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Anew class of superfluids and superconductors with spatially periodic modulation of
the superfluid density is arising' . It might be related to the supersolid phase of matter,
inwhich the spontaneous breaking of gauge and translational symmetries leadstoa

spatially modulated macroscopic wavefunction>, This relation was recognized
1,2,5-9

and there is the need for a universal property quantifying

the differences between supersolids and ordinary matter, such as the superfluid
fraction, which measures the reduction in superfluid stiffness resulting from the
spatial modulation'®*®, The superfluid fraction was introduced long ago', but it has
not yet been assessed experimentally. Here we demonstrate an innovative method
to measure the superfluid fraction based on the Josephson effect, a ubiquitous
phenomenon associated with the presence of a physical barrier between two
superfluids or superconductors®, which might also be expected for supersolids®,
owing to the spatial modulation. We demonstrate that individual cells of a supersolid
cansustainJosephson oscillations and we show that, from the current-phase
dynamics, we can derive directly the superfluid fraction. Our study of a cold-atom
dipolar supersolid’ reveals a relatively large sub-unity superfluid fraction that makes
realistic the study of previously unknown phenomena such as partially quantized
vortices and supercurrents'®, Our results open a new direction of research that may
unify the description of all supersolid-like systems.

Supersolids are a fundamental phase of matter originated by the
spontaneous breaking of the gauge symmetry as in superfluids and
superconductors and of the translational symmetry asin crystals™ ¢,
This gives rise to a macroscopic wavefunction with spatially periodic
modulation and to mixed superfluid and crystalline properties. Super-
solids were originally predicted in the context of solid helium® ¢, Today,
quantum phases with spontaneous modulation of the wavefunction
are under study in a variety of bosonic and fermionic systems. These
include: the second layer of *He on graphite'?; ultracold quantum gases
in optical cavities®, with spin-orbit coupling® or with strong dipolar
interactions’*%; the pair-density-wave phase of *He under confine-
ment>*; and pair-density-wave phases in various types of supercon-
ductor'® 2, Related phases have been observedin frustrated magnetic
systems® or proposed to exist in the crust of neutron stars® and for
excitonsinsemiconductor heterostructures®. The periodic structure
of the wavefunction of all these systemsis a prerequisite for supersolid-
ity, which hasso far, however, emerged clearly only insome cold-atom
systems with the evidence of the double spontaneous symmetry
breaking and of the mixed superfluid-crystalline character®*2¢, The
experiments carried out so far onthe other types of system have proved
the coexistence of superfluidity/superconductivity and crystal-like
structure’ *'°2 but no quantitative connection of the observations
to the concept of supersolidity has been made. One of the difficulties

incomparing different types of system with spatial modulation of the
wavefunction is the seeming lack of a universal property quantifying
the deviations from the dynamical behaviour of ordinary superfluids
or superconductors.

Here we note that a property with such characteristics already exists,
the so-called superfluid fraction of supersolids, well known in the field
of superfluids but notin that of superconductors. The superfluid frac-
tion, introduced by A.]. Leggett in 1970 (ref. 16), quantifies the effect
ofthe spatial modulation on the superfluid stiffness, whichisinitselfa
defining property of superfluids and superconductors. The superfluid
stiffness indeed measures the finite energy cost of twisting the phase
of the macroscopic wavefunction and accounts for all fundamental
phenomena of superfluidity, such as phase coherence, quantized vor-
tices and supercurrents?. As sketched inFig.1, whereas inahomogene-
ous superfluid/superconductor the phase varies linearly in space,ina
modulated system, most of the phase variation canbe accommodated
in the minima of the density, reducing the energy cost. Because the
superfluid velocity is the gradient of the phase, this implies that peaks
and valleys should move differently, giving rise to complex dynamics
with mixed classical (crystalline) and quantum (superfluid) character.
For example, fundamental superfluid phenomenasuch as vortices and
supercurrents are predicted to be profoundly affected by the presence
of the spatial modulation, losing the canonical quantization of their
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Fig.1|Superfluidfractioninsuperfluids and supersolids. Sketches of the
superfluid fraction from the application of a phase twistin abosonic system at
zerotemperature. a, Inahomogeneous superfluid, a phase twist withamplitude
Agresultsinaconstantgradient of the phase, thatis, aconstant velocity, whereas
inasupersolid (b,c), the kinetic energy can be minimized by accumulating most
ofthe phase variationin the low-density regions. The grey and green areas
represent the number density and the kinetic energy density, respectively,
whereas the phase profileis plotted inred. The superfluid fractionis theratio
oftheareaunderthegreen curve tothat of the homogeneous case.b, Leggett’s
approach, which—for an annular system—would correspond to astationary
rotation, leads toamonotonousincrease of the phase. ¢, Our method, based on
analternating oscillation of the phase, leads to Josephson oscillations. Both
kinetic energy and superfluid fraction arethesameforbandc.

angular momentum'¢®%, The superfluid fraction, which ranges from
unity for standard superfluids to zero for standard crystals, enters
directly in all these phenomena and is therefore the proper quantity
to assess the deviations from standard superfluids and superconduc-
tors. Note that the superfluid fraction of supersolids is not related to
thermal effects, in contrast to the superfluid fraction owing to the
thermal depletion of superfluids and superconductors®.
Thestandard methods to measure the superfluid stiffness are based
onthe measurement of global properties such as the moment of inertia
forrotating superfluids'?or the penetration depth of the magnetic field
forsuperconductors®. Indipolar supersolids, previous attempts using
rotational techniques revealed alarge superfluid fraction® but were not
precise enough to assess its sub-unity value*>*. In the other systems,
there is evidence that the superfluid stiffness is low"**°, but no quan-
titative measurement of a sub-unity superfluid fraction is available.
Inthis work, we demonstrate that it is possible to measure the super-
fluid fraction of a supersolid not only from global dynamics but also
fromafundamental phenomenon taking place inindividual cells of the
supersolid lattice: the Josephson effect'. As sketched inFig. 1, the unit
cell ofalD supersolid lattice iscomposed by two density maxima con-
necting through adensity minimum, so it hasthe typical structure ofa
Josephsonjunction, two bulk superfluids connected by a weak link. Itis
therefore tempting to associate supersolidity to the very existence of
localJosephson dynamics. So far, the analogy between asupersolid and
anarray of Josephson junctions has only been used to model the relaxa-
tion towards the ground state of adipolar supersolid®. Thereiisinstead
no theoretical or experimental evidence for localJosephson oscillations
or an understanding of the potential relation between the Josephson
effect and the superfluid fraction. The problemis complicated by the
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fact that, in supersolids, the weak links are self-induced by internal
interactions rather than by an external potential, so they can change
during the dynamics. Therefore, it is not clear if phenomena such as
Josephson oscillations can exist at all in a supersolid.

Here we demonstrate experimentally and theoretically that asuper-
solid can, infact, sustain coherent phase-density oscillations, behaving
as an array of Josephson junctions. We also show that the Josephson
coupling energy that we can deduct from the Josephson oscillations
provides a direct measurement of the superfluid fraction. We use this
new approach to measure with high precision the superfluid fraction
of the dipolar supersolid appearing in a quantum gas of magnetic
atoms. We find a range of sub-unity values of the superfluid fraction,
depending onthe depth ofthe density modulationinaccordance with
Leggett’s predictions.

Leggett’s approach to the superfluid fraction considers an annular
supersolidinthe rotating frame and mapsit to alinear system with an
overall phase twist, as sketched in Fig. 1b. The superfluid fraction is
defined on a unit cell as™***

£ = Fhom 1)

The numerator isthekinetic energy acquired by the supersolid with
number density n(x) when applying a phase twist A@ over alattice cell
oflengthd, E,;,= hz/(Zm)j‘ceII dx n(x) |Ve(x)|% and thus accounts for
density and phase modulations. The denominator Efo™= Nmv?%/2 isthe
kinetic energy of a homogeneous superfluid of Natoms and velocity
v, = hAgp/(md) associated with aconstant phase gradient Ag across the
cell. Using a variational approach'®™, Leggett found an upper and a
lower bound for equation (1), j;' <f sj;”; see Methods. In particular,
the upper bound

o (104 ax )’
£ -(djo,,(x)}' @

inwhich a(x)is the normalized 1D density, restricts f, to be lower than
unity if the density is spatially modulated. Note that the calculation of
the superfluid fraction, which is a global property, by considering a
single lattice cell is possible owing to the periodicity of the wavefunc-
tion of the supersolid®.

We propose an alternative expression for the superfluid fraction,
considering Josephson phase twists with alternating sign between
neighbouring lattice sites of a supersolid, as sketched in Fig. 1c. This
corresponds to a different type of motion of the supersolid, with no
global flow but with alternate Josephson phase-density oscillations
betweensites. Also, in this case, we can consider asingle cell, because
thekineticenergy is proportional to |V(x)|?, soitdoes not depend on
the sign of the phase twist. In the limit of small excitations (Ag ~> 0),
the kinetic energy of aJosephson junction is given by E,;, = NKA@?, in
which Kis the coupling energy across the barrier*®. From equation (1),
we thus find:

K

K= amad

(3

showingadirectrelationbetween the superfluid fraction and the cou-
pling energy of the junction. We note that an expression similar to the
upper bound in equation (2) was derived by Leggett for the coupling
energy of a single Josephson junction®”, however without discussing
the connection to the superfluid fraction.

We now demonstrate the existence of coherent Josephson-like oscil-
lations inadipolar supersolid’’. This systemis particularly appealing
to study fundamental aspects of supersolidity®®: the supersolid lattice
is macroscopic, with many atoms per site and large superfluid effects;
the available control of the quantum phase transition allows to directly
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Fig.2|Josephsonoscillationsinasupersolid. a, Sketch of the experimental
system. Theblacklineis the supersolid density profile at equilibrium. The
dashed greenlineis the optical lattice potential used for the phase imprinting.
b, Examples of experimental single shots and correspondingintegrated 1D
profiles. Top row, interference fringes after a free expansion. Red curves are fit
functions used to extract the phase difference Ag. Bottom row, in situimages.
Shaded areasindicate the populations of the leftand right halves of the
supersolid used to extract the populationimbalance Z. ¢, Oscillations of Zas a
function of time at £,y =1.428. Dots are experimental points. Error bars are the
s.e.m.of20-30 measurements. The solid line is the numerical simulation for
the same parameters. The dashed lineis asinusoidal fit to the experimental
data.d, Same for A@. Experimental values and error bars are calculated using
thecircular meanands.e.m. (see Methods).

compare supersolids and superfluids; and interactions are weak, allow-
ingafairly accurate theoretical modelling®. Our experimental system’
is composed of about N =3 x 10* bosonic dysprosium atoms, heldina
harmonic trap elongated along the x direction, with trap frequencies
(w,, w,, w,) =21(18, 97,102) Hz. By tuning the relative strength £, of
dipolarand contactinteractions, we can cross the quantum phase tran-
sition from a standard Bose-Einstein condensate (BEC) to the super-
solid regime (Methods). The supersolid lattice structure is 1D, leading
to a continuous phase transition*®. Our typical supersolid is made of
two main central clusters and four smaller lateral ones, with a lattice
periodd ~ 4 pm, asshownin Fig.2. We can vary the density modulation
depth by varying the interaction strength in the range €4, =1.38-1.45;
furtherincreasing £44leads to the formation of anincoherent crystal of
separate clusters, the so-called droplet crystal, aregime that we cannot
study experimentally because of its short lifetime”.

Because our system is inhomogeneous, we focus our attention on
the central cell, the one delimited by clusters 3 and 4 in Fig. 2. As we
will show, the superfluid fraction we derive from that cell corresponds
to the superfluid fraction of a hypothetical homogeneous supersolid

withall cellsidentical to the central cell, asin Fig. 1, whichis the system
of general interest.

We find that the application for a short time of an optical lattice
with twice the spacing of the supersolid (sketched in Fig. 2a) imprints
the proper alternating phase difference between adjacent clusters to
exciteJosephson oscillations. With adepth of 100 nK and an applica-
tiontime of =100 ps, we obtain aphase difference on the order of /2.
Afteravariableevolution timeinthe absence of the lattice, we measure
boththeevolving phase difference A between neighbouring clusters
and the population difference Zbetween the left and right halves of
the supersolid. A@ is measured from the interference fringes devel-
oping after a free expansion (snapshots in Fig. 2b, top row), whereas
Zis measured by in situ phase-contrast imaging (Fig. 2b, bottom
row) (Methods). As shown in Fig. 2c,d, we observe single-frequency
oscillations of Zand Ag, with the characteristic /2 phase shift of the
standard Josephson dynamics'®***"*, The observation time is lim-
ited to about 100 ms by the finite lifetime of the supersolid, owing to
unavoidable particle losses’. The experimental observations agree
very well with numerical simulations based on the time-dependent
extended Gross-Pitaevskii equation (GPE), also shown in Fig. 2¢,d
(Methods). We have checked that the Josephson oscillations are not
observable if we apply the same procedure to standard BECs instead
of supersolids (see Methods).

The observation of asingle frequency in bothexperimentand simu-
lations indicates that not only is it possible to excite Josephson-like
oscillations in a supersolid but also they are a normal mode of the
system. To model our observations, we develop a six-mode model,
generalizing the two-mode Josephson oscillations® to the case of six
clusters (see Methods). We associate to thejth cluster a population N;
andaphaseg;(j=1,...,6).Ingeneral, the dynamics includes contribu-
tions from each cluster and shows several frequencies. However, we
find that, under appropriate conditions among the interaction and
coupling energies, there exists anormal mode of the system in which
the dynamical variables of the two central clusters of the supersolid
decouple from the lateral ones. This results in Josephson-like oscilla-
tions described by the two coupled equations

AN =—4KN,sin(Ap) (4a)

Ap=UAN (4b)
inwhichAN=N;-N,,N;,=N;(0) + N,(0), Ap = @, - @p,and Uis theinterac-
tionenergy per particle. These equations hold forinteraction energies
N, Umuchlarger than K (for our system, N;,U/(2K) > 25; see Methods).
Because in our case AN < N, we keep only linear terms in AN/N.

Equations (4a) and (4b) are equivalent to those of asimple pendulum
withangle A and angular momentum AN and, in the small-angle limit,
feature sinusoidal oscillations with a single frequency, ;= ./4KUN,,.
We emphasize that the current-phase relation equation (4a) as well as
w/’ differ by a factor of 2 with respect to the Josephson equations of
two weakly coupled BECs, owing to the contribution of the lateral clus-
ters, butare equal tothose of ahypotheticalhomogeneous supersolid.
Notice also that equations (4a) and (4b) depend only on the coupling
energy K and the interaction energy U of the two central clusters, in
contrast to the expectation that the inhomogeneity of the trapped
system may introduce other energies in the equations of motion. We
checked by Gross-Pitaevskii simulations that our experimental con-
figuration satisfies the conditions to have a Josephson-like normal
mode (namely, equation (7) in Methods).

In the experiment, we are not able to resolve the population of the
individual clusters but we study the population difference between
theleftand right halves of the system, Z= (N, + N, + N;— N, = N5 — N;)/N.
There is a proportionality relation between the two observables,
AN =2NZ, which allows us to rewrite equations (4a) and (4b) in terms
of the experimental observables (Methods).
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Fig.3|Josephsonoscillation frequency versus the interaction parameter.
Red dots are the experimental frequencies for Ag. Filled and open blue dots are
the frequencies for Zmeasured by in situimaging with and without optical
separation, respectively (Methods). Vertical error bars are the uncertaintiesin
the nonlinear fit of the sinusoidal oscillations shownin Fig. 2c,d. Horizontal
error barsrepresent the experimental resolutionin 44 (Methods). Thered
pointat ey =1.444 isshifted slightly horizontally for clarity. Black points are
theresults of numerical simulations. The dashed lineis aguide for the eye.
Theinsets show the modulated ground-state density profiles obtained from
numerical simulations for different values of £44. The vertical dotted line marks
the critical point of the superfluid-supersolid quantum phase transition.

Animportant difference betweenacell of the supersolid and astand-
ardJosephsonjunctionis the fact that, in the supersolid, the position of
the weak linkis not fixed by an external barrier butitis self-induced, so it
canmove. Thisleads tothe appearance of alow-energy Goldstone mode
associated with the spontaneous translational symmetry breaking. In
a harmonic potential, it consists of a slow oscillation of the position
of the weak link, together with the density maxima, and an associated
oscillation of both Zand A (ref. 26). Owing to its low frequency (on
the order of afew Hz), the Goldstone mode is spontaneously excited
by thermal fluctuations, resulting in shot-to-shot fluctuations of the
experimental observables. The same low frequency, however, allows
to separate Josephson and Goldstone dynamics in both experiment
and theory (Methods).

We measure the Josephson frequency w, from a sinusoidal fit of the
phase and population dynamics in Fig. 2c,d. We repeat the measure-
ment by varying the interaction parameter &,44, corresponding to dif-
ferent depths of the supersolid density modulation. Figure 3 shows
the fitted frequencies as a function of 4, and a comparison with the
numerical simulations. We observe a decrease of the frequency for
increasing £4. This is justified by the fact that the superfluid current
across the junction decreases because a larger and larger portion of
the wavefunction remains localized inside the clusters (see insets in
Fig.3). Thisreduces the coupling energy K while only weakly affecting
theinteraction energy.

FromtheJosephson frequency, we canderive the coupling energy as
K = w?/(4UN,,), with the denominator obtained from the simulations.
We verified that this relation holds not only in the small-amplitude
regime of the simulations but also for the larger amplitudes of the
experiment.

Fromthe measured K, we derive in turn the superfluid fraction using
equation (3). The results are shown in Fig. 4 and feature a progressive
reduction of the superfluid fraction below unity for increasing depths
ofthe supersolid modulation. The experimental dataarein good agree-
ment with the numerical simulations (green dots), in which—accord-
ing to equation (4a)—the coupling energy is obtained from the linear
dependence of dZ/dt onsin(Ag) (current-phase relation); see Fig. 4b.
Asimilar analysis (Fig. 4c) was performed on the experimental data for

776 | Nature | Vol 629 | 23 May 2024

a
10}
08} i
0.6}
04} 8.
0.2t %ﬂzizq
—FEE
—a—
ot . . . . . . .
138 180 140 141 142 143 144 145
dd
b c
0.06 0.06
004 0.04
< o.oz\ £ 002
— 0 — 0
kel kel
< <
N-0.02 N-0.02
-0.04 -0.04
-0.06 -0.06
0 05 0 05 10 40 05 0 05 10

sin(Ap) sin(Ap)

Fig. 4 |Superfluid fraction from Josephson oscillations. a, Superfluid
fractionas afunction of 4. Black dots are experimental results derived from
theJosephson frequencies. Vertical error barsresult from the error propagation
of equation (3), withK = wjz/(4UN34); see Methods. Green dots areresults from
numerical simulations. Error bars are the uncertainties of the linear fits used to
determine Kand UN,,. Pink points are derived from the experimental phase-
currentrelation, asinc. Error bars are estimated using the propagation of
equation (3), withKanditsrelative uncertainty extracted from linear fits of
experimental data. The open pink pointat g4, =1.444 is the dataset without
the optical-separation technique (Methods). The grey band extends between
theupper andlower bounds of equation (1). b,c, Phase-current relation at
£44=1.444.The points show the results of numerical simulations (b) and
experimental measurements (c). From the linear regressions (green and pink
lines), we extract the coupling energy Kaccording to equation (4a). Shaded
regionsare the confidence bands forones.d.

which we have combined phase and population oscillations (pink dots
inFig. 4a). Theresults for these data points demonstrate the reduced
superfluid fraction of the supersolid with no numerical input on the
interaction energy U.

In Fig. 4a, we also compare our results with Leggett’s prediction of
equation (2), relating the superfluid fraction to the density modulation
of the supersolid. From the numerical density profiles, we calculate
both the upper bound f" and the corresponding lower bound®
f which delimitthe greyareain Fig. 4a (see Methods). The two bounds
would coincideifthe density distribution were separablein the trans-
verse coordinates yand z. Because our supersolid lattice is 1D, the two
boundsare close to each other. The superfluid fraction calculated from
the simulated dynamics lies between the two bounds in the whole
supersolid region we investigated, demonstrating the applicability of
Leggett’s result to our system.

In conclusion, the overall agreement between experiment, simula-
tions and theory on our dipolar supersolid proves the long-sought
sub-unity superfluid fraction of supersolids and its relation to the
spatial modulation of the superfluid density. The demonstration of
self-sustained Josephson oscillations in a supersolid provides a new
proof of the extraordinary nature of supersolids compared with ordi-
nary superfluids and crystals. These oscillations indeed cannot exist
neither in crystals, in which particles are bound to lattice sites, nor in
ordinary superfluids, which do not have a lattice structure.



Our findings open new research directions. The observed reduc-
tion of the superfluid fraction with increasing modulation depths may
explain the low superfluid stiffness measured in other systems, such
as *He on graphite’? or superconductors hosting pair-density-wave
phases'®™"2 Animportant question related to the pair-density wavesin
fermionic systems is how Leggett’s bounds on the superfluid fraction
may be extended to systems in which the superfluid density and particle
density do not coincide. Note that equation (2) is also applicable to
standard superfluids with an externally imposed spatial modulation,
asdemonstrated for BECsin optical lattices by means of measurements
of the effective mass* or of the sound velocity***¢. In the supersolid,
however, the dynamics linked to the reduced superfluid fractionis not
constrained by an external potential and so totally new phenomena
might be observed. The large value of f, we measured for the dipolar
supersolid, which remainslarger than10% also for deep density modula-
tions, indicates that partially quantized supercurrents'®*® and vortices”
should appear at amacroscopic level.

Owing to the generality of the Josephson effect, our Josephson-
oscillation technique might be applied to characterize the local
superfluid dynamics of the other supersolid-like phases under study
insuperfluid and superconducting systems. Equation (3) is applicable
in general, considering that the detection of Josephson oscillations
implies measurement of both the coupling energy and the spatial
period of the superfluid density modulation. For example, a promis-
ing type of system may be the pair-density-wave phase in supercon-
ductors, in which the modulation has already been resolved. The
Josephson-oscillation technique works naturally in linear geometries
andsoitdoesnotrequire any adaptation for the finite size of the clus-
tersin the supersolid-like phases available in experiments' 2, differently
from the rotation technique' (see Methods).

Furthermore, the self-inducedJosephsonjunctions we have identified
insupersolids might have extraordinary properties resulting from the
mobility of the weak links. Indeed, although the Goldstone mode of the
weak links is not relevant for the Josephson dynamics owing toits very
low energy, for the same reason, it may affect the fluctuation properties
of the junction®, potentially leading to new thermometry methods*®
and especially to previously unknown entanglement properties®.

Online content

Anymethods, additional references, Nature Portfolio reporting summa-
ries, source data, extended data, supplementary information, acknowl-
edgements, peer review information; details of author contributions
and competinginterests; and statements of data and code availability
are available at https://doi.org/10.1038/s41586-024-07361-9.

1. Nyéki, J. etal. Intertwined superfluid and density wave order in two-dimensional “He.
Nat. Phys. 13, 455-459 (2017).

2. Choi, J., Zadorozhko, A. A., Choi, J. & Kim, E. Spatially modulated superfluid state in
two-dimensional “He films. Phys. Rev. Lett. 127, 135301 (2021).

3. Levitin, L. V. et al. Evidence for a spatially modulated superfluid phase of *He under
confinement. Phys. Rev. Lett. 122, 085301 (2019).

4. Shook, A. J. et al. Stabilized pair density wave via nanoscale confinement of superfluid
He. Phys. Rev. Lett. 124, 015301 (2020).

5. Léonard, J., Morales, A., Zupancic, P., Esslinger, T. & Donner, T. Supersolid formation
in a quantum gas breaking a continuous translational symmetry. Nature 543, 87-90
(2017).

6. Li, J.-R. etal. A stripe phase with supersolid properties in spin-orbit-coupled Bose-Einstein
condensates. Nature 543, 91-94 (2017).

7. Tanzi,L.etal. Observation of a dipolar quantum gas with metastable supersolid properties.
Phys. Rev. Lett. 122,130405 (2019).

8.  Bottcher, F. et al. Transient supersolid properties in an array of dipolar quantum droplets.
Phys. Rev. X9, 011051 (2019).

9. Chomagz, L. et al. Long-lived and transient supersolid behaviours in dipolar quantum
gases. Phys. Rev. X9, 021012 (2019).

10. Hamidian, M. H. et al. Detection of a Cooper-pair density wave in Bi,Sr,CaCu,Og,,. Nature
532, 343-347 (2016).

1. Liu, Y. et al. Pair density wave state in a monolayer high-T, iron-based superconductor.
Nature 618, 934-939 (2023).

12.  Agterberg, D. F. et al. The physics of pair-density waves: cuprate superconductors and
beyond. Annu. Rev. Condens. Matter Phys. 11, 231-270 (2020).

13. Gross, E. P. Unified theory of interacting bosons. Phys. Rev. 106, 161 (1957).

14. Andreey, A. F. & Lifshitz, |. M. Quantum theory of defects in crystals. Sov. Phys. JETP 29,
107-1113 (1969).

15. Chester, G. V. Speculations on Bose-Einstein condensation and quantum crystals,.
Phys. Rev. A 2, 256-258 (1970).

16. Leggett, A. J. Can a solid be superfluid? Phys. Rev. Lett. 25,1543 (1970).

17.  Gallemi, A., Roccuzzo, S. M., Stringari, S. & Recati, A. Quantized vortices in dipolar
supersolid Bose-Einstein-condensed gases. Phys. Rev. A102, 023322 (2020).

18. Tengstrand, M. N., Boholm, D., Sachdeva, R., Bengtsson, J. & Reimann, S. M. Persistent
currents in toroidal dipolar supersolids. Phys. Rev. A 103, 013313 (2021).

19. Josephson, B. D. Possible new effects in superconductive tunnelling. Phys. Lett. 1,
251-253 (1962).

20. llzhofer, P. et al. Phase coherence in out-of-equilibrium supersolid states of ultracold
dipolar atoms. Nat. Phys. 17, 356-361(2021).

21.  Norcia, M. A. et al. Two-dimensional supersolidity in a dipolar quantum gas. Nature 596,
357-361(2021).

22. Xiang, J. et al. Giant magnetocaloric effect in spin supersolid candidate Na,BaCo(PO,),.
Nature 625, 270-275 (2024).

23. Pethick, C. J., Chamel, N. & Reddy, S. Superfluid dynamics in neutron star crusts.
Prog. Theor. Phys. Suppl. 186, 9-16 (2010).

24. Conti, S. et al. Chester supersolid of spatially indirect excitons in double-layer
semiconductor heterostructures. Phys. Rev. Lett. 130, 057001 (2023).

25. Tanzi, L. et al. Supersolid symmetry breaking from compressional oscillations in a dipolar
quantum gas. Nature 574, 382-385 (2019).

26. Guo, M. et al. The low-energy Goldstone mode in a trapped dipolar supersolid. Nature
574, 386-389 (2019).

27.  Leggett, A. J. Superfluidity. Rev. Mod. Phys. 71, S318 (1999).

28. Biagioni, G. Evidence of superfluidity in a dipolar supersolid. Il Nuovo Cimento C 44,107
(2021).

29. Landau, L. Theory of the superfluidity of helium II. Phys. Rev. 60, 356-358 (1941).

30. Bozovic, I., He, X., Wu, J. & Bollinger, A. T. Dependence of the critical temperature in
overdoped copper oxides on superfluid density. Nature 536, 309-311 (2016).

31. Tanzi, L. et al. Evidence of superfluidity in a dipolar supersolid from nonclassical
rotational inertia. Science 371, 1162-1165 (2021).

32. Norcia, M. A. et al. Can angular oscillations probe superfluidity in dipolar supersolids?
Phys. Rev. Lett. 129, 040403 (2022).

33. Roccuzzo, S. M., Recati, A. & Stringari, S. Moment of inertia and dynamical rotational
response of a supersolid dipolar gas. Phys. Rev. A 105, 023316 (2022).

34. Fisher, M. E., Barber, M. N. & Jasnow, D. Helicity modulus, superfluidity, and scaling in
isotropic systems. Phys. Rev. A 8, 1111 (1973).

35. Leggett, A. J. On the superfluid fraction of an arbitrary many-body system at T = 0. J. Stat.
Phys. 93, 927-941(1998).

36. Smerzi, A., Fantoni, S., Giovanazzi, S. & Shenoy, S. R. Quantum coherent atomic tunneling
between two trapped Bose-Einstein condensates. Phys. Rev. Lett. 79, 4950 (1997).

37. Zapata, |., Sols, F. & Leggett, A. J. Josephson effect between trapped Bose-Einstein
condensates. Phys. Rev. A 57, R28 (1998).

38. Chomaz, L. et al. Dipolar physics: a review of experiments with magnetic quantum gases.
Rep. Prog. Phys. 86, 026401 (2022).

39. Bottcher, F. et al. Dilute dipolar quantum droplets beyond the extended Gross-Pitaevskii
equation. Phys. Rev. Res. 1, 033088 (2019).

40. Biagioni, G. et al. Dimensional crossover in the superfluid-supersolid quantum phase
transition. Phys. Rev. X 12, 021019 (2022).

41. Cataliotti, F. S. et al. Josephson junction arrays with Bose-Einstein condensates. Science
293, 843-846 (2001).

42. Albiez, M. et al. Direct observation of tunneling and nonlinear self-trapping in a single
bosonic Josephson junction. Phys. Rev. Lett. 95, 010402 (2005).

43. Levy, S., Lahoud, E., Shomroni, I. & Steinhauer, J. The a.c. and d.c. Josephson effects in a
Bose-Einstein condensate,. Nature 449, 579-583 (2007).

44. Valtolina, G. et al. Josephson effect in fermionic superfluids across the BEC-BCS crossover.
Science 350, 1505-1508 (2015).

45. Tao, J., Zhao, M. & Spielman, I. B. Observation of anisotropic superfluid density in an
artificial crystal. Phys. Rev. Lett. 131,163401 (2023).

46. Chauveau, G. et al. Superfluid fraction in an interacting spatially modulated Bose-Einstein
condensate. Phys. Rev. Lett. 130, 226003 (2023).

47. Berrada, T. et al. Integrated Mach-Zehnder interferometer for Bose-Einstein condensates.
Nat. Comm. 4, 2077 (2013).

48. Gati, R., Hemmerling, B., Félling, J., Albiez, M. & Oberthaler, M. K. Noise thermometry with
two weakly coupled Bose-Einstein condensates. Phys. Rev. Lett. 96, 130404 (2006).

49. Pezzé, L., Smerzi, A., Oberthaler, M. K., Schmied, R. & Treutlein, P. Quantum metrology
with nonclassical states of atomic ensembles. Rev. Mod. Phys. 90, 035005 (2018).

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution

oy 4.0 International License, which permits use, sharing, adaptation, distribution

and reproduction in any medium or format, as long as you give appropriate

credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a copy of this licence,
visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2024

Nature | Vol 629 | 23 May 2024 | 777


https://doi.org/10.1038/s41586-024-07361-9
http://creativecommons.org/licenses/by/4.0/

Article

Methods

Supersolid preparation

The experiment starts from a BEC of >Dy atoms trapped in aharmonic
potential created by two dipole traps crossing in the horizontal (x, y)
plane®. To tune the interaction parameter €44 = a44/a,, we control the
contact scattering length a, with magnetic Feshbach resonances,
whereas the dipolar scattering length a4 =130aq, is fixed. The con-
densateisinitially prepared at amagnetic field B~ 5.5 G, correspond-
ing to a scattering length of about 140a,. The magnetic field is then
slowly changed towards the critical values for the superfluid-super-
solid phase transition, close to the set of Feshbach resonances around
5.1G (refs. 7,39). We calibrate the magnetic-field amplitude using
radio-frequency spectroscopy before and after each experimental
run. The magnetic-field stability is about 0.5 mG, corresponding to a
scattering-length stability of about 0.25a,. Because the overall system-
aticuncertainty in the absolute value of a;is about 3a,, corresponding
toanuncertainty in 44 0f about 4%, we identify a precise B-to-a, conver-
sion by comparing the experimental and numerical datafor the critical
£44for the phase transition*. The typical atom number in the supersolid
isN=(2.8 + 0.3) x 10*. We expect thermal effects to be negligiblein the
Josephson dynamics, asthe coupling energy K(N, + N;) ison the order
of kz100 nKin the whole supersolid regime and from measurements of
the thermal fraction on the BEC side, we get T< 30 nK (ref. 7).

Excitation of the Josephson dynamics

The optical lattice used to excite the Josephson dynamics consists of
two repulsive laser beams at 1,064 nm that intersect at a small angle,
providingalattice periodd, = (7.9 + 0.3) um. The stability of the lattice
positionisbetter than10% of its period over the duration of the experi-
ment (see Extended Data Fig. 1a) and, before each measurement, we
checktherelative position of the lattice and the supersolid. Most of the
noisein the excitation protocol comes fromshot-to-shot fluctuations
ofthe supersolid lattice owing to the Goldstone mode (the position of
asingle cluster has as.d. on the order of 25% of the supersolid period;
see below).

To calibrate the phase difference imprinted by the optical lattice, we
switchonthelattice at fixed U,, = k;100 nK for a variable pulse duration
rand we measure the imprinted phase difference ¢, = U,,.7/h immedi-
ately after the pulse; see Extended Data Fig. 1b.

Inthe experiment, we detect clear Josephson oscillations only when
theinitialimprinted phaseis1rad orlarger. Inthis regime, we compare
the experimental and numerical Josephson frequencies as a function
of the amplitude of the oscillation (see Extended Data Fig. 2). We find
asmall reduction (about 15%) compared with the small-amplitude
regime, which allows us to use the equation w;= ,/4KN,,U to extract
the coupling energy K from the experimental Josephson frequencies.
The need for large excitation amplitudes in the experiment can be
explained by the presence of the Goldstone mode, which introduces
an unavoidable noise onboth Zand Ag.

We checked that applying the same phase-imprinting protocol to
standard BECs does not produce any detectable Josephson oscillation;
see Extended Data Fig. 3. This observation can be justified by the fact
that the spatially stationary excitations of the condensate, the rotons,
have a spatial period similar to the supersolid period d, so they cannot
be excited by the opticallattice with d, ~ 2d. The excitations with spatial
period equalto d, haveinstead aphonon/maxon character, they are not
stationary in the harmonic trap and so they cannot produce spatially
stable oscillations.

Ingeneral, this observation proves that the self-induced Josephson
oscillations exist in the supersolid but not in the superfluid. We can-
not make reliable experiments in the solid-like droplet-crystal phase,
owing to the exceedingly short lifetime of the experimental system
inthat regime, but the simulations show that the Josephson coupling
becomes negligible and Josephson oscillations are absent.

Phase detection and analysis

To measure the phase difference between the two central clusters of
the supersolid, Ap = @, — @,, we record the atomic distribution in the
(x,y) plane by absorptionimaging after 61 ms of free expansion. About
200 ps before releasing the atoms from the trapping potential, we
increase the contact interaction strength by setting a,=140a,, thus
minimizing the relative effects of the long-range dipolar interaction on
the expansion. We interpret the recorded distributions as the atomic
density in momentum space, p(k,, k,). In the supersolid regime, the
momentum distribution shows aninterference patternresulting from
the superposition of the expanding matter waves of each cluster (see
snapshots in Fig. 2a). We first integrate the 2D distribution over k, to
obtain the 1D momentum distribution p(k,). We then fit p(k,) with a
double-slit model:

p(ky) = G (ky, ko, 0) [1+A;cos® (it (k. — ko) [k, + 6)]

inwhich G(k,, k,, 0) is a Gaussian envelope of centre k,and width cand
A, k. and @ are the amplitude, period and phase of the modulation,
respectively. Owing to the cos?(x) termin our fit function, the physical
phase difference is given by Agp = 26.

Although the interference pattern is generated by six overlapping
clusters, A can be extracted with agood approximation (within 20%)
by the double-slit model owing to the finite resolution of our imaging
system in momentum space (0.2 pm™, 1/e Gaussian width) and to the
lower weight of lateral clusters. This is experimentally confirmed by
the measured imprinted phase ¢, as a function of the pulse depth,
shown in Extended Data Fig. 1, which is in good agreement with the
prediction for the phase difference between adjacent clusters, U, t/A.

For eachobservationtimet, we take n =20-30 images. We then calcu-
late the mean value of Ag using the circular mean, whichis appropriate
for a periodic quantity such as an angle:

n
Ap= arg[Z em‘”f]

J=1

inwhich arg(x) indicates the argument of the complex number xandi
istheimaginary unit. The corresponding error is given by the circular
s.d. of the mean™.

Imbalance detection and analysis

To measure the population imbalance between clusters, we image
the supersolid in situ in the (x, y) plane using an imaging system with
aresolution of 2.5 pm, smaller than the cluster spacing of 4 um. To
avoid saturation effects as a result of the high density of the sample,
we use dispersive phase-contrast imaging> with an optical beam
detuned by 5/ from the 421-nm optical transition. From each experi-
mental shot, we calculate the imbalance as follows. We integrate the
column density along the y direction (transverse to the modulation),
obtaining 1D density profiles in which we identify the two main peaks
(snapshotsin Fig. 2b). We then measure the populations N, + N, + N,
and N, + N; + Ngintegrating the signal to the left and to the right of the
minimum between the clusters, respectively. We then compute the
observable Z= (N;+ Ns+ N, - N; = N,— N))/N.

Owing to the limited optical resolution, we can only clearly resolve
theleftand right clusters populations when the contrast of the density
modulationis highenough, thatis, only at g,y = 1.444. For lower £44, we
use an optical-separation technique to increase the signal-to-noise
ratio. We turn onthe optical lattice used for the excitation 5 ms before
image acquisition. This causes the main clusters to move away, falling
into the minima of the optical potential and increasing their distance
(snapshots in Fig. 2a and in Extended Data Fig. 4). Although our lat-
tice does not have the optimal spatial phase to separate the clusters,
because it has a maximum at the position of one cluster, we checked



with numerical simulations that the only effect on the imbalance Zis
the addition of a constant offset, thus not changing the oscillation fre-
quency (see Extended DataFig. 4). Experimentally, we checked that the
Josephson frequencies measured with and without the optical separa-
tion are consistent within one s.d. (see filled and empty pink points at
£4q4=1.444inFig.4). Atlower g4, very close to the phase transition, the
contrast is too low, so we rely only on phase measurements.

Experimental measurement of the superfluid fraction from the
Josephson frequency

To measure the superfluid fraction in the whole supersolid regime,
reported in Fig. 4, we use the Josephson frequency w, extracted from

2 /(4N3U
phase oscillations. We use the formula f= % The period d of
nm
the supersolid lattice is measured with in situ imaging, obtaining

d=3.7 £ 0.1 pm. The quantity N,,Uis taken from the numerical simula-
tions. Because the experimental oscillations are not in the small-
amplitude limit, the frequencies are underestimated by about 15%
(see Extended Data Fig. 2). The upper error bar for f; in Fig. 4 includes
accordingly a15% uncertainty. For the experimental configurationsin
which we measure both Zand Ag, we also checked that U extracted
from equation (5b) is in agreement with the simulations.

Discussion of the Leggett model

Leggett derived the upper bound for the superfluid fraction fsu inthe
case of alD systemrotating in an annulus with radius R, for which the
moment of inertiais /= (1-f,)I., with /. the classical moment of iner-
tia'®. To find the phase profile ¢(x) that minimizes the kinetic energy
for afixed number density n(x), we have to work in the frame corotat-
ing with the annulus, in which the external potential is independent
of time. In this frame, the rotation imposes a phase twist between
neighbouring clusters, proportional to the angular velocity Q of the
annulus, A@ = @(d) - (p(O) mQRd/h The result of the energy mini-
mizationis g (x) = Aqof dx’n(x’y l/f dx n(x’)’ and the correspond-
mgkmetlcenergycostlsEkm(A(p) Nfz /(2md )f Ap?, mwhlchf is
the upperbound of equation (3). The lower bound fI instead, is found
starting from the 3D kinetic energy, which also includes the deriva-
tives along the transverse directions y and z (ref. 34). It reads
f=fdydz (1/dj dx/a(x,y,z)y, inwhich T (x, y, z) is the normalized 3D
density. From the expression of the energy, we see that the superfluid
fraction has the role of an elastic constant for the phase deformation.
The density and phase profiles sketched in Fig. 1b, and the correspond-
ing energy density h*/(2m)n(x)|Ve(x)|? are for a hypothetical homo-
geneous supersolid lattice with f; = 0.20.

In the Josephson case, the phase twist is externally applied with an
odd parity, to induce Josephson oscillations between neighbouring
sites. The energy minimization on the single cell gives the same result
asbefore, asitisinsensitive to the sign of the phase twist. In the sketch
of Fig. 1c, we build the odd phase profile by changing sign from cell to
cellto @(x) of Fig.1b. We note that, inalinear system suchas that used in
the experiment, the superfluid fraction measured from the Josephson
dynamicsis not affected by radial effects, which areinstead relevantin
the case of rotating systems®. Indeed, the superfluid fraction extracted
from a measurement of the moment of inertia, /= (1-f;)/.,, would also
take into account the extra contribution given by the reduced inertia
ofthe superfluid clusters composing the system, which rotate around
their centres of mass. Leggett’s upper bound is instead derived in the
limit of an infinite radius of the annulus, for which such radial effects
can be neglected®.

Goldstone mode

Inaharmonictrap, the Goldstone mode energy Aw s finite but much
smaller than Aw,, as the supersolid canrearrange its density to minimize
the centre-of-mass displacement. The resulting dynamicsis an oscilla-
tion of the lattice position, imbalance and relative phase. Owing to its
low frequency, the Goldstone mode is thermally activated. Similarly to

previous works?, we detect the Goldstone excitation as fluctuations
inthelattice position that keep the centre of mass fixed (see Extended
Data Fig. 5). We prepare the supersolid with three main clusters and,
without any further manipulation, examine the in situ density. We
detect fluctuations in the cluster positions, with s.d. o jsers = 1 tm,
much larger than the centre-of-mass fluctuations, o.,,, = 0.4 pum. The
Goldstone mode also introduces some noise in Zand Ag during the
dynamics, which we estimate to be about 20% of the Josephson ampli-
tude, for both observables.

The frequency of the Goldstone mode canbe observed in numerical
simulations at T = 0 by setting an initial Z, > O together with a small
displacement of the weak link position, x, # O; see Extended Data
Fig. 5.In the time evolution of Z, we find a very low frequency oscil-
latlon ws=21m(3.56 £ 0.08) Hz, on top of the Josephson dynamics,

=2m(23.85 + 0.03) Hz. We find similar values for A@. The weak link
position oscillates at the same low frequency wg.

Numerical simulations

To simulate the dynamics of our system, we numerically integrate the
extended GPE:

ih

_ 2
QD {—fmvz Voo (P) + GPCF, OF + [ dF Vg IF - DI, OO

+y(egg (T, t)|3}¢(r, t)

inwhichV; . (F) = 3m(w,>x?+ w,%? + w,%2?) is the harmonic external
nhza5
potential, g=——

Vyq(r) = @%IS thedipolarinteraction, with 8the angle between

rand zand Cud= 36408 Thelasttermis the Lee-Huang-Yang energy of
quantum fluctuations®. Josephson dynamics was induced either by an
antisymmetric phaseimbalance imprinted with asinusoidal potential
asin the experiment or by aninitial antisymmetric population imbal-
ance. Both methods excite the same Josephson normal mode. Atom
number and phase for each cluster are calculated at each time step by
determining the position of the density minimabetween the clusters,
eliminating their slow and weak oscillations.

The superfluid fraction in Fig. 4a (green dots) is obtained by cal-
culating the coupling energy K in the limit of small initial imbalance
(Z(0) = 0.01), finding values in the range K = k;(0.1-0.01) nK. From
equation (5b), we find N,,U = k3(5-7) nK, slowly varying with &,44. The
ratio N;,U/(2K) is always larger than 25.

is the contact interaction parameter and

Six-mode Josephson model

We use a set of six-mode Josephson equations with interaction param-
eters U, withj=1,...,6 labelling the clusters, five coupling parameters
between adjacent clusters K;;,; and energy offsets £, and E; for the
opposite side clusters1and 6 and 2 and 5, owing to the harmonic
trap. We indicate as K= K3, and U = U, = U, the coupling and interac-
tion energies, respectively, in two central clusters. The symmetry
of the system further allows us to equalize the two side couplings
K’ = K,;=K,sand K” = K}, = Kss and the two side interactions U’ = U, = U
and U” = U, = U, (see Fig. 2a). We thus have a system of six equations
for the time evolution of the populations N, and five phase differ-
ences ;= @;,~ @;

Ny=~2K".[NyN;sin(g,,)

=2K" [N,)N;sin(@,,) = 2K".[N;N, sin(@,,)
N3 = 2K’ [N3N;sin(@,,) = 2K . [N,N;sin(g, )
N, = 2K [NyN;sin(g,;) —2K".[NsN, sin(gy,)
Ns=2K".[NsN,sin(g,) —2K”. [N,Nssin(g,,)
Ny =2K" [NgNssin(g, )

(5a)
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@, =5+ U'N-UN,
@5,=Eo+ UN,— UN;
@, =UN;-N,)

s, =—Eo+ UN,— U'Ns
Gy == E+ UNs= U'N,

(5b)

in which we have considered the case (N, + N;)U/(2K) > 1 so that we
have neglected the tunnelling terms in the evolution of the phases.

In the following, we further consider small-amplitude oscillations
such that we can replace {,W ~ [N(O)N,(0) and sin(¢;) = @;in equa-
tion (5a),inwhich N,(0) is theinitial population of thejth cluster at time
t=0. For symmetry reasons, we have N,(0) = N,(0), N,(0) = N5(0) and
N;(0) = N,(0). Evenin the linear regime, the time evolution of popula-
tions and phases predicted by equations (5a) and (5b) shows several
frequencies. Harmonic single-frequency oscillations with at/2 phase
shiftbetween populations and relative phases are observed under the
two conditions:

v _, K [N(O)
U K"\ N(0) ’

K [N3(0) 6)
U 1+K’ N»(0)

U L, K MmO
1+K/ N3(0)

In particular, under these conditions, we have

Ny - Ny = a(Ng - Ny+ Ny Ny), %)

inwhicha =1/(U/U’ - U/U”). The correspondingJosephson oscillation
frequency is

w3 =2KU[N5(0) + Ny(0)]a/(a-1). (8)

To evaluate the parameters in the above equations and verify equa-
tion (6), we insert into equations (5a) and (5b) the numerical results
for Ni(t) and @,(t) obtained from GPE simulations. A comparison
between GPEs oscillations and the six-mode modelis shownin Extended
DataFig. 6. First, the GPE ground state gives N;(0) = N,(0) = N/4, whereas
the population ofthe lateral clusters depends on & . In particular, outer
clusters N;(0) = N4(0) decrease, whereas N,(0) = N5s(0) increase as 44
increases. The parameters Uand K of the central clusters are extracted
from equations (4a) and (4b). The other parameters U, U”, K’ and K”
are extracted from fits using equations (5a) and (5b). Overall, we obtain
that the interactions parameters are U/U’ = 1, U/U” = 1/2 within fluc-
tuations of about 10% for different values of ¢,.. On the other hand, the
couplingratio K/K’ = 0.6 is constant, whereas K/K” = 0.7 on the BEC side
and decreases with g4, as do the initial external populations
N;(0) = N,(0). We thus find that equation (7) is fulfilled and a = 2. For
this value of a, equation (8) gives wf =4KUIN;(0) + N,(0)],in agreement
with the main text.

Taking into account equation (7) and the symmetry condition
N;(0) =N,(0), wefind N; - N, = a(N, - N, + N;— N,) ateach time. We thus
have Z=(a—1)/aAN/N, with AN =N, - N,. This reduces to AN =2NZfor
a = 2. Using equation (5a), we have Z = - 4K./N,(0)N;(0) /Nsin(Ag),
with Ap = @,;. We can write 2./N;(0)N,(0) = N5(0) + N,(0) =N,, and
get Z =-2KN,,/Nsin(Ag). The evolution of the phase difference
A =U(N;— N,) (see equation (5b)) rewrites as Ap = UAN=2NUZ.

Itisinterestingto take the limit of aninfinite array of equal junctions,
each one characterized by the same parameters of our central cell.
The parts of equation (5a) are all equivalent and, because of the sym-
metry of the array, N,(0) = N,(0) and @,,,= -,V i,j. We then get
AN=N;=Njy=— 4KN, ;.18I0(@, ;) With N,y = N(0) + N;.,(0), equivalent
to equation (4a). Equation (4b) for the phase evolution applies in the
infinite case as well.
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Extended DataFig.1|Characterization of the optical lattice. a, Stability of
thelattice. Black dots are the relative positions of the density peaks of aBEC
loadedinto the optical lattice with respect to the average centre of mass, for 45
different measurements. The s.d. of fluctuations for each lattice positionis
Opawice = 0.35 pm. b, Calibration of the initial phase difference imprinted on the
two main clusters as afunction of the lattice pulse duration. Red dots are
experimental data obtained by imprinting the optical lattice potential for
different pulse durations. Error bars are thes.e.m. 0of 15-20 data points. The
dashedlineisthe theoretical prediction (Ut/h) with alattice depth U=100 nK.
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Extended DataFig.2|Josephsonfrequency as afunction of the phase
amplitude. Black dots are theory, red dots are experiment. Vertical error bars
areextracted from the sinusoidal fit of the Josephson oscillations. Horizontal
error bars arethes.e.m. of the phase difference detected at t = 0, after the phase
imprinting. The highlighted regionis the relevant one for the experiment. For
typical experimental amplitudes 1t/2, we observe a frequency reduction of
about15% compared with the small-excitation regime.
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Extended DataFig.3|Absence of Josephson oscillations for astandard BEC.
Time evolution of the populationimbalance after the phase imprinting fora
supersolid (blue) and an unmodulated BEC (orange), extracted using optical
separation. Dashed lines are sinusoidal fitswith one s.d. confidence bands in
shaded colour. The fitted oscillation amplitude of the BEC is compatible with
zero.Errorbarsare the s.e.m. of 15-20 data points.
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Extended DataFig. 4| Analysis of the optical-separation technique.

a, Experimentalin situimages of two balanced (Z= 0) supersolids without any

manipulation (left) and using optical separation (right). b, Numerical simulation

ofthe dynamics of three different supersolids withinitial populationimbalance

Zy,=5%(green), Z,=0% (red) and Z, = -5% (blue), during optical separation. Top

row, imbalance Z. Bottom row, distance between the central clusters.



1Y

Supersolid sites position (um)
6 4 2 0 2 4 6

@ 100
S 75
50 25 —
@ 2
5 <
5 ° £
15 €
g 75 8
o 5o (&)
=3 5
i 28’
-6 6 01 2 3 4
Center of mass position (um) Position (um)
b . . . : .
_. 03
€
=2 0
<
0.3
10 F ) ) ) J o3
402
5 =
401 __
= o
S ot {100 &
N
101°%
-5}
1-0.2
10, ) L L 1-03
0 50 100 150 200

t (ms)

Extended DataFig.5|Evidence of the Goldstone mode in experimental and
numerical data. a, Left panels, fluctuation of the clusters positions (black and
green points) and centre of mass (pink points) of the supersolid for about 100
experimental shots. Right panel, histograms of the right-cluster (green) and of
the centre-of-mass (pink) positions. b, Simulation of the Josephson dynamics
coupled tothe Goldstone oscillation. The position of the density minimumx,
(toprow) shows aclear oscillation at the Goldstone frequency w; < w,. This
lower frequency also appearsinZand Ag (bottom row) on top of the standard
Josephson dynamics.
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Extended DataFig. 6 | Six-mode model and numerical simulations. a, Sketch
oftheinhomogeneous system with six clusters with interaction energies U, U’
and U”, with coupling energies K, K’ and K”. The modes in the sketch are not to
scale (compare with the simulationin Fig. 2a). b,c, Comparison between the
time evolution calculated from the GPE simulations (solid lines) and from the
six-mode model (dot-dashed lines) for Z(b) and A¢ (c). d, Relative currents
between the central and lateral clusters appearingin equation (7), from GPE
simulations. The solid line is (N5 - N,)/2 and the dashed line is (N; + Ns— N, = N;).
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