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Abstract
We propose a nested primal–dual algorithm with extrapolation on the primal varia-
ble suited for minimizing the sum of two convex functions, one of which is continu-
ously differentiable. The proposed algorithm can be interpreted as an inexact inertial 
forward–backward algorithm equipped with a prefixed number of inner primal–dual 
iterations for the proximal evaluation and a “warm–start” strategy for starting the 
inner loop, and generalizes several nested primal–dual algorithms already available 
in the literature. By appropriately choosing the inertial parameters, we prove the 
convergence of the iterates to a saddle point of the problem, and provide an O(1/n) 
convergence rate on the primal–dual gap evaluated at the corresponding ergodic 
sequences. Numerical experiments on some image restoration problems show that 
the combination of the “warm–start” strategy with an appropriate choice of the iner-
tial parameters is strictly required in order to guarantee the convergence to the real 
minimum point of the objective function.

Keywords  Primal–dual algorithms · Forward–backward algorithms · Inertial 
techniques · Convex optimization · Image deblurring

1  Introduction

In this paper, we address the following composite convex optimization problem
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where f ∶ ℝ
d
→ ℝ is convex and differentiable, A ∈ ℝ

d�×d and g ∶ ℝ
d�
→ ℝ ∪ {∞} 

is convex. Problems of the form (1) typically arise from variational models in image 
processing, computer vision and machine learning, such as the classical Total Varia-
tion (TV) [38], Total Generalized Variation (TGV) [11] or Directional TGV models 
[22, 25, 26] for image denoising, TV-�1 models for optical flow estimation [15], reg-
ularized logistic regression in multinomial classification problems [10] and several 
others.

One standard approach to tackle problem (1) is the forward–backward (FB) 
method [5, 8, 19, 20], which combines iteratively a gradient step on the differenti-
able part f with a proximal step on the convex (possibly non differentiable) term 
g◦A , thus generating an iterative sequence {un}n∈ℕ of the form

where 𝛼 > 0 is an appropriate steplength along the descent direction −∇f (un) and 
the proximal operator prox�g◦A is defined by

Convergence of the iterates (2) to a solution of problem (1) can be obtained by 
assuming that ∇f  is Lipschitz continuous and choosing � ∈ (0, 2∕L) , where L is 
the Lipschitz constant of the gradient [20]. Accelerated versions of the standard FB 
scheme can be obtained by introducing an inertial step inside (2), thus obtaining

where ūn is usually called the inertial point and �n ∈ [0, 1] is the inertial parameter. 
Such an approach was first considered in a pioneering work by Nesterov [32] for 
differentiable problems (i.e assuming g ≡ 0 ), and then later generalized in [5] to the 
more general problem (1) under the name of FISTA - “Fast Iterative Soft-Threshold-
ing Algorithm”. FISTA shares an optimal O(1∕n2) convergence rate [2, 5], which is 
a lower bound for first-order methods [33], and convergence of the iterates still holds 
under appropriate assumptions on the inertial parameter [14].

The original versions of methods (2) and (4) require that the proximal operator 
of g◦A is computed exactly. However, such an assumption is hardly realistic, as the 
proximal operator might not admit a closed-form formula or its computation might 
be too costly in several practical situations, for instance in TV regularized imaging 
problems or low-rank minimization (see [3, 30, 35, 39] and references therein). In 
these cases, assuming that proxg and the matrix A are explicitly available, the proxi-
mal operator can be approximated at each outer iteration n by means of an inner iter-
ative algorithm, which is applied to the dual problem associated to (3), see [9, 13, 
17, 39]. The choice of an appropriate number of inner iterations for the evaluation of 
the proximal operator is thus a crucial issue, as it affects the numerical performance 

(1)min
u∈ℝd

F(u) ≡ f (u) + g(Au) ,

(2)un+1 = prox�g◦A(un − �∇f (un)), n = 0, 1,…

(3)prox�g◦A(a) = argmin
u∈ℝd

�g(Au) +
1

2
‖u − a‖2.

(4)
{

ūn = un + 𝛾n(un − un−1)

un+1 = prox𝛼g◦A(ūn − 𝛼∇f (ūn))
, n = 0, 1,…
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of FB algorithms as well as their theoretical convergence. In this regard, we can 
identify two main strategies in the literature for addressing the inexact computation 
of the FB iterate. On the one hand, several works have devised inexact versions of 
the FB algorithm by requiring that the FB iterate is computed with sufficient accu-
racy up to a prefixed (or adaptive) tolerance [8, 9, 20, 39, 41]. In these works, the 
inner iterations are usually run until some stopping condition is met, in order to 
ensure that the inexact FB iterate is sufficiently close to the exact proximal point. 
Since the tolerances are required to be vanishing, the number of inner iterations will 
grow unbounded as the outer iterations increase, resulting in an increasing computa-
tional cost per proximal evaluation and hence an overall slowdown of the algorithm. 
On the other hand, one could fix the number of inner iterations in advance, thus los-
ing control on the accuracy of the proximal evaluation, while employing an appro-
priate starting condition for the inner numerical routine. In particular, the authors in 
[17] consider a nested primal–dual algorithm that can be interpreted as an inexact 
version of the standard FB scheme (2), where the proximal operator is approximated 
by means of a prefixed number of primal–dual iterates, and each inner primal–dual 
loop is “warm-started” with the outcome of the previous one. As proved in [17, 
Theorem 3.1], such a “warm-start” strategy is sufficient for proving the convergence 
of the iterates to a solution of (1) when the accuracy in the proximal evaluation is 
prefixed.

In this paper, we propose an accelerated variant of the nested primal–dual algo-
rithm devised in [17] that performs an inertial step on the primal variable. The pro-
posed algorithm could be interpreted as an inexact version of the FISTA-like method 
(4) equipped with a prefixed number of inner primal–dual iterations for the proximal 
evaluation and a “warm–start” strategy for the initialization of the inner loop. Under 
an appropriate choice of the inertial parameters, we prove the convergence of the 
iterates towards a solution of (1) and an ergodic O(1/n) convergence rate result on 
the primal–dual gap. We note that other nested primal–dual algorithms with inertial 
steps on the primal variable have been studied in the previous literature, however 
they are either shown to diverge in numerical counterexamples [4, 18] or its con-
vergence relies on additional over relaxation steps [28] in the same fashion as in the 
popular “Chambolle-Pock” primal–dual algorithm [15]. We claim that our proposed 
method is the first inexact inertial FB method whose convergence relies solely on its 
“warm–start” procedure, without requiring any increasing accuracy in the proximal 
evaluation. Furthermore, our numerical experiments on a Poisson image deblurring 
test problem show that the theoretical assumption made on the inertial parameters 
is strictly necessary for proving convergence, as the proposed nested inertial pri-
mal–dual algorithm equipped with the same inertial parameter rule of FISTA (which 
does not comply with the theoretical assumption) is observed to diverge from the 
solution of the minimization problem.

The paper is organized as follows. In Sect.  2 we recall some useful notions of 
convex analysis, the problem setting, and a practical procedure for approximating 
the proximal operator by means of a primal–dual loop. In Sect.  3 we present the 
algorithm and the related convergence analysis. Section 4 is devoted to numerical 
experiments on some image restoration test problems. Finally, the conclusions and 
future perspectives are reported in Sect. 5.
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2 � Preliminaries

In the remainder of the paper, the symbol ⟨⋅, ⋅⟩ denotes the standard inner prod-
uct on ℝd . If v ∈ ℝ

d and A ∈ ℝ
d�×d , ‖v‖ is the usual Euclidean vectorial norm, 

and ‖A‖ represents the largest singular value of A. If v = (v1,… , vd) ∈ ℝ
dn , 

where vi ∈ ℝ
n , i = 1,… , d , then ‖v‖2,1 = ∑d

i=1
‖vi‖ . If Ω ⊆ ℝ

d , then 
relint(Ω) = {x ∈ Ω ∶ ∃ 𝜖 > 0 s.t. B(x, 𝜖) ∩ aff(Ω) ⊆ Ω} denotes the relative interior 
of the set Ω , where B(x, �) is the ball of center x and radius � , and aff(Ω) is the affine 
hull of Ω . Finally, the symbol ℝ≥0 stands for the set of nonnegative real numbers.

2.1 � Basic notions of convex analysis

We start by recalling some well-known definitions and properties of convex analysis 
that will be employed throughout the paper.

Definition 1  [37, p. 214] Let � ∶ ℝ
d
→ ℝ ∪ {∞} be a proper, convex and lower 

semicontinuous function. The subdifferential of � at point u ∈ ℝ
d is defined as the 

following set

From Definition 1, it easily follows that û is a minimum point of � if and only 
0 ∈ 𝜕𝜑(û).

Lemma 1  [37, Theorem  23.8, Theorem  23.9] Let �1,�2 ∶ ℝ
d�
→ ℝ ∪ {∞} be 

proper, convex and lower semicontinuous functions and A ∈ ℝ
d�×d . 

	 (i)	 I f  �(u) = �1(u) + �2(u) and  there  ex i s t s  u0 ∈ ℝ
d�  such  tha t 

u0 ∈ relint(dom(�1)) ∩ relint(dom(�2)) , where relint denotes the relative inte-
rior of a set, then 

	 (ii)	 If �(u) = �1(Au) and there exists u0 ∈ ℝ
d such that Au0 ∈ relint(dom(�1)) , 

then 

Definition 2  [37, p. 104] Let � ∶ ℝ
d
→ ℝ ∪ {∞} be a proper, convex and 

lower semicontinuous function. The Fenchel conjugate of � is the function 
�∗ ∶ ℝ

d
→ ℝ ∪ {∞} defined as

��(u) = {w ∈ ℝ
d ∶ �(v) ≥ �(u) + ⟨w, v − u⟩ ∀ v ∈ ℝ

d}.

�(�1 + �2)(u) = ��1(u) + ��2(u), ∀ u ∈ dom(�).

��(u) = AT��1(Au) = {ATw ∶ w ∈ ��1(Au)}, ∀ u ∈ dom(�).

�∗(w) = sup
u∈ℝd

⟨w, u⟩ − �(u).
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Lemma 2  [37, Theorem  12.2] Let � ∶ ℝ
d
→ ℝ ∪ {∞} be a proper, convex and 

lower semicontinuous function. Then �∗ is itself convex and lower semicontinuous 
and (�∗)∗ = � , which implies the following variational representation for �:

Definition 3  [31, p. 278] Let � ∶ ℝ
d
→ ℝ ∪ {∞} be a proper, convex and lower 

semicontinuous function. The proximal operator of � is defined as

The following two lemmas involving the proximal operator will be extensively 
employed in the convergence analysis of Sect. 3.

Lemma 3  Let � ∶ ℝ
d
→ ℝ ∪ {∞} be proper, convex and lower semicontinuous. For 

all 𝛼, 𝛽 > 0 , the following statements are equivalent: 

(i)	u = prox��(u + �w);
(ii)	w ∈ ��(u);
(iii)	�(u) + �∗(w) = ⟨w, u⟩;
(iv)	u ∈ ��∗(w);
(v)	w = prox��∗ (�u + w).

Proof  See [31, Sections 11–12]. 	�  ◻

Lemma 4  Let � ∶ ℝ
d
→ ℝ ∪ {∞} be proper, convex and lower semicontinuous, 

and x, e ∈ ℝ
d . Then the equality y = prox�(x + e) is equivalent to the following 

inequality:

Proof  See [17, Lemma 3.3]. 	�  ◻

Finally, we recall the well-known descent lemma holding for functions having a 
Lipschitz continuous gradient.

Lemma 5  Suppose that � ∶ ℝ
d
→ ℝ is a continuously differentiable function with 

L−Lipschitz continuous gradient, i.e.

Then the following inequality holds

�(u) = sup
w∈ℝd

⟨u,w⟩ − �∗(w).

prox�(a) = argmin
u∈ℝd

1

2
‖u − a‖2 + �(u).

‖y − z‖2 ≤ ‖x − z‖2 − ‖x − y‖2 + 2⟨y − z, e⟩ + 2�(z) − 2�(y), ∀ z ∈ ℝ
d.

‖∇�(u) − ∇�(v)‖ ≤ L‖u − v‖, ∀ u, v ∈ ℝ
d.

�(u) ≤ �(v) + ⟨∇�(v), u − v⟩ + L

2
‖u − v‖2, ∀ u, v ∈ ℝ

d.
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Proof  See [7, Proposition A.24]. 	�  ◻

2.2 � Problem setting

In the remainder, we consider the optimization problem

under the following blanket assumptions on the involved functions.

Assumption 1 

	 (i)	 f ∶ ℝ
d
→ ℝ is convex and continuously differentiable and ∇f  is L−Lipschitz 

continuous;
	 (ii)	 g ∶ ℝ

d�
→ ℝ ∪ {∞} is proper, lower semicontinuous and convex;

	 (iii)	 A ∈ ℝ
d�×d , and there exists u0 ∈ ℝ

d such that Au0 ∈ relint(dom(g));
	 (iv)	 problem (5) admits at least one solution û ∈ ℝ

d.

Note that the hypothesis on A is needed only to ensure that the subdifferential 
rule in Lemma 1 (ii) holds, so that we can write �(g◦A)(u) = AT�g(Au) . Such rule 
allows us to interpret the minimum points of (5) as solutions of appropriate vari-
ational equations, as stated below.

Lemma 6  A point û ∈ ℝ
d is a solution of problem (5) if and only if the following 

conditions hold

for any 𝛼, 𝛽 > 0.

Proof  Observe that û is a solution of problem (5) if and only if 0 ∈ 𝜕F(û) . Accord-
ing to Lemma 1 this is equivalent to writing

An application of Lemma 3 shows that the inclusion v̂ ∈ 𝜕g(Aû) is equivalent to the 
equality v̂ = prox𝛽𝛼−1g∗ (v̂ + 𝛽𝛼−1Aû) , which gives the thesis. 	�  ◻

Using Lemma 2, the convex problem (5) can be equivalently reformulated as the 
following convex-concave saddle-point problem [37]

where L(u, v) denotes the primal–dual function. Under Assumptions 1, we can 
switch the minimum and maximum operator [37, Corollary 31.2.1] and use again 
Lemma 2, thus obtaining

(5)min
u∈ℝd

F(u) ≡ f (u) + g(Au) ,

(6)∇f (û) + ATv̂ = 0, with v̂ = prox𝛽𝛼−1g∗ (v̂ + 𝛽𝛼−1Aû).

∇f (û) + ATv̂ = 0, with v̂ ∈ 𝜕g(Aû).

(7)min
u∈ℝd

max
v∈ℝd�

L(u, v) ≡ f (u) + ⟨Au, v⟩ − g∗(v)
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Problems (5)–(7)–(8) are usually referred to as the primal, primal–dual, and dual 
problem, respectively.

2.3 � Inexact proximal evaluation via primal–dual iterates

A function of the form g◦A does not necessarily admit a closed-form formula for 
its proximal operator, as it is the case of several sparsity-inducing priors appear-
ing in image and signal processing applications. However, when a closed-form 
formula is not accessible, the proximal operator can be still approximately evalu-
ated by means of a primal–dual scheme, as we show in the following.

Theorem  1  Let f, g, and A be defined as in problem (5) under Assumptions 1. 
Given z ∈ ℝ

d , 𝛼 > 0 , 0 < 𝛽 < 2∕‖A‖2 and v0 ∈ ℝ
d� , consider the dual sequence 

{vk}k∈ℕ ⊆ ℝ
d� defined as follows

Then there exists v̂ ∈ ℝ
d� such that 

	 (i)	 lim
k→∞

vk = v̂;
	 (ii)	 prox𝛼g◦A(z) = z − 𝛼ATv̂.

Proof  Theorem 1 is a special case of [17, Lemma 2.3], where the authors prove the 
same result for objective functions of the form F(u) = f (u) + g(Au) + h(u) being h a 
lower semicontinuous convex function. The proof is based on the differential inclu-
sion characterizing the proximal point ẑ = prox𝛼g◦A(z) , that is

Using Lemma 3, the above variational equation can be equivalently written as

where 𝛼, 𝛽 > 0 and g∗ is the Fenchel conjugate of g. By replacing the first equation 
of (11) into the second one, we obtain

that is, v̂ is a fixed point of the operator T(v) = prox��−1g∗ (v + ��−1A(z − �ATv)) . 
Consequently, the dual sequence {vk}k∈ℕ defined in (9) can be interpreted as the 
fixed-point iteration applied to the operator T. From this remark, the thesis easily 
follows (see [17, Lemma 2.3] for the complete proof). 	�  ◻

(8)max
v∈ℝd�

−f ∗(−ATv) − g∗(v).

(9)vk+1 = prox��−1g∗ (v
k + ��−1A(z − �ATvk)), ∀ k ∈ ℕ.

(10)ẑ − z + 𝛼ATv̂ = 0, with v̂ ∈ 𝜕g(Aẑ).

(11)ẑ = z − 𝛼ATv̂, with v̂ = prox𝛽𝛼−1g∗ (v̂ + 𝛽𝛼−1Aẑ)

(12)v̂ = prox𝛽𝛼−1g∗ (v̂ + 𝛽𝛼−1A(z − 𝛼ATv̂)),
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Remark 1  By combining items (i)-(ii) of Theorem 1, we conclude that

Hence, the proximal operator of g◦A can be approximated by a finite number of 
steps of a primal–dual procedure, provided that the operators proxg∗ and A are easily 
computable.

3 � Algorithm and convergence analysis

In this section, we propose an accelerated version of the nested primal–dual algo-
rithm considered in [17], which features an extrapolation step in the same fashion 
as in the popular FISTA and other Nesterov-type forward–backward algorithms 
[2, 5, 9]. The resulting scheme can be itself considered as an inexact inertial for-
ward–backward algorithm in which the backward step is approximately computed 
by means of a prefixed number of primal–dual steps.

We report the proposed scheme in Algorithm 1. Given the initial guess u0 ∈ ℝ
d , 

the steplengths 0 < 𝛼 < 1∕L , 0 < 𝛽 < 1∕‖A‖2 , and a prefixed positive integer kmax , 
we first compute the extrapolated point ūn (STEP 1) and initialize the primal–dual 
loop with the outcome of the previous inner loop, i.e. v0

n
= v

kmax

n−1
 (STEP 2). This is 

the so-called “warm-start” strategy borrowed from [17]. Subsequently we perform 
kmax inner primal–dual steps (STEP 3), compute the additional primal iterate ukmax

n  
(STEP 4), and average the primal iterates {uk

n
}
kmax

k=1
 over the number of inner iterations 

(STEP 5). Note that STEPS 3–4 represent an iterative procedure for computing an 
approximation of the proximal–gradient point ûn+1 = prox𝛼g◦A(ūn − 𝛼∇f (ūn)) (see 
Theorem 1 and Remark 1). In that spirit, we can consider Algorithm 1 as an inexact 
inertial forward–backward scheme where the inexact computation of the proximal 
operator is made explicit in the description of the algorithm itself.

prox�g◦A(z) = lim
k→∞

z − �ATprox��−1g∗ (v
k + ��−1A(z − �ATvk)).
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Algorithm 1 includes some nested primal–dual schemes previously proposed in 
the literature as special cases:

•	 when �n ≡ 0 , kmax = 1 , and f (u) = ‖Hu − y‖2∕2 , Algorithm 1 becomes the Gen-
eralized Iterative Soft-Thresholding Algorithm (GISTA), which was first devised 
in [29] for regularized least squares problems;

•	 when �n ≡ 0 and kmax = 1 , we recover the Proximal Alternating Predictor-Cor-
rector (PAPC) algorithm proposed in [23], which can be seen as an extension of 
GISTA to a general data-fidelity term f(u);

•	 when �n ≡ 0 , Algorithm  1 reduces to the nested (non inertial) primal–dual 
scheme proposed in [17], which generalizes GISTA and PAPC by introducing 
multiple inner–primal dual iterations.

In the case �n ≠ 0 , Algorithm 1 can be interpreted as an inexact version of FISTA, 
which differs from other inexact FISTA-like schemes existing in the literature (see 
e.g. [9, 43]) due to the warm-start strategy, the prefixed number of primal–dual iter-
ates and the averaging of the inner primal sequence at the end of each outer itera-
tion. Note that similar nested inertial primal–dual algorithms were proposed in [4, 
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18] for solving least squares problems with total variation regularization. However, 
both these extensions do not adopt a “warm-start” strategy for the inner loop: indeed 
the authors in [4] set v0

n
= 0 , whereas in [18] the initial guess is computed by extrap-

olating the two previous dual variables. Interestingly, in the numerical experiences 
of [4, 18], the function values of the methods were observed to diverge or converge 
to a higher limit value than their non-extrapolated counterpart. These numerical 
“failures” might be due to the lack of the warm-start strategy, which appears to be 
crucial also for the convergence of inertial schemes, as we will demonstrate in the 
next section.

We also note that Algorithm 1 differs significantly from the classical Chambolle-
Pock primal–dual algorithm for minimizing sums of convex functions of the form 
F(u) = f (u) + g(Au) [15], and its generalizations to the case where f is differenti-
able [16, 21, 35, 44]. Indeed, while Algorithm 1 performs the extrapolation step on 
the primal variable ūn before the inner primal–dual loop begins, the algorithms pro-
posed in [15, 16, 21, 35, 44] include extrapolation as an intermediate step between 
the primal and the dual iteration (or viceversa). For instance, the Chambolle-Pock 
algorithm described in [15, Algorithm 1] can be written as

where ūn+1 represents the extrapolated iterate, which is computed after the primal 
iterate un+1 and then employed inside the dual iterate vn+1 . All the algorithms in [16, 
21, 35, 44] are built upon similar extrapolation strategies. Furthermore, we remark 
that the works [21, 35, 44] also take into account the possible inexact computation 
of the involved proximal operators, either by introducing additive errors [21, 44] or 
considering �n−approximations of the proximal points [35], as well as errors into the 
computation of the gradient of f. By contrast, we put ourselves in the easier scenario 
where the proximal operators and gradient are all computable in closed form.

3.1 � Convergence analysis

The aim of this section is to prove the convergence of the iterates generated by Algo-
rithm 1, as well as an O(1/n) convergence rate on the primal–dual gap evaluated at 
the average (ergodic) sequences associated to {un}n∈ℕ and {v0

n
}n∈ℕ . Similar results 

in the (non strongly) convex setting have been proved for several other primal–dual 
methods, see e.g. [15–17, 23, 35].

We start by proving some technical descent inequalities holding for the pri-
mal–dual function (7), where an approximate forward–backward point of the form 
u = ū − 𝛼∇f (ū) − 𝛼ATv and its associated dual variable v appear. The result is sim-
ilar to the one given in [23, Lemma 3.1] for the iterates of the PAPC algorithm, 
which in turn is a generalization of a technical result employed for GISTA [29, 
Lemma 3]. Such inequalities also recall the key inequality of FISTA [14, Lemma 1], 

(17)

⎧⎪⎨⎪⎩

un+1 = prox𝜏f (un − 𝜏ATvn)

ūn+1 = 2un+1 − un
vn+1 = prox𝜎g∗ (vn + 𝜎Aūn+1),
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which however involves the primal function values instead of the primal–dual ones. 
For our purposes, we need to introduce the following function

which is a norm whenever 0 < 𝛽 < 1∕‖A‖2 , as is the case for Algorithm 1.

Lemma 7  Let f, g, A be defined as in problem (5) under Assumptions 1. Given 
ū ∈ ℝ

d , v̄ ∈ ℝ
d� , 0 < 𝛼 <

1

L
 , 0 < 𝛽 <

1

‖A‖2 , define the points ũ ∈ ℝ
d , v ∈ ℝ

d� , u ∈ ℝ
d 

as follows

The following facts hold. 

	 (i)	 For all z ∈ ℝ
d , we have 

	 (ii)	 For all z� ∈ ℝ
d� , we have 

	 (iii)	 For all z ∈ ℝ
d , z� ∈ ℝ

d� , we have 

Proof  (i) We first apply the following three-point equality

with a = ū , b = u , c = z and then divide the result by the factor 2� , thus obtaining

Starting from L(z, v) , we can write the following chain of inequalities.

‖v‖2
A
∶= ‖v‖2 − �‖ATv‖2, v ∈ ℝ

d� ,

(18)

⎧
⎪⎨⎪⎩

ũ = ū − 𝛼∇f (ū) − 𝛼ATv̄

v = prox𝛽𝛼−1g∗ (v̄ + 𝛽𝛼−1Aũ)

u = ū − 𝛼∇f (ū) − 𝛼ATv

(19)L(u, v) +
1

2𝛼
‖z − u‖2 ≤ L(z, v) +

1

2𝛼
‖z − ū‖2 − 1

2

�
1

𝛼
− L

�
‖u − ū‖2.

(20)L(u, z�) +
𝛼

2𝛽
‖z� − v‖2

A
≤ L(u, v) +

𝛼

2𝛽
‖z� − v̄‖2

A
−

𝛼

2𝛽
‖v − v̄‖2

A
.

(21)

L(u, z�) +
1

2𝛼𝛽

�
𝛽‖z − u‖2 + 𝛼2‖z� − v‖2

A

�

≤ L(z, v) +
1

2𝛼𝛽

�
𝛽‖z − ū‖2 − 𝛽(1 − 𝛼L)‖u − ū‖2�

+
1

2𝛼𝛽

�
𝛼2‖z� − v̄‖2

A
− 𝛼2‖v − v̄‖2

A

�
.

‖a − c‖2 = ‖a − b‖2 + ‖b − c‖2 + 2⟨a − b, b − c⟩

(22)

1

2𝛼
‖u − z‖2 = 1

2𝛼
‖ū − z‖2 − 1

2𝛼
‖ū − u‖2 − ⟨u − z,∇f (ū) + ATv⟩, ∀ z ∈ ℝ

d.
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where the first inequality follows from the convexity of f, and the second one from 
Eq. (22) combined with the descent lemma on f. The result follows by reordering the 
terms in (23).

(ii) Let us consider the inequality obtained using Lemma 4 with x = v̄ , 
e = 𝛽𝛼−1Aũ , y = v and then multiply it by (��−1)∕2 , namely

Starting from L(u, v) , we can write the following chain of inequalities.

From (18), we also have

Plugging (27) inside (25) yields

Now observe that the scalar product in the previous inequality can be rewritten as

Finally, inserting the previous fact inside (28) and recalling the definition of the 
norm ‖ ⋅ ‖A leads to

(23)

L(z, v) = f (z) + ⟨Az, v⟩ − g∗(v)

≥ f (ū) + ⟨z − ū,∇f (ū)⟩ + ⟨Az, v⟩ − g∗(v)

= f (ū) + ⟨u − ū,∇f (ū)⟩ − ⟨u − z,∇f (ū)⟩ + ⟨Az, v⟩ − g∗(v)

≥ f (u) −
L

2
‖u − ū‖2 + 1

2𝛼
‖u − z‖2 − 1

2𝛼
‖ū − z‖2

+
1

2𝛼
‖ū − u‖2 + ⟨u − z,ATv⟩ + ⟨Az, v⟩ − g∗(v)

= f (u) + ⟨u,ATv⟩ − g∗(v)
�����������������������������

=L(u,v)

+
1

2𝛼
‖u − z‖2 − 1

2𝛼
‖ū − z‖2 + 1

2

�
1

𝛼
− L

�
‖u − ū‖2

(24)

𝛼

2𝛽
‖v − z�‖2 ≤ 𝛼

2𝛽
‖v̄ − z�‖2 − 𝛼

2𝛽
‖v̄ − v‖2 + ⟨v − z�,Aũ⟩ + g∗(z�) − g∗(v), ∀ z� ∈ ℝ

d� .

(25)L(u, v) = f (u) + ⟨Au, v⟩ − g∗(v)

(26)

≥ f (u) + ⟨Au, z�⟩ − g∗(z�)
�����������������������������

=L(u,z�)

+⟨z� − v,A(ũ − u)⟩

+
𝛼

2𝛽
‖v̄ − v‖2 − 𝛼

2𝛽
‖v̄ − z�‖2 + 𝛼

2𝛽
‖v − z�‖2

= L(u, z�) + ⟨z� − v,A(ũ − u)⟩ + 𝛼

2𝛽
‖v̄ − v‖2 − 𝛼

2𝛽
‖v̄ − z�‖2 + 𝛼

2𝛽
‖v − z�‖2

(27)ũ − u = 𝛼AT (v − v̄).

(28)

L(u, v) ≥ L(u, z�) + 𝛼⟨AT (z� − v),AT (v − v̄)⟩ + 𝛼

2𝛽
‖v̄ − v‖2 − 𝛼

2𝛽
‖v̄ − z�‖2 + 𝛼

2𝛽
‖v − z�‖2.

⟨AT (z� − v),AT (v − v̄)⟩ = −
1

2
‖AT (z� − v)‖2 − 1

2
‖AT (v − v̄)‖2 + 1

2
‖AT (z� − v̄)‖2.
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By reordering the terms in the above inequality, we get the thesis.
(iii) The inequality follows by combining points (i)-(ii). 	�  ◻

Remark 2  Note that Eq. (25) is a specialized version of the result in [35, Lemma 3], 
obtained by setting y̌ = v , x̌ = u , ȳ = v̄ , x̄ = ū , � = � , � = ��−1 , K = A , � = 0 , � = 0 , 
e = 0 , and most importantly, ỹ = y̌ and g ≡ 0 . In particular, the condition ỹ = y̌ 
makes the inner product ⟨K(x − x̌), ỹ − y̌⟩ disappear in [35, Lemma 3]; the assump-
tion g ≡ 0 allows us to rewrite (25) as (28) through relation (27) to get the result. 
Hence, we can say that our Lemma 7(iii) is a specialized version of [35, Lemma 3], 
which is appropriately rewritten by employing our specific assumptions ỹ = y̌ and 
g ≡ 0.

The next two lemmas are also needed to prove convergence of Algorithm  1. 
The former has been employed in the convergence analysis of several FISTA vari-
ants with inexact proximal evaluations (see e.g. [9, 41]), whereas the second one 
is a classical tool for proving convergence of first-order algorithms.

Lemma 8  [41, Lemma 1] Let {pn}n∈ℕ , {qn}n∈ℕ , {�n}n∈ℕ be sequences of real non-
negative numbers, with {qn}n∈ℕ being a monotone nondecreasing sequence, satisfy-
ing the following recursive property

Then the following inequality holds:

Lemma 9  [34] Let {pn}n∈ℕ , {�n}n∈ℕ and {�n}n∈ℕ be sequences of real nonnegative 
numbers such that pn+1 ≤ (1 + �n)pn + �n and 

∑∞

n=0
𝜁n < ∞ , 

∑∞

n=0
𝜉n < ∞ . Then, 

{pn}n∈ℕ converges.

In the following theorem, we state and prove the convergence of the primal-
dual sequence {(un, v0n)}n∈ℕ generated by Algorithm 1 to a solution of the saddle-
point problem (7), provided that the inertial parameters satisfy an appropriate 
technical assumption. Our result extends the convergence theorem in [17, The-
orem  3.1], which holds only for the case �n ≡ 0 . As in [17], the line of proof 
adopted here can be summarized according to the following points: (i) Prove 
that the sequence {(un, v0n)}n∈ℕ is convergent; (ii) Show that each limit point of 
{(un, v

0
n
)}n∈ℕ is a solution to the saddle-point problem (7); (iii) Conclude that 

L(u, v) ≥ L(u, z�) +
𝛼

2𝛽
‖v − v̄‖2

A
−

𝛼

2𝛽
‖v̄ − z�‖A + 𝛼

2𝛽
‖z� − v‖2

A
.

(29)p2
n
≤ qn +

n∑
k=1

�kpk, ∀ n ≥ 1.

(30)pn ≤
1

2

n�
k=1

�k +

⎛⎜⎜⎝
qn +

�
1

2

n�
k=1

�k

�2⎞⎟⎟⎠

1

2

, ∀ n ≥ 1.



98	 S. Bonettini et al.

1 3

the primal–dual sequence is converging to a saddle-point. However, some major 
modifications are required here in order to take into account the presence of the 
inertial step on the primal variable.

Theorem 2  Suppose that f, g, A are defined as in problem (5) under Assumptions 1. 
Let {(un, v0n)}n∈ℕ be the primal-dual sequence generated by Algorithm  1. Suppose 
that the parameters sequence {�n}n∈ℕ satisfies the following condition:

Then the following statements hold true: 

	 (i)	 the sequence {(un, v0n)}n∈ℕ is bounded;
	 (ii)	 given (û, v̂) solution of (7), the sequence {𝛽kmax‖û − un‖2 + 𝛼2‖v̂ − v0

n
‖2
A
}n∈ℕ 

converges;
	 (iii)	 the sequence {(un, v0n)}n∈ℕ converges to a solution of (7).

Proof  (i) Let (û, v̂) ∈ ℝ
d ×ℝ

d� be a solution of problem (7), i.e.

By directly applying Eq. (21) with z = û , z� = v̂ , u = uk+1
n

 , ū = ūn , v = vk+1
n

 , v̄ = vk
n
 , 

for k = 0,… , kmax − 1 , observing that L(uk+1
n

, v̂) ≥ L(û, vk+1
n

) and discarding the 
terms proportional to ‖uk+1

n
− ūn‖2 and ‖vk+1

n
− vk

n
‖2
A
 , we obtain the following 

inequality

Recalling that ūn = un + 𝛾n(un − un−1) and using the Cauchy-Schwarz inequality, we 
can write the following inequalities

Summing the previous relation for k = 0,… , kmax − 1 allows to write

(31)
∞�
n=0

𝛾n‖un − un−1‖ < ∞.

L(û, v) ≤ L(û, v̂) ≤ L(u, v̂), ∀ u ∈ ℝ
d, v ∈ ℝ

d� .

1

2𝛼𝛽

�
𝛽‖û − uk+1

n
‖2 + 𝛼2‖v̂ − vk+1

n
‖2
A

�
≤

1

2𝛼𝛽

�
𝛽‖û − ūn‖2 + 𝛼2‖v̂ − vk

n
‖2
A

�
,

k = 0,… , kmax − 1.

1

2𝛼𝛽

�
𝛽‖û − uk+1

n
‖2 + 𝛼2‖v̂ − vk+1

n
‖2
A

�
≤

1

2𝛼𝛽

�
𝛽‖û − un‖2 + 𝛼2‖v̂ − vk

n
‖2
A

�

+
1

2𝛼

�
𝛾2
n
‖un − un−1‖2 − 2𝛾n⟨û − un, un − un−1⟩

�

≤
1

2𝛼𝛽

�
𝛽‖û − un‖2 + 𝛼2‖v̂ − vk

n
‖2
A

�

+
1

2𝛼

�
𝛾2
n
‖un − un−1‖2 + 2𝛾n‖û − un‖‖un − un−1‖

�

k = 0,… , kmax − 1.
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By exploiting the update rule (16) together with the convexity of the function 
𝜙(u) = ‖û − u‖2 and recalling the warm-start strategy vkmax

n = v0
n+1

 , it easily follows 
that

Plugging the previous inequality inside (32) leads to

If we apply recursively inequality (33), we get

By discarding the term proportional to ‖v̂ − v0
n+1

‖2
A
 in the left-

hand side, multiplying both sides by 2�∕kmax and adding the term 
𝛾2
n+1

‖un+1 − un‖2 + 2𝛾n+1‖û − un+1‖‖un+1 − un‖ to the right-hand side, we come to

Finally, we can use Lemma 8 with pn = ‖û − un‖ , 
qn = ‖û − u1‖2 + 𝛼2

𝛽kmax

‖v̂ − v0
1
‖2
A
+
∑n

k=1
𝛾2
k
‖uk − uk−1‖2 and �n = 2�n‖un − un−1‖ , 

thus obtaining

From the previous inequality combined with condition (31), it follows that the 
sequence {un}n∈ℕ is bounded. By discarding the term proportional to ‖û − un+1‖2 

(32)

1

2𝛼𝛽

�
𝛽

kmax−1�
k=0

‖û − uk+1
n

‖2 + 𝛼2‖v̂ − vkmax

n
‖2
A

�
≤

1

2𝛼𝛽

�
𝛽kmax‖û − un‖2 + 𝛼2‖v̂ − v0

n
‖2
A

�

+
kmax

2𝛼

�
𝛾2
n
‖un − un−1‖2 + 2𝛾n‖û − un‖‖un − un−1‖

�
.

𝛽

kmax−1�
k=0

‖û − uk+1
n

‖2 + 𝛼2‖v̂ − vkmax

n
‖2
A
≥ 𝛽kmax‖û − un+1‖2 + 𝛼2‖v̂ − v0

n+1
‖2
A
.

(33)

1

2𝛼𝛽
(𝛽kmax‖û − un+1‖2 + 𝛼2‖v̂ − v0

n+1
‖2
A
) ≤

1

2𝛼𝛽

�
𝛽kmax‖û − un‖2 + 𝛼2‖v̂ − v0

n
‖2
A

�

+
kmax

2𝛼

�
𝛾2
n
‖un − un−1‖2 + 2𝛾n‖û − un‖‖un − un−1‖

�
.

(34)

1

2𝛼𝛽
(𝛽kmax‖û − un+1‖2 + 𝛼2‖v̂ − v0

n+1
‖2
A
) ≤

1

2𝛼𝛽

�
𝛽kmax‖û − u1‖2 + 𝛼2‖v̂ − v0

1
‖2
A

�

+
kmax

2𝛼

�
n�

k=1

𝛾2
k
‖uk − uk−1‖2 +

n�
k=1

2𝛾k‖û − uk‖‖uk − uk−1‖
�
.

‖û − un+1‖2 ≤ ‖û − u1‖2 + 𝛼2

𝛽kmax

‖v̂ − v
0

1
‖2
A
+

n+1�
k=1

𝛾2
k
‖uk − uk−1‖2 +

n+1�
k=1

2𝛾k‖û − uk‖‖uk − uk−1‖.

‖û − un+1‖ ≤
1

2

n+1�
k=1

2𝛾k‖uk − uk−1‖

+

⎛
⎜⎜⎝
‖û − u1‖2 + 𝛼2

𝛽kmax

‖v̂ − v0
1
‖2
A
+

n+1�
k=1

𝛾2
k
‖uk − uk−1‖2 +

�
1

2

n+1�
k=1

2𝛾k‖uk − uk−1‖
�2⎞

⎟⎟⎠

1

2

.
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in Eq. (34), using again (31) and the boundedness of {un}n∈ℕ , we also deduce the 
boundedness of {v0

n
}n∈ℕ.

(ii) Point (i) guarantees the existence of a constant M > 0 such that ‖û − un‖ ≤ M 
for all n ∈ ℕ . Then, from Eq. (33), we get

The previous inequality and condition (31) allows to apply 
Lemma 9 with pn = 𝛽kmax‖û − un‖2 + 𝛼2‖v̂ − v0

n
‖2
A
 , �n ≡ 0 , 

�n = �kmax

�
�2
n
‖un − un−1‖2 + 2M�n‖un − un−1‖

�
 , thus we get the thesis.

(iii) Since {(un, v0n)}n∈ℕ is bounded, there exists a point (u†, v†) and I ⊆ ℕ such 
that lim

n∈I
(un, v

0
n
) = (u†, v†) . Furthermore, based on condition (31), we can write

Therefore lim
n∈I

‖ūn − un‖ = 0 , which implies lim
n∈I

ūn = u† . By writing down again Eq. 
(21) with z = û , z� = v̂ , u = uk+1

n
 , ū = ūn , v = vk+1

n
 , v̄ = vk

n
 , where (û, v̂) is a solution of 

(7), and using L(uk+1
n

, v̂) ≥ L(û, vk+1
n

) , we obtain for k = 0,… , kmax − 1

By employing the definition of ūn , the Cauchy-Schwarz inequality and the bounded-
ness of {un}n∈ℕ inside the previous relation, we come to

Summing the inequality for k = 0,… , kmax − 1 leads to

If we combine the above inequality with the update rule (16), the convexity of the 
function 𝜙(u) = ‖û − u‖2 and the warm-start strategy vkmax

n = v0
n+1

 , we get

1

2𝛼𝛽

�
𝛽kmax‖û − un+1‖2 + 𝛼2‖v̂ − v0

n+1
‖2
A

�
≤

1

2𝛼𝛽

�
𝛽kmax‖û − un‖2 + 𝛼2‖v̂ − v0

n
‖2
A

�

+
kmax

2𝛼

�
𝛾2
n
‖un − un−1‖2 + 2M𝛾n‖un − un−1‖

�
.

lim
n→∞

‖ūn − un‖ = lim
n→∞

𝛾n‖un − un−1‖ = 0.

𝛽(1 − 𝛼L)‖uk+1
n

− ūn‖2 + 𝛼2‖vk+1
n

− vk
n
‖2
A
≤ 𝛽‖û − ūn‖2 − 𝛽‖û − uk+1

n
‖2

+ 𝛼2‖v̂ − vk
n
‖2
A
− 𝛼2‖v̂ − vk+1

n
‖2
A
.

𝛽(1 − 𝛼L)‖uk+1
n

− ūn‖2 + 𝛼2‖vk+1
n

− vk
n
‖2
A
≤ 𝛽‖û − un‖2 − 𝛽‖û − uk+1

n
‖2

+ 𝛼2‖v̂ − vk
n
‖2
A
− 𝛼2‖v̂ − vk+1

n
‖2
A

+ 𝛽
�
𝛾2
n
‖un − un−1‖2 + 2M𝛾n‖un − un−1‖

�
.

kmax−1�
k=0

𝛽(1 − 𝛼L)‖uk+1
n

− ūn‖2 + 𝛼2‖vk+1
n

− vk
n
‖2
A
≤ 𝛽kmax‖û − un‖2

− 𝛽

kmax−1�
k=0

‖û − uk+1
n

‖2 + 𝛼2‖v̂ − v0
n
‖2
A
− 𝛼2‖v̂ − vkmax

n
‖2
A

+ 𝛽kmax

�
𝛾2
n
‖un − un−1‖2 + 2M𝛾n‖un − un−1‖

�
.
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We now sum the previous relation over n = 1,… ,N , thus obtaining

Taking the limit for N → ∞ and recalling condition (31), it follows that

Consequently, we have lim
n→∞

𝛽(1 − 𝛼L)‖uk+1
n

− ūn‖2 + 𝛼2‖vk+1
n

− vk
n
‖2
A
= 0 for 

k = 0,… , kmax − 1 . For k = 0 , this implies that lim
n∈I

(u1
n
, v1

n
) = (u†, v†) . By combining 

this fact with the continuity of prox��−1g∗ inside the steps (14)-(15), we conclude that 
(u†, v†) satisfies the fixed-point Eq. (6), which is equivalent to say that (u†, v†) is a 
solution of (7) (see Lemma 6). Since (u†, v†) is a saddle point, it follows from point 
(ii) that the sequence {�kmax‖u† − un‖2 + �2‖v† − v0

n
‖2
A
}n∈ℕ converges and, by defi-

nition of limit point, it admits a subsequence converging to zero. Then the sequence 
{(un, v

0
n
)}n∈ℕ must converge to (u†, v†) . 	�  ◻

Remark 3  Condition (31) is quite similar to the one adopted by Lorenz and Pock 
in [28, Eq.  23] for their primal–dual forward–backward algorithm, which applies 
extrapolation on both the primal and dual variable and then performs a primal–dual 
iteration in the same fashion as in the popular “Chambolle–Pock” algorithm [15, 
16]. Indeed, the inertial parameter �n adopted in [28] needs to satisfy the following 
condition

where {xn}n∈ℕ , {yn}n∈ℕ denote the primal and dual iterates of the algorithm, respec-
tively. Differently from (31), condition (35) depends also on the dual variable and 
squares the norm of the gap between two successive iterates.

As also noted in [28], conditions (31) and (35) can be easily enforced “on-
line”, since they depend only on the past iterates. One possible strategy to compute 
�n according to (31) consists in modifying the usual FISTA inertial parameter as 
follows

kmax−1�
k=0

𝛽(1 − 𝛼L)‖uk+1
n

− ūn‖2 + 𝛼2‖vk+1
n

− vk
n
‖2
A
≤ 𝛽kmax‖û − un‖2

− 𝛽kmax‖û − un+1‖2 + 𝛼2‖v̂ − v0
n
‖2
A
− 𝛼2‖v̂ − v0

n+1
‖2
A

+ 𝛽kmax

�
𝛾2
n
‖un − un−1‖2 + 2M𝛾n‖un − un−1‖

�
.

N�
n=1

kmax−1�
k=0

𝛽(1 − 𝛼L)‖uk+1
n

− ūn‖2 + 𝛼2‖vk+1
n

− vk
n
‖2
A
≤ 𝛽kmax‖û − u1‖2 + 𝛼2‖v̂ − v0

1
‖2
A

+ 𝛽kmax

N�
n=1

�
𝛾2
n
‖un − un−1‖2 + 2M𝛾n‖un − un−1‖

�
.

lim
n→∞

kmax−1�
k=0

𝛽(1 − 𝛼L)‖uk+1
n

− ūn‖2 + 𝛼2‖vk+1
n

− vk
n
‖2
A
= 0.

(35)
∞�
n=1

𝛼n‖(xn, yn) − (xn−1, yn−1)‖2 < ∞,
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where C > 0 is a positive constant, {�n}n∈ℕ is a prefixed summable sequence and 
�FISTA
n

 is computed according to the usual FISTA rule, namely [5]

In the numerical section, we will see that the modified FISTA-like rule (36) has the 
practical effect of shrinking the inertial parameter after a certain number of itera-
tions, thus avoiding the possible divergence of the algorithm from the true solution 
of (5).

We now prove an ergodic O(1/N) convergence rate for Algorithm 1 in terms of the 
quantity L(UN+1, z

�) − L(z,VN+1) , where (z, z�) ∈ ℝ
d ×ℝ

d� and UN+1 and VN+1 are 
the ergodic sequences. On the one hand, our result generalizes the convergence rate 
obtained in [23, Theorem 3.1] under the assumptions �n ≡ 0 and kmax = 1 , which in 
turn extends a previous result due to [29, Theorem 1] holding for Algorithm 1 in the 
case f (u) = 1

2
‖Hu − y‖2 , �n ≡ 0 , kmax = 1 . On the other hand, the result is novel also 

in the case �n ≡ 0 and kmax ≥ 1 , for which we recover the nested primal–dual algorithm 
presented in [17].

Theorem 3  Suppose that f, g, A are defined as in problem (5) under Assumptions 1. 
Let {(un, v0n)}n∈ℕ be the primal-dual sequence generated by Algorithm 1 with inertial 
parameters {�n}n∈ℕ satisfying (31). For all n ≥ 1 , define the sequence 

v̄n =
1

kmax

kmax−1∑
k=0

vk+1
n−1

 . Then, given (û, v̂) solution of (7), UN =
1

N

∑N

n=1
un and 

VN =
1

N

∑N

n=1
v̄n the ergodic primal-dual sequences, and for any (z, z�) ∈ ℝ

d ×ℝ
d� , 

we have

where M > 0 is such that ‖un − z‖ ≤ M for all n ≥ 0 , and 
𝛾 =

∑∞

n=0
𝛾n‖un − un−1‖ < ∞.

Proof  Considering Eq. (21) with u = uk+1
n

 , ū = ūn , v = vk+1
n

 , v̄ = vk
n
 , and discarding 

the terms proportional to ‖uk+1
n

− ūn‖2 and ‖vk+1
n

− vk
n
‖2
A
 , we can write

(36)�n =

�
0, n = 0

min
�
�FISTA
n

,
C�n

‖un−un−1‖
�
, n = 1, 2,…

(37)t0 = 1,

⎧
⎪⎨⎪⎩
tn+1 =

1+
√

1+4t2
n

2

�FISTA
n

=
tn−1

tn+1

n = 0, 1,…

(38)L(UN+1, z
�) − L(z,VN+1) ≤

1

2�
‖z − u0‖2 + �

2�kmax

‖z� − v0
0
‖2
A
+

�(�+2M)

2�

N + 1
,
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where the last relation follows from the Cauchy-Schwarz inequality and the bound-
edness of the sequence {un}n∈ℕ , being M > 0 such that ‖z − un‖ ≤ M for all n ∈ ℕ.

Summing the previous inequality for k = 0,… , kmax − 1 and exploiting the update 
rule (16), the convexity of the function �(u) = ‖z − u‖2 and the warm-start strategy 
v
kmax

n = v0
n+1

 in the right-hand side, we obtain

For the left-hand side of the previous inequality, it is possible to write the following 
lower bound

where the second inequality follows from the convexity of the function 
L(⋅, z�) − L(z, ⋅) , the update rule (16), and the definition of the sequence {v̄n}n∈ℕ . 
Combining the last lower bound with (39) results in

L(uk+1
n

, z�) − L(z, vk+1
n

) ≤
1

2𝛼

�‖z − ūn‖2 − ‖z − uk+1
n

‖2�

+
𝛼

2𝛽

�‖z� − vk
n
‖2
A
− ‖z� − vk+1

n
‖2
A

�

≤
1

2𝛼

�‖z − un‖2 − ‖z − uk+1
n

‖2�

+
𝛼

2𝛽

�‖z� − vk
n
‖2
A
− ‖z� − vk+1

n
‖2
A

�

+
1

2𝛼

�
𝛾2
n
‖un − un−1‖2 − 2𝛾n⟨z − un, un − un−1⟩

�

≤
1

2𝛼

�‖z − un‖2 − ‖z − uk+1
n

‖2�

+
𝛼

2𝛽

�‖z� − vk
n
‖2
A
− ‖z� − vk+1

n
‖2
A

�

+
1

2𝛼

�
𝛾2
n
‖un − un−1‖2 + 2M𝛾n‖un − un−1‖

�
,

(39)

kmax−1�
k=0

(L(uk+1
n

, z�) − L(z, vk+1
n

)) ≤
kmax

2�

�‖z − un‖2 − ‖z − un+1‖2
�

+
�

2�

�‖z� − v0
n
‖2
A
− ‖z� − v0

n+1
‖2
A

�

+
kmax

2�

�
�2
n
‖un − un−1‖2 + 2M�n‖un − un−1‖

�
.

kmax−1∑
k=0

(L(uk+1
n

, z�) − L(z, vk+1
n

)) = kmax

kmax−1∑
k=0

1

kmax

(L(uk+1
n

, z�) − L(z, vk+1
n

))

≥ kmax(L(un+1, z
�) − L(z, v̄n+1)),
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Summing the previous inequality for n = 0,… ,N , multiplying and dividing the left-
hand side by N + 1 , exploiting the convexity of the function L(⋅, z�) − L(z, ⋅) and 
condition (31) yields

from which the thesis follows. 	�  ◻

Remark 4  Theorem 3 is analogous to the one obtained in [35, Theorem 3] in the (non 
strongly) convex case for an inexact version of the Chambolle-Pock primal–dual 
method (17), where �n−approximations of the proximal operators proxf  and proxg∗ 
are employed. In particular, assuming that �n = O(1∕n�) with 𝛼 > 0 , the authors 
in [35] show that the convergence rate on the quantity L(UN+1, z

�) − L(z,VN+1) is 
either O(1/N) if 𝛼 > 1 (similarly to our Theorem 3), O(ln(N)∕N) if � = 1 , or O(1∕N�) 
if � ∈ (0, 1) . Furthermore, they also derive improved convergence rates for a couple 
of accelerated versions of the same algorithm, under the assumption that one of the 
terms in the objective function is strongly convex [35, Corollary 2-3]. Although we 
were not able to show accelerated rates in the strongly convex scenario, a linear rate 
for Algorithm 1 with �n ≡ 0 has already been given in [17, Theorem 3.2], hence the 
extension of this result to the case �n ≠ 0 is a possible topic for future research.

Remark 5  Note that the numerator of (38) gets smaller as kmax increases, suggesting 
that a higher number of inner primal–dual iterations corresponds to a better conver-
gence rate factor. Such a result is coherent with the one in [17, Theorem 3.2], where 
a convergence rate including a 1∕kmax factor is provided for Algorithm 1 with �n ≡ 0 , 
under the assumption that f is strongly convex. However, one has to consider that a 
bigger kmax also corresponds to a higher computational cost per iteration. Hence, the 
choice of an appropriate kmax is crucial for the practical performance of the algo-
rithm. We refer the reader to Sect. 4 for some preliminary numerical investigation on 
this issue.

Theorem 3 allows us to derive an O(1/N) convergence rate on the primal func-
tion values, as shown in the following corollary.

Corollary 1  Suppose that the same assumptions of Theorem 3 hold and, additionally, 
the function g has full domain. Then, we have

L(un+1, z
�) − L(z, v̄n+1) ≤

1

2𝛼

�‖z − un‖2 − ‖z − un+1‖2
�

+
𝛼

2𝛽kmax

�‖z� − v0
n
‖2
A
− ‖z� − v0

n+1
‖2
A

�

+
1

2𝛼

�
𝛾2
n
‖un − un−1‖2 + 2M𝛾n‖un − un−1‖

�
.

(N + 1)
�
L(UN+1, z

�) − L(z,VN+1)
�
≤

1

2�
‖z − u0‖2 + �

2�kmax

‖z� − v0
0
‖2
A
+

�(� + 2M)

2�
,
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where M′ > 0 is such that ‖z�
N
− v0

0
‖2
A
≤ M� for all z�

N
∈ �g(AUN) , N ≥ 0.

Proof  Following e.g. [35, Remark 3], we have that, if g has full domain, then g∗ is 
superlinear, i.e. g∗(v)∕|v| → ∞ as |v| → ∞ . As a result, the supremum of L(UN+1, z

�) 
over z′ is attained at some point z�

N+1
∈ �g(AUN+1) , namely

Then, given a solution û to problem (5), we can write the following chain of 
inequalities

where the second equality is due to Lemma 2, the third inequality follows from (41) 
and the definition of supremum, and the fourth inequality is an application of the 
rate (38). Since UN is a bounded sequence (due to Theorem 2(i)), z�

N+1
∈ �g(AUN+1) , 

and g is locally Lipschitz, it follows that z�
N+1

 is uniformly bounded over N, which 
implies that the sequence {‖z�

N+1
− v0

0
‖2
A
}N∈ℕ is bounded by a constant M′ > 0 . 

Hence, the thesis follows. 	� ◻

Analogously, one could prove an O(1/N) convergence rate for the primal-dual gap 
G(UN+1,VN+1) = sup(z,z�)∈ℝd×ℝd� L(UN+1, z

�) − L(z,VN+1) , see e.g. [15, Remark 3].

4 � Numerical experiments

We are now going to show the numerical performance of Algorithm  1 on some 
image deblurring test problems where the observed image has been corrupted by 
Poisson noise. All the experiments are carried out by running the routines in MAT-
LAB R2019a on a laptop equipped with a 2.60 GHz Intel Core i7-4510U processor 
and 8 GB of RAM.

4.1 � Weighted �
2
‑TV image restoration under Poisson noise

Variational models encoding signal-dependent Poisson noise have become ubiq-
uitous in microscopy and astronomy imaging applications [6]. Let z ∈ ℝ

d with 

(40)F(UN+1) − F(û) ≤

1

2𝛼
‖û − u0‖2 + 𝛼M�

2𝛽kmax

+
𝛾(𝛾+2M)

2𝛼

N + 1
,

(41)sup
z�∈ℝd�

L(UN+1, z
�) = L(UN+1, z

�
N+1

).

(42)

F(UN+1) − F(û) = (f (UN+1) + g(AUN+1)) − (f (û) + g(Aû))

= sup
z�∈ℝd�

L(UN+1, z
�) − sup

z�∈ℝd�

L(û, z�)

≤ L(UN+1, z
�
N+1

) − L(û,VN+1)

≤

1

2𝛼
‖û − u0‖2 + 𝛼

2𝛽kmax

‖z�
N+1

− v0
0
‖2
A
+

𝛾(𝛾+2M)

2𝛼

N + 1
,
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zi > 0 i = 1,… , d be the observed image, which is assumed to be a realization of 
a Poisson-distributed d−dimensional random vector, namely

where u ∈ ℝ
d is the ground truth, H ∈ ℝ

d×d is the blurring matrix associated to a 
given Point Spread Function (PSF), and P(w) denotes a realization of a Poisson-dis-
tributed random vector with parameter w ∈ ℝ

d , wi > 0 for i = 1,… , d . According to 
the Maximum a Posteriori approach, the problem of recovering the unknown image 
u from the acquired image z consists in solving the following penalized optimization 
problem

where

denotes the generalized Kullback-Leibler (KL) divergence, playing the role of the 
data-fidelity term, 𝜆 > 0 is the regularization parameter, and R(u) is a penalty term 
encoding some a-priori information on the object to be reconstructed. In the follow-
ing, we consider an approximation of the KL divergence that is obtained by truncat-
ing its Taylor expansion around the vector z at the second order. Introducing the 
diagonal positive definite matrix W ∶= diag(1∕z) , whose elements on the diagonal 
are defined as Wi,i = 1∕zi for i = 1,… , d , the desired KL approximation can be writ-
ten as the following weighted least squares data fidelity term

where the weighted norm is defined as ‖u‖W =
√⟨u,Wu⟩ . The data term (44) pro-

motes high fidelity in low-intensity pixels and large regularization in high-intensity 
pixels (i.e. in presence of high levels of noise). Such an approximation has already 
been considered for applications such as positron emission tomography and super-
resolution microscopy, see e.g. [12, 27, 36, 40].

As we want to impose edge-preserving regularization on the unknown image, 
we couple the data fidelity function (44) with the classical isotropic Total Varia-
tion (TV) function [38]

where ∇iu ∈ ℝ
2 represents the standard forward difference discretization of the 

image gradient at pixel i. In conclusion, we aim at solving the following minimiza-
tion problem

z = P(Hu),

min
u∈ℝd

KL(Hu;z) + �R(u),

(43)KL(Hu;z) ∶=

d∑
i=1

zi log

(
zi

(Hu)i

)
+ (Hu)i − zi

(44)1

2
‖Hu − z‖2

W
∶=

1

2
⟨Hu − z,W(Hu − z)⟩ = 1

2

d�
i=1

((Hu)i − zi)
2

zi
,

(45)TV(u) = ‖∇u‖2,1 =
d�
i=1

‖∇iu‖2,
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Problem (46) can be framed in (5) by setting

where u ∈ ℝ
d and v ∈ ℝ

2d . Note that g is convex and continuous, and ∇f  
is L−Lipschitz continuous on ℝd with the constant L being estimated as 
L ≤ ‖ATWA‖2 ≤ ‖A‖2

2
‖W‖2 , where ‖W‖2 = 1∕min{zi ∶ i = 1,… , d} . Further-

more, problem (46) admits at least one solution under mild assumptions on H, for 
instance when H is such that Hij ≥ 0 i, j = 1,… , d and has at least one strictly posi-
tive component for each row and column [1]. Hence Assumptions 1 are satisfied, 
Theorem 2 holds and the iterates {un}n∈ℕ of Algorithm 1 are guaranteed to converge 
to a solution of problem (46), provided that the inertial parameters {�n}n∈ℕ satisfy 
condition (31).

Note that each step of Algorithm 1 can be computed in closed form, if applied 
to problem (46): indeed A is simply the gradient operator (48) and AT its asso-
ciated divergence, the spectral norm ‖A‖ can be explicitly upper bounded with 
the value 

√
8 , and proxg∗ is the projection operator onto the cartesian product 

B(0, �) × B(0, �) ×⋯ × B(0, �) , where B(0, 𝜆) ⊆ ℝ
2 is a ball of center 0 and radius 

� (see [13]).

4.1.1 � Implementation and parameters choice

For our numerical tests, we consider four grayscale images, which are displayed 
in Fig. 1:

(46)min
u∈ℝd

1

2
‖Hu − z‖2

W
+ �TV(u).

(47)f (u) ∶ =
1

2
‖Hu − z‖2

W

(48)
g(v) ∶ =

d∑
i=1

�
‖‖‖‖‖

(
v2i−1
v2i

)‖‖‖‖‖2
A ∶ = (∇T

1
∇T

2
⋯ ∇T

d
)T ∈ ℝ

2d×d

(a) (b) (c) (d)

Fig. 1   Blurred and noisy test images used our numerical experiments
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•	 moon, phantom, mri are demo images of size 537 × 358 , 256 × 256 , and 
128 × 128 respectively, which are taken from MATLAB Image Processing 
Toolbox;

•	 micro is the 128 × 128 confocal microscopy phantom described in [46].

The regularization parameter has been fixed equal to � = 0.15 for moon, � = 0.12 
for phantom, � = 0.09 for micro, and � = 0.12 for mri. The blurring matrix 
H is associated to a Gaussian blur with window size 9 × 9 and standard devia-
tion equal to 4, and products with H (respectively HT ) are performed by assum-
ing reflexive boundary conditions. We simulate numerically the blurred and noisy 
acquired images by convolving the true object with the given PSF and then using 
the imnoise function of the MATLAB Image Processing Toolbox to simulate 
the presence of Poisson noise.

We implement several versions of Algorithm 1, each one equipped with a dif-
ferent rule for the computation of the inertial parameter �n at STEP 1 and a differ-
ent strategy for the initialization of the inner loop. The resulting algorithms are 
denoted as follows.

•	 FB (warm): the nested non-inertial primal–dual algorithm formerly presented 
in [17], which is obtained as a special case of Algorithm 1 by setting �n ≡ 0;

•	 FB (no-warm): a nested non-inertial primal–dual algorithm obtained from 
Algorithm  1 by setting �n ≡ 0 and replacing STEP 2 with the initialization 
v0
n
= 0 ; due to the lack of the “warm-start” strategy, Theorem 2 does not apply 

to this algorithm, and hence its convergence is not guaranteed;
•	 FISTA (warm): a particular instance of Algorithm 1 obtained by choosing �n 

as the FISTA inertial parameter �FISTA
n

 defined in (37); note that we do not 
have any information on whether �FISTA

n
 complies with condition (31) or not, 

hence it is unclear a priori whether the iterates will converge or not to a mini-
mum point;

•	 FISTA (no-warm): here we set �n = �FISTA
n

 and use the null dual vector v0
n
= 0 

as initialization of the inner loop at STEP 2;
•	 FISTA-like (warm): this is Algorithm  1 with the inertial parameter �n com-

puted according to the rule (36), in which we set C = 10‖u1 − u0‖ and 
�n = 1∕n1.1 ; as explained in Remark 3, such a practical rule ensures that condi-
tion (31) holds, therefore by Theorem 2 we are guaranteed that the iterates of 
the algorithm will converge to a solution of (5);

•	 FISTA-like (no-warm): this is just as “FISTA-like (warm)” but with the 
“warm-start” strategy at STEP 2 replaced by v0

n
= 0 ; again no theoretical guar-

antees are available in this case.

For all algorithms, we set the initial primal iterate as the observed image, namely 
u0 = u−1 = z , the initial dual iterate as the null vector, i.e. vkmax

−1
= 0 , the primal 

steplength as � = (1 − �)∕(8‖W‖2) , and the dual steplength as � = (1 − �)∕8 , 
where 𝜖 > 0 is the machine precision. Regarding the number of primal–dual itera-
tions, we will test different values of kmax in the next section.
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4.1.2 � Results

As a first test, we run all previously described algorithms with kmax = 1 for 2000 
iterations. In Fig. 2, we show the decrease of the primal function values F(un) with 
respect to the iteration number for all test images. We observe that the “FB” and 
”FISTA–like” implementations of Algorithm 1 that make use of the “warm-start” 
strategy converge to a smaller function value than the ones provided by the other 
competitors. These two instances of Algorithm 1 are indeed the only ones whose 
convergence to a minimum point is guaranteed by Theorem  2. On the contrary, 
“FISTA (warm)” is the only warm–started algorithm that tends to a higher func-
tion value, and in fact it provides the worst reconstructions for all test problems, as 
can be seen in the comparison of the reconstructed phantom images in Fig. 4. The 
other algorithms using a null initialization for the inner loop all fail to converge to 
the smallest function value. Such numerical failures are typical of nested inertial 
primal–dual algorithms that do not employ a “warm-start” initialization in the inner 
loop, see e.g. [4, 18].

(a) (b)

(c) (d)

Fig. 2   Decrease of the objective function values F(u
n
) with respect to the iteration number in the case 

kmax = 1
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(a) (b)

(c) (d)

Fig. 3   Comparison between FISTA inertial parameter and the sequence {C∕(n1.1‖u
n
− u

n−1‖)}n∈ℕ in the 
case kmax = 1

(a) (b) (c)

Fig. 4   Reconstructions provided by FISTA (warm), FISTA (no-warm), FISTA-like (warm) with kmax = 1 
after 2000 iterations
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Focusing on the “FISTA–like” variants, we observe that these algorithms per-
form identically to the “FISTA” variants in the first iterations, then move away 
towards smaller function values. This is due to the computational rule (36), which 
has the practical effect of shrinking the inertial parameter after a certain number 
of iterations. Indeed Fig. 3 shows that the parameter C∕(n1.1‖un − un−1‖) becomes 
smaller than �FISTA

n
 after the first 10 − 20 iterations, and then seemingly stabilizes 

around a value smaller than 1. However, we also remark that condition (36) alone is 
not enough for ensuring convergence to the true minimum value, as the ”FISTA–like 
(no-warm)” implementation stabilizes to a higher function value than the one pro-
vided by the warm-started FISTA-like algorithm for all test images. Hence, we con-
clude that the combination of condition (36) with the “warm-start” strategy on the 
inner loop is strictly necessary in order to prevent the divergence of Algorithm 1 
from the true solution of (5).

We now evaluate the impact of the number of inner primal–dual iterations on 
the overall performance of Algorithm  1. In Table  1 we report the function value 
provided by the different algorithms after 2000 iterations on the test image phan-
tom, as kmax varies from 1 to 20. On the one hand, we see that all algorithms yield 
roughly the same function value if kmax is large, however at the expense of a much 
higher computational cost per outer iteration. On the other hand, the warm-started 
FISTA–like implementation provides the best accuracy level already with kmax = 1 , 

Table 1   Test image phantom. 
Function values after 2000 
iterations attained by the 
algorithms for different values 
of kmax

kmax = 1 kmax = 5 kmax = 10 kmax = 20

FB (warm) 286.05 286.05 286.04 286.04
FB (no-warm) 296.23 289.69 288.06 287.10
FISTA (warm) 370.49 303.39 294.12 289.42
FISTA (no-warm) 295.98 289.41 287.76 286.79
FISTA-like (warm) 285.93 285.88 285.82 285.80
FISTA-like (no-warm) 295.98 289.41 287.76 286.79

(a) (b)

Fig. 5   Test image moon. Relative decrease of the function values of FISTA-like (warm) with respect to 
the iteration number (left) and time (right) for different values of kmax
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(a) (b)

Fig. 6   Test image phantom. Relative decrease of the function values of FISTA-like (warm) with respect 
to the iteration number (left) and time (right) for different values of kmax

(a) (b)

Fig. 7   Test image micro. Relative decrease of the function values of FISTA-like (warm) with respect to 
the iteration number (left) and time (right) for different values of kmax

(a) (b)

Fig. 8   Test image mri. Relative decrease of the function values of FISTA-like (warm) with respect to 
the iteration number (left) and time (right) for different values of kmax
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and increasing kmax does not seem to be particularly beneficial for this variant. In 
Figs.  5, 6, 7 and 8, we show the relative decrease (F(un) − F(u∗))∕F(u∗) of the 
warm-started FISTA–like algorithm for several values of kmax , with respect to both 
iterations and time, where F(u∗) is the minimum value among the ones attained after 
2000 iterations for the different values of kmax . While the plots on the left show a 
similar performance in terms of iterations as kmax varies, the plots on the right con-
firm that a higher value of kmax often results in an increased computational effort to 
achieve the desired accuracy level.

4.2 � KL‑TV image restoration under Poisson noise

In this section, we consider again the problem of image restoration under Poisson 
noise, i.e. the problem of recovering the original image u ∈ ℝ

d from a distorted 
image z ∈ ℝ

d , zi ≥ 0 i = 1,… , d that is a realization of a Poisson random vector of 
the form

where H ∈ ℝ
d×d is again the blurring matrix, e is the vector of all ones, and b > 0 

is a constant term taking into account the existence of some background emission. 
This time, we follow the Maximum a Posteriori approach without approximating 
the KL divergence, and imposing both TV regularization and non-negativity on the 
image pixels. Therefore, we address the following optimization problem

where the functions KL and TV are defined in (43) and (45), respectively, 
Ω = {u ∈ ℝ

d ∶ ui ≥ 0, i = 1,… , d} denotes the non-negative orthant, and �Ω is the 
indicator function of Ω , i.e.

Note that problem (49) can be included in (5) by setting

where u ∈ ℝ
d , v ∈ ℝ

4d , and Id ∈ ℝ
d×d is the identity matrix of size d. We remark 

that f is convex, continuously differentiable, and its gradient is L−Lipschitz con-
tinuous for any constant L > 0 , whereas g is convex and lower semicontinuous. In 
addition, the problem admits at least one solution under mild assumptions on H, 
for instance the same ones assumed for problem (46) [24, Proposition 3]. Thus, 

z = P(Hu + be),

(49)min
u∈ℝd

KL(Hu + be;z) + �TV(u) + �Ω(u),

�Ω(u) =

{
0, u ∈ Ω

∞, otherwise.

(50)f (u) ∶ = 0

(51)
g(v) ∶ =

d�
i=1

�
�����

�
v2i−1
v2i

������2
+ �Ω

⎛
⎜⎜⎝

v2d+1
⋮

v3d

⎞
⎟⎟⎠
+ KL

⎛
⎜⎜⎝

⎛
⎜⎜⎝

v3d+1
⋮

v4d

⎞
⎟⎟⎠
+ be;z

⎞⎟⎟⎠
A ∶ = (∇T

1
∇T

2
⋯ ∇T

d
Id H

T )T ∈ ℝ
4d×d
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Theorem 2 guarantees once again the convergence of the iterates {un}n∈ℕ of Algo-
rithm 1 to a solution of problem (49).

As in the previous test, we remark that each step of Algorithm  1 can be per-
formed explicitly. Indeed, the blocks of the matrix A are the discrete gradient opera-
tor ∇ , the identity matrix I, and the blurring matrix H, all of which can be easily 
applied in closed form. Furthermore, the spectral norm of A can be upper bounded 
as ‖A‖2 ≤ ‖∇‖2 + ‖HTH‖ + 1 , where ‖∇‖2 ≤ 8 and ‖HTH‖ ≤ ‖H‖1‖H‖∞ . Finally, 
the term g can be written as the sum of separable functions g = g1 + g2 + g3 , where 
g1(v1,… , v2d) =

∑d

i=1
�‖(v2i−1 v2i)‖2 , g2(v2d+1,… , v3d) = �Ω(v2d+1,… , v3d) , and 

g3(v3d+1,… , v4d) = KL((v3d+1,… , v4d) + be;z) , so that proxg∗ can be block-decom-
posed as

where proxg∗
1
 is the projection operator onto the cartesian product 

B(0, �) × B(0, �) ×⋯ × B(0, �) , proxg∗
2
 is the projection operator onto the orthant 

Ω∗ = {v ∈ ℝ
d ∶ vi ≤ 0, i = 1,… , d} , and proxg∗

3
 can be computed according to a 

closed-form formula [19, Table 2]. Therefore, proxg∗ is overall computable in closed 
form.

4.2.1 � Implementation and parameters choice

For the following tests, we consider the grayscale images phantom, mri, micro 
used in the tests of section 4.1, and two different types of blur: a Gaussian blur with 
window size 9 × 9 , and an out-of-focus blur with radius 4. The products with the 
blurring matrix H (respectively HT ) are performed by assuming periodic bound-
ary conditions. For each test image and blur, we convolve the true object with the 
corresponding PSF, add a constant background term b = 10−6 , and then apply the 
imnoise function of the MATLAB Image Processing Toolbox to simulate the 
presence of Poisson noise. We consider two different Signal-to-Noise (SNR) ratios 
(66 and 72 dB), which are imposed by suitably pre-scaling the images before apply-
ing the imnoise function. We recall that the SNR in presence of Poisson noise is 
estimated by [6]

where nexact and nbackground represent the total number of photons in the image and in 
the background term, respectively.

We compare Algorithm 1 with some well-known optimization methods suited for 
the deblurring of Poissonian images. We detail the implemented algorithms below.

•	 Algorithm 1: we equip our proposed algorithm with kmax ∈ {1, 5, 10} , �n com-
puted according to the rule (36) with the same choices of C, �n adopted in sec-
tion 4.1, the initial dual iterate as vkmax

−1
= 0 , the primal steplength as � = 10−2 , 

proxg∗ (v) =
(
proxg∗

1
(v1,… , v2d), proxg∗

2
(v2d+1,… , v3d), proxg∗

3
(v3d+1,… , v4d)

)
,

SNR = 10 log10

�
nexact√

nexact + nbackground

�
,
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and the dual steplength as � = 0.9∕(9 + ‖H‖1‖H‖∞) . We note that, although the 
sequence {un}n∈ℕ is guaranteed to converge to a solution of problem (49), some 
of the iterates might fall outside the domain Ω , as the primal sub-iterates uk

n
 in 

STEP 3 are not projected onto Ω . As a partial remedy to this issue, we report the 
results for the projected sequence {PΩ(un)}n∈ℕ , where PΩ denotes the projection 
operator onto Ω . Such a sequence is both feasible and convergent to a solution 
of (49), even though we can not state anything regarding its convergence rate, as 
Theorem 3 is applicable only to the non-projected sequence {un}n∈ℕ.

•	 CP: this is the popular Chambolle-Pock primal-dual algorithm [15], whose 
general iteration is reported in (17). Here we apply CP to problem (49) by set-
ting f (u) = �Ω(u) , g(v) =

∑d

i=1
�‖(v2i−1 v2i)‖2 + KL((v3d+1,… , v4d) + be;z) , and 

A = (∇T
1
∇T

2
⋯ ∇T

d
HT )T ∈ ℝ

3d×d . Since the steplength parameters �, � need to 
satisfy the condition 𝜏𝜎 < 1∕‖A‖2 to guarantee the convergence of the sequence, 
we choose the same primal steplength as in Algorithm  1, i.e., � = 10−2 , and 
� = 0.9�−1∕(8 + ‖H‖1‖H‖∞).

•	 PIDSplit+: this is an efficient algorithm based on an alternating split Bregman 
technique, which was first proposed in [42]. The PIDSplit+ algorithm depends 
on a parameter 𝛾 > 0 , which is set here as � = 50∕� , as suggested in [42]. Note 
that there exist also adaptive strategies for computing this parameter, see e.g. 
[47].

For all algorithms, we set the initial primal iterate as the observed image, namely 
u0 = z . For each test problem, the regularization parameter � is tuned by a trial-
and-error strategy. In particular, we run the CP algorithm by varying � in the set 
{10−3, 5 ⋅ 10−3, 10−2, 5 ⋅ 10−2, 10−1, 5 ⋅ 10−1} , performing 5000 iterations and 
using u0 = z at each run. The value of � providing the smallest relative error 
‖un − u†‖∕‖u†‖ is retained as the regularization parameter, being u† the ground truth 
and un the last iterate.

4.2.2 � Results

We apply Algorithm 1, PIDSplit+, and CP on 12 test problems, which are generated 
by varying the test image (phantom, mri, micro), the blur (Gaussian or out-of-
focus), and the noise level (66 or 72 dB). For each test problem, we run all algo-
rithms for 1000 iterations.

In Figs.  9, 10, 11, and 12, we report the relative decrease of the function val-
ues (F(un) − F(u∗))∕F(u∗) , where u∗ is a precomputed solution obtained by running 
the CP algorithm for 5000 iterations. We can appreciate the acceleration obtained 
by Algorithm 1 with respect to the iteration number, whereas a higher kmax usually 
increases the computational time without a significant gain in terms of accuracy. 
With kmax = 1 , the computational times of Algorithm 1 are comparable to the ones 
of CP, even though our proposed algorithm is sometimes faster in the first seconds 
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(see e.g. Fig. 11). Overall, Algorithm 1 exhibits a rate of convergence towards the 
minimum point that is similar for each combination of noise level and blur.

In Table 2, we show the values for the structural similarity (SSIM) index [45] 
as a measure of the quality of the reconstructions provided by the algorithms. 
As it can be seen, all methods provide acceptable SSIM values, and are quite 
stable with respect to the noise level and blur. The quality of the reconstructions 

Fig. 9   Test problems with Gaussian blur, SNR = 66 dB. From top to bottom: test images phantom, 
mri, micro. Relative decrease of the function values with respect to the iteration number (left) and 
time (right)
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Fig. 10   Test problems with Gaussian blur, SNR = 72 dB. From top to bottom: test images phantom, 
mri, micro. Relative decrease of the function values with respect to the iteration number (left) and 
time (right)
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Fig. 11   Test problems with out-of-focus blur, SNR = 66 dB. From top to bottom: test images phantom, 
mri, micro. Relative decrease of the function values with respect to the iteration number (left) and 
time (right)
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Fig. 12   Test problems with out-of-focus blur, SNR = 72 dB. From top to bottom: test images phantom, 
mri, micro. Relative decrease of the function values with respect to the iteration number (left) and 
time (right)



120	 S. Bonettini et al.

1 3

provided by Algorithm 1 seems to be not particularly sensitive to the choice of 
kmax , although a much wider experimentation is needed to confirm this remark.

5 � Conclusions

We have presented a nested primal–dual algorithm with an inertial step on the 
primal variable for solving composite convex optimization problems. At each 
outer iteration, the proposed method starts the inner loop with the outcome of 
the previous one, employing the so-called “warm-start” strategy, and then per-
forms a prefixed number of primal–dual iterations for inexactly computing the 
proximal–gradient point. We have proved the convergence of the primal iterates 
towards a minimum point, as well as an O(1/n) convergence rate for the ergodic 
sequences associated to the primal and dual iterates, under the assumption that the 
inertial parameter satisfies an appropriate (implementable) condition. Numerical 
experiments on some Poisson image deblurring problems show that the proposed 
inertial primal–dual method preserves the typical acceleration effect of FISTA-
like algorithms in the first iterations, while ensuring convergence to the true mini-
mum value as the iterations proceed. Possible future developments include the 
introduction of linesearches and variable steplengths and metrics inside the pro-
posed scheme, as well as the study of a suitable practical rule for choosing the 
“optimal” number kmax of inner primal–dual iterations.

Table 2   SSIM values obtained after running the algorithms for 1000 iterations on each test problem

Blur SNR � Alg. 1 Alg. 1 Alg. 1 PID CP
kmax = 1 kmax = 5 kmax = 10 Split+

phantom

Gaussian 66 0.01 0.882 0.885 0.887 0.926 0.878
72 0.05 0.812 0.813 0.814 0.784 0.810

Out-of-focus 66 0.05 0.958 0.959 0.959 0.955 0.955
72 0.1 0.884 0.884 0.884 0.879 0.882

mri

Gaussian 66 0.01 0.927 0.927 0.927 0.911 0.928
72 0.1 0.886 0.885 0.885 0.887 0.888

Out-of-focus 66 0.05 0.924 0.923 0.923 0.917 0.926
72 0.1 0.903 0.903 0.903 0.9 0.905

micro

Gaussian 66 0.05 0.953 0.952 0.951 0.939 0.954
72 0.1 0.905 0.904 0.903 0.890 0.909

Out-of-focus 66 0.05 0.963 0.962 0.961 0.955 0.965
72 0.1 0.912 0.911 0.911 0.905 0.915
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