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Abstract

Synthetic control methods are commonly used in panel data settings to evaluate the effect
of an intervention. In many of these cases, the treated and control time series correspond
to spatial areas such as regions or neighborhoods. Synthetic control methods can be used
to evaluate the effect that the treatment had in the treated area, but it is often unclear how
far the treatment’s effect propagates, as this approach ignores the spatial structure of the
data, and can lead to efficiency loss in spatial settings. We propose to deal with these issues
by developing a Bayesian spatial matrix completion framework that allows us to predict
the missing potential outcomes in the different areas around the intervention point while
accounting for the spatial structure of the data. Specifically, the missing time series in
the absence of treatment for the treated areas of all sizes are imputed using a weighted
average of control time series, where the weights are assumed to vary smoothly over space
according to a Gaussian process.

Keywords: Causal inference, Spatial Econometrics, Synthetic Control Method, Gaussian Process,
Potential Outcomes

1. Introduction

The Synthetic Control method (SCM hereinafter) is a widespread methodology to estimate causal
effects in presence of a single treated unit and many control units, observed over time (2). With this
method, the impact of an intervention is evaluated as the difference between the observed value of some
primary outcome and its counterfactual value, imputed by using a weighted average of control units.

Evidence of interest in SCM is the flurry of methodological developments. Recently, the exploration
of SCM alternatives heads toward Bayesian regression models. (6), (5), (7) and (8) use Bayesian meth-
ods for causal effects estimation, illustrating a simple and effective proposal for inference in SCM-like
settings. Finally, recent work from (3) investigates the use of multitask Gaussian Processes for weights
estimations. In Many fields where SCM is commonly used study outcomes which are measured in spatial
areas such as municipalities, states or regions. (1) suggests these as the specific framework of applica-
tion for SCM-like methods. In such contexts, it is common to see treatment assigned to a single area,
and the focus being to estimate the treatment effect on this treated unit. Usually, scholars consider no
second-round effects from the treatment, neither in terms of spillovers nor in terms of effect propaga-
tion. However, no previous work has addressed spatial treatment effect propagation explicitly within the
scope of SCM. In practice, researchers often evaluate the extent to which treatment effects propagate
through space by applying SCM to areas of different sizes around the treated location. In this work, we
propose a Bayesian estimator for missing potential outcomes in presence of spatial correlation among
treated units. We exploit a Gaussian process prior for the vertical regression coefficients that take into
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account spatial correlation, encouraging regression coefficients across similar areas to be similar. We aim
to exploit this spatial information to estimate counterfactual quantities that are still unbiased, but have
improved properties in terms of mean bias and mean square error of the point estimate with respect to
the separated SCM or vertical regression methods. We refer to this method as Spatial Matrix Completion
or SMaC. Our motivating application is the impact evaluation arising from the construction of the first
line of the Florentine tramway network. In particular, we wish to assess the infrastructural impact on the
commercial vitality of the treated neighbourhood, measured as the number of stores located within some
distance d from a tramway stop.

2. Causal Framework

Consider a space € that can be partitioned into N areas, indexed ini € N = {1,...,i,..., N}, such
that N, Q' = Qand Q'NQ/ = 0 for each couple i, j € {1,..., N}. In our study, we consider the natural
partition of our sample space into the clusters representing the Florentine neighbourhoods. We observe
treatment arising from some specific locations w; € ;. We can consider treatment locations as a point
treatment (e.g.: pollution created by a power plant), a linear treatment or even a polygonal treatment.
Let be w! the set of treatment locations, in our application we consider w! as the tramway stops located
in the treated area. We also consider sets of locations w',i € {2,...,N} as sets of locations located in
neighbourhoods located far away from the tramway line, in streets similar to the one that receives the
treatment. We define our observation units as the areas around the treatment sites w. Therefore, for each
neighbourhood i we construct a set of buffers areas A; = {A], ..., Al.d, ... A} around the treatment lo-
cations wj, using the vector of distances D = (dy, .. .,dy, ..., dy) representing the distance of the h—th
area from the treatment site. We sort units and distances such that d;,.1 > d;, VYh e (1,2,...,H —1).
Let also d denote a generic distance between a treated area and the treatment site. We repeatedly observe
units over time, so we consider a panel data setting, with H X N areas observed for 70 = (1,...,50=1)
pre-treatment periods, and 7' = (19, ...,T) post-treatment periods. Let Y. i”jt be our primary outcome,
the number of stores in neighbourhood i within distance d from the tramway stops in each time period
teT. Letbe z = {zfl ff,? zl.d € {0, 1} be a neighbourhood-level treatment for each area Aid consid-
ered. Thus following, units belonging to the same cluster i can be only treated or not-treated together.
We consider two alternative situations for z: z! is the scenario in which each area Ald € Qq receives
the treatment, and no one outside. Instead, z° represents the scenario in which no area results treated,
in our scenario the situation in which the tramway was never built in Florence. We consider that areas
A = {Al, ... ,Af, .. ,Af’ } € Qp will receive the treatment starting from the period ¢y, and remain
treated afterwards. In our application, we consider the treated space as the Legnaia neighbourhood in
which the tramway stops are located, and 7y =2006. Units located in other part of Florence will be consid-
ered non-treated units with A? = {4l ... ,A:.j, e ,Ag} ¢ Q. We adopt the potential outcome approach
to causal inference (9). Under consistency assumption, for each unit Al.d in each period ¢ we define the fol-

lowing couple of potential outcomes: th(l) =Y;,(z") as the potential outcome under z' assignment

and Yidt(O) = Y;,(2") as the potential outcome under 2° assignment. In contexts with cluster-level

treatment allocation, scholars often invoke a partial interference assumption (10), which rules that in-
terference may occur, but not within groups. Moreover, we exploit the non-anticipating treatment as-
sumption to rule out anticipatory effects. We define the causal effect for the treated units as

A =Y (2N =Y, (2% VieT'.deD (1

For the treated units we observe Y’ ld . =Y 1d ; (z') when ¢ > 1), so we need to impute the missing quantity

Yld t(zo). From the comparison of effects at different distances from the treatment site, we can get
precious insights into the transmission of treatment effects through space. In general, we could expect
decaying treatment effects up to some boundary of spatial treatment.
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3. Estimation of causal effects

One might be interested in understanding the effect that treating the specific location w; had on the
area comprised within a specific distance d € D versus not treating it. To do this, they can use synthetic
control methodology. Specifically, one can find Soq € R and B4 = (Baas, - . ., Bna)’ € RV ! such that:

-1
(%)f) = argmin {Z (Yldt (1Y; )Tﬁd) } (2)

BaeRN =1

The synthetic control weights and vertical regression coefficients can be calculated separately for
different choices of d € (di,dy). For example, to find the synthetic control weights at distances
dy < dy < -+ < dy, one could solve the minimization problem in 2 using a constrained optimization
procedure, separately for each of these distances. Alternatively, the H different minimization problems
could be stacked, and one could solve the combined minimization problem

BOdl

B,

Bod: H Ty-1

552 = argmin {Z (Yfl, -(1Y; )Tﬁz) } 3)
: Bo,B2,--.BNERN | g=1 =1

Boay

B,

which will return the exact same solutions as solving 2 separately for each distance. Thus we can obtain
weights that minimise the pre-treatment distance between treated unit and the synthetic control, but
ignore the spatial structure of data.

Exploting the spatial structure of data, we introduce the Bayesian framework we will use to impute
the missing outcome Y} d (zo) Building on the vertical regression idea (2, (4)) we will propose a matrix
completion algorithm that smooths regression coefficient values through contiguous treated units.

In order to consider the spatial structures of the observed treated units, yet being flexible in the
parameter estimation, we follow a Bayesian regression approach to solve the optimization problem in
3, using Gaussian processes as priors for control unit coefficients. In our setting, Gaussian processes
can be particularly useful, as we could exploit the spatial information in our data for the specification
of regression coefficients. We consider 8 varying smoothly through space, in particular, the vector of
coefficients 8¢ will be more similar for physically close units. We specify such structure by using a
Gaussian process prior for S such that

Bi(D) ~ GP (0, Ka, (D))

with K, ,; (D) as a quadratic exponential smoothing kernel with parameter p;. Thus, the (p, ¢) entry of

(]((Yi \Pi (D) is
(d, —d,)>
[q(ai,pi (D)]pq = @; exXp {_p—2q
2p;

As stated above, other kernel specifications are possible, in order to consider different correlation struc-
tures between the treated units. To solve the pooled regression problem in 3, we specify the total vector
of coefficients 3 = (32,...,34,...,0n) with 8 ~ MVN(0,ZX), where Z is an appropriate block co-
variance matrix for the pooled coefficient estimation for multiple treated units. With Ky, ,, (D) on the
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block diagonal. We define the Bayesian regression model as

Y ~ N(B"X, oy T)

Bi ~ GP (0, Ka,.p; (D))
a; ~T71(50,5)

pi ~T7'(5,5)

oy ~T71(5,5)

This framework has simple yet powerful relapses. In context with spatially correlated units, Gaussian
process priors can improve the point estimate quality both in terms of bias and in terms of efficiency.
Moreover, from the posterior distribution of 5; we can derive the smoothed path of the coefficient for
some control unit i across the treated units d € D. Lastly, we can easily derive credibility intervals for
the posterior distribution of the causal effect, retrieving it from the posterior distribution of £;.

4. Estimating the effect of the Florentine tramway construction

Figure 1 show the results of our computation. Our results show that the tramway has provoked
generally an increase in the commercial vitality of the area considered. These results are particularly
significant for the areas closer to the tramway stops, as we find significant average treatment effects for
the areas within 50 and 100 meters of the treatment sites. The positive, yet non-statistically significant
effects are present for the outer areas, from 150 to 400 meters away from the tramway stops. Worksites
have not extensively damaged the commercial environment of the treated area. We can note a significant
and negative effect for the area within 100 meters during the period 2006-2010. That time span was
the construction period of the tramway, and thus we could expect worse outcomes for areas close to the
construction site. However, the number of stores steadily recovered in 2010, the inauguration year, and
the overall effect, even for this particularly affected area, is still positive. For this purpose, it is worth
noting that in the closer area to the treatment site, the positive effect is present since the start of the
construction period, some retailers anticipate their competitors by locating the shops in the most served
areas even before the start of tramway operations. The effect on the outer bands is similar to the ones
found for inner areas. In particular, we notice that worksites has not affected the commercial environment
of the outer areas, while the tramway has improved the accessibility of the area, leading to an increase
in the number of shops present. The estimated causal effect has a growing tendency, especially for the
outer areas, that exhibits statistically significant effects in the last observational periods. Concluding, in
this work we propose a framework for matrix completion with spatial data, an open challenge in policy
evaluation literature. We provide convincing results for our motivating application, showing the spatial
diffusion of the causal effect. Simulation results, not provided here, confirms the good properties of the
proposed estimation framework.
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Figure 1: Treatment effect for areas within d meters from a tramway stop, Red line: Treatment
effect, Blue area: 90% Credibility interval - First vertical line: tramway worksite starts (2006) -
Second vertical line: tramway operational (2010)
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