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Measurement of the superfluid fraction of a 
supersolid by Josephson effect

G. Biagioni1,2,9, N. Antolini2,3,9, B. Donelli3,4,5,6, L. Pezzè3,4,5, A. Smerzi3,4,5 ✉, M. Fattori1,3,7, 
A. Fioretti2, C. Gabbanini2, M. Inguscio3,8, L. Tanzi2,3 & G. Modugno1,2,3 ✉

A new class of superfluids and superconductors with spatially periodic modulation of 
the superfluid density is arising1–12. It might be related to the supersolid phase of matter, 
in which the spontaneous breaking of gauge and translational symmetries leads to a 
spatially modulated macroscopic wavefunction13–16. This relation was recognized  
only in some cases1,2,5–9 and there is the need for a universal property quantifying  
the differences between supersolids and ordinary matter, such as the superfluid 
fraction, which measures the reduction in superfluid stiffness resulting from the 
spatial modulation16–18. The superfluid fraction was introduced long ago16, but it has 
not yet been assessed experimentally. Here we demonstrate an innovative method  
to measure the superfluid fraction based on the Josephson effect, a ubiquitous 
phenomenon associated with the presence of a physical barrier between two 
superfluids or superconductors19, which might also be expected for supersolids20, 
owing to the spatial modulation. We demonstrate that individual cells of a supersolid 
can sustain Josephson oscillations and we show that, from the current–phase 
dynamics, we can derive directly the superfluid fraction. Our study of a cold-atom 
dipolar supersolid7 reveals a relatively large sub-unity superfluid fraction that makes 
realistic the study of previously unknown phenomena such as partially quantized 
vortices and supercurrents16–18. Our results open a new direction of research that may 
unify the description of all supersolid-like systems.

Supersolids are a fundamental phase of matter originated by the 
spontaneous breaking of the gauge symmetry as in superfluids and 
superconductors and of the translational symmetry as in crystals13–16. 
This gives rise to a macroscopic wavefunction with spatially periodic 
modulation and to mixed superfluid and crystalline properties. Super-
solids were originally predicted in the context of solid helium13–16. Today, 
quantum phases with spontaneous modulation of the wavefunction 
are under study in a variety of bosonic and fermionic systems. These 
include: the second layer of 4He on graphite1,2; ultracold quantum gases 
in optical cavities5, with spin–orbit coupling6 or with strong dipolar 
interactions7–9,21; the pair-density-wave phase of 3He under confine-
ment3,4; and pair-density-wave phases in various types of supercon-
ductor10–12. Related phases have been observed in frustrated magnetic 
systems22 or proposed to exist in the crust of neutron stars23 and for 
excitons in semiconductor heterostructures24. The periodic structure 
of the wavefunction of all these systems is a prerequisite for supersolid-
ity, which has so far, however, emerged clearly only in some cold-atom 
systems with the evidence of the double spontaneous symmetry 
breaking and of the mixed superfluid-crystalline character5,25,26. The 
experiments carried out so far on the other types of system have proved 
the coexistence of superfluidity/superconductivity and crystal-like 
structure1–4,10–12, but no quantitative connection of the observations 
to the concept of supersolidity has been made. One of the difficulties 

in comparing different types of system with spatial modulation of the 
wavefunction is the seeming lack of a universal property quantifying 
the deviations from the dynamical behaviour of ordinary superfluids 
or superconductors.

Here we note that a property with such characteristics already exists, 
the so-called superfluid fraction of supersolids, well known in the field 
of superfluids but not in that of superconductors. The superfluid frac-
tion, introduced by A. J. Leggett in 1970 (ref. 16), quantifies the effect 
of the spatial modulation on the superfluid stiffness, which is in itself a 
defining property of superfluids and superconductors. The superfluid 
stiffness indeed measures the finite energy cost of twisting the phase 
of the macroscopic wavefunction and accounts for all fundamental 
phenomena of superfluidity, such as phase coherence, quantized vor-
tices and supercurrents27. As sketched in Fig. 1, whereas in a homogene-
ous superfluid/superconductor the phase varies linearly in space, in a 
modulated system, most of the phase variation can be accommodated 
in the minima of the density, reducing the energy cost. Because the 
superfluid velocity is the gradient of the phase, this implies that peaks 
and valleys should move differently, giving rise to complex dynamics 
with mixed classical (crystalline) and quantum (superfluid) character. 
For example, fundamental superfluid phenomena such as vortices and 
supercurrents are predicted to be profoundly affected by the presence 
of the spatial modulation, losing the canonical quantization of their 
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angular momentum16–18,28. The superfluid fraction, which ranges from 
unity for standard superfluids to zero for standard crystals, enters 
directly in all these phenomena and is therefore the proper quantity 
to assess the deviations from standard superfluids and superconduc-
tors. Note that the superfluid fraction of supersolids is not related to 
thermal effects, in contrast to the superfluid fraction owing to the 
thermal depletion of superfluids and superconductors29.

The standard methods to measure the superfluid stiffness are based 
on the measurement of global properties such as the moment of inertia 
for rotating superfluids1,2 or the penetration depth of the magnetic field 
for superconductors30. In dipolar supersolids, previous attempts using 
rotational techniques revealed a large superfluid fraction31 but were not 
precise enough to assess its sub-unity value32,33. In the other systems, 
there is evidence that the superfluid stiffness is low1,2,30, but no quan-
titative measurement of a sub-unity superfluid fraction is available.

In this work, we demonstrate that it is possible to measure the super-
fluid fraction of a supersolid not only from global dynamics but also 
from a fundamental phenomenon taking place in individual cells of the 
supersolid lattice: the Josephson effect19. As sketched in Fig. 1, the unit 
cell of a 1D supersolid lattice is composed by two density maxima con-
necting through a density minimum, so it has the typical structure of a 
Josephson junction, two bulk superfluids connected by a weak link. It is 
therefore tempting to associate supersolidity to the very existence of 
local Josephson dynamics. So far, the analogy between a supersolid and 
an array of Josephson junctions has only been used to model the relaxa-
tion towards the ground state of a dipolar supersolid20. There is instead 
no theoretical or experimental evidence for local Josephson oscillations 
or an understanding of the potential relation between the Josephson 
effect and the superfluid fraction. The problem is complicated by the 

fact that, in supersolids, the weak links are self-induced by internal 
interactions rather than by an external potential, so they can change 
during the dynamics. Therefore, it is not clear if phenomena such as 
Josephson oscillations can exist at all in a supersolid.

Here we demonstrate experimentally and theoretically that a super-
solid can, in fact, sustain coherent phase-density oscillations, behaving 
as an array of Josephson junctions. We also show that the Josephson 
coupling energy that we can deduct from the Josephson oscillations 
provides a direct measurement of the superfluid fraction. We use this 
new approach to measure with high precision the superfluid fraction 
of the dipolar supersolid appearing in a quantum gas of magnetic 
atoms. We find a range of sub-unity values of the superfluid fraction, 
depending on the depth of the density modulation in accordance with 
Leggett’s predictions.

Leggett’s approach to the superfluid fraction considers an annular 
supersolid in the rotating frame and maps it to a linear system with an 
overall phase twist, as sketched in Fig. 1b. The superfluid fraction is 
defined on a unit cell as16,34
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in which n x( ) is the normalized 1D density, restricts fs to be lower than 
unity if the density is spatially modulated. Note that the calculation of 
the superfluid fraction, which is a global property, by considering a 
single lattice cell is possible owing to the periodicity of the wavefunc-
tion of the supersolid16.

We propose an alternative expression for the superfluid fraction, 
considering Josephson phase twists with alternating sign between 
neighbouring lattice sites of a supersolid, as sketched in Fig. 1c. This 
corresponds to a different type of motion of the supersolid, with no 
global flow but with alternate Josephson phase-density oscillations 
between sites. Also, in this case, we can consider a single cell, because 
the kinetic energy is proportional to |∇φ(x)|2, so it does not depend on 
the sign of the phase twist. In the limit of small excitations (Δφ → 0), 
the kinetic energy of a Josephson junction is given by Ekin = NKΔφ2, in 
which K is the coupling energy across the barrier36. From equation (1), 
we thus find:

f
K

ħ md
=

/(2 )
, (3)s 2 2

showing a direct relation between the superfluid fraction and the cou-
pling energy of the junction. We note that an expression similar to the 
upper bound in equation (2) was derived by Leggett for the coupling 
energy of a single Josephson junction37, however without discussing 
the connection to the superfluid fraction.

We now demonstrate the existence of coherent Josephson-like oscil-
lations in a dipolar supersolid7–9. This system is particularly appealing 
to study fundamental aspects of supersolidity38: the supersolid lattice 
is macroscopic, with many atoms per site and large superfluid effects; 
the available control of the quantum phase transition allows to directly 
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Fig. 1 | Superfluid fraction in superfluids and supersolids. Sketches of the 
superfluid fraction from the application of a phase twist in a bosonic system at 
zero temperature. a, In a homogeneous superfluid, a phase twist with amplitude 
Δφ results in a constant gradient of the phase, that is, a constant velocity, whereas 
in a supersolid (b,c), the kinetic energy can be minimized by accumulating most 
of the phase variation in the low-density regions. The grey and green areas 
represent the number density and the kinetic energy density, respectively, 
whereas the phase profile is plotted in red. The superfluid fraction is the ratio 
of the area under the green curve to that of the homogeneous case. b, Leggett’s 
approach, which—for an annular system—would correspond to a stationary 
rotation, leads to a monotonous increase of the phase. c, Our method, based on 
an alternating oscillation of the phase, leads to Josephson oscillations. Both 
kinetic energy and superfluid fraction are the same for b and c.
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compare supersolids and superfluids; and interactions are weak, allow-
ing a fairly accurate theoretical modelling39. Our experimental system7 
is composed of about N = 3 × 104 bosonic dysprosium atoms, held in a 
harmonic trap elongated along the x direction, with trap frequencies  
(ωx, ωy, ωz) = 2π(18, 97, 102) Hz. By tuning the relative strength εdd of 
dipolar and contact interactions, we can cross the quantum phase tran-
sition from a standard Bose–Einstein condensate (BEC) to the super-
solid regime (Methods). The supersolid lattice structure is 1D, leading 
to a continuous phase transition40. Our typical supersolid is made of 
two main central clusters and four smaller lateral ones, with a lattice 
period d ≃ 4 μm, as shown in Fig. 2. We can vary the density modulation 
depth by varying the interaction strength in the range εdd = 1.38–1.45; 
further increasing εdd leads to the formation of an incoherent crystal of 
separate clusters, the so-called droplet crystal, a regime that we cannot 
study experimentally because of its short lifetime7.

Because our system is inhomogeneous, we focus our attention on 
the central cell, the one delimited by clusters 3 and 4 in Fig. 2. As we 
will show, the superfluid fraction we derive from that cell corresponds 
to the superfluid fraction of a hypothetical homogeneous supersolid 

with all cells identical to the central cell, as in Fig. 1, which is the system 
of general interest.

We find that the application for a short time of an optical lattice 
with twice the spacing of the supersolid (sketched in Fig. 2a) imprints 
the proper alternating phase difference between adjacent clusters to 
excite Josephson oscillations. With a depth of 100 nK and an applica-
tion time of τ = 100 μs, we obtain a phase difference on the order of π/2. 
After a variable evolution time in the absence of the lattice, we measure 
both the evolving phase difference Δφ between neighbouring clusters 
and the population difference Z between the left and right halves of 
the supersolid. Δφ is measured from the interference fringes devel-
oping after a free expansion (snapshots in Fig. 2b, top row), whereas 
Z is measured by in situ phase-contrast imaging (Fig. 2b, bottom 
row) (Methods). As shown in Fig. 2c,d, we observe single-frequency 
oscillations of Z and Δφ, with the characteristic π/2 phase shift of the 
standard Josephson dynamics19,36,41–44. The observation time is lim-
ited to about 100 ms by the finite lifetime of the supersolid, owing to 
unavoidable particle losses7. The experimental observations agree 
very well with numerical simulations based on the time-dependent 
extended Gross–Pitaevskii equation (GPE), also shown in Fig. 2c,d 
(Methods). We have checked that the Josephson oscillations are not 
observable if we apply the same procedure to standard BECs instead 
of supersolids (see Methods).

The observation of a single frequency in both experiment and simu-
lations indicates that not only is it possible to excite Josephson-like 
oscillations in a supersolid but also they are a normal mode of the 
system. To model our observations, we develop a six-mode model, 
generalizing the two-mode Josephson oscillations36 to the case of six 
clusters (see Methods). We associate to the jth cluster a population Nj 
and a phase φj ( j = 1,…,6). In general, the dynamics includes contribu-
tions from each cluster and shows several frequencies. However, we 
find that, under appropriate conditions among the interaction and 
coupling energies, there exists a normal mode of the system in which 
the dynamical variables of the two central clusters of the supersolid 
decouple from the lateral ones. This results in Josephson-like oscilla-
tions described by the two coupled equations

̇N KN φΔ = − 4 sin(Δ ) (4a)34

φ̇ U NΔ = Δ (4b)

in which ΔN = N3 − N4, N34 = N3(0) + N4(0), Δφ = φ3 − φ4 and U is the interac-
tion energy per particle. These equations hold for interaction energies 
N34U much larger than K (for our system, N34U/(2K) > 25; see Methods). 
Because in our case ΔN ≪ N, we keep only linear terms in ΔN/N.

Equations (4a) and (4b) are equivalent to those of a simple pendulum 
with angle Δφ and angular momentum ΔN and, in the small-angle limit, 
feature sinusoidal oscillations with a single frequency, ω KUN= 4J 34. 
We emphasize that the current–phase relation equation (4a) as well as 
ωJ

2 differ by a factor of 2 with respect to the Josephson equations of 
two weakly coupled BECs, owing to the contribution of the lateral clus-
ters, but are equal to those of a hypothetical homogeneous supersolid. 
Notice also that equations (4a) and (4b) depend only on the coupling 
energy K and the interaction energy U of the two central clusters, in 
contrast to the expectation that the inhomogeneity of the trapped 
system may introduce other energies in the equations of motion. We 
checked by Gross–Pitaevskii simulations that our experimental con-
figuration satisfies the conditions to have a Josephson-like normal 
mode (namely, equation (7) in Methods).

In the experiment, we are not able to resolve the population of the 
individual clusters but we study the population difference between 
the left and right halves of the system, Z = (N1 + N2 + N3 − N4 − N5 − N6)/N.  
There is a proportionality relation between the two observables, 
ΔN = 2NZ, which allows us to rewrite equations (4a) and (4b) in terms 
of the experimental observables (Methods).
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Fig. 2 | Josephson oscillations in a supersolid. a, Sketch of the experimental 
system. The black line is the supersolid density profile at equilibrium. The 
dashed green line is the optical lattice potential used for the phase imprinting. 
b, Examples of experimental single shots and corresponding integrated 1D 
profiles. Top row, interference fringes after a free expansion. Red curves are fit 
functions used to extract the phase difference Δφ. Bottom row, in situ images. 
Shaded areas indicate the populations of the left and right halves of the 
supersolid used to extract the population imbalance Z. c, Oscillations of Z as a 
function of time at εdd = 1.428. Dots are experimental points. Error bars are the 
s.e.m. of 20–30 measurements. The solid line is the numerical simulation for 
the same parameters. The dashed line is a sinusoidal fit to the experimental 
data. d, Same for Δφ. Experimental values and error bars are calculated using 
the circular mean and s.e.m. (see Methods).
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An important difference between a cell of the supersolid and a stand-
ard Josephson junction is the fact that, in the supersolid, the position of 
the weak link is not fixed by an external barrier but it is self-induced, so it 
can move. This leads to the appearance of a low-energy Goldstone mode 
associated with the spontaneous translational symmetry breaking. In 
a harmonic potential, it consists of a slow oscillation of the position 
of the weak link, together with the density maxima, and an associated 
oscillation of both Z and Δφ (ref. 26). Owing to its low frequency (on 
the order of a few Hz), the Goldstone mode is spontaneously excited 
by thermal fluctuations, resulting in shot-to-shot fluctuations of the 
experimental observables. The same low frequency, however, allows 
to separate Josephson and Goldstone dynamics in both experiment 
and theory (Methods).

We measure the Josephson frequency ωJ from a sinusoidal fit of the 
phase and population dynamics in Fig. 2c,d. We repeat the measure-
ment by varying the interaction parameter εdd, corresponding to dif-
ferent depths of the supersolid density modulation. Figure 3 shows 
the fitted frequencies as a function of εdd and a comparison with the 
numerical simulations. We observe a decrease of the frequency for 
increasing εdd. This is justified by the fact that the superfluid current 
across the junction decreases because a larger and larger portion of 
the wavefunction remains localized inside the clusters (see insets in 
Fig. 3). This reduces the coupling energy K while only weakly affecting 
the interaction energy.

From the Josephson frequency, we can derive the coupling energy as 
K = ωJ

2/(4UN34), with the denominator obtained from the simulations. 
We verified that this relation holds not only in the small-amplitude 
regime of the simulations but also for the larger amplitudes of the 
experiment.

From the measured K, we derive in turn the superfluid fraction using 
equation (3). The results are shown in Fig. 4 and feature a progressive 
reduction of the superfluid fraction below unity for increasing depths 
of the supersolid modulation. The experimental data are in good agree-
ment with the numerical simulations (green dots), in which—accord-
ing to equation (4a)—the coupling energy is obtained from the linear 
dependence of dZ/dt on sin(Δφ) (current–phase relation); see Fig. 4b. 
A similar analysis (Fig. 4c) was performed on the experimental data for 

which we have combined phase and population oscillations (pink dots 
in Fig. 4a). The results for these data points demonstrate the reduced 
superfluid fraction of the supersolid with no numerical input on the 
interaction energy U.

In Fig. 4a, we also compare our results with Leggett’s prediction of 
equation (2), relating the superfluid fraction to the density modulation 
of the supersolid. From the numerical density profiles, we calculate 
both the upper bound fs

u and the corresponding lower bound35  
fs

l, which delimit the grey area in Fig. 4a (see Methods). The two bounds 
would coincide if the density distribution were separable in the trans-
verse coordinates y and z. Because our supersolid lattice is 1D, the two 
bounds are close to each other. The superfluid fraction calculated from 
the simulated dynamics lies between the two bounds in the whole 
supersolid region we investigated, demonstrating the applicability of 
Leggett’s result to our system.

In conclusion, the overall agreement between experiment, simula-
tions and theory on our dipolar supersolid proves the long-sought 
sub-unity superfluid fraction of supersolids and its relation to the 
spatial modulation of the superfluid density. The demonstration of 
self-sustained Josephson oscillations in a supersolid provides a new 
proof of the extraordinary nature of supersolids compared with ordi-
nary superfluids and crystals. These oscillations indeed cannot exist 
neither in crystals, in which particles are bound to lattice sites, nor in 
ordinary superfluids, which do not have a lattice structure.
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error bars represent the experimental resolution in εdd (Methods). The red 
point at εdd = 1.444 is shifted slightly horizontally for clarity. Black points are 
the results of numerical simulations. The dashed line is a guide for the eye.  
The insets show the modulated ground-state density profiles obtained from 
numerical simulations for different values of εdd. The vertical dotted line marks 
the critical point of the superfluid–supersolid quantum phase transition.
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Our findings open new research directions. The observed reduc-
tion of the superfluid fraction with increasing modulation depths may 
explain the low superfluid stiffness measured in other systems, such 
as 4He on graphite1,2 or superconductors hosting pair-density-wave 
phases10–12. An important question related to the pair-density waves in 
fermionic systems is how Leggett’s bounds on the superfluid fraction 
may be extended to systems in which the superfluid density and particle 
density do not coincide. Note that equation (2) is also applicable to 
standard superfluids with an externally imposed spatial modulation, 
as demonstrated for BECs in optical lattices by means of measurements 
of the effective mass41 or of the sound velocity45,46. In the supersolid, 
however, the dynamics linked to the reduced superfluid fraction is not 
constrained by an external potential and so totally new phenomena 
might be observed. The large value of fs we measured for the dipolar 
supersolid, which remains larger than 10% also for deep density modula-
tions, indicates that partially quantized supercurrents16,18 and vortices17 
should appear at a macroscopic level.

Owing to the generality of the Josephson effect, our Josephson- 
oscillation technique might be applied to characterize the local 
superfluid dynamics of the other supersolid-like phases under study 
in superfluid and superconducting systems. Equation (3) is applicable 
in general, considering that the detection of Josephson oscillations 
implies measurement of both the coupling energy and the spatial 
period of the superfluid density modulation. For example, a promis-
ing type of system may be the pair-density-wave phase in supercon-
ductors, in which the modulation has already been resolved. The 
Josephson-oscillation technique works naturally in linear geometries 
and so it does not require any adaptation for the finite size of the clus-
ters in the supersolid-like phases available in experiments1–12, differently 
from the rotation technique16 (see Methods).

Furthermore, the self-induced Josephson junctions we have identified 
in supersolids might have extraordinary properties resulting from the 
mobility of the weak links. Indeed, although the Goldstone mode of the 
weak links is not relevant for the Josephson dynamics owing to its very 
low energy, for the same reason, it may affect the fluctuation properties 
of the junction47, potentially leading to new thermometry methods48 
and especially to previously unknown entanglement properties49.
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Methods

Supersolid preparation
The experiment starts from a BEC of 162Dy atoms trapped in a harmonic 
potential created by two dipole traps crossing in the horizontal (x, y) 
plane50. To tune the interaction parameter εdd = add/as, we control the 
contact scattering length as with magnetic Feshbach resonances, 
whereas the dipolar scattering length add = 130a0 is fixed. The con-
densate is initially prepared at a magnetic field B ≃ 5.5 G, correspond-
ing to a scattering length of about 140a0. The magnetic field is then 
slowly changed towards the critical values for the superfluid–super-
solid phase transition, close to the set of Feshbach resonances around 
5.1 G (refs. 7,39). We calibrate the magnetic-field amplitude using 
radio-frequency spectroscopy before and after each experimental 
run. The magnetic-field stability is about 0.5 mG, corresponding to a 
scattering-length stability of about 0.25a0. Because the overall system-
atic uncertainty in the absolute value of as is about 3a0, corresponding 
to an uncertainty in εdd of about 4%, we identify a precise B-to-as conver-
sion by comparing the experimental and numerical data for the critical 
εdd for the phase transition40. The typical atom number in the supersolid 
is N = (2.8 ± 0.3) × 104. We expect thermal effects to be negligible in the 
Josephson dynamics, as the coupling energy K(N2 + N3) is on the order 
of kB100 nK in the whole supersolid regime and from measurements of 
the thermal fraction on the BEC side, we get T < 30 nK (ref. 7).

Excitation of the Josephson dynamics
The optical lattice used to excite the Josephson dynamics consists of 
two repulsive laser beams at 1,064 nm that intersect at a small angle, 
providing a lattice period dL = (7.9 ± 0.3) μm. The stability of the lattice 
position is better than 10% of its period over the duration of the experi-
ment (see Extended Data Fig. 1a) and, before each measurement, we 
check the relative position of the lattice and the supersolid. Most of the 
noise in the excitation protocol comes from shot-to-shot fluctuations 
of the supersolid lattice owing to the Goldstone mode (the position of 
a single cluster has a s.d. on the order of 25% of the supersolid period; 
see below).

To calibrate the phase difference imprinted by the optical lattice, we 
switch on the lattice at fixed Ulat = kB100 nK for a variable pulse duration 
τ and we measure the imprinted phase difference φ0 = Ulatτ/ħ immedi-
ately after the pulse; see Extended Data Fig. 1b.

In the experiment, we detect clear Josephson oscillations only when 
the initial imprinted phase is 1 rad or larger. In this regime, we compare 
the experimental and numerical Josephson frequencies as a function 
of the amplitude of the oscillation (see Extended Data Fig. 2). We find 
a small reduction (about 15%) compared with the small-amplitude 
regime, which allows us to use the equation ω KN U= 4J 34  to extract 
the coupling energy K from the experimental Josephson frequencies. 
The need for large excitation amplitudes in the experiment can be 
explained by the presence of the Goldstone mode, which introduces 
an unavoidable noise on both Z and Δφ.

We checked that applying the same phase-imprinting protocol to 
standard BECs does not produce any detectable Josephson oscillation; 
see Extended Data Fig. 3. This observation can be justified by the fact 
that the spatially stationary excitations of the condensate, the rotons, 
have a spatial period similar to the supersolid period d, so they cannot 
be excited by the optical lattice with dL ≃ 2d. The excitations with spatial 
period equal to dL have instead a phonon/maxon character, they are not 
stationary in the harmonic trap and so they cannot produce spatially 
stable oscillations.

In general, this observation proves that the self-induced Josephson 
oscillations exist in the supersolid but not in the superfluid. We can-
not make reliable experiments in the solid-like droplet-crystal phase, 
owing to the exceedingly short lifetime of the experimental system 
in that regime, but the simulations show that the Josephson coupling 
becomes negligible and Josephson oscillations are absent.

Phase detection and analysis
To measure the phase difference between the two central clusters of 
the supersolid, Δφ = φ3 − φ4, we record the atomic distribution in the 
(x, y) plane by absorption imaging after 61 ms of free expansion. About 
200 µs before releasing the atoms from the trapping potential, we 
increase the contact interaction strength by setting as = 140a0, thus 
minimizing the relative effects of the long-range dipolar interaction on 
the expansion. We interpret the recorded distributions as the atomic 
density in momentum space, ρ(kx, ky). In the supersolid regime, the 
momentum distribution shows an interference pattern resulting from 
the superposition of the expanding matter waves of each cluster (see 
snapshots in Fig. 2a). We first integrate the 2D distribution over ky to 
obtain the 1D momentum distribution ρ(kx). We then fit ρ(kx) with a 
double-slit model:

ρ k G k k σ A π k k k θ( ) = ( , , ) [1 + cos ( ( − )/ + )]x x x0 1
2

0 r

in which G(kx, k0, σ) is a Gaussian envelope of centre k0 and width σ and 
A1, kr and θ are the amplitude, period and phase of the modulation, 
respectively. Owing to the cos2(x) term in our fit function, the physical 
phase difference is given by Δφ = 2θ.

Although the interference pattern is generated by six overlapping 
clusters, Δφ can be extracted with a good approximation (within 20%) 
by the double-slit model owing to the finite resolution of our imaging 
system in momentum space (0.2 μm−1, 1/e Gaussian width) and to the 
lower weight of lateral clusters. This is experimentally confirmed by 
the measured imprinted phase φ0 as a function of the pulse depth, 
shown in Extended Data Fig. 1, which is in good agreement with the 
prediction for the phase difference between adjacent clusters, Ulatτ/ħ.

For each observation time t, we take n = 20–30 images. We then calcu-
late the mean value of Δφ using the circular mean, which is appropriate 
for a periodic quantity such as an angle:

∑φΔ = arg e
j

n
φ

=1

iΔ j










in which arg(x) indicates the argument of the complex number x and i 
is the imaginary unit. The corresponding error is given by the circular 
s.d. of the mean51.

Imbalance detection and analysis
To measure the population imbalance between clusters, we image 
the supersolid in situ in the (x, y) plane using an imaging system with 
a resolution of 2.5 μm, smaller than the cluster spacing of 4 μm. To 
avoid saturation effects as a result of the high density of the sample, 
we use dispersive phase-contrast imaging52 with an optical beam 
detuned by 5Γ from the 421-nm optical transition. From each experi-
mental shot, we calculate the imbalance as follows. We integrate the 
column density along the y direction (transverse to the modulation), 
obtaining 1D density profiles in which we identify the two main peaks 
(snapshots in Fig. 2b). We then measure the populations N1 + N2 + N3 
and N4 + N5 + N6 integrating the signal to the left and to the right of the 
minimum between the clusters, respectively. We then compute the 
observable Z = (N6 + N5 + N4 − N3 − N2 − N1)/N.

Owing to the limited optical resolution, we can only clearly resolve 
the left and right clusters populations when the contrast of the density 
modulation is high enough, that is, only at εdd = 1.444. For lower εdd, we 
use an optical-separation technique to increase the signal-to-noise 
ratio. We turn on the optical lattice used for the excitation 5 ms before 
image acquisition. This causes the main clusters to move away, falling 
into the minima of the optical potential and increasing their distance 
(snapshots in Fig. 2a and in Extended Data Fig. 4). Although our lat-
tice does not have the optimal spatial phase to separate the clusters, 
because it has a maximum at the position of one cluster, we checked 



with numerical simulations that the only effect on the imbalance Z is 
the addition of a constant offset, thus not changing the oscillation fre-
quency (see Extended Data Fig. 4). Experimentally, we checked that the 
Josephson frequencies measured with and without the optical separa-
tion are consistent within one s.d. (see filled and empty pink points at 
εdd = 1.444 in Fig. 4). At lower εdd, very close to the phase transition, the 
contrast is too low, so we rely only on phase measurements.

Experimental measurement of the superfluid fraction from the 
Josephson frequency
To measure the superfluid fraction in the whole supersolid regime, 
reported in Fig. 4, we use the Josephson frequency ωJ extracted from 
phase oscillations. We use the formula f =

ω N U

ħ mds

/(4 )

/(2 )

34
2 2
J

2

. The period d of 

the supersolid lattice is measured with in situ imaging, obtaining 
d = 3.7 ± 0.1 μm. The quantity N34U is taken from the numerical simula-
tions. Because the experimental oscillations are not in the small- 
amplitude limit, the frequencies are underestimated by about 15%  
(see Extended Data Fig. 2). The upper error bar for fs in Fig. 4 includes 
accordingly a 15% uncertainty. For the experimental configurations in 
which we measure both Z and Δφ, we also checked that U extracted 
from equation (5b) is in agreement with the simulations.

Discussion of the Leggett model
Leggett derived the upper bound for the superfluid fraction fs

u in the 
case of a 1D system rotating in an annulus with radius R, for which the 
moment of inertia is I = (1 − fs)Ic, with Ic the classical moment of iner-
tia16. To find the phase profile φ(x) that minimizes the kinetic energy 
for a fixed number density n(x), we have to work in the frame corotat-
ing with the annulus, in which the external potential is independent 
of time. In this frame, the rotation imposes a phase twist between 
neighbouring clusters, proportional to the angular velocity Ω of the 
annulus, Δφ = φ(d) − φ(0) = mΩRd/ħ. The result of the energy mini-
mization is ∫ ∫φ x φ dx n x dx n x( ) = Δ ′ ( ′) / ′ ( ′)

x d

0
−1

0
−1 and the correspond-

ing kinetic energy cost is E φ Nħ md f φ(Δ ) = /(2 ) Δkin
2 2

s
u 2, in which fs

u is 
the upper bound of equation (3). The lower bound fs

l, instead, is found 
starting from the 3D kinetic energy, which also includes the deriva-
tives along the transverse directions y and z (ref. 34). It reads 

∫ ∫f dydz d dx n x y z= (1/ / ( , , ))
d

s
l

0
−1, in which n x y z( , , )̄  is the normalized 3D 

density. From the expression of the energy, we see that the superfluid 
fraction has the role of an elastic constant for the phase deformation. 
The density and phase profiles sketched in Fig. 1b, and the correspond-
ing energy density ħ2/(2m)n(x)|∇φ(x)|2, are for a hypothetical homo-
geneous supersolid lattice with fs = 0.20.

In the Josephson case, the phase twist is externally applied with an 
odd parity, to induce Josephson oscillations between neighbouring 
sites. The energy minimization on the single cell gives the same result 
as before, as it is insensitive to the sign of the phase twist. In the sketch 
of Fig. 1c, we build the odd phase profile by changing sign from cell to 
cell to φ(x) of Fig. 1b. We note that, in a linear system such as that used in 
the experiment, the superfluid fraction measured from the Josephson 
dynamics is not affected by radial effects, which are instead relevant in 
the case of rotating systems31. Indeed, the superfluid fraction extracted 
from a measurement of the moment of inertia, I = (1 − fs)Ic, would also 
take into account the extra contribution given by the reduced inertia 
of the superfluid clusters composing the system, which rotate around 
their centres of mass. Leggett’s upper bound is instead derived in the 
limit of an infinite radius of the annulus, for which such radial effects 
can be neglected16.

Goldstone mode
In a harmonic trap, the Goldstone mode energy ħωG is finite but much 
smaller than ħωx, as the supersolid can rearrange its density to minimize 
the centre-of-mass displacement. The resulting dynamics is an oscilla-
tion of the lattice position, imbalance and relative phase. Owing to its 
low frequency, the Goldstone mode is thermally activated. Similarly to 

previous works26, we detect the Goldstone excitation as fluctuations 
in the lattice position that keep the centre of mass fixed (see Extended 
Data Fig. 5). We prepare the supersolid with three main clusters and, 
without any further manipulation, examine the in situ density. We 
detect fluctuations in the cluster positions, with s.d. σclusters ≈ 1 μm, 
much larger than the centre-of-mass fluctuations, σcom ≈ 0.4 μm. The 
Goldstone mode also introduces some noise in Z and Δφ during the 
dynamics, which we estimate to be about 20% of the Josephson ampli-
tude, for both observables.

The frequency of the Goldstone mode can be observed in numerical 
simulations at T = 0 by setting an initial Z0 > 0 together with a small 
displacement of the weak link position, x0 ≠ 0; see Extended Data 
Fig. 5. In the time evolution of Z, we find a very low frequency oscil-
lation, ωG = 2π(3.56 ± 0.08) Hz, on top of the Josephson dynamics, 
ωJ = 2π(23.85 ± 0.03) Hz. We find similar values for Δφ. The weak link 
position oscillates at the same low frequency ωG.

Numerical simulations
To simulate the dynamics of our system, we numerically integrate the 
extended GPE:


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in which V r m ω x ω y ω z( ) = ( + + )x y zh.o.
1
2

2 2 2 2 2 2  is the harmonic external 

potential, g =
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4 2

s  is the contact interaction parameter and 
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C

π
θ

rdd 4
1 − 3cosdd

2

3  is the dipolar interaction, with θ the angle between 
r and ẑ and Cdd = 3εdd g. The last term is the Lee–Huang–Yang energy of 
quantum fluctuations53. Josephson dynamics was induced either by an 
antisymmetric phase imbalance imprinted with a sinusoidal potential 
as in the experiment or by an initial antisymmetric population imbal-
ance. Both methods excite the same Josephson normal mode. Atom 
number and phase for each cluster are calculated at each time step by 
determining the position of the density minima between the clusters, 
eliminating their slow and weak oscillations.

The superfluid fraction in Fig. 4a (green dots) is obtained by cal-
culating the coupling energy K in the limit of small initial imbalance 
(Z(0) ≈ 0.01), finding values in the range K ≈ kB(0.1–0.01) nK. From 
equation (5b), we find N34U ≈ kB(5–7) nK, slowly varying with εdd. The 
ratio N34U/(2K) is always larger than 25.

Six-mode Josephson model
We use a set of six-mode Josephson equations with interaction param-
eters Uj, with j = 1,…,6 labelling the clusters, five coupling parameters 
between adjacent clusters Kj,j+1 and energy offsets E0 and E1 for the 
opposite side clusters 1 and 6 and 2 and 5, owing to the harmonic 
trap. We indicate as K = K34 and U = U3 = U4 the coupling and interac-
tion energies, respectively, in two central clusters. The symmetry 
of the system further allows us to equalize the two side couplings 
K′ = K23 = K45 and K″ = K12 = K56 and the two side interactions U′ = U2 = U5 
and U″ = U1 = U6 (see Fig. 2a). We thus have a system of six equations 
for the time evolution of the populations Nj and five phase differ-
ences φij = φi − φj:

N K N N φ

N K N N φ K N N φ

N K N N φ K N N φ

N K N N φ K N N φ

N K N N φ K N N φ
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in which we have considered the case (N4 + N3)U/(2K) ≫ 1 so that we 
have neglected the tunnelling terms in the evolution of the phases.

In the following, we further consider small-amplitude oscillations 
such that we can replace N N N N≈ (0) (0)i j i j  and sin(φij) ≈ φij in equa-
tion (5a), in which Nj(0) is the initial population of the jth cluster at time 
t = 0. For symmetry reasons, we have N1(0) ≈ N6(0), N2(0) ≈ N5(0) and 
N3(0) ≈ N4(0). Even in the linear regime, the time evolution of popula-
tions and phases predicted by equations (5a) and (5b) shows several 
frequencies. Harmonic single-frequency oscillations with a π/2 phase 
shift between populations and relative phases are observed under the 
two conditions:
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In particular, under these conditions, we have

N N α N N N N− = ( − + − ), (7)3 4 6 1 5 2
̇ ̇ ̇ ̇ ̇ ̇

in which α = 1/(U/U′ − U/U″). The corresponding Josephson oscillation 
frequency is

ω KU N N α α= 2 [ (0) + (0)] /( − 1). (8)J
2

3 4

To evaluate the parameters in the above equations and verify equa-
tion (6), we insert into equations (5a) and (5b) the numerical results 
for Nj(t) and φij(t) obtained from GPE simulations. A comparison 
between GPEs oscillations and the six-mode model is shown in Extended 
Data Fig. 6. First, the GPE ground state gives N3(0) = N4(0) ≈ N/4, whereas 
the population of the lateral clusters depends on εdd. In particular, outer 
clusters N1(0) = N6(0) decrease, whereas N2(0) = N5(0) increase as εdd 
increases. The parameters U and K of the central clusters are extracted 
from equations (4a) and (4b). The other parameters U′, U″, K′ and K″ 
are extracted from fits using equations (5a) and (5b). Overall, we obtain 
that the interactions parameters are U/U′ ≈ 1, U/U″ ≈ 1/2 within fluc-
tuations of about 10% for different values of εdd. On the other hand, the 
coupling ratio K/K′ ≈ 0.6 is constant, whereas K/K″ ≈ 0.7 on the BEC side 
and decreases with εdd, as do the initial external populations 
N1(0) = N6(0). We thus find that equation (7) is fulfilled and α = 2. For 
this value of α, equation (8) gives ω J

2 = 4KU[N3(0) + N4(0)], in agreement 
with the main text.

Taking into account equation (7) and the symmetry condition 
N3(0) = N4(0), we find N3 − N4 = α(N6 − N1 + N5 − N2) at each time. We thus 
have Z = (α − 1)/αΔN/N, with ΔN = N3 − N4. This reduces to ΔN = 2NZ for 
α = 2. Using equation (5a), we have Z K N N N φ= − 4 (0) (0) / sin(Δ )4 3

̇ , 
with Δφ = φ43. We can write N N N N N2 (0) (0) = (0) + (0) =3 4 3 4 34  and  
get ̇Z KN N φ= − 2 / sin(Δ )34 . The evolution of the phase difference 

φ U N NΔ = ( − )3 4
̇  (see equation (5b)) rewrites as φ̇ U N NUZΔ = Δ = 2 .
It is interesting to take the limit of an infinite array of equal junctions, 

each one characterized by the same parameters of our central cell.  
The parts of equation (5a) are all equivalent and, because of the sym-
metry of the array, Ni(0) = Nj(0) and φi+1,i = −φi,i−1 ∀ i, j. We then get 

̇ ̇ ̇N N N KN φΔ = − = − 4 sin( )i i i i i i+1 , +1 , +1
, with Ni,i+1 = Ni(0) + Ni+1(0), equivalent 

to equation (4a). Equation (4b) for the phase evolution applies in the 
infinite case as well.
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Extended Data Fig. 1 | Characterization of the optical lattice. a, Stability of 
the lattice. Black dots are the relative positions of the density peaks of a BEC 
loaded into the optical lattice with respect to the average centre of mass, for 45 
different measurements. The s.d. of fluctuations for each lattice position is 
σlattice ≈ 0.35 μm. b, Calibration of the initial phase difference imprinted on the 
two main clusters as a function of the lattice pulse duration. Red dots are 
experimental data obtained by imprinting the optical lattice potential for 
different pulse durations. Error bars are the s.e.m. of 15–20 data points. The 
dashed line is the theoretical prediction (Uτ/ħ) with a lattice depth U = 100 nK.
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Extended Data Fig. 2 | Josephson frequency as a function of the phase 
amplitude. Black dots are theory, red dots are experiment. Vertical error bars 
are extracted from the sinusoidal fit of the Josephson oscillations. Horizontal 
error bars are the s.e.m. of the phase difference detected at t = 0, after the phase 
imprinting. The highlighted region is the relevant one for the experiment. For 
typical experimental amplitudes π/2, we observe a frequency reduction of 
about 15% compared with the small-excitation regime.



Extended Data Fig. 3 | Absence of Josephson oscillations for a standard BEC. 
Time evolution of the population imbalance after the phase imprinting for a 
supersolid (blue) and an unmodulated BEC (orange), extracted using optical 
separation. Dashed lines are sinusoidal fits with one s.d. confidence bands in 
shaded colour. The fitted oscillation amplitude of the BEC is compatible with 
zero. Error bars are the s.e.m. of 15–20 data points.
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Extended Data Fig. 4 | Analysis of the optical-separation technique.  
a, Experimental in situ images of two balanced (Z = 0) supersolids without any 
manipulation (left) and using optical separation (right). b, Numerical simulation 
of the dynamics of three different supersolids with initial population imbalance 
Z0 = 5% (green), Z0 = 0% (red) and Z0 = −5% (blue), during optical separation. Top 
row, imbalance Z. Bottom row, distance between the central clusters.



Extended Data Fig. 5 | Evidence of the Goldstone mode in experimental and 
numerical data. a, Left panels, fluctuation of the clusters positions (black and 
green points) and centre of mass (pink points) of the supersolid for about 100 
experimental shots. Right panel, histograms of the right-cluster (green) and of 
the centre-of-mass (pink) positions. b, Simulation of the Josephson dynamics 
coupled to the Goldstone oscillation. The position of the density minimum x0 
(top row) shows a clear oscillation at the Goldstone frequency ωG ≪ ωJ. This 
lower frequency also appears in Z and Δφ (bottom row) on top of the standard 
Josephson dynamics.
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Extended Data Fig. 6 | Six-mode model and numerical simulations. a, Sketch 
of the inhomogeneous system with six clusters with interaction energies U, U′ 
and U″, with coupling energies K, K′ and K″. The modes in the sketch are not to 
scale (compare with the simulation in Fig. 2a). b,c, Comparison between the 
time evolution calculated from the GPE simulations (solid lines) and from the 
six-mode model (dot-dashed lines) for Z (b) and Δφ (c). d, Relative currents 
between the central and lateral clusters appearing in equation (7), from GPE 
simulations. The solid line is ̇ ̇N N( − )/23 4  and the dashed line is N N N N( + − − )6 5 2 1

̇ ̇ ̇ ̇ .
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