or methanogenic processes. These latter 
take place in hydrothermal reducing environments that favor the reduction of CO2 to CH4 to produce a kinetic 
isotope effect for carbon, leading to the enrichment of  13C in the residual CO2 (Whiticar, 1999). Furthermore, 
transport-driven and boiling fractionation processes linked to the different structural features of the rock mass 
have also been recognized in these areas (Taussi et al., 2022).

Consequently, the partial inconsistency between the soil CO2 flux values and the δ 13C-CO2 values of the inter-
stitial gases makes it difficult to unequivocally ascribe the origin of each CO2 flux population, suggesting that a 
detailed sampling through soil depth-profiles should be carried out to improve the understanding of these second-
ary processes and better constraint the origin of the CO2 (Camarda et al., 2007).

Fractionation processes of the carbon isotopes at shallow depths seem to be less marked in the peripheral areas. At 
Libbiano, the sole deep-originated (endogenous) statistical population recognized from the cumulative frequency 
plot (Figure 7c) is associated with a quite homogeneous isotopic composition of the interstitial CO2, mainly vary-
ing between −8.0‰ and −3.9‰ versus V-PDB, in good agreement with the isotopic composition of the CO2 
emitted from the main vent(s) (i.e., −5.9‰ vs. V-PDB; Panichi & Tongiorgi, 1975).

At Palazzo al Piano, the more negative carbon isotopes linked to C4 plants (i.e., <−10.8‰ vs. V-PDB) (Figures 7 
and 9; Table 2) are mostly in association with fluxes related to the population A. At the same site, population 
B fluxes are linked to interstitial gases where the δ 13C-CO2 values roughly approach that of the CO2 emitted 
from the main vent(s) (i.e., −4.7‰ vs. V-PDB; Minissale et al., 1997), spanning between −6.0‰ and −2.5‰ 
versus V-PDB. Nevertheless, one high-flux point (i.e., 515 g m −2 day −1) showed a much more negative value 
(i.e., −15.0‰ vs. V-PDB), which could result by mixing between the endogenous source and a marked biolog-
ical negative CO2 source, or alternatively, by fractionation processes likely enhanced by the low permeability 
(Camarda et al., 2006, 2007) of the clayey soil occurring in that point (Figure S25 in Supporting Information S1).

At Montemiccioli, despite the presence of a mean (15.1 g m −2 day −1) and an upper threshold (21.8 g m −2 day −1) 
value of the CO2 fluxes of the population A, that argues for a biogenic source, the only isotopic analysis related 
to this population (i.e., −12.5‰ vs. V-PDB; Table 2), seems to indicate at least a mixed origin, given the absence 
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of C4 plants in this zone. In this area, populations B and C show overlapping isotopic values ranging (a) between 
−7.8‰ and −2.0‰ versus V-PDB (except for one value of −9.2‰ vs. V-PDB), and (b) from −7.6 to −6.2‰ 
versus V-PDB, respectively, with the latter, closely resembling that of the CO2 emitted from the main vent(s) (i.e., 
−7.3‰ vs. V-PDB; Minissale et al., 1997; Figure 11). A possible explanation for this similarity in the δ 13C-CO2 
values of the two different populations might be found in the transport mechanism of CO2 that can affect the 
isotopic fractionation. Population B can be related to a mix of diffusive and advective processes to produce 
enrichment in the heavier carbon isotopes of CO2 with respect to the that of the gas vents (Federico et al., 2010; 
Rissmann et al., 2012), likely widening the C-isotopic range of values. Population C is to be linked to purely 
advective transport, producing almost negligible fractionation and preserving the CO2 isotopic signature of the 
reservoir feeding the main vent(s) (Camarda et al., 2007; Capasso et al., 2001; Rissmann et al., 2012; Taussi 
et al., 2022).

In the two areas of Micciano, no isotopic analyses of interstitial soil CO2 are available. However, populations B 
of both areas show mean values (i.e., 151.3 and 129.9 g m −2 day −1, respectively) similar to that of Montemiccioli 
(i.e., 136.2 g m −2 day −1; Table 2), suggesting that these fluxes are fed by a mix of shallow (i.e., biogenic) and 
deep (i.e., endogenous) sources transported by a mix of diffusive-advective processes. In the same way, the high 

Figure 11.  Plot illustrating soil CO2 fluxes versus corresponding carbon isotopic composition of the interstitial CO2; 
previously published carbon isotopic data from Larderello geothermal fluids (Gherardi et al., 2005), CO2 emitted from the 
main vent(s) occurring in the investigated areas (Libbiano: Panichi & Tongiorgi, 1975; Montemiccioli, Palazzo al Piano: 
Minissale et al., 1997; Sasso Pisano: Tassi et al., 2012; Monterotondo: Venturi et al., 2019; Leila et al., 2021) and represented 
as vertical straight bars, canonical mantle (Mason et al., 2017), Palaeozoic metamorphic rocks (Gherardi et al., 2005; Gianelli 
et al., 1997), upper reservoir carbonates (Gherardi et al., 2005; Panichi et al., 1974), C3 and C4 plants and air (Sharp, 2017) 
are reported for comparison.
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mean value (i.e., 2,133.5 g m −2 day −1; Table 2) of population C of the Micciano-NW area argues for a purely deep 
source, transferred to the surface by an advective mechanism controlled by a pressure gradient.

5.2.  CO2 Budget

A total amount of at least 40.5 tons of CO2 is emitted every day (∼14,260 tons per year) from the investigated 
hydrothermalized degassing soils of the Larderello geothermal field and neighboring areas, most of them released 
from Montemiccioli (i.e., ∼20 t d −1) and the other peripheral areas (i.e., ∼5 t d −1) (Table 3). A total amount of 
1.25 t d −1, corresponding to ∼450 t y −1, is related to the local background, characterized by a biogenic source 
and secondary, shallow-depths fractionation processes. The endogenous output of Larderello is one order of 
magnitude lower than the global mean value (∼180,000 tons CO2 y −1), estimated by Fischer et al. (2019), for the 
volcanic-hydrothermal CO2 emitted by diffuse emission from volcanic/geothermal soils worldwide. Neverthe-
less, the computed CO2 output is to be regarded as a minimal estimate of the total natural soil emissions from the 
Larderello geothermal field, considering that other areas of diffuse degassing are present (e.g., Lagoni Rossi, San 
Pompeo, Lago Boracifero, Monteguidi, Tignano, Castelletto, among the others; Figure 1). These sites, however, 
were not investigated due to access difficulties or small degassing areas, and, to the best of our knowledge, no 
CO2 flux measurements are available. Moreover, the surveyed areas have different extensions (Table 1), which 
makes unreliable a direct comparison in terms of CO2 output. Thus, a consistent way to compare the total emis-
sion values of different-size surveyed areas among each other—and with other geothermal systems worldwide—
is to consider the normalized total CO2 flux from soil (i.e., the total output divided by the area of the survey). In 
this case, marked differences between the central and the peripheral areas can be highlighted (Figure 12).

The cold-degassing areas located at the periphery of the geothermal system show high-to-very-high normal-
ized CO2 outputs. Micciano-SE and Palazzo al Piano emit ∼101 and ∼91 t d −1 km −2 of deeply derived CO2, 
while Micciano-NW, Libbiano, and Montemiccioli discharge ∼333, ∼699, and ∼1,315 t d −1 km −2 (Table 3) of 
deep CO2, respectively, the latter representing the farthest emission area from the center of the geothermal field 
(Figures 1 and 3). These values are much higher with respect to some important Italian (e.g., Latera, Pantelleria, 
Mt. Amiata) and global geothermal fields in the world, such as Los Humeros (Mexico), Rotorua (New Zealand), 
or Reykjanes (Iceland), and comparable to some of the most active volcanic systems on Earth, as Vulcano (Italy) 
and Yellowstone (USA), among the others (Figure 12).

In the central areas, two peaks of ∼269 (Monterotondo-N) and ∼202 (Sasso Pisano) t d −1 km −2 of endogenous 
CO2 are computed (Figure 11; Table 3). Moving away from these areas, CO2 output values of ∼28 (Lagoni-Sasso) 
and ∼75 t d −1 km −2 (Sasso-Monterotondo), being one order of magnitude lower than those of Monterotondo-N 
and Sasso Pisano, are calculated. The Monterotondo-S shows an intermediate value of ∼156 t d −1 km −2 (Cabassi 
et al., 2021).

A recent paper, published by Granieri et al. (2023), highlighted some differences in the calculated CO2 output 
in the Monterotondo area (encompassing both Monterotondo-S and -N; i.e., 195 t d −1 km −2) than that computed 

Figure 12.  Plot of the mean normalized endogenous CO2 diffuse emissions for the Larderello geothermal system (including both central and peripheral areas) and the 
mean value for all the investigated areas, compared with selected worldwide geothermal systems and volcanic areas (after Taussi et al., 2021).
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by Cabassi et al. (2021) for Monterotondo-S. This was justified by the different approaches used for defining the 
total CO2 emitted for this area (i.e., sequential Gaussian simulation vs. GSA). Nevertheless, when comparing the 
normalized CO2 outputs obtained by Granieri et al. (2023), Cabassi et al. (2021), and this work no significant 
differences can be found since the amount of CO2 from these areas are perfectly comparable when both Monter-
otondo areas (-S and -N) are considered (i.e., ∼210 t d −1 km −2), hence, suggesting that the calculation procedures 
used in this and in the previous papers are correct.

As previously stressed, near the core of the Larderello geothermal field the normalized CO2 outputs are generally 
lower than those computed for the peripheral ones. These marked differences might be related to the influence of 
the geothermal production activities, as suggested by various authors (Bertani & Thain, 2002; Duchi et al., 1992; 
Lenzi et al., 2021) which reported a visible decrease in the natural emissions of the Larderello geothermal field 
during the years. This is similar to what was observed at Mt. Amiata (Italy; Frondini et al., 2009), another Tuscan 
geothermal system located about 70 km to the Larderello SE. Pre-production emissions at geothermal indus-
trial sites are often lacking since development began when environmental effects were not monitored (Manzella 
et al., 2018). Nevertheless, an approximation of the pre-production emissions of CO2 at the Larderello geothermal 
area was computed by Lenzi et al. (2021) based on the historical production of boric acid. These authors calculated 
an average flux rate of Non-Condensable Gases (NCG, composed by 97.7% CO2) in the geothermal fluid, from the 
entire historical production area, ranging between ∼0.48 and ∼15.4 t h −1 in the period 1818–1857, which roughly 
corresponds to ∼11 to ∼360 t d −1 of CO2. In addition, an estimation for the Sasso Pisano and Monterotondo areas 
was carried out with data from 1867. This corresponded to a total NCG flow rate of ∼3.6 t h −1, that is, a value of 
∼84 t d −1 of CO2, which is about 5.5 times the output calculated for the central areas in this work (Table 3).

The gradual decline in gas emissions from geothermal sites might be related to, for example, the local influx 
of short-time circulation path and gas-free recharge water triggered by exploitation that lower the NCG gas 
content (Romagnoli et al., 2010), and/or to reinjection of the geothermal fluids. For example, Jentsch et al. (2021) 
recently found a negative correlation between reinjection rates and CO2 fluxes at the Los Humeros geothermal 
field (Mexico). Reinjection of the CO2-depleted geothermal fluid back into the reservoir, which started in the 
1970s at Larderello (Minissale, 1991), would likely reduce the CO2 concentration of the reservoir, leading the 
reinjected fluid to absorb deep free carbon dioxide gases from the reservoir in the liquid phase (Fridriksson 
et al., 2017; Kaya & Zarrouk, 2017). Nevertheless, this is somehow in contrast with what assessed by Gherardi 
et al. (2005), which found no marked difference between the pre- and post-reinjection fluids concentrations and 
C-isotopic content, suggesting that this process should be further studied.

However, changes in terms of the surface release of CO2 may vary from place to place (Fridriksson et al., 2017). 
In fact, at the Wairakei, Ohaaki (New Zealand; Allis,  1981; Rissman et  al.,  2012) and Reykjanes (Iceland; 
Fridriksson et al., 2006; Óladóttir & Fridriksson, 2015) geothermal systems, the emitted CO2 increased along 
with the geothermal production activities. In these cases, as the pressure declines in the high-temperature produc-
tive reservoirs the boiling at depth increases, implying an increased surface activity (Fridriksson et al., 2017).

5.3.  Structural Control on CO2 Degassing

The relation between faults and CO2 distribution is defined in several contexts (e.g., Gianmanco et al., 1997; Jung 
et al., 2014; Li Vigni et al., 2022; Miao et al., 2020; Taussi et al., 2021) demonstrating that permeability is parti-
tioned along the fault trace (Jolie et al., 2016), determining different amount and origin of the CO2 degassing at 
surface. This is also our case study. Carbon dioxide emissions and geothermal manifestations are indeed concen-
trated in the SW portion of the Larderello geothermal system (Figure 13a), where the signature of stable isotopes 
of the CO2 (Figure 13b) and the  3He/ 4He isotopic ratios (Figure 13c) suggest a deep circuit. At the same time, 
emissions outside these areas reveal a still deep-sourced CO2, but with a major contribution of shallower processes. 
It is also worth noting that all the CO2 emissions and geothermal manifestations are located on fault traces being 
part of the transfer zone along which the Larderello geothermal system is developing (Figures 1 and 13a). Such 
evidence sheds light on the fact that the transfer zone, for its crustal relevance, crosses a heterogeneous crust and 
hosts compartmentalized geothermal circuits. Permeability is also variable along the structure, prevailing in local-
ized sectors where NE-striking faults form highly damaged rock volumes crossing a relevant crustal sector. The 
deep-seated fluids emerging in the central areas of the Larderello geothermal field from the very low permeable 
deposits filling the Lago basin suggest converging factors, that is, (a) the permeability of faults is tectonically main-
tained as indicated by the local earthquakes (Albarello et al., 2005; Bagagli et al., 2020; Liotta & Brogi, 2020); (b) 
the fault segments have regional relevance (Liotta & Brogi, 2020); (c) the active magmatism (Farina et al., 2018; 
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Rochira et al., 2018) favors the uprising of deep-originated fluids (Gola et al., 2017). Outside the central areas, 
the fault segments belonging to the transfer zone still have considerable importance in terms of permeability, as 
evidenced by the fact that CO2 emissions occur in areas dominated by poorly permeable rocks (i.e., clay and silt). 
Such a permeability within the deeper crustal levels suggests the propagation of the transfer zone even below the 
upper crust, possibly inheriting the geometrical setting of pre-existing structures (Liotta, 1991).

In the central areas and surroundings, the highest heat flux values of the Larderello geothermal area have been meas-
ured, reaching up to ∼1,000 mW m − 2 (Della Vedova et al., 2001), with soil temperatures reaching up to ∼98°C in 
correspondence with geothermal emergencies (Cabassi et al., 2021; Taussi et al., 2022). These conditions mainly 
occur along an NNE-striking fault zone, at least 5 km long, that runs from Monterotondo Marittimo to Sasso Pisano 

Figure 13.  (a) Map showing the main geological structures and geothermal manifestations occurring at the Larderello geothermal field; (b) dot-map of the δ 13C 
values of the CO2 in natural emissions (data from Granieri et al., 2023; Hooker et al., 1985; Leila et al., 2021; Minissale et al., 1997; Panichi & Tongiorgi, 1975; Tassi 
et al., 2012; Venturi et al., 2019) and geothermal wells (Gherardi et al., 2005; Magro et al., 2003); (c) dot-map of the Rc/Ra values measured in natural emissions 
(data from Hooker et al., 1985; Minissale et al., 1997; Magro et al., 2003) and geothermal wells (Gherardi et al., 2005; Hooker et al., 1985; Magro et al., 2003); (d) 
distribution of degassing rates computed in this work for central and peripheral areas. The black dashed lines circumscribe the location of most of the geothermal wells 
drilled in the area (after www.geothopica.igg.cnr.it).
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(Liotta & Brogi, 2020). The computed differences in the emission rates among Monterotondo (N and S), Sasso Pisano, 
and Lagoni-Sasso areas might thus be found in the different permeability values enhanced by faults and fractures 
characterizing the rock volume (Taussi et al., 2022). The areas of Monterotondo are likely hosting the largest number 
of geothermal manifestations (e.g., fumaroles, steam vents, acidic and steam-heated boiling pools, and mud pools; 
Minissale, 1991; Duchi et al., 1992) when compared to other Larderello degassing sites (Figure 13a) and display 
highly pervasive faults and fractures that reach the surface and modulate the fluid discharges (Taussi et al., 2022).

Usually, soil CO2 flux from the peripheral areas of a volcanic or geothermal system is lower compared to that 
measured at the summit or core areas (e.g., D'Alessandro et al., 1997; S. Inguaggiato et al., 2013; Jolie et al., 2019; 
Varley & Armienta, 2001). Nevertheless, cold degassing sites located outside the productive area, are significant 
emitters of diffuse CO2 from the Larderello geothermal system (Figure 13d), with degassing rates of CO2 higher 
than those of the thermally active central areas (Figures 12 and 13d; Table 3). These marked differences can be 
related to a high deeply sourced CO2 flux from the geothermal reservoir that interacts with shallow meteoric 
groundwater and is then degassed at shallow levels, with the consequent removal of the steam component. Similar 
behavior has been observed at Yellowstone (Rahilly & Fischer, 2021), where cold degassing sites located outside 
the caldera rim showed degassing rates comparable to those of the acid-sulfate thermal soils located inside. 
To achieve these high degassing rates, the shallow aquifer(s) must be cool enough to avoid steam formation 
which would produce an elevated superficial heat flux (Rahilly & Fischer, 2021 and references therein), but it 
should also be unable to buffer and mask the CO2 released by the geothermal system (C. Inguaggiato et al., 2017; 
Minissale, 2018; Taussi et al., 2019). However, the northern part of the Larderello geothermal field and its hydro-
geological setting is still unclear (Minissale, 1991), and it is thought that the shallow aquifers do not, or slightly, 
interact with the shallow geothermal reservoir (Romagnoli et al., 2010). Nonetheless, the northern margin of the 
geothermal field is characterized by widespread condensation in the geothermal wells that could be attributed to 
the very low permeability of the reservoir in this area, leading to large conductive heat losses of the steam in the 
wells (Minissale, 1991), likely deriving from deep-rooted faults connected with the lower reservoir.

The connection of peripheral cold degassing sites with the geothermal system seems to be supported by the 
δ 13C-CO2 values of the free gas discharged from the main vent(s) (Figure 13b), which fall within the range of 
−7.1‰ to −1.4‰ versus V-PDB measured in the Larderello geothermal wells (Gherardi et al., 2005). Indeed, 
the C-isotopic values vary between −4.7 (Palazzo al Piano: Panichi & Tongiorgi,  1975) and −7.3‰ V-PDB 
(Montemiccioli: Minissale et  al.,  1997), suggesting that a significant proportion of the CO2 reaching these 
areas is fed by an endogenous source. Moreover, the isotopic helium ratios of the peripheral area of Micciano, 
Montemiccioli, and Palazzo al Piano vary between 1.21 and 1.81 (mean Rc/Ra: 1.43; Minissale, 2004; Minissale 
et al., 1997; Figure 13c), which are slightly lower than the Rc/Ra range (1.63–3.2 Ra) of the gases measured in 
the system core (i.e., Lago, Le Prata, Sasso Pisano, S. Pompeo; mean Rc/Ra: 2.47; Hooker et al., 1985; Minissale 
et al., 1997; Magro et al., 2003; Figure 13c).

The isotopic composition (δ 13C-CO2 and Rc/Ra) of the gases discharged in the central and peripheral areas 
(data from Minissale,  2004; see Table S1 in Supporting Information  S1) is plotted against each other in 
Figure  14a. Four possible sources are reported, representing (a) the canonical mantle (Rc/Ra  =  8  ±  1 and 
δ 13C-CO2 = −6.5‰ ± 2.5‰ vs. V-PDB; Sano & Marty, 1995), (b) the European Subcontinental Mantle (Rc/
Ra = 6.3 ± 0.4 and δ 13C-CO2 = −3.25‰ ± 1.75‰ vs. V-PDB; Dunai & Baur, 1985; Gautheron et al., 2005; Rizzo 
et al., 2018), (c) an organic matter-rich sediment (Rc/Ra = 0.02 and δ 13C-CO2 of −30‰ ± 10‰ vs. V-PDB; Sano 
& Marty, 1995) and (d) limestone (Rc/Ra = 0.02 and δ 13C-CO2 of 0‰ ± 2‰ vs. V-PDB; Sano & Marty, 1995).

The gases from the central areas fall near the mixing line between a limestone component and an endogenous 
source, likely represented by the European Subcontinental Mantle. The peripheral areas show lower values of both 
Rc/Ra and δ 13C-CO2, although falling inside the field represented by the geothermal wells of Larderello (Gherardi 
et al., 2005), which are characterized by a mantle contribution up to 11.1% (Gherardi et al., 2005). Further informa-
tion on the link between the peripheral areas and the Larderello geothermal system can be depicted in Figure 14b, 
where the gas samples are plotted on the CO2– 3He– 4He ternary diagram (after Giggenbach et al., 1993). Here, 
mantle, air (1 Ra) and Air Saturated Water (ASW, 1 Ra) derived gases are also shown. As pointed out by Giggenbach 
et al. (1993), this diagram can be used to identify the loss and/or addition of specific volatile phases (e.g., CO2, He) 
by linear trajectories on the plot. Gases from the central areas plot close to the CO2 apex and have high CO2/ 3He 
ratios (i.e., >4.7 × 10 10), implying CO2 and radiogenic  4He addition in the hydrothermal system mostly derived 
from limestone and in agreement with the δ 13C-CO2 values (Minissale, 2004). On the contrary, Micciano, Montem-
iccioli, and Palazzo al Piano, along with the data from geothermal wells (Gherardi et al., 2005), show enrichment 
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in helium, plotting along a hypothetic line between Sasso Pisano and Le Prata 1 samples (Minissale, 2004) and the 
ASW, thus suggesting an interaction with a shallow aquifer. Noteworthy, Palazzo al Piano, which is located on the 
prosecution of a transfer zone that is parallel to the Larderello one, on which the Travale field is located (Figure 1), 
has the lowest CO2/ 3He ratio (7.4 × 10 9), indicating that the mantle contribution in this area is higher.

Eventually, the carbon isotopes of methane and the CH4/C2H6 ratios also support a link between the gases discharged 
in the central areas and analyzed in the geothermal wells, and those in the peripheral areas. In Figure 14c, the 
δ 13C-CH4 values (in ‰ vs. V-PDB) are plotted against the CH4/C2H6 ratio (data from Tassi et al., 2012; Venturi 
et al., 2019; see Table S2 in Supporting Information S1). All samples show that the δ 13C-CH4 values are between 
−27.1‰ and −22.3‰ versus V-PDB, with no evident differences between central and peripheral areas, and 
in the range of the δ 13C-CH4 values of the geothermal reservoir (−28.0‰ and −21.4‰ vs. V-PDB; Gherardi 
et al., 2005), which, coupled with the CH4/C2H6 ratios (from 603 to 4,347 and from 493 to 2,164 in the central 
and peripheral areas, respectively), support a common origin.

6.  Concluding Remarks
Our study shows that at least 40 tons of CO2 are released every day through both thermally active and 
cold-degassing hydrothermalized soils, located near the core and at the periphery of the Larderello geothermal 
system, respectively. Carbon dioxide emissions are strictly controlled by permeable sectors of the transfer faults, 
both along single fault segments or, mainly, at the intersection between these faults (NE-striking) and the normal 
faults (NW-striking) bounding the Pliocene-Quaternary structural depressions.

Figure 14.  Plots of (a) δ 13C-CO2 versus Rc/Ra; (b) CO2– 3He– 4He ternary diagram; (c) δ 13C-CH4 versus CH4/C2H6. Gas data 
emitted from the main vent(s) in (a) and (b) are from Minissale (2004), while in (c) are from Tassi et al. (2012) and Venturi 
et al. (2019). Data from geothermal wells are from Gherardi et al. (2005).
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The isotopic content of the interstitial CO2 and the chemical and isotopic composition of the free gases emitted 
from the main vent(s) in the investigated areas supports a common deep origin among the central and peripheral 
zones, though different geochemical processes affect the CO2 rising toward the surface. Central areas are charac-
terized by CO2 emissions accompanied by high amounts of steam and whose isotopic composition was affected 
by secondary processes that deeply modified the pristine isotopic composition. On the contrary, gases emitted 
from the peripheral areas were affected by strong condensation, although maintaining a general good correspond-
ence of the isotopic fingerprint of the interstitial CO2 with that of the CO2 freely emitted from the main vent(s) 
occurring in these areas. This process enhances the release of important amount of diffuse CO2, with higher rates 
of emission far from the core of the geothermal system, rather than in the central areas. All the CO2 emission 
and geothermal manifestations related to the Larderello geothermal system are located along fault segments that 
are part of the transfer zone along which the geothermal area is developed, supporting its pivotal role in connect-
ing the geothermal reservoir(s) with the surface and controlling the emission rates (Figure 15). This is particu-
larly evident when the location of the hydrothermalized cold degassing areas is considered, especially that of 

Figure 15.  Geological sketch (not to scale) illustrating the tectonic context of the Larderello-Travale geothermal system. The 
main transfer zones and crustal faults driving the occurrence of the main geothermal manifestation in the area are highlighted. 
The spatial distribution of the normalized endogenous CO2 diffuse emissions for the investigated sites is also reported.
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Montemiccioli (Figure 15). The latter shows the highest normalized emission rates of all the surveyed areas, with 
values comparable to those of some active volcanoes worldwide and occurs on the hypothetical continuation of 
the regional transfer zone that comprises the Lago basin, that is, the most efficient geothermal part of the Larder-
ello production area. Carbon dioxide emissions in the southeastern peripheral area (i.e., Palazzo al Piano) are 
associated to a transfer zone that is parallel to the Larderello one, on which the Travale area is located (Figure 15).

In conclusion, the geochemical and structural features characterizing the peripheral areas suggest that the Larder-
ello geothermal system might be wider than previously thought, indicating that further explorative studies should 
be carried out in the North and northeastern part of the area. This is also in agreement with the notable geother-
mal potential recognized in a zone located about 10 km North of Libbiano and Micciano localities by Bellani and 
Gherardi (2013).
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