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Abstract: There is increasing evidence that action and perception interact in the processing of
magnitudes such as duration and numerosity. Sustained physical exercise (such as running or
cycling) increases the apparent duration of visual stimuli presented during the activity. However, the
effect of exercise on numerosity perception has not yet been investigated. Here, we asked participants
to make either a temporal or a numerical judgment by comparing the duration or numerosity of
standard stimuli displayed at rest with those presented while running. The results support previous
reports in showing that physical activity significantly expands perceived duration; however, it had
no effect on perceived numerosity. Furthermore, the distortions of the perceived durations vanished
soon after the running session, making it unlikely that physiological factors such as heart rate underlie
the temporal distortion. Taken together, these results suggest a domain-selective influence of the
motor system on the perception of time, rather than a general effect on magnitude.

Keywords: time perception; numerosity perception; physical activity; magnitude system; atom

1. Introduction

One of the core missions for perceptual systems is to provide the brain with reliable
information about the environment to enable efficient interaction with nearby objects
via goal-directed actions. Sensory estimates need to be accurate and precise in many
dimensions as objects (and events) are internally represented within a multidimensional
space encompassing many properties, including spatial position, time of occurrence, and
numerosity. As these variables often correlate with each other (for example, it takes more
time to walk a longer distance or to pick up more cherries from a table), it has been proposed
that there exists within the parietal lobe of the human brain a shared magnitude system
to process information about space, time, and quantity via a single mechanism. This idea,
known as “A theory of Magnitude-ATOM”, has been extensively tested by measuring
the extent to which the processing of information in one of the ATOM dimension distorts
estimates in another [1]. For example, several studies have reported that large visual stimuli
are perceived to last longer than smaller ones presented for the same physical duration [2].
Duration estimates are also significantly affected by stimuli numerosity: numerous stimuli
are perceived to last longer than less numerous ones [3].

A shared mechanism processing quantitative information in multiple dimensions
may be beneficial in providing a unique interface between the perceptual and the motor
systems, sub-serving the transfer of sensory information between them. In line with
this idea, voluntary movements performed during the presentation of visual stimuli can
affect perceived duration. For example, at the time of saccades, duration is considerably
compressed, by about 50% [4]. Similar (but weaker) compression also occurs when task-
unrelated hand movements, either a series of discrete temporal patterns or continuous
actions, are made during the presentation of visual stimuli [5,6]. Action does not always
cause compression: a saccadic movement to a clock’s second hand can induce the illusion
of temporal expansion, sometimes referred to as “saccadic chronostasis” [7].
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Recently, a new motor-induced temporal illusion has been reported, where repetitive
hand-tapping can distort the perceived duration of stimuli subsequently presented around
the tapping area [8]. The perceived duration of visual stimuli is significantly compressed
(by about 30%) after fast tapping and expanded after slow tapping. Motor adaptation of
this type does not only distort perceived time but also perceived numerosity [9] and spatial
distance [10]. However, motor adaptation does not affect the perception of stimulus speed,
suggesting that the motor system might selectively interact with the processing of parietal
information, without affecting that of earlier levels of visual processing.

A recent study from Lambourne et al. investigated the role of physical exercise on
a temporal comparison task and found that visual stimuli presented during sustained
aerobic exercise executed with the lower limbs (cycling) induced an expansion of perceived
duration of about 15% [11]. However, the study did not address whether these effects
were selective only for temporal estimates or whether they generalize to other quantitative
dimensions, as would be suggested by the ATOM Theory. A second question is whether sen-
sory distortions are induced only during the execution of actions or whether the distortion
persists after completion of motor activity, indicating a relatively long-term recalibration
of the sensory system after physical activity. If the effect induced by self-motion were to
disappear immediately after the end of the physical activity, it would indicate that the
distortion of perceived duration is related to the movement itself and not to the other
physiological variables that are changed during the activity and take time to revert to
baseline levels. While both hand-tapping and cycling (or running) can be categorized
as “self-motion”, they are very different in terms of effectors (upper or lower limbs) and
frequency, and while hand-tapping could more closely resemble the action of counting
items scattered on a surface, cycling is a non-goal-directed action. If a different influence of
action on numerosity depending on the type of motion was to be found, it would suggest
a selective interaction between action and numerosity, with types of motion more closely
related to counting being more prone to distortion of numerosity.

In our new paradigm, the participants made a temporal or numerosity comparison
(separate sessions) in three different conditions: at rest, during sustained physical exer-
cise (running on a treadmill), or immediately after the exercise. In line with previous
reports, perceived duration was expanded during the motor routines; however, estimates
of numerosity were almost completely unaffected. Furthermore, time judgements were
not distorted for stimuli presented soon after the end of the physical activity, although
several physiological variables, such as heart rate, remained altered relative to the baseline,
suggesting that distortions of time occur only during the execution of actions, with rapid
recalibration after the activity is completed.

2. Materials and Methods
2.1. Participants

A total of fifteen participants took part in the study (8 females, 7 males, mean age = 27.3,
SD = 6.4; 11 were naive to the purpose of the study, and 4 were authors). All participants
had normal or corrected-to-normal visual acuity and provided written informed consent
and a medical certificate for non-competitive physical activity. Each experiment was
conducted on a different day, with the order of experiments pseudo-randomized across the
participants. The duration of each experimental session was around 2 h per participant.
The research was approved by the local ethics committee (“Commissione per l’Etica della
Ricerca”, University of Florence, 7 July 2020, n. 111).

2.2. Apparatus

The experiments were conducted in a dimly lit, low-noise room with participants
standing or running on a treadmill (JK Fitness Supercompact 48) at approximately 90 cm
from the monitor (Telefunken Smart TV 43′′). Heart rate was measured with a Garmin
Forerunner 55 smartwatch paired with an HRM-Dual Heartrate strap. The setup allows
continuous monitoring of the participants’ heart rate (temporal resolution: 1 Hz) via
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Bluetooth. Stimuli were generated and presented with PsychToolbox 3 routines [12] in
Matlab 2016b (The Mathworks, Inc., Natick, MA, USA).

2.3. Duration Perception While Running

The task was similar to that used by Lambourne et al. [11] (Figure 1A). In each trial,
the participants were presented with a central visual stimulus (24 cm × 24 cm blue square,
approximately 15◦ at the viewing distance of 90 cm). The participants judged the stimuli
as the “same” or “different” compared with a previously memorized stimulus lasting
600 ms (reference). The nine test stimulus durations were logarithmically spaced around
the reference: 284, 342, 413, 498, 600, 723, 872, 1052, and 1268 ms.

Figure 1. Experimental procedure. (A) Paradigm used to measure duration and numerosity percep-
tion while running. After a short training session, participants were presented with the reference
stimulus (encoding phase: 600 ms or 24 dots) 5 times. After a rest period of 3 min, they were presented
with a sequence of test stimuli to categorize as same or different, compared to the reference (baseline
T1). After the task, the encoding was repeated, followed by the running phase. During the first three
minutes of running, no stimuli were presented; then, the same different task (duration or numerosity)
was performed, this time while participants kept running. After this test phase, participants were
allowed to rest until the heart rate returned to the baseline level. At this point, a second baseline
(T2) was measured. After a short break, the whole procedure was repeated. (B) Paradigm used to
measure duration perception after running. This was similar to that described above (A) except the
rest period before baseline measurement (T1) was 8 min instead of 3 min, and the test measurements
were made after the participant stopped running while the heartrate reverted to baseline.

An experimental block comprised seven steps (Figure 1A). The first was a training
session, where the reference stimulus was presented 5 times sequentially with no response
required (encoding phase). Then, all the test durations were presented once in random
order, and for each of them, the participants reported whether they had the same or a
different duration from the reference. During this phase, response feedback was provided
(correct or incorrect, signaled by a change in color of a central fixation point). When
the participant reached 80% correct responses, the training stopped, otherwise another
block of nine trials started. After training, the encoding phase started. In this phase, the
participants were first presented with the reference stimulus 5 times (as at the beginning
of the training); then, a first decoding phase started (baseline T1) after three minutes of
rest from the encoding. The decoding phase consisted of 66 test trials, where each test of a
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different duration from the standard was presented 6 times, and the standard duration was
presented 18 times. In each trial, participants reported whether each stimulus had the same
or a different duration relative to the reference.

After the baseline T1, there was a new encoding phase, followed immediately by the
running phase, lasting 3 min. During running, the treadmill speed was continuously ad-
justed by the experimenter to keep the participant’s heart rate around 80% of the maximum
heart rate for his/her age, according to the formula: 208 − 0.7*(participant’s age) [13]. At
the end of the first three minutes of running, when the target heart rate was reached and
maintained, the participants started a second decoding phase (identical to the first) while
they kept running. During the running phase, the speed was constantly monitored and
regulated to maintain heartbeat as close as possible to the target. The test phase lasted
about 5 min, with the total running time of the block lasting 8 min. Once the participants
had stopped running, and the heartbeat reverted to the baseline level (±10 bpm), a new en-
coding phase started, followed by a second baseline (T2) measurement. After a short break
(about 10 min), the whole procedure (apart from the training) was repeated in the same
temporal order. At the end of the experimental session, each participant had completed
2 blocks per condition, for a total of 132 trials for each block (396 in total).

2.4. Duration Perception after Running

As for the previously described experiment, in each trial the participants were asked to
judge whether a stimulus had the same or a different duration of the memorized reference
(600 ms), with identical stimuli to those described above (Figure 1B). As before, a block
started with training followed by a decoding phase, a rest phase (this time lasting 8 min, to
set the same interval between the decoding and the encoding phase as in the experimental
phase), and a baseline (T1). After the baseline, a new encoding phase was performed
before starting the running phase. During the first three minutes of running, the speed was
manipulated to make the participant’s heartbeat reach the target value (as in Exp 1). Once
the target heartbeat had been reached, the participants kept running for an additional 5 min
without being presented with any stimulus. During the running, the speed was adjusted to
keep the heartbeat near the target value. After 8 min of activity, the treadmill was stopped,
and the participants immediately started the test phase (test after run). In this experiment,
we did not test the baseline at T2. After the running phase, the participants were allowed
to take a break and rest, and after making sure that the heartbeat had returned to baseline
levels (±10 bpm), the whole procedure was repeated, apart from the training.

2.5. Numerosity Perception While Running

This experiment was procedurally identical to the measurements of duration during
running (see Figure 1A), but in this case, the stimuli were circular arrays of black and white
dots presented in the center of the screen. Each array had a diameter of 47 cm (about 29◦ at
the average viewing distance of 90 cm), and each dot had a diameter of 1.5 cm (0.95◦). In
each trial, a single array was presented for 200 ms (to avoid serial counting). The reference
numerosity was 24 dots, while the test numerosities were logarithmically spaced around
the standard: 11, 14, 17, 20, 24, 29, 35, 42, or 51 dots.

2.6. Running Variables and Heartbeat Parameters

Table 1 reports the descriptive statistics of heart rate, running speed, and total number
of steps for each experiment. In the numerosity-while-running experiment, the heartrate
of one participant was not collected due to technical failure. The heart rate and running
speed were calculated excluding the first 3 min of warm up (the period in which the target
heartrate was gradually reached, see Figure 2). The number of steps refers to the whole
running period (3 min warm up plus 5 min of running). Baseline heartrates were obtained
by averaging all heartrates at resting state across the three experiments.
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Table 1. Descriptive statistics of running parameters.

Condition Average HR
B/m

Average Speed
Km/h Average Steps Steps per

Second Hz

Baseline (no run) 87.06 ± 2.1 – – –
Duration while running 159.6 ± 0.67 7.87 ± 0.66 1185.5 ± 20.8 2.47

Duration after run 160.4 ± 1.1 7.61 ± 0.62 1206.6 ± 24.67 2.51
Numerosity while running 158.1 ± 0.31 7.65 ± 0.63 1217.3 ± 27.8 2.53

Figure 2. Heartrate parameters. Average heart rate with ±95% C.I. as a function of time after running
onset. In all the experiments (A–C), the heart rate gradually reaches the target value (see methods)
within 3 min, then remains stable around that value for the subsequent 5 min of running.

Figure 2 illustrates the average heart rate across the session, with the temporal land-
marks showing when the test stimuli were presented. As specified above, the target
heartrate was defined as 80% of maximal heart rate, given the chronological age [13]. The
average target heart rate was 150.9 ± 1.0 bpm. Figure 2 shows that for all the three ex-
periments, the heart rate steadily increased during the first 3 min of warm up and then
remained constant around the target value for the next 5 min of running.

2.7. Data Analysis

Perceptual accuracy (bias) was measured by plotting the proportion of trials in which
the test was judged to be the same as the reference, as a function of the test stimulus
magnitudes, plotted on a logarithmic axis (examples in Figure 3). These distributions
were fitted with Gaussian functions, and the peak of the fitted functions was taken as the
“point of subjective equality” (PSE), where the test perceptually matched the reference.
This point is the value that the test stimulus had to assume for the subject to have the
highest probability to answer “same”. A peak value lower than the physical reference
corresponds to the test stimulus being overestimated and vice versa. We describe under- or
over-estimations as proportional shifts, defined as the difference between the PSE and the
physical value of the reference, normalized by the reference value.

Bias =

(
Reference− PSE

Reference

)
× 100% (1)
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Figure 3. Results on aggregate data for the duration (A,B) and numerosity (C) tasks. Test stimuli
magnitudes were plotted against the proportion of “same” responses and fitted with Gaussian
functions. The peaks of the fits (arrows) correspond to the PSE (600 ms or 24 dots). A leftward shift
(relatively lower peaks values) corresponds to an overestimation of the duration or numerosity of the
test stimuli.

We defined perceptual precision as Weber fractions (Wfs), the ratio of the just-noticeable
difference (given by the width of the Gaussian fitting function) to the PSE. In practice, the
Wfs were computed as the antilog of the standard deviations of the Gaussian log fits
minus one.

The data were analyzed with repeated measure ANOVAs, t-tests, Pearson correla-
tions, and bootstrap t-tests [14]. Whenever the sphericity assumption was violated, the
Greenhouse–Geisser correction was applied. The standard statistics were complemented
with the estimation of Bayes Factors [15], which quantify the evidence for or against the
null hypothesis as the ratio of the likelihoods for the experimental and the null hypothesis.
We express it as the base10 logarithm of the ratio (Log10Bf10), where negative logarithms
indicate that the null hypothesis is likely to be true, positive that it is false. By convention,
absolute Log10 Bayes Factors greater than 0.5 are considered substantial evidence for the
alternate or null hypothesis, and absolute log factors greater than 1 are strong evidence. All
statistical analyses were performed with MatLab 2016b (The Mathworks, Inc., Natick, MA,
USA) and Jasp Software (version 0.14.1; JASP Team, Amsterdam, The Netherlands).

3. Results
3.1. Aggregate Data

As detailed in the methods section, the participants compared a previously viewed
reference stimulus lasting 600 ms with a series of test stimuli and judged them as the same
or different. In separate sessions, they made similar judgments about the numerosity of
the stimuli compared with a 24-dot standard. Figure 3 shows the results of the aggregate
data summed over all the participants, as the proportion of “same” responses as a function
of test duration or numerosity. The peak of the Gaussian fits describing the distributions
reflects the point of subjective equality of test and reference (PSE). A leftward shift of the
curve peak compared to the reference value indicates an overestimation of the duration
or numerosity of the test stimuli. For all the Gaussian fits on the aggregate subject, an R2

higher than 0.97 was achieved.
Figure 3A refers to duration estimates while running. On inspection, it is evident that,

compared to the baseline performance before (T1) and after (T2), the visual durations were
substantially overestimated during the running phase. While running, a stimulus lasting
513 ms was perceptually judged as equivalent to the 600 ms reference, an overestimation
of about 15%. In the two baseline conditions, the peaks were both near the physical
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reference duration (baseline T1: 608 ms, baseline T2: 588 ms). However, duration perception
remained almost veridical when the stimuli were presented soon after the running phase,
although heartrate was still elevated well above resting levels (Figure 3B, Test: 556 ms,
baseline T1: 572 ms).

Figure 3C reports judgments of numerosity while running compared with the reference
of 24 dots. Unlike the duration perception, the numerosity estimations measured while
running were almost identical to the baseline conditions (Test: 24.2 dots, Baseline T1:
24.5 dots, Baseline T2: 25.0 dots).

We quantified the significance of the biases of the aggregate data by the bootstrap
test. On each repetition (10,000 iterations), and separately for each condition, the data were
sampled with the replacement (as many independent samples as the full dataset) and fit
with a Gaussian distribution, whose peak yielded an estimate of the PSE. The statistical
difference was assessed by comparing the distribution peaks along the bootstrap iterations
by Z-test, with the Z-score given by the distance between the distribution means divided
by the estimate of the average standard error, given by the square root of the sum of the
variances across the bootstraps [14]. Figure 4 shows the distributions of the peak bootstraps
for each condition. The average peak for the duration perception while running (Figure 4A,
blue distribution) was 513.2 ± 6.7 ms, clearly different from the baseline measured before
(T1: 607.9 ± 7.0 ms, Z = 9.7, p < 0.0001) and after running (T2: 588.4 ms ±7.6 ms, Z = 7.42,
p < 0.0001). The two baseline conditions were similar to each other (Z = 1.14, p = 0.25). These
results confirm that the overestimation of visual duration while running was significantly
different from the baseline.

Figure 4. Bootstrap Z-test on aggregate data. Distributions of fitted peaks for the duration (A,B) and
numerosity (C) tasks. Overlapped distributions indicate no difference between conditions. p-values
represent Z-test significance level: *** p < 0.01 > α = 0.017, Bonferroni corrected for three comparisons.
n.s.–nonsignificant.

The bootstrap results for the duration estimates after running (Figure 4B) almost
overlap those of the baseline and were clearly not statistically different (T1: 571.5 ± 7.7 ms,
Test 556.3 ± 7.26 ms, Z = 1.8, p = 0.07). For numerosity (Figure 4C), the distributions
for the test and the baseline conditions show little to no difference. The two baseline
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conditions were almost overlapped (T1: 24.5 ± 0.27 dots, T2: 25 ± 0.28 dots, Z = 1.36,
p = 0.17). The PSE for numerosity while running was slightly lower than the second
baseline measured soon after the running phase (Test: 24.2 ± 0.24 dots, T2: 25 ± 0.28 dots,
Z = 2, p = 0.045 > α = 0.017, Bonferroni corrected for three comparisons). Overall, these
results confirm that the running activity distorted duration perception, while numerosity
was unaffected.

3.2. Individual Data

We also analyzed the data separately for each participant and tested the differences
with standard between-participant statistical tests. Using a similar technique to that used
for the aggregate data, we fitted each participant’s data with Gaussian functions and
estimated the individual PSEs from the peaks in the individual curves. Figure 5 plots, for
each participant, the PSE during (or after) running against that of the first baseline.

Figure 5. Individual data and perceptual biases magnitudes. Scatter plots showing PSE (log units)
separately calculated for each participant (open symbols). Filled symbols refer to group averages.
Symbols falling below the equality line (dashed line) reflect lower PSEs in the running condition,
hence an overestimation of duration or numerosity. (A) Duration PSEs during running against first
baseline (T1). (B) Duration PSEs after running against first baseline (T1). (C) Numerosity PSEs
during running against first baseline (T1). (D) Bar plot showing estimation biases relative to the
baseline condition (T1), normalized by the reference stimulus (600 ms or 24 dots). Bars represent the
three experiments: duration while running, duration after running, and numerosity while running,
respectively. Bars are between participant’s average, error bars are ±1 SEM. Individual data are
represented by symbols. *** p < 0.001 n.s. not significant.

The points falling below the equality line mean that the PSEs during or after running
were lower than the baseline, hence an overestimation. For the duration judgments during
running, every single participant falls below the equality line, showing an overestimation
of duration. The averages are shown by the arrows and are very similar to the estimates of
the aggregate data (overestimation of ~20%). Obviously, this was statistically significant
(t(14) = 7.27, p < 0.001, Cohen’s d = 1.73, Log10Bf10 = 3.7). The biases in the duration
perception after the running phase were scattered much closer to the equality line, with a
weak tendency to fall below. However, the effect did not reach significance (t(14) = 1.98,
p = 0.07, Cohen’s d = 0.54, Log10Bf10 = 0.09). For the numerosity task, there was clearly no
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tendency for underestimation (or overestimation), with most of the participants scattered
around the equality line (t(14) = 0.21, p = 0.84, Cohen’s d = −0.019, Log10Bf10 = −0.57).
Figure 5D summarizes the individual data, showing the percent biases for the three condi-
tions: averages as bar graphs and individual data as dots. Quite clearly, the only significant
effect was duration while running, agreeing with the aggregate data.

While not reaching statistical significance, there was a slight systematic tendency for
overestimation of duration after running. One possible explanation is that underestimation
occurred reliably soon after the cessation of running but faded quickly. To test this possibil-
ity, we separated the baseline and test data (aggregated across the participants) into early
and late trials, with a median split of the interval after the running was stopped. The results
in Figure 6 show a similar null effect for both halves, suggesting that even in the very
first trials after running, the effect was already absent (first half: T1 541 ms ± 9.59 ms, test
528.5 ms ± 9.65 ms, Z = 0.9, p = 0.36; second half: T1 604.1 ms ± 11.39, test 585 ms ± 10.22,
Z = 1.3, p = 0.19).

Figure 6. Duration perception after running. As in Figure 3B, stimuli durations were plotted against
the proportion of “same” responses and fitted with Gaussian functions with the peak of the fits
(arrows) corresponding to the test duration matched with the reference (600 ms). Blue curves report
the aggregate data before running (baseline T1), the red curves the data collected after the running
phase. To test whether the effect was detectable in the very first trials after the run phase, the analyses
were performed on two sub-set of the data: the first (A) and second half (B).

3.3. Precision of Duration and Numerosity Judgments While Running

In order to assess the overall task complexity and difficulty, we analyzed the precision
of the participants’ responses, expressed as Weber fractions. Figure 7 shows the Weber
fractions (derived from the width of the fitted functions) separately for each participant.
ANOVAs and t-tests confirmed that there were no significant differences in the Wfs between
the conditions within each experiment (duration while running: F(1.3,18.5) = 2.95, p = 0.09;
duration after running: t(14) = −0.686, p = 0.5; and numerosity: F(2,28) = 0.11, p = 0.9). As
precision was unaffected by running, we averaged over the baseline and active condition
separately for the three experiments. The Weber fractions were clearly higher for the
duration conditions than for the numerosity (F(2,28) = 32.39, p < 0.001). Post hoc tests
revealed similar and not statistically different levels of precision between the “while” and
“after” running conditions (t = −0.969, p = 0.34), suggesting that this was not the reason
for the difference in the results for these two conditions. On the other hand, both duration
experiments statistically differed from the numerosity task (both p-values < 0.001).
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Figure 7. Perception precision. Bar plot showing estimation precision (Wfs) for duration (A,B) and
numerosity (C) tasks. Bars show average, error bars are ± 1 SEM, and circles are individual data.
(D) Average Wfs for the duration and numerosity conditions. *** p < 0.001. n.s.–nonsignificant.

Finally, as much of the evidence suggests common mechanisms for numerosity and
duration perception, we looked at the between-task correlations. We computed summary
precision indexes separately for numerosity and duration by averaging all the standard
deviations across conditions for the two tasks. In line with the involvement of a common
mechanism in numerosity and duration perception, the results (Figure 8) showed positive
and statistically significant correlations between the precision levels (r = 0.58, p = 0.02).

Figure 8. Correlation between numerosity and duration Wfs. Scatter plot of individual Wfs as
averaged across conditions for duration and numerosity.

4. Discussion

The main result of this study shows that while motor activity can significantly distort
the perception of time, it leaves numerosity perception unaffected. The participants com-
pared the duration or numerosity of a test stimulus while running, or having just run, with
a standard encoded at rest. The first experiment measuring duration estimation during
running supported the previous findings [11], reporting a systematical overestimation of



Brain Sci. 2022, 12, 81 11 of 14

perceived duration while running. The second experiment, however, showed that the
duration measurements made soon after stopping running are veridical, showing that
this effect is intrinsically related to the movement itself rather than to other physiological
parameters altered by physical activity (such as heart rate). In the final experiment, we
showed that the numerosity estimation was unaffected by running.

These findings suggest a magnitude-selective interaction between action and per-
ception that involves only the perceived duration. However, one of the most prominent
theories on the perception of magnitude posits that the human brain encodes space, time,
and number via a shared mechanism [1], opening the possibility that the effect of motor
activity on the perception of time might also generalize to other magnitudes. Indeed, it has
recently been reported that a repetitive motor routine executed with the upper limbs (hand
tapping) distorts both perceived duration [8] and numerosity [9]. Moreover, motor activity
related to eye movements has been reported to significantly distort numerosity [16,17].

How can the discrepancy between the present and the previous studies be reconciled?
One possibility regards the spatial congruency between the position where the visual
stimuli were displayed and the area where the motor activity was directed. The perceived
numerosity during saccadic eye movements was distorted only for stimuli displayed
between the saccadic starting and ending point, embracing a distance of roughly 20◦ [16].
Similarly, hand tapping distorted the perceived numerosity of stimuli presented around
the tapping area, with effects that rapidly faded off with the increase in the spatial offset
relative to the tapping location and completely vanished for distances higher than 15◦ [8].

Another possible explanation for the null effect found for numerosity may be the
different sensory precision for the two magnitudes. The Weber fractions for the numerosity
perception were lower than those for the duration perception. It is possible that the
noisier system for duration perception is more prone to distortion by contextual variables,
such as running. However, we found no difference in the Weber fractions between the
duration judgements during and after running, making it unlikely that this is the general
explanation for all lack of effects. A last methodological difference worth discussion is
the presentation modality of the stimuli. As the dots in the numerosity task were all
presented simultaneously, this might have required a lower involvement of the working
memory compared to the duration stimuli. However, as other interactions between self-
motion and numerosity were reported for both the sequential and the simultaneous [9]
numerosities, this difference alone is unlikely to have cancelled out an effect of running on
numerosity perception.

Interestingly, in many of the previous studies the participants underestimated per-
ceived duration as a consequence of action. In contrast, the participants in the present
study showed a tendency to overestimate the durations of visual stimuli presented during
the running phase relative to those with the same physical duration perceived at rest. A
possible reconciliation of these discrepancies may be the difference in methodologies. In
all the previous experiments, the participants were required to compare two intervals
presented one after the other or to immediately reproduce a temporal interval that had
been just observed. In the paradigm of the present study, the intervals presented during
the running phase were compared with the reference encoded before the onset of physical
activity. This resulted in a delay between the encoding (at rest) and the test phase (during
running) of at least 3 min, a much longer time for which sensory information had to be
stored in the short-term working memory.

A second methodological difference regards the duration and the intensity of the motor
activity. While many studies on eye and hand movements use transient motor-routines
in the sub-second or supra second regime, here participants were engaged in a strenuous
physical activity lasting several minutes. Indeed, a previous report in which participants
were required to estimate the duration of visual stimuli during a sustained cycling routine
lasting several minutes revealed that the duration estimates during physical exercise were
robustly lengthened [11]. Typically, these time-dilation phenomena are accounted for
by alterations in the rate of the internal pacemaker: physical activity could accelerate
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the clock rate, and this, in turn, would induce a perceived dilation of stimulus duration.
To reconcile all these results, we might speculate that transient motor activities (such as
saccadic eye movements or hand movements) momentarily slow down the rate of the
pacemaker, resulting in a compression of perceived time. On the other hand, sustained
physical activity may induce an acceleration of the internal clock, yielding the opposite
phenomenon of time dilation.

An alternative explanation might be that time processing in different conditions in-
volves several, independent temporal mechanisms in the brain. This idea of multiple
clocks in the brain has been demonstrated within the visual domain. A grating drifting
at high speed presented in a given location of the visual field strongly compresses the
perceived duration of the stimuli subsequently displayed around that area, without affect-
ing those displayed in other locations [18,19]. This finding supports the idea of multiple
time mechanisms, each responsible for time processing in a well-defined portion of the
visual field, violating the well-held belief of a centralized, unique internal clock. Despite
previous reports supporting the idea that motor routines can affect time perception, it
remains an open question whether such an interaction is prompted by the execution of
the movements themselves or by the alteration of other physiological variables that are
perturbated during action.

Past reports have proposed that heart rate might be directly related to the internal
clock rate; so, an acceleration of heartrate would also speed up the internal clock, leading to
an overestimation of perceived time [20]. To address this possibility, we measured whether
time perception was affected not only during the running phase but also immediately
after the end of the physical activity. The results indicate that no distortion occurred after
completion of the motor routine, even though heartrate had not returned to the baseline
level. Even when we took into consideration only the trials immediately after the physical
activity, no significant perceived time dilation was observed. This result clearly questions
the causal role of heartrate variations in distortions in perceived time and is in line with
a previous study reporting significant time dilations when arousal increased but heart
rate remained constant, or even decreased [21]. Can the present results be accounted
for by variations of the arousal level induced by motor activity? The lack of temporal
distortions when duration estimates were made at the end of the physical activity also
questions the arousal hypothesis, given that arousal levels have been reported to be still
significantly altered at the end of a 10 min running exercise (see [22]) in a similar activity to
the present study.

Taken together, the results of the present study reinforce previous studies showing
that time perception is affected by running, but a similar running regime does not affect
numerosity perception. However, a comparison between these findings with those in
the literature revealed that this relationship is modulated by movement parameters, such
as movement speed, type of effector, spatial proximity between stimuli, and movement
location, as well as the time of stimuli presentation relative to the phases of the motor
routine [23]. Future studies should directly investigate each of these issues to provide a full
comprehension of the mechanisms and the nature of the interaction between the motor and
the sensory systems.

The effect of long-term physical training on time perception should also be investigated.
For instance, there have been anecdotical reports from tennis and baseball players that time
slows down just before hitting the ball [24]. This suggests that the target of goal-directed
actions can benefit from specialized processing of their temporal features, which might be
aimed at maximizing motor performance and be induced by the extreme long-term training
characterizing elite athletes. However, while the benefit of time dilation for goal-directed
action is evident, the same does not hold for target-free rhythmic actions, such as running.
This may suggest that while the observed behavioral effect is the same, it might be caused
by different mechanisms. During sustained physical exercise, the fatigue accumulated by
the participant may cause an overestimation of perceived time, as has also been reported
to occur during sustained rowing exercise [25]. In the light of this, future studies could
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investigate the precision and accuracy of temporal perception in elite athletes, such as those
engaged in long-distance races (marathons) or hurdling, combining the running routine
with a goal-directed, repetitive, transient action aimed at jumping over the obstacles.
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