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A B S T R A C T   

Consciousness can be defined as a phenomenological experience continuously evolving. Current research showed 
how conscious mental activity can be subdivided into a series of atomic brain states converging to a discrete 
spatiotemporal pattern of global neuronal firing. Using the high temporal resolution of EEG recordings in pa-
tients with a severe Acquired Brain Injury (sABI) admitted to an Intensive Rehabilitation Unit (IRU), we detected 
a novel endotype of consciousness from the spatiotemporal brain dynamics identified via microstate analysis. 
Also, we investigated whether microstate features were associated with common neurophysiological alterations. 
Finally, the prognostic information comprised in such descriptors was analysed in a sub-cohort of patients with 
prolonged Disorder of Consciousness (pDoC). Occurrence of frontally-oriented microstates (C microstate), like-
lihood of maintaining such brain state or transitioning to the C topography and complexity were found to be 
indicators of consciousness presence and levels. Features of left–right asymmetric microstates and transitions 
toward them were found to be negatively correlated with antero-posterior brain reorganization and EEG sym-
metry. Substantial differences in microstates’ sequence complexity and presence of C topography were found 
between groups of patients with alpha dominant background, cortical reactivity and antero-posterior gradient. 
Also, transitioning from left-right to antero-posterior microstates was found to be an independent predictor of 
consciousness recovery, stronger than consciousness levels at IRU’s admission. In conclusions, global brain dy-
namics measured with scale-free estimators can be considered an indicator of consciousness presence and a 
candidate marker of short-term recovery in patients with a pDoC.   

1. Introduction 

Severe acquired brain injuries (sABIs) are characterized by trau-
matic, anoxic, vascular, or other etiology that cause coma for at least 24 
h. sABI frequently lead to permanent sensorial, motor, cognitive, or 
behavioral disabilities with an incidence between 10 and 15 new cases/ 
100,000 persons/year (Masson et al., 2001). After a sABI, some patients 
may survive in a state of prolonged disorder of consciousness (pDoC). 
Such condition includes the Unresponsive Wakefulness Syndrome 
(UWS, eyes open with no evidence of voluntary behaviors (Hirschberg 

and Giacino, 2011) and the Minimal Consciousness State (MCS), an in-
termediate state in which minimal, inconsistent but reproducible signs 
of behavioral responsiveness are present (awareness) (Giacino et al., 
2002). Some of these patients may indeed recover full consciousness, 
whenever a reliable “yes/no” communication is achieved (emergence 
from MCS, eMCS). Overall, clinical improvement and survival in pa-
tients with sABI are commonly associated with neurological severity 
(Edlow et al., 2020; Whyte et al., 2009); however, high clinical 
complexity and a vast number of comorbidities (Estraneo et al., 2020; 
Liuzzi et al., 2022) may also reduce the likelihood of reaching favorable 
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outcomes. Nevertheless, given the heterogeneity of aetiologies and 
structural lesions leading to a pDoC and the possibility of covert 
cognition in absence of behavioral response (Thibaut et al., 2021), 
current guidelines advocate for a multimodal assessment of conscious-
ness combining instrumental techniques (EEG, PET, fMRI) and clinical 
evaluation (CRS-R) to complement diagnosis (Giacino et al., 2014; 
Kondziella et al., 2020). Within this context, EEG-based active para-
digms have been developed to detect signs of awareness during different 
tasks (Sitt et al., 2014; Boly et al., 2011) and provide prognostic in-
dicators in pDoC patients (Leon-Carrion et al., 2009; Haveman et al., 
2019). Nevertheless, such active paradigms are dependent on higher- 
order cognitions, thus possible only in MCS + and eMCS (Aubinet 
et al., 2020; Aubinet et al., 2019). Lastly, these hypothesized proxies of 
awareness may not be evident in patients without clear neurobehavioral 
response (Fischer et al., 2010; Wijnen et al., 2007; Kotchoubey, 2005; 
Kotchoubey et al., 2005). Therefore, when deriving diagnostic and 
prognostic markers in pDoC patients, data collection protocols should be 
independent from the intrinstic integrity of the sensorimotor pathways. 

To this extent, an EEG spectrum shifted toward higher frequencies 
(α) (Sitt et al., 2014; Liuzzi et al., 2022; Scarpino et al., 2019) with 
higher temporal and spatial complexity (resting state and stimuli- 
related) (Sitt et al., 2014; King et al., 2013) is related to milder alter-
ations of consciousness (Sitt et al., 2014; Chennu et al., 2017; Chennu 
et al., 2014). Furthermore, it has been highlighted how the presence of a 
pDoC is mostly related to the disconnection of different cortical regions, 
rather than to the dysfunction of a single brain area (Chennu et al., 2017; 
Chennu et al., 2014; Demertzi et al., 2015; Varley et al., 2020; Forgacs 
et al., 2017). Therefore, there is the necessity to investigate neural 
functioning looking at the brain as a whole, even if data is sampled 
electrode-wise (Dipasquale and Cercignani, 2017; Forgacs et al., 2015). 
In the last years, this concept has been applied to patients with a pDoC 
via graph theory networks, highlighting impaired network integration 
and increased network segregation (Chennu et al., 2017; Chennu et al., 
2014; Rizkallah et al., 2019). Also, functional connectivity studies re-
ported how information processing in pDoC moves from a global- 
network mode to a local, single-area data processing (Rizkallah et al., 
2019). 

Such evidence reflects a disconnection in the thalamo-cortico- 
thalamic circuit interrupting macro-scale interactions, allowing for 
single-area properties to determine the global spectral dynamics (Schiff, 
2010; Schiff, 2016; Panda et al., 2022). Viewing thalamic activity as a 
central brain clock, the ABCD model was developed, defining precise 
operating regimes in terms of bandwidth, spatial distribution of acti-
vations and structure for each of the four (A, B, C, or D) EEG labeling 
(Alkhachroum et al., 2020; Comanducci et al., 2020; Forgacs et al., 
2022). Despite the ABCD model providing a classification of brain ac-
tivity inclusive of the spatial distribution of band-specific activity across 
the scalp, it does not take into account the transitions between brain 
states and the spatio-temporal evolution of brain attractors. (Giacino 
et al., 2014; Boly et al., 2008) A number of theories proposed a par-
cellation of consciousness in discrete brain states (Bréchet and Michel, 
2022; Efron, 1970; Bressler, 1995; Deco et al., 2011; Lehmann et al., 
2005; Lehmann, 1990). Lehmann, already from 1987 (Lehmann, 1990; 
Lehmann, 1995), suggested that discrete brain states could be defined by 
short-lasting stable global patterns, i.e., “microstates of cognition” or 
“atoms of thoughts”. Therefore, microstates are short periods (~100 ms) 
of stable (in topography) EEG potential while varying in strength and 
polarity. The topology of the main maps (then termed A, B, C, D) was 
found to be highly reproducible within and across subjects. (Koenig 
et al., 2002; Michel and Koenig, 2018) On the other hand, the temporal 
dynamics, the occurrence and the transitions between microstates are 
sensitive to the temporary brain state (Michel and Koenig, 2018; Khanna 
et al., 2014; Tomescu et al., 2018; da Cruz et al., 2020; Zanesco et al., 
2021). 

Given these premises, a comprehensive assessment of spatio- 
temporal brain dynamics in patients with pDoC via microstates 

analysis may lead to understanding which brain states are related to 
altered consciousness levels and to specific types of neurophysiological 
patterns. In the present work, we analyzed low-density, routinely 
collected EEG recordings of patients, extracting information on brain 
microstates. Such data was taken from a large, prospectively-collected, 
cohort of patients with a sABI enrolled in the PRABI study (Predictors 
of Recovery in patients with severe Acquired Brain Injuries) (Hakiki 
et al., 2022). We then studied microstates’ features, spatio-temporal 
dynamics and complexity across consciousness alterations and 
different neurophysiological conditions typical of sABI patients reported 
following international guidelines. Finally, the same features were used 
for prognostic analyses targeting the discharge consciousness state of a 
sub-cohort of patients with pDoC. 

2. Materials and methods 

2.1. Patients and clinical evaluation 

A prospective observational study was performed enrolling consec-
utively patients admitted to IRCCS Fondazione Don Carlo Gnocchi of 
Florence from 10 to 06-2020 to 01–06-2022 (Hakiki et al., 2022). In-
clusion criteria were diagnosis of a sABI, time post-onset < 4 months, 
age > 18, clinical stability. Approval from the local Ethical Committee 
was obtained (N. 16606OSS) and enrolment was done following the 
Helsinki Declaration. Additional exclusion criteria were: i) absence of at 
least 5 clean minutes of resting-state EEG, ii) excessive movement arti-
facts, iii) detached channel during the recording, or iv) rejection of more 
than 3 channels according to the PREP criteria. (Bigdely-Shamlo et al., 
2015) Patients have been included after obtaining a written consent 
signed by a legal guardian. Data concerning demographical and clinical 
aspects were recorded. Based on the highest value scored across at least 
five consecutive CRS-R evaluation with the best score retained for the 
analysis, a clinical diagnosis of consciousness was formulated both at 
admission and at discharge following international guidelines (Giacino 
et al., 2005; Wannez et al., 2017; Wang et al., 2020). 

2.2. EEG recording and ACNS labelling 

Standard clinical 30-minute EEG recordings were performed using a 
digital machine (Gal NT, EBNeuro). An EEG prewired head cap, with 19 
electrodes (Fp1-Fp2-F7-F8-F3-F4-C3-C4-T3-T4-P3-P4-T5-T6-O1-O2-Fz- 
Cz-Pz) set according to the 10–20 International Standard System was 
adopted with previously proposed EEG recording parameters (Scarpino 
et al., 2019; Scarpino et al., 2020) at a sample rate of 128 Hz. Recordings 
were performed with closed eyes and included an initial 10-minutes part 
of resting-state and 20-minutes of randomly administered stimuli. The 
entire recording (resting state + stimuli) was only used to report the 
ACNS Critical Care terminology. In particular, EEG labelling was per-
formed by the agreement of two expert neurologists (M.S., A.G.) ac-
cording to the related guidelines (Hirsch et al., 2021). The included 
descriptors were frequency (delta or theta), voltage (normal or low), 
presence of an anterior/posterior gradient (APG) in the background 
activity, presence of a symmetric brain background and lastly, presence 
of reactivity. APG was labeled if at any point in the epoch, a clear and 
persistent (>1 continuous minute) anterior to posterior gradient of 
voltages and frequencies was present. In particular, lower amplitude and 
faster frequencies were seen in anterior derivations while higher 
amplitude and slower frequencies were seen in posterior derivations. An 
EEG recording was labeled as reactive if a change in background EEG 
activity (amplitude or frequency) was present upon stimulation. Reac-
tivity could also be labeled as not constant when such change was not 
found repeatable across stimulations. Symmetry was defined as present 
when a consistent asymmetry in amplitude or in frequency was present 
for at least 50 % of the epochs. 
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2.3. EEG pre-processing 

Only the resting state portion of the EEG was used for microstate 
extraction and thus entered the preprocessing step. Each recording was 
visually inspected for excessive movement noise and the patient was 
retained for further analysis if at least 5 consecutive minutes of clean 
resting-state EEG were present. The initial and endpoint of the 5-minutes 
section were manually taken and used to crop the recording (Fig. 1). 
Consequently, unipolar recordings were re-referenced to the grand 
average and high-pass filtered using the MNE library (Gramfort et al., 
2013). In particular, a finite-impulse-response zero-phase filter with a 
Hamming’s window was applied to band-pass only components between 
1 and 30 Hz as suggested by the PREP pipeline (Bigdely-Shamlo et al., 
2015). Infinite-impulse-response notch (50 Hz) filtering was then 
applied to further remove power line disturbance. Then, the first five 
seconds of the recording were discarded to eliminate filtering artifacts. 
Channels with still excessive or uncorrelated noise were labeled 
following PREP criteria (Bigdely-Shamlo et al., 2015) and interpolated 
by means of spherical spline interpolation (Perrin et al., 1989; Freeden, 
1984) using the MNE library. 

Lastly, the extended InfoMax Independent Component Analysis 
(ICA) method was applied to remove artifacts prior to signal recon-
struction (Bell and Sejnowski, 1995). Within this step, a pre-whitening 
Principal Components Analysis (PCA) step was applied, decreasing 
dimensionality from Nchannels to Ncomponents with Ncomponents = 15. The 

whitened data, then entered into the ICA algorithm. Independent com-
ponents (ICs) were automatically labelled and excluded (confidence 
lower than 80 %) using the MNE-ICALabel library (Li et al., 2022) (a 
neural-network classifier trained on crowd-sourced data, based on the 
Matlab ICLabel implementation (Pion-Tonachini et al., 2019). Channel- 
level data was then reconstructed from the ICs spaces after including 
only brain data. 

2.4. Microstate analysis 

Patient-level microstate maps were estimated with a repeated clus-
tering technique. For each K-channel EEG recording, the Global Field 
Power (GFP) was computed as the standard deviation across all elec-
trodes at time t, 

GFP(t) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑

K(Vi(t) − Vmean(t) )2

K

√

with Vi being the potential of the i-th electrode and Vmean being the 
grand-average across all electrodes. The GFP peaks were detected and 
provided as input into a modified k-means algorithm. For each patient, 
the algorithm was executed 50 times and the solution minimizing the 
intra-cluster distance was retained for further analysis, in order to avoid 
falling into local minima. Such procedure was repeated with a variable 
number of clusters (from 3 to 10). For each patient the cross-validation 

Fig. 1. Study pipeline. EEG recordings are collected and labelled together with consciousness assessments (A). Recordings are pre-processed to obtain an artifact- 
free recording (B) and then entered the microstates extraction step (C). After obtaining the backfitted microstate sequence, features related to either the sequence or 
the transition matrix is extracted (D). Patients’ features entered different statistical analysis (E) targeting i) the presence/absence of a DoC, ii) different consciousness 
levels within the DoC sub-cohort and iii) different ACNS descriptors of the neurophysiological damage. 
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criterion (CV) as introduced by Pascual-Marqui et al., was computed. 
The average of patients’ CV across number of clusters was taken and the 
optimal number of clusters was found by estimating the elbow point as 
in Satopa et al. on the CV-Nmicrostates curve. Once retrieved the optimal 
Nmicrostates, and the related microstate sequence, a second clustering step 
(Niterations = 500) was applied to the individual topographies, to reduce 
patient-level variability in individual maps. The grand-average topog-
raphies were ordered following Michel and Koening (Michel and Koenig, 
2018) and then backfitted onto the individual patients’ GFP peaks with a 
winner-takes-all procedure. In particular, the microstate minimizing the 
Global Map Dissimilarity with the map at each time point t, was assigned 
to that timepoint. 

Lastly, to reduce the likelihood of having abnormally small micro-
state activations, the backfitting process was smoothed. In particular, 
the group-maps assignment was done to iteratively avoid segments 
shorter than 30 ms, by assigning the label to the second best (i.e., 
competitive backfitting). In the end, for each patient a sequence of mi-
crostates π was derived and retained for feature extraction. The micro-
state extraction process was performed via the eeg-microstates library 
(von Wegner et al., 2018) and custom python code. 

2.5. Microstate features 

For each patient, the sequence of microstates π was used to extract 
the related features. For each microstate, the mean duration, occurrence 
and coverage were extracted. In particular, the duration of a microstate 
corresponds to the time interval that is assigned to that microstate, and 
the mean duration is average across all segments of that microstate. The 
occurrence represents the average number of appearances that a 
microstate makes within one second and the coverage is the fraction (of 
time) of the total recording length occupied by a microstate. Lastly, the 
percentage of total variance explained (of the whole π sequence) by a 
given microstate (Global Explained Variance, GEV) was computed 
(Brodbeck et al., 2012). The information content of the microstates’ 
distribution was quantified by estimating the Shannon entropy H of the 
sequence as follows 

H = −
∑

n
p(n)logp(n)

with n running over the microstate labels, and p(n) the probability of 
the microstate n. H is estimated in nats, thus using natural logarithm. 
Then, the entropy rate of the sequence (Hm) is estimated from a set of 
Shannon entropies H for varying history lengths m as the slope of the 
linear fit m versus Hm. 

To test memory effects within the backfitted microstate sequence, 
the Markov properties of order 0, 1, and 2 were tested. For example, 
testing for 0-th order Markovian properties aims to evaluate whether 

P (Xt+1|Xt) = P (Xt+1)

expanded up the order k = 2 as follows: 

P
(
Xt+1|Xt,Xt− 1, Xt− (k− 1), ⋯,Xt− k

)
= P (Xt+1|Xt, Xt− (k− 1))

To get a feeling of the temporal dynamics of the recording spatial 
variance, the number of GFP per second was also computed. Also, 
transition probabilities between all pairs of microstates labels were 
assessed via the 4x4 transition matrix T̂. Each T̂ was tested for symmetry 
and stationarity. The first evaluated whether each state transition 
occurred with the same probability of the opposite transition. This was 
performed by testing the following: 

P(Xt+1 = Si|Xt = Sj) = P
(
Xt+1 = Sj

⃒
⃒Xt = Si

)

with Si, Sj two different states (e.g., A, B). 
Stationarity of the transition matrix was the independence of the 

number of transitions between Si and Sj (termed fij) within each block k 
(termed fijk) by the block index k. The hypothesis tested was the 
following 

P
(

X(k)
t+1|X

(k)
t

)
= P(Xt+1|Xt)

Lastly, first-order Markov surrogate chain was synthesized starting 
from the backfitted sequence following previous works (von Wegner 
et al., 2017; Häggström, 2002) and it was tested again for stationarity, 
asymmetry, and for geometric lifetime distribution of each microstate. 

2.6. Statistical analysis 

Microstates features were reported via median and interquartile 
ranges (when numerical) and via counts and percentages (when cate-
gorical, e.g., dichotomized p-values). A preliminary analysis on micro-
state features was done considering classes as repeated measures. Thus, 
features entered a Friedman ANOVA analysis and conditioned to its 
significance, pairwise FDR-corrected post-hoc analysis were carried out. 

Individual class features (e.g., duration, GEV) and sequence related 
ones (e.g., entropy, GFP peaks per second) were compared among con-
sciousness levels (eMCS, MCS+, MCS-, and UWS) entering Jonckheere- 
Terpstra test for ordered alternatives, and conditioned to significant 
group differences, post-hoc FDR corrected analysis were carried out. 

Features which showed group differences, also entered a correla-
tional analysis with the admission and discharge CRS-R value. This 
analysis was limited only to the pDoC population (UWS, MCS-, and MCS 
+ ). When evaluating prognostic power of the microstate features, linear 
regressions were adjusted by known confounding factors (i.e., age, sex, 
time post-onset, etiology, admission CRS-R, background frequency and 
reactivity, and APG), always correcting for FDR. Whenever the micro-
state features survived FDR correction, the corresponding full model was 
compared with the reduced model (without the microstate feature) via 
the Chow test, to compare model coefficients, and the variation of F- 
ANOVA between residuals, to understand whether microstate data 
significantly improved model performances (i.e., explained variance). 

When performing analysis conditioned to the presence/absence of 
reactivity, patients labelled as unclear were excluded to avoid mis-
assignment in one category, while patients with non-constant reactivity 
were combined with the ones with absent reactivity. Also, whenever the 
antero-posterior gradient (APG) was labeled unclear, the corresponding 
patient was removed from the APG-related analysis. 

3. Results 

3.1. Population 

Out of the 415 patients enrolled in the study, 174 were excluded due 
the additional inclusion criteria on the EEG recordings. One hundred 
seventy-five patients were retained for microstate extraction. Of these 
241, 14 were removed from the statistical analysis given missing data 
across clinical variables (i.e., aetiology, consciousness state). 

The resulting 229 patients formed the analysed cohort (median age 
66 years [IQR = 21], 89 females, 38.9 %, median time post-onset 38 
days [IQR = 23], Table 1). The cohort resulted having a median CRS-R 
value of 20 points [IQR = 11] with 131 eMCS patients (CRS-R: 23 [IQR 
= 1], 26 MCS+ (CRS-R: 13 [IQR = 5]), 41 MCS- (CRS-R: 9 [IQR = 2]), 
and 31 UWS (CRS-R: 4 [IQR = 2]). The patients’ aetiologies resulted 
distributed as follows: 68 patients with a traumatic brain injury, 13 
anoxic, 42 ischemic, 98 haemorrhagic patients and 8 patients with other 
aetiology (tumoral, encephalitic, infectious or mixed). 

ACNS Critical Care labelling resulted in 142 (62.0 %) patients having 
an θ background and 124 patients (54.1 %) with a symmetric brain 
activity (Table 1). The majority of the patients (N = 178, 85.2 %) were 
found to have an anteroposterior reorganization of brain activity (2′ 
patients had an APG labelled unclear). Reactivity was found to be pre-
sent in 90 patients and absent (not-constant) in 118 patients (unclear in 
the remaining). 
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3.2. Microstates: Estimation and distribution 

Results of the cluster estimation and the related group-level micro-
state maps were reported in Fig. 2. The number of clusters with lowest 
CV criterion value (median across patients 0.49, Fig. 2A) was found to be 
three (median cumulative GEV of subject-level maps of 0.64, Fig. 2B). 
Group-level microstate maps were reported in Fig. 2C, ordered following 
Konig et al. 

Coverage, duration, occurrence, and GEV of the backfitted group- 
level microstate sequence were found to be significantly different 
across classes (p < 0.05, Table 2). 

In particular, coverage and occurrence of the A microstate were 
found to be significantly higher than the one of the B and C classes (all 
surviving FDR correction except A-C coverage comparison, Table 2, 
Fig. 3). GEVC (median 0.150 [IQR = 0.145]) was found to be signifi-
cantly higher than GEVA (median 0.109 [IQR = 0.108], pADJ = 0.003) 
and GEVB (median 0.112 [0.081], pADJ = 0.001). 

3.3. Microstates: Consciousness diagnosis 

Microstate features were then analyzed as individual classes. Class A 
duration (Fig. 4) was found to significantly be different across con-
sciousness states (p = 0.005, J = 6569.000), with significantly higher 
duration (pADJ < 0.05) in the UWS patients (median 0.132 [IQR =
0.041]) than in eMCS patients (median 0.114 [IQR = 0.040]). 

Similarly, class B duration (conditioned to group-level significant 
differences p < 0.001, J = 5993.000) was found to be significantly 
longer in UWS and MCS + patients compared to eMCS ones (pADJ <

0.05). Weakly significant was also the comparison between UWS and 
MCS- patients (pADJ = 0.052). Microstate C had a significantly difference 
coverage, occurrence and GEV across consciousness stated, however 
with only the eMCS-UWS GEV comparison surviving FDR correction 
(pADJ < 0.05). 

Transition probabilities going from class A to C (pA,C) and B to C (PB, 

C) were found to be significantly higher at better consciousness levels (p 
= 0.001 and p < 0.001 respectively, Table 3). After post-hoc analysis, 
eMCS patients were found to have higher PB,C than MCS+ (p = 0.001), 
MCS- (p = 0.046), and UWS (p = 0.001) patients. Similarly, PA,C was 
significantly different in the eMCS-MCS + comparison (p = 0.002) and 
in the eMCS-UWS comparison (p = 0.009). Lastly, an higher entropy rate 
was found in eMCS patients compared to MCS+ (p = 0.024), MCS- (p =

0.036), and UWS (p = 0.007) patients, with only the eMCS-UWS com-
parison surviving FDR correction (pADJ = 0.021). 

After selecting only, the pDoC cohort (UWS, MCS-, and MCS + pa-
tients), correlational analysis between CRS-R levels and microstate 
features, reported positive correlation (R = 0.312) between GEVC and 
admission CRS-R score (p = 0.002, Table 4). 

No significant differences between groups were found after testing 
the microstate sequences for 1st, 2nd, and 3rd Markovianity and each 
microstate lifetime for a geometric distribution (p > 0.05, Chi-Square 
analysis). Overall, most sequences were found to be significant at the 
0th and 1st Markov order while less than 20 % of were found to be 2nd 
Markov order. Entropy estimates were confirmed by testing synthetic 
surrogate 1st order Markov Chains (Supplementary Table 2). Transition 
matrices were found to be symmetric in both groups (eMCS: 75, 93.8 %; 
pDoC: 85, 94.4 %) and mostly time-stationary (eMCS: 63.7 %, pDoC: 
58.9 %), however none of the tests was significantly different between 
consciousness groups. 

3.4. Microstates: Consciousness recovery 

All microstate features were first univariately correlated with the 
CRS-R total score of the pDoC group at discharge from intensive reha-
bilitation (Table 4, centre column). A higher coverage (p = 0.001), 
occurrence (p < 0.001), and GEV (p < 0.001) of the C microstate were 
found to be correlated with higher CRS-R discharge values. Each of the 
significant variables in Table 4 entered a multivariate linear regression 
together with admission CRS-R, age, aetiology, time post-onset, fre-
quency, reactivity, and APG (Table 4, right column). 

In all the performed multivariate analysis, the admission CRS-R was 
found to be significant (positively correlated with discharge values) as 
well as the included microstate feature. Coverage (β = 12.367, 95 %CI: 
3.550–21.184, p = 0.007), occurrence (β = 11.066, 95 %CI: 
2.797–19.335, p = 0.009), and GEV (19.856, 95 %CI: 4.640–35.073, p 
= 0.011) of the C microstate were all found to be independent predictors 
of discharge CRS-R, with coverage also surviving FDR correction (pADJ 
= 0.049). 

4. Discussions 

The diagnosis and prognosis of patients with a pDoC is among the 
most challenging issues in the neurological sciences of the past two 
decades eliciting different clinical, economic and ethical questions 
(Farisco et al., 2022). In this context, identifying endotypes able to 
separate covert behavioural symptoms into stable sets of neurophysio-
logical determinants has covered most of the research on consciousness. 
Current guidelines (Kondziella et al., 2020; Claassen et al., 2021) start 
from a behavioral assessment of consciousness, advocating for a sec-
ondary endotypical confirmation, often based on neuroimaging. Such 
necessity has been confirmed by overwhelming evidence that con-
sciousness can occur in pDoC patients also in complete absence of 
intentional behaviour (Kondziella et al., 2020; Claassen et al., 2021) 
calling for a revision of its taxonomy (Bayne et al., 2017). Such revision 
has been performed using only neuroimaging-based, source-level 
derived information. In this optic, scalp-level data has often been dis-
carded given the complexity of retrieving active/inactive sources and 
the well-known volume-conduction effect (van den Broek et al., 1998). 

However, being able to identify endotypes sharing similar neuro-
physiological characteristics allows to identify the customized recovery 
paths. In doing this, it is mandatory to foster translatability to clinical 
practice of the technique within different levels of care providers and 
nation’s wealth (Kondziella et al., 2021). In this work, we used EEG data 
collected during daily routine recordings in patients with a sABI (and in 
a pDoC) to understand whether scalp-level spatio-temporal dynamics 
could converge into specific endotypes of consciousness presence. 

Currently, authors linked the four fundamental microstate dynamics 
with activity-specific neural patterns in healthy individuals. Microstates 

Table 1 
Descriptive demographic and clinical data for the analysed cohort of sABI 
patients.   

Median [IQR] Count (%) 

Age, years 66 [21] 
Gender, females 89 (38.9) 
TPO, days 38 [23] 
Etiology – 
TBI 59 (25.8) 
Anoxic 15 (6.6) 
Ischemic 44 (19.2) 
Hemorrhagic 101 (44.1) 
Other 10 (4.3) 
Consciousness State  
UWS 31 (13.5) 
MCS- 26 (11.4) 
MCS+ 41 (17.9) 
eMCS 131 (57.2) 
CRS-R 20 [12] 
Symmetry, present 124 (54.1) 
Frequency, θ 142 (62.0) 
APG, present (N = 209) 178 (85.2) 
Reactivity, present (N = 208) 90 (43.3) 

Legend. APG: Antero-Posterior Gradient CRS-R: Coma Recovery Scale-Revised; 
eMCS: emergence from MCS; MCS: Minimally Conscious State; TBI: Traumatic 
Brain Injury; TPO: Time Post-Onset; UWS: Unresponsive Wakefulness State. 
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A and B were found to have a larger coverage during visualization and 
verbalization respectively (Milz et al., 2016). Somatic awareness (Pipi-
nis et al., 2017) was found to be connected to frontal microstate dy-
namics, together with comfort and self-domain (Tarailis et al., 2021). On 
this matter, Giordano et al. speculated how microstates A and B may 
correspond to an extrinsic system while microstates C may correspond to 
an intrinsic system (Giordano et al., 2018). Also, prior studies 

demonstrated that all microstates’ temporal dynamics are slowed down 
during drowsiness, anaesthesia or sleep (Bréchet and Michel, 2022; 
Brodbeck et al., 2012; Hao et al., 2022) and that as the microstate dy-
namics become slower, there is a smaller request for complex brain 
activity (Hao et al., 2022). However, it must be mentioned that, within 
healthy individuals the microstate C covers the majority of the GFP 
sequence (absolute and relative duration (Michel and Koenig, 2018; Hao 

Fig. 2. Microstate maps. CV criterion value (A) and cumulative GEV (B, sum of GEV across all microstates) of all patients across different number of clusters. 
Dashed red line indicates the elbow-point, and thus the number of clusters used for further analysis. Blue dot (and line) indicate the mean (and standard deviation) 
across patients. In panel C, group-level microstate maps are reported, reordered according to visual similarity to Koenig et al., following the A, B, C syntax. (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Table 2 
Descriptive statistics and statistical comparison (median and interquartile range, in brackets) of the microstate features across classes. Friedman ANOVA was used for 
independent variables with more than two groups (e.g., coverage, GEV), while Wilcoxon Sum Rank test for paired samples was used for independent variables with two 
groups (e.g., transition probability due to the removal of the same-state persistence probability). P-values reported in the table are not FDR corrected.   

A B C p-value Test statistics pA,B pA,C pB,C 

Coverage 0.361 [0.165] 0.305 [0.117] 0.305 [0.181]  0.009  9.459 0.003 0.025 0.483 
Duration 0.117 [0.047] 0.112 [0.036] 0.118 [0.053]  0.036  6.664 0.010 0.283 0.135 
Occurrence 0.351 [0.182] 0.293 [0.125] 0.297 [0.195]  0.003  11.897 0.001 0.007 0.607 
GEV 0.109 [0.108] 0.112 [0.081] 0.150 [0.145]  <0.001  17.852 0.709 <0.001 <0.001 
Transition from A – 0.034 [0.018] 0.037 [0.023]  0.035  2.109 – – – 
Transition from B 0.039 [0.021] – 0.041 [0.022]  0.039  2.059 – – – 
Transition from C 0.043 [0.025] 0.042 [0.024] –  0.946  0.067 – – – 

Legend. GEV: Global Explained Variance. 
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et al., 2022; Artoni et al., 2022), independently from the EEG recording 
protocol (e.g., eyes-open, closed, anesthetized). Such persistent pattern 
of the microstate C was found to be almost disappearing in patients with 
a pDoC, contrarily to the substantial increase of the microstates A and B. 
Coherently, in our study we found how the GEV, coverage and duration 
of the C microstate is related to higher levels of consciousness, and to a 
better recovery from a pDoC state. Moreover, the relation between (un) 
consciousness and the absence of the C dynamics confirms a prior 
microstate analysis of fMRI data; anterior maps were found to be 
significantly more occurrent in MCS patients than in UWS (Zhang et al., 
2023) as well as the transition from the sensorimotor state (extrinsic 
system, A-B maps) to an anterior (intrinsic system, C map) one. Further 
evidence in favour of our findings derives from the mutual dependence 
of awareness (perceptual) and microstate dynamics found by Britz et al. 
(Britz et al., 2014). Precisely, the group template of an aware pre- 
stimulus microstate was found to be fully anterior compared to the 
almost vertically symmetric one of (Fig. 4A/B of Britz et al.) an unaware 
one. Croce et al. reported how rTMS-based inhibition of specific areas 
changes only the topography of the C microstate, with no significant 
differences in the other three common templates (Croce et al., 2018). 
Furthermore, the C map was affected by rTMS whenever the stimulation 
site belonged either in the Dorsal Attention Network (DAN, i.e., left and 
the right Intra-Parietal Sulcus) or in the Default Mode Network (DMN, i. 
e., left and right Angular Gyrus). C map was not affected whenever the 
stimulation occurred in the Temporo-Parietal Junction (TPJ), coherent 
with the fact that TPJ does not belong to either the DAN or DMN. 

Lastly, temporal dynamics of the C microstate in persons with mul-
tiple sclerosis did not differ with healthy individuals, showing how 
neurological disorders without consciousness alterations do not affect 
this specific brain state. However, during propofol-induced conscious-
ness alterations, individuals in a moderate sedation resulted having a 
significantly lower coverage of the C microstate (Liu et al., 2022), 
showing how in patients with no structural connectivity damages, but 
temporary consciousness alterations, the distribution of frontal 

microstates is affected. All the aforementioned evidence allows us to 
speculate that the ability of the brain of persisting in (transitioning to) 
the C state is a sine qua non of consciousness, besides being related to the 
precuneus/posterior cingulate cortex DMN activations. (Fransson and 
Marrelec, 2008) However, the presence of the C microstate, even if 
characterized by low coverage/duration, can occur while consciousness 
is absent, thus microstates may be necessary to sustain consciousness, 
but cannot be considered as the only actor in consciousness presence/ 
recovery. In general, the microstates description of the brain temporal 
dynamics by consecutive global perceptual frames yields a microstate 
syntax, which is self-similar (i.e., exhibits the same behaviour at 
different timescales). Viewing such self-similarity as an internal clock (i. 
e., responsible for synchronizing subsequent brain dynamics) and con-
sciousness as composed by elementary building block of cognition (i.e., 
microstates), perfectly fits the Higher-Order Theories (HOTs) and the 
Global Workspace Theories (GWTs) of consciousness. The first postu-
lates the dependence of consciousness from latent representations of 
lower-order brain states (e.g., microstates), with the anterior cortex 
(namely prefrontal cortex) the main site involved in performing higher- 
order representations. The second, GWTs propose the division of the 
brain into critically specialized sub-modules connected via short- and 
long- range links, with the fronto-parietal region being the focal point. 
Contextualizing our findings within such frameworks puts another foot 
toward an anteriorization of consciousness. In particular, for conscious-
ness to occur, the brain must be able to sustain a persistent antero- 
posterior dynamic (C microstate), while for consciousness to recover, 
the L-R microstates must decrease in favor of A-P ones. 

Surely, further investigations would exclude the possibility that 
different maps in different patient groups arose from a difference in 
brain injury. Indeed, this is a current limitation of this work given that 
structural MRI scans were not collected together with the EEG re-
cordings. Furthermore, the “winner-take-all” strategy adopted to assign 
microstate labels does not take into account the possibility of existing 
competing microstates, hypothesizing a discontinuous EEG evolution. In 

Fig. 3. Microstate descriptors. Coverage, occurrence, duration, and GEV of all microstates symbols with results of post-hoc FDR corrected tests in brackets.  
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Fig. 4. Microstate and consciousness presence. Microstates’ coverage, duration, occurrence, and GEV compared between consciousness levels with results of post- 
hoc FDR corrected tests in brackets (panel A). Transition probabilities between classes (panel B) and the entropy rate of the microstate sequence (panel C) are 
reported for each consciousness levels. In panel C, dashed lines indicate the mean entropy rate of the group. Legend. UWS: Unresponsive Wakefulness State; MCS: 
Minimally Conscious State; eMCS: emergence from MCS; GEV: Global Explained Variance. 
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conclusion, our work reveals how global brain dynamics, interpreted in 
the microstate’s framework, shape and define some of the necessary 
conditions for consciousness presence, and thus a prognosis of its re-
covery. Given the importance of the conclusion derived, it should be 
considered to include these non-behavioral, instrumentally-based esti-
mates of residual signs of consciousness within the clinical assessment of 
sABI patients, in particular for the diagnosis and prognosis of patients 
with a pDoC. 
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