
Università degli Studi di Firenze
Dipartimento di Ingegneria dell’Informazione (DINFO)

Corso di Dottorato in Ingegneria dell’Informazione

Curriculum: Automatica, Ottimizzazione e Sistemi Complessi

Novel approaches to improve

the efficiency of Machine

Learning models

Candidate

Enrico Civitelli

Supervisors

Prof. Fabio Schoen

Prof. Marco Sciandrone

PhD Coordinator

Prof. Fabio Schoen

ciclo XXXV, 2019-2022

Università degli Studi di Firenze, Dipartimento di Ingegneria

dell’Informazione (DINFO).

Thesis submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Information Engineering. Copyright © 2023 by

Enrico Civitelli.

To all the people I care...

Acknowledgments

Well, at the very end, this moment arrived. I am sitting in one of the

laboratory chairs, which is one of the best places to write these last words.

This part can seem easy to write, but it is not: writing this part means that

this incredible journey, and a part of my life, is finished.

Fabio and Marco, I need to thank you. I had the pleasure of working in

a laboratory that mixes high-level research with a friendly environment, a

place in which you like to stay and work. You created this unique laboratory

and gave me countless occasions to grow as a researcher. In addition, your

passion and knowledge have been an inspiration to me. Finding your research

path during a Ph.D. is never an easy job, but thanks to your guidance, I

found the perfect spot. During these years, I have grown professionally and

as a person.

Thanks to all the Verizon Connect (Florence) people. Collaborating with

you has been an honor. I met wonderful people from which I learned more

than I could ever imagine. I am sure that this experience with you improved

me in every aspect. Thank you for all your patience and time.

Other than them, I have to thank numerous people.

I will start with my family. I did my best to return, at least partially, all

the unconditional trust they put in me. There is not much else that I can say

without becoming banal: thank you for all your support. This achievement

is also yours.

Of course, this section can only be considered complete by mentioning all

my lab buddies. Ale, Leo, Matte, Pier, Simo, Tommi A., and Tommi L., you

have been the people with which I share most of my time inside Florence’s

laboratory. Still, despite this, it is difficult for me to think about you as just

colleagues. I see you as friends, friends with which I would like to spend

many more years discussing stupid ideas and hanging out together. I do not

know if it is easy to find such an environment in a “work” place, but I am

happy to have found this here. Francesco, Marco, and Tomaso, you are the

new entries in the laboratory. I am sorry I did not spend a lot of time with

you. In any case, it has been a pleasure to meet you. I know the laboratory

is in good hands. Matteo, Pier, and Tommi L.: I think I learned a lot of

Ph.D. life lessons in the most complicated way, but in the end, I am happy

about my journey, and more importantly, I am glad to have shared part of

it with you. Matteo, I think you already know everything. I just want to

add a couple of words: I will never truly understand all the trust you put

v

in me. Despite everything, you were always there for me. I do not have the

words to express everything I feel, but I hope I have been able to pay you

back at least partially. Matteo, I will do my best to allow us to continue our

journey.

Ale A., Aurel, Giuli, Luca, Matte N., and Vishal, I met you during the

bachelor/master’s degrees. Meeting friends like you in that period is great

because all these university years have been, for sure, less heavy thanks to

you. I will never forget all the dinners, holidays, and laughs we had together.

I cannot forget to mention all the incredible people I met in Barcelona in-

side and outside CVC (really too many to name everyone, sorry), plus Pietro.

I would like to remember that once, one of them said (wrote, to be honest):

“wherever you will be, remember that you have a home in Barcelona”. Well,

you have to remember that, believe it or not, you helped me in a way you

could never imagine, and for this, you will always have my deepest gratitude.

Thank you, my friends, really.

Pietro, I just would like to add a couple of words. Living with you for

six months has been amazing. Thank you for all the moments we shared. In

the end, I think these will be among the things we will remember with more

happiness (and, of course, thanks for cooking).

Diego, Fede P., Fede T., Nao, Nico, and Uba; a part of this section is

for you. We had a lot of beautiful times together. Here, I just would like to

report an episode: I will never forget the video you did for me when I left

for my visiting period in Barcelona. I know it is stupid to say, but it showed

me the importance of our bonds better than a thousand of words.

Azzurra, despite everything, you deserve a space here. Thank you very

much for everything: if I am here, it is also because of you. You helped me

in countless ways. The least that I can do is write these few words.

To conclude, I would like to thank my oldest friends in Arezzo (and the

outskirts). Guys, I really do not have words to describe our relationship. In

my opinion, it is not easy to define someone as a real friend, you, for sure,

definitely fit this definition for me. I have been able to finish my studies also

because of you. Again, thank you.

Okay, I think I am done. I tried my best to write these words, and I

really hope I gave all of you an idea of how important you are to me. I

shared billions of meaningful moments with you: from the good ones to the

darkest ones, the ones where it rained too hard to stand up. You have been

the best friends I could ever desire for this journey. I sincerely thank you for

vi

all of these reasons (even if, probably, there are many more).

Enrico

Abstract

In this thesis, we discuss the problem of efficiency in Machine Learning from a

general point of view. Specifically, we relate efficiency to the resources/time

used in training or testing and propose four possible ways to increase it.

Generally speaking, efficiency can be increased using two main strategies:

reducing the model’s dimensions or selecting a subset of good input features.

The first part of this dissertation concerns the problem of best subset se-

lection in logistic regression. As a matter of fact, in some contexts, acquiring

the input features can be hard. In these situations, we need to apply meth-

ods designed to obtain good prediction performances using only a subset of

features, since trying to reduce the model complexity has no point. In this

thesis we propose a feature selection algorithm based on a piece-wise linear

approximation of the logistic function in conjunction with an optimization

algorithm solved by means of a two-block decomposition strategy.

The second part of this thesis is concerned with the problem of pruning

the nodes of fully connected or the filters in convolutional layers in neural

network architectures. Nowadays, deep learning techniques are applied in

many different fields. For this reason, having algorithms designed to reduce

the model’s complexity is extremely useful for researchers to increase the

applicability of their models. In this second part of the thesis, we develop

two algorithms based on different approaches. Specifically, node pruning is

built on top of the recently released neural network training on the spectral

domain. In contrast, channel pruning is a preliminary analysis based on a

novel bilevel approach that takes inspiration from neural architectural search

approaches.

The third part of this thesis concerns the problem of removing Batch

Normalization in ResNet-like models. We show that weight initialization is

key to training ResNet-like normalization-free networks. In particular, we

propose an effective initialization strategy for a slightly modified residual

block.

For all these parts, we show both theoretical and empirical results to

strengthen the soundness of the proposed approaches.

viii

Contents

Contents ix

1 Introduction 1

2 Best Feature Selection in Logistic Regression 7

2.1 Preamble . 8

2.2 Preliminary . 9

2.3 Related work . 14

2.4 Proposed method . 20

2.4.1 The working set selection rule 21

2.4.2 The complete procedure 22

2.4.3 Theoretical analysis 22

2.4.4 Finding good CW-optima 26

2.5 Experiments . 27

2.6 Final considerations . 38

3 Pruning of Fully Connected Layer’s Nodes 39

3.1 Preamble . 40

3.2 Preliminary . 41

3.3 Related work . 46

3.4 Proposed method . 49

3.5 Experiments . 52

3.5.1 Single hidden layer . 52

3.5.2 Multiple hidden layers 54

3.5.3 CIFAR-10 . 56

3.6 Final considerations . 60

ix

x CONTENTS

4 Pruning of Convolutional Layer’s Filters 63

4.1 Preamble . 64

4.2 Related work . 65

4.2.1 Alternate Minimization Approaches 65

4.3 Proposed method . 68

4.3.1 Theoretical analysis 69

4.3.2 Convergence analysis 73

4.4 Experiments . 79

4.4.1 Convex case . 79

4.4.2 Non-convex case . 80

4.5 Final considerations . 81

5 Normalization Free ResNet-like models 83

5.1 Preamble . 84

5.2 Preliminary . 84

5.3 Related work . 86

5.4 Proposed Method . 90

5.4.1 Forward Case . 91

5.4.2 Backward Case . 91

5.4.3 Gradient signal preserving setups 93

5.5 Experiments . 94

5.6 Final considerations . 100

6 Conclusion 103

A Publications 105

Bibliography 107

Chapter 1

Introduction

In the last decades, Machine Learning has been one of the major active and

prolific fields of research in computer science. From the first seminal works on

this field [85,125], in which the applications were limited to specific sectors,

we moved to research and applications [40, 47, 73] with significant impact

on everyday life. To give an example of the growth in this field, in 1990,

Carnegie Mellon University released one of the first papers on autonomous

driving [41] based on an experiment conducted a few years before1. Of course,

as it is possible to imagine, this prototype was minimal. Still, starting from

this pioneering work, just 30 years later, we are starting to experience self-

driving vehicles in our daily life. Besides this example, researchers applied

Machine Learning techniques in many different scenarios.

One of the possible reasons behind this Machine Learning explosion and

ubiquity we are witnessing in these last years can be found in the powerful

hardware at our disposal nowadays. This computational power allows re-

searchers to manage an incredible amount of data in a reasonable amount of

time and to define (and use) more complex and resource-demanding Deep

Learning models. Figures 1.1 and 1.2 give an idea of the rate of how the

complexity is increasing over time. The two Figures refer to different topics.

Figure 1.1 shows how, in less than one year, from models with less than 100

million parameters, we can now exploit models with more than 600 million

parameters to solve the same image classification task. On the other hand,

Figure 1.2 shows a (maybe even worst) trend for the language models. As

a matter of fact, from 94 million parameters, we moved to more than 500

1https://www.youtube.com/watch?v=ntIczNQKfjQ

1

https://www.youtube.com/watch?v=ntIczNQKfjQ

2 Introduction

Figure 1.1: Models dimensions according to the year they have been released.

This image has been adapted from “paperswithcode.com”.

billion parameters in less than five years.

Looking at Figure 1.1 and 1.2 one question naturally arise: why are we

increasing the models complexity at this rate?

Roughly speaking, as empirically proved by Figure 1.3, model complexity

correlates to better predictive performance. In the context of image classi-

fication, Figure 1.3 shows how increasing the Giga FLOPs of a model (the

number of floating point operations needed to compute the output) leads

to best prediction performances. To correctly link these three figures, it

is worth recalling that a higher number of FLOPs correlates to increased

parameters. Moreover, in Deep Learning, over-parameterized models often

benefit from nice generalization and theoretical properties [4, 33,121,127].

Considering these two aspects and recalling that the hardware at our

disposal allows us to deal with big models, it is easy to imagine why there

is this tendency to design and test models with many parameters.

Despite these significant benefits over-parametrized networks enjoy, it is

essential to mention some non-negligible drawbacks. Huge models need a

long training time and a great amount of resources. Moreover, and prob-

ably this is the most critical issue, in some scenarios, it is not possible to

always have the necessary amount of computational power to run a model

3

Figure 1.2: Language model dimension according to the year they have been

released. This image has been adapted from “huggingface.co”

in a reasonable amount of time. For instance, in contexts such as robotics,

autonomous driving, or edge computing, the available computational power

has to be shared with other essential processes. In some cases, using high-

end hardware is also not possible due to energy consumption constraints. In

other words, despite their outstanding performance, huge models often have

too high computational times to be used in such applications.

In addition to the problems mentioned above, in this dissertation, we

would like to highlight also a different way to define the complexity of using

a Machine Learning model. In some contexts (for instance, healthcare ap-

plications), even if the computational resources are not a problem, acquiring

the input data can be hard (for example, the reader can imagine the time

necessary to obtain the results of some medical analysis or the complexity to

get some samples to analyze). To increase the efficiency in these situations,

we need to apply methods designed to obtain good prediction performance

using only a subset of features since trying to reduce the model complexity

has no point.

Recently, researchers put a lot of effort into designing solutions as ef-

4 Introduction

Figure 1.3: Comparison between Giga FLOPS (GFLOPs) and reached Top1

accuracy on ImageNet.

ficiently as possible to avoid the above-mentioned problems, either design-

ing efficient architectures, reducing the complexity of existing models, us-

ing fewer resources dependent algorithms, or selecting the input features

[13,21,29,47,51,69,74,90,101,112,136,137].

As mentioned above, we can approach the problem of designing efficient

Machine Learning models following different paradigms. Since this disserta-

tion proposes four different ways to reduce model’s complexity (in training or

testing time), we structured the manuscript as self-contained chapters from

which the reader can refer to deepen a specific approach. Despite the self-

contained structure of each Chapter, we would like to highlight that Chapters

2, 3, and 4 deal with the same underlying problem of fitting the best possible

model taking into consideration an ℓ0 pseudo-norm as guidance. As a matter

of fact, inducing sparsity in the model’s parameters or input features leads

to an improvement in both memory or time requirements.

Finally, we organized the rest of this work as follows:

• In Chapter 2, we address the problem of feature selection. As discussed

before, one possible way to decrease the difficulties of applying a model

in real-world cases is related to the hardness of obtaining the features

5

needed to perform a reliable solution in some scenarios. In these sit-

uations, a robust method to select only a subset of good features is

desirable even for simple Machine Learning models. More specifically,

in this Chapter, we focus on the problem of best subset selection in

logistic regression exploiting the well-known Information Criteria to

balance the predictive performance and the number of features used.

This Chapter is adapted from the work [31];

• In Chapter 3, we address the problem of Neural Network pruning,

and, in particular, we focus on structural pruning of fully connected

layers. Generally speaking, fully connected layers have the highest

number of parameters among the possible modules that define a Neu-

ral Network. Despite the tremendous computational efficiency of fully

connected layers, the tendency is to design, when possible, fully convo-

lutional networks because of the reduced memory required. Anyhow,

in some cases, fully connected layers may be mandatory (for instance,

LSTM or Transformer models). In this Chapter, exploiting a spectral

reformulation of the network, we design a framework to rank the im-

portance of each output node for the final prediction according to their

associated eigenvalue. This Chapter is adapted from the work [23];

• In Chapter 4, we address the problem of pruning convolutional layers

to decrease the inference time. More specifically, it is possible to de-

fine a bilevel optimization problem to address the issue of searching,

given an initial network architecture, a sub-network with a reduced

number of convolutional filters. In this Chapter, we develop, under

suitable assumptions, a convergence analysis of a Penalty Decomposi-

tion approach applied to such a bilevel problem. It is also important

to highlight that this Chapter, differently from the others, has to be

intended as a work-in-progress work and a natural complement to the

work described in Chapter 3. For this reason, here we present the

theoretical analysis and some proof of concept results;

• In Chapter 5, we address the problem of removing Batch Normalization

from ResNet-like model. Batch Normalization has allowed the training

of extremely deep neural networks due to its effect on preventing ex-

ploding or vanishing gradients. A direct consequence of well-behaved

gradients yielded is an “easiest” training phase. In this Chapter, we

theoretically analyze the behavior of the gradient inside a residual block

6 Introduction

and, according to the performed analysis, we designed an initialization

strategy that, in conjunction with a minor modification of the standard

ResNet structure, allows successfully training of the network without

Batch Normalization. This Chapter is adapted from the work [32];

• In Chapter 6, we draw some concluding remarks about the proposed

approaches.

Chapter 2

Best Feature Selection in

Logistic Regression

In this chapter, the problem of best subset selection in logistic

regression is addressed. In particular, we take into account for-

mulations of the problem resulting from the adoption of informa-

tion criteria, such as AIC or BIC, as goodness-of-fit measures.

There exist various methods to tackle this problem. Heuristic

methods are computationally cheap, but are usually only able to

find low quality solutions. Methods based on local optimization

suffer from similar limitations as heuristic ones. On the other

hand, methods based on mixed integer reformulations of the prob-

lem are much more effective, at the cost of higher computational

requirements, that become unsustainable when the problem size

grows. We thus propose a new approach, which combines mixed-

integer programming and decomposition techniques in order to

overcome the aforementioned scalability issues. We provide a

theoretical characterization of the proposed algorithm properties.

The results of a vast numerical experiment, performed on widely

available datasets, show that the proposed method achieves the

goal of outperforming state-of-the-art techniques.

7

8 Best Feature Selection in Logistic Regression

2.1 Preamble

In this Chapter, we are interested in the problem of best features subset

selection in logistic regression. This variant of standard logistic regression

requires to find a model that, in addition to accurately fitting the data, ex-

ploits a limited number of features. In this way, the obtained model only

employs the most relevant features, with benefits in terms of inference per-

formance (since some features are not necessary for good predictions) and

interpretable. Moreover, generally speaking, Logistic regression possesses a

number of useful properties. As example, it is relatively simple; it is read-

ily interpretable (since the weights are linearly associated to the features);

statistical confidence measures can quickly be obtained; the model can be

updated by simple gradient descent steps if new data are available; in prac-

tice it often has good predictive performance, especially when the size of

train data is too limited to exploit more complex models.

In order to compare the quality of models that exploit different features,

i.e., models with different complexity, goodness-of-fit (GOF) measures have

been proposed. These measures allow to evaluate the trade-off between accu-

racy of fit and complexity associated with a given model. Among the many

GOF measures [16, 17, 74] that have been proposed in the literature, those

based on information criteria (IC) [3, 60, 130] are some of the most popu-

lar [68]. Models based upon these Information Criteria are very popular in

the statistics literature.

In case the selection of the model is based on one of the aforementioned

IC, the underlying optimization problem consists of minimizing a function

which is the sum of a convex part (the negative log-likelihood) and a penalty

term, proportional to the number of employed variables; it is thus a sparse

optimization problem.

Problems of this kind are often solved by heuristic procedures [44] o by

ℓ1-regularization [75, 87, 149]. In fact, specific optimization algorithms exist

to directly handle the zero pseudo-norm [11, 95, 98]. However, none of the

aforementioned methods is guaranteed to find the best possible subset of

features under a given GOF measure.

With problems where the convex part of the objective is simple, such

as least squares linear regression, approaches based on mixed-integer for-

mulations allow to obtain certified optima, and have thus had an increased

popularity in recent years [18, 39, 54, 107, 108]. Logistic likelihood, although

convex, cannot however be inserted in a standard MIQP model. Still, [128]

2.2 Preliminary 9

showed that, by means of a cutting-planes based approximation, a good

surrogate MILP problem can be defined and solved, at least for moderate

problem sizes, providing a high quality classification model.

The aim of this Chapter is to introduce a novel technique that, exploiting

mixed-integer modeling, is able to produce good solutions to the best subset

selection in logistic regression problem, being at the same time reasonably

scalable with respect to problem size. To reach this goal, we make use of a

decomposition strategy.

The main contributions described in this Chapter are:

• The definition of a strong necessary optimality condition for optimiza-

tion problems with an ℓ0 penalty term;

• The definition of a decomposition scheme, with a suitable variables

selection rule, allowing to improve the scalability of the method from

[128], with guarantees of convergence to points satisfying the afore-

mentioned condition;

• Practical suggestions to improve the performance of the proposed al-

gorithm.

2.2 Preliminary

Let X ∈ RN×n be a dataset of N examples with n real features and Y ∈
{−1, 1}N a set of N binary labels. The logistic regression model [61] for

binary classification defines the probability for an example x of belonging to

class y = 1 as

P(y = 1 | x) = 1

1 + exp(−w⊤x)
.

Substantially, a sigmoid nonlinearity is applied to the output of a linear

regression model. Note that the intercept term is not explicitly present in the

linear part of the model; in fact, it can be implicitly added, by considering it

as a feature which is equal to 1 in all examples; we did so in the experimental

part of this work. It is easy to see that

P(y = −1 | x) = 1− P(y = 1 | x) = 1

1 + exp(w⊤x)
.

10 Best Feature Selection in Logistic Regression

Hence, the logistic regression model can be expressed by the single equation

here below:

P(y | x) = 1

1 + exp(−yw⊤x)
. (2.1)

Under the hypothesis that the distribution of (y | x) follows a Bernoulli

distribution, we get that model (2.1) is associated with the following log-

likelihood function:

ℓ(w) = −
N∑
i=1

log
(
1 + exp

(
−y(i)w⊤x(i)

))
. (2.2)

A function f(v) = log(1 + exp(−v)) is referred to as logistic loss function

and is a convex function. The maximum likelihood estimation of (2.1), which

requires the maximization of ℓ(w), is thus a convex continuous optimization

problem.

Identifying a subset of features that provides a good trade-off between

fit quality and model sparsity is a recurrent task in applications. Indeed, a

sparse model might offer a better explanation of the underlying generating

model; moreover, sparsity is statistically proved to improve the generaliza-

tion capabilities of the model [145]; finally, a sparse model will be computa-

tionally more efficient.

Many different approaches have been proposed in the literature for the

best subset selection problem which, we recall, is a specific form of model

selection. Every model selection procedure has advantages and disadvantages

as it is difficult to think that there might exist a single, correct, model for

a specific application. Among the many different proposals, those which

base subset selection on information criteria [25, 26, 77] stand out as the

most frequently used, both for their computational appeal as well as for

their deep statistical theoretical support. Information criteria are statistical

tools to compare the quality of different models in terms of quality of fit

and sparsity simultaneously. The two currently most popular information

criteria are:

• the Akaike Information Criterion (AIC) [2, 3, 20]:

AIC(w) = −2ℓ(w) + 2∥w∥0;

Comparing a set of candidate models, the one with smallest AIC is con-

sidered closer to the truth than the others. Since the log-likelihood,

2.2 Preliminary 11

at its maximum point, is a biased upward estimator of the model se-

lection target [25], the penalty term 2∥w∥0, i.e., the total number of

parameters involved in the model, allows to correct this bias;

• the Bayesian Information Criterion (BIC) [130]:

BIC(w) = −2ℓ(w) + log(N)∥w∥0;

It has been shown [25, 77] that given a set of candidate models, the

one which minimizes the BIC is optimal for the data, in the sense that

it is the one that maximizes the marginal likelihood of the data under

the Bayesian assumption that all candidate models have equal prior

probabilities.

Although other models can be proposed for model selection, those based on

the AIC and BIC, or their variant, are extremely popular thanks to their

solid statistical properties.

In summary, when referred to logistic regression models, the problem of

best subset selection based on information criteria like AIC or BIC has the

form of the following optimization problem:

min
w∈Rn

F(w) + λ∥w∥0, (2.3)

where F : Rn → R is twice the negative log-likelihood of the logistic regres-

sion model (F(w) = −2ℓ(w)), which is a continuously differentiable convex

function, λ > 0 is a constant depending on the choice of the information

criterion and ∥ · ∥0 denotes the ℓ0 semi-norm of a vector. Given a solution

w̄, we will denote the set of its nonzero variables, also referred to as support,

by S(w̄) ⊆ {1, . . . , n}, while S̄(w̄) = {1, . . . , n} \ S(w̄), denotes its comple-

mentary. In the following, we will also refer to the objective function as

L(w) = F(w) + λ∥w∥0.
Because of the discontinuous nature of the ℓ0 semi-norm, solving problems

of the form (2.3) is not an easy task. In fact, problems like (2.3) are well-

known to be NP-hard, hence, finding global minima is intrinsically difficult.

[98] have established necessary first-order optimality conditions for prob-

lem (2.3); in fact, they consider a more general, constrained version of the

problem. In the unconstrained case we are interested in, such conditions

reduce to the following.

Definition 1. A point w⋆ ∈ Rn satisfies Lu-Zhang first order optimality

conditions for problem (2.3) if ∇jL(w⋆) = 0 for all j ∈ {1, . . . , n} such that

w⋆
j ̸= 0.

12 Best Feature Selection in Logistic Regression

As proved by [98], if L(w) is a convex function, as in the case of logistic

regression log-likelihood, there is an equivalence relation between Lu-Zhang

optimality and local optimality, meaning there exists a neighborhood V of

w⋆ such that L(w⋆) ≤ L(w) for all w ∈ V .

Proposition 1. Let w⋆ ∈ Rn. Then, w⋆ is a local minimizer for Problem

(2.3) if and only if it satisfies Lu-Zhang first order optimality conditions.

Proof. Being L convex, a Lu-Zhang point is globally optimal w.r.t. the

nonzero variables. As for the zero variables, since L is continuous, there

exists a neighborhood such that the decrease in L is bounded by λ, which is

the penalty term that is added to the overall objective function as soon as

one of the zero variables is moved.

Unfortunately, the number of Lu-Zhang local minima is in the order of

2n. Indeed, for any subset of variables, minimizing w.r.t. those components,

while keeping fixed the others to zero, allows to obtain a point which satisfies

Lu-Zhang conditions. Hence, satisfying the necessary and sufficient condi-

tions of local optimality is indeed a quite weak feature in practice. On the

other hand, being the search of an optimal subset of variables a well-known

NP-hard problem, requiring theoretical guarantees of global optimality is

unreasonable. In conclusion, it should be clear that the evaluation and com-

parison of algorithms designed to deal with problem (2.3) have to be based

on the quality of the solutions empirically obtained in experiments.

However, we can further characterize candidates for optimality by means

of the following notion, which adapts the concept of Component Wise opti-

mality (CW-Optimality) for cardinality constrained problems defined by [11].

To this aim, we introduce the notation w ̸=i to denote all the components of

w except the i-th.

Definition 2. A point w⋆ ∈ Rn is a CW-minimum for Problem (2.3) if

w⋆
i ∈ argmin

wi

L(wi;w
⋆
̸=i) (2.4)

for all i = 1, . . . , n.

Equivalently, (2.4) could be expressed as

w⋆ ∈ argmin
w

L(w)

s.t. ∥w − w⋆∥0 ≤ 1
(2.5)

2.2 Preliminary 13

CW-optimality is a stronger property than Lu-Zhang stationarity. We

outline this fact in the following proposition.

Proposition 2. Consider Problem (2.3) and let w⋆ ∈ Rn. The following

statements hold:

1. If w⋆ is a CW-minimum for (2.3), then w⋆ satisfies Lu-Zhang optimality

conditions, i.e., w⋆ is a local minimizer for w⋆.

2. If w⋆ is a global minimizer for (2.3), then w⋆ is a CW-minimum for

(2.3).

Proof. We prove the statements one at a time.

1. Let w⋆ be a CW-minimum, i.e.,

w⋆
i ∈ argmin

wi

L(wi;w
⋆
̸=i) (2.6)

for all i = 1, . . . , n. Assume by contradiction that w⋆ does not satisfy

Lu-Zhang conditions; then, there exists h ∈ {1, . . . , n} such that w⋆
h ̸=

0 and ∇hL(w⋆) > 0. Hence, −∇hL(w⋆) is a descent direction for

L(wh;w
⋆
h̸=j) at w

⋆
h ̸= 0, which contradicts (2.6).

2. Let w⋆ be a globally optimal point for (2.3). Assume by contradiction

that w⋆ is not a CW-minimum, i.e., there exists h ∈ {1. . . . , n} such

that there exists ŵh such that L(ŵh;w
⋆
h̸=j) < L(w⋆). This clearly

contradicts that w⋆ is a global optimum.

Note that CW-optimality is a sufficient, yet not necessary, condition for

local optimality. Indeed, Lu-Zhang conditions, and hence local optimality,

certify that an improvement cannot be achieved without changing the set of

nonzero variables. CW-optimality allows to also take into account possible

changes in the support, although limited to one variable. We show this in the

following examples, where, for the sake of simplicity, we consider a simpler

convex function than L.

Example 1. Consider the problem

min
w∈R2

φ(w) = (w1 − 1)2 + (w2 − 2)2 + 2∥w∥0.

14 Best Feature Selection in Logistic Regression

It is easy to see that Lu-Zhang conditions are satisfied by the points wa =

(0, 0), wb = (1, 2), wc = (0, 2) and wd = (1, 0). We have φ(wa) = 5,

φ(wb) = 4, φ(wc) = 3, φ(wd) = 4. We can then observe that wc and wd

are CW-minima, as their objective value cannot be improved by changing

only one of their components, while wa and wb are not CW-optima, as

the solutions can be improved by zeroing a component or setting the first

component to 1, respectively.

We can conclude by remarking that searching through the CW-points

allows to filter out a number of local minima that are certainly not globally

optimal.

2.3 Related work

A number of techniques has been proposed and considered in the literature

to tackle problem (2.3). If the number of variables n in not exceedingly large,

especially in the case of convex L, heuristic and even exhaustive approaches

are a viable way of proceeding.

The exhaustive approach consists of finding the global minimum for L for

all possible combinations of non-zero variables. All the retrieved solutions are

then compared, adding to L the penalty term on the ℓ0-norm, to identify the

optimal solution to the original problem. This approach is however clearly

computationally intractable.

In applications, an heuristic relaxation of the exhaustive search is em-

ployed: the greedy step-wise approach, with both its variants, the forward

selection strategy and the backward elimination strategy [44]. This method

consists of adding (or removing, respectively) a variable to the support, in

such a way that the variation of the objective function obtained by only

changing that variable is optimal; the procedure typically stops as soon as

the addition (removal) of a variable is not enough to improve the quality of

the solution. This technique is clearly much cheaper, at the cost of a lower

quality of the final solution retrieved.

One of the most prominent approaches (arguably the most popular one)

to induce sparsity is Lasso [138]. Lasso consists of approximating the ℓ0
penalty term by a continuous, convex surrogate, the ℓ1-norm. When applied

to (2.3), the resulting optimization problem is the widely used ℓ1-regularized

2.3 Related work 15

formulation of logistic regression [75,87,149]:

min
w∈Rn

L(w) + λ∥w∥1. (2.7)

The ℓ1-norm is well known to be sparsity-inducing [7]. Lasso often produces

good solutions with a reasonable computational effort and is particularly

suited for large scale problems, where methods directly tackling the ℓ0 formu-

lation are too expensive to be employed. However, equivalence relationships

between problems (2.3) and (2.7) do not exist. Thus, problem (2.7) usually

has to be solved for many different values of λ in order to find a satisfying

solution of (2.3). Still, the solution is typically suboptimal for problem (2.3)

and poor from the statistical point of view [105,132,153].

[98] proposed a Penalty Decomposition (PD) approach to solve problem

(2.3). The classical variable splitting technique [72] can be applied to prob-

lem (2.3), duplicating the variables, adding a linear equality constraint and

separating the two parts of the objective function, obtaining the following

problem:

min
w,z∈Rn

L(w) + λ∥z∥0

s.t. w − z = 0.
(2.8)

Problem (2.8) can then be solved by an alternate exact minimization of the

quadratic penalty function

qτ (w, z) = L(w) + λ∥z∥0 +
τ

2
∥w − z∥22, (2.9)

where the penalty parameter τ is increased every time a (approximate) sta-

tionary point, w.r.t. the w block of variables, of the current qτ is attained.

The algorithm is summarized in Algorithm 1. The z-update step can in fact

be carried out in closed form by the following rule:

zk+1
i =

{
0 if τ

2 (w
k
i)

2 < λ,

wk+1
i otherwise.

The algorithm is proved to asymptotically converge to Lu-Zhang station-

ary points, i.e., to local minima. The solution retrieved by the algorithm

strongly depends on the choice of the initial value of the penalty parameter

τ and of the increase factor στ . Therefore, in order to find good quality

solutions, the algorithm may be run in practice several times with different

hyperparameters configurations.

16 Best Feature Selection in Logistic Regression

Algorithm 1: Penalty Decomposition

1 Input: τ > 0, στ > 1, w0, z0 ∈ Rn, ε > 0, η > 0, σε ∈ (0, 1).

2 k = 0

3 while ∥wk − zk∥ > η do

4 Set

wk+1 = argmin
w

L(w) + τ

2
||w − zk||2

5 Set

zk+1 = argmin
z

τ

2
||wk+1 − z||2 + λ||z||0

6 if ∥∇wqτ (w
k, zk)∥ ≤ ε then

7 Set τ = στ τ

8 Set ε = σε ε

9 k = k + 1

10 return zk

A different approach exploits the fact that the ℓ0 semi-norm can be ap-

proximated by the sum of a finite sum of scalar terms, each one being a

surrogate for the step function. In particular, the scalar step function can

be approximated, for t > 0, by the continuously differentiable concave func-

tion s(t) = 1 − e−αt, as done by [124] or [95]. Problem (2.3) can hence be

reformulated as

min
w∈Rn

L(w) + λ

n∑
i=1

(1− e−α|wi|). (2.10)

A sequence of problems of the form (2.10), for increasing values of α, can

then be solved, producing a sequence of solutions that are increasingly good

approximations of those of the original problem. In fact, in the computa-

tional practice, problem (2.10) is solved for a suitable, fixed value of α.

In recent years, very effective algorithms have been proposed in the lit-

erature to tackle the sparse logistic regression in its cardinality-constrained

formulation, i.e., to solve the problem

min
w∈Rn

L(w)

s.t. ∥w∥0 ≤ s,
(2.11)

for fixed s < n. Among these methods, the most remarkable one is arguably

2.3 Related work 17

the Outer Approximation method [19,43], which was proposed to be used for

problem (2.11) by [17]. The algorithm, which is briefly reported in Algorithm

2, works in an alternating minimization fashion. First, it exactly solves,

through a mixed-integer solver, a cutting-plane based approximation of the

problem; then, it finds the exact global minimum w.r.t. the support of the

newly obtained solution. If the objective function of the MIP problem is

within some pre-specified tolerance ϵ of the true objective function at the

new iterate, then the algorithm stops, otherwise the obtained point is used

to perform a new cut.

Algorithm 2: Outer Approximation Method

Data: M ≫ 0, w0 ∈ Rn, ν0 = −∞, ϵ > 0

1 k = 0

2 while νk − L(wk) < ϵ do

3 Set

β̂, νk+1 ∈ argmin
β,w

β

s.t. −Mzi ≤ wi ≤Mzi ∀ i = 1, . . . , n,

z ∈ {0, 1}n,
n∑

i=1

zi ≤ s,

β ≥ L(wℓ) +∇L(wℓ)T (w − wℓ) ∀ℓ = 0, . . . , k,

4 Set

wℓ+1 ∈ argmin
w

L(w)

s.t. wi = 0 for all i ∈ S̄(νk+1)

5 k = k + 1

6 return zk

Algorithm 2 can be employed to solve problem (2.3), by running it for

every possible value of s = 1, . . . , n and choosing, among the n retrieved

solutions, the one with lowest IC value.

In fact, the algorithm can straightforwardly be adapted to directly handle

18 Best Feature Selection in Logistic Regression

problem (2.3). To this aim it is sufficient to remove from the MIP subproblem

the cardinality constraint and add it as a penalty term in the objective

function.

Recently, [74] proposed an alternative way of using the outer approxi-

mation method, which is however based on the ℓ2-regularized formulation of

the logistic regression problem with cardinality constraints

min
w∈Rn

L(w) + 1

2γ
∥w∥22

s.t. ∥w∥0 ≤ s.

Applying duality theory, the optimal value obtainable for a fixed configura-

tion z of nonzero variables, c(z), can be computed by solving the problem

max
α∈RN

−
N∑
i=1

(αi log(αi) + (1− αi) log(1− αi))−
γ

2

n∑
j=1

zj

(
N∑
i=1

yiαiXij

)2

s.t. α ∈ [0, 1]N

whereas cuts for the cutting-planes approximation can be added as

β ≥ c(zℓ) +∇c(zℓ)T (z − zℓ),

where

∂c(z)

zj
= −γ

2
zj

(
N∑
i=1

yiαiXij

)2

.

They also show that the left hand side of the objective function in the dual

problem can be approximated by a properly defined parabola, which makes

the problem quadratic and thus much more efficiently solvable:

α log(α) + (1− α) log(1− α) ≈ 5

2
α2 − 5

2
α− 1

12

This approximation, seen back in the primal space, is a good quadratic

piecewise approximation of the logistic loss which should be more accurate

than the piece-wise linear employed by [128].

Finally, we describe a particular approach that is relevant for the rest of

the chapter. [128] proposed a mixed integer linear (MILO) reformulation for

problem (2.3), which is, to the best of our knowledge, the top performing one,

as long as the dimensions of the underlying classification problem are not

2.3 Related work 19

exceedingly large (thousand examples and/or hundreds of features). Such

approach has two core ideas. The first one consists of the replacement of the

ℓ0 term by the sum of binary indicator variables.

The second key element is the approximation of the nonlinearity in L, i.e.,
the logistic loss function, by a piecewise linear function, so that the resulting

reformulated problem is a MILP problem. The approximating piecewise

linear function is defined by the pointwise maximum of a family of tangent

lines, that is,

f(v) = log(1 + exp(−v)) ≈ f̂(v) = max{f ′(vk)(v − vk) + f(vk) | k = 1, 2, . . . ,K}
= min{t | t ≥ f ′(vk)(v − vk) + f(vk), k = 1, . . . ,K}

for some discrete set of points {v1, . . . , vK}. The function f̂ is a linear un-

derestimator to the true loss logistic function. The final MILP reformulation

of problem (2.3) is given by

min
w,z,t

2

N∑
i=1

ti + λ

n∑
i=1

zi

s.t. −Mzi ≤ wi ≤Mzi ∀ i = 1, . . . , n,

z ∈ {0, 1}n,

ti ≥ f ′(vk)(y(i)(w⊤x(i))− vk) + f(vk) ∀ k = 1, . . . ,K, ∀ i = 1, . . . , N,
(2.12)

where M is a large enough positive constant.

The choice of the tangent lines is clearly crucial for this method. For large

values of K, problem (2.12) becomes hard to solve. On the other hand, if the

number of lines is small, the quality of the approximation will reasonably be

low. Hence, points vk should be selected carefully. [128] suggest to adopt a

greedy algorithm that adds one tangent line at a time, minimizing the area of

gap between the exact logistic loss and the linear piece-wise approximation.

In their work, [128] show that the greedy algorithm provides, depending on

the desired set size, the following sets of interpolation points:

V1 = {0,±1.9,±∞}, V2 = V1 ∪ {±0.89,±3.55}, V3 = V2 ∪ {±0.44,±1.37,±2.63,±5.16}

As problem (2.12) employs an approximation of L, the optimal solution

ŵ obtained by solving it is not necessarily optimal for (2.3). However, since

the objective of (2.12) is an underestimator of the original objective function,

it is possible to make a posteriori accuracy evaluations. In particular, letting

20 Best Feature Selection in Logistic Regression

w⋆ be the optimal solution and

L̂(w) = 2

N∑
i=1

max
k

f ′(vk)(y(i)(w⊤x(i))− vk) + f(vk),

we have

L̂(ŵ) + λ∥ŵ∥0 ≤ L(w⋆) + ∥w⋆∥0 ≤ L(ŵ) + λ∥ŵ∥0.

Hence, if L(ŵ) − L̂(ŵ) is small, it is guaranteed that the value of the real

objective function at ŵ is close to the optimum.

2.4 Proposed method

The MILO approach from [128] is computationally very effective, but it

suffers from a main drawback: it scales pretty badly as either the number of

examples or the number of features in the dataset grows. This fact is also

highlighted by the experimental results reported in the original MILO paper.

On the other hand, heuristic enumerative-like approaches present the

limitation of performing moves with a limited horizon. This holds not only

for the simple stepwise procedures, but also for other possible more complex

and structured strategies that one may come up with. Indeed, selecting one

move among all those involving the addition or removal from the current

best subset of multiple variables at one time is unsustainable except for tiny

datasets.

In this work, we describe a new approach that somehow employs the

MILO formulation [128] to overcome the limitations of discrete enumeration

methods, but also has better scalability features than the standard MILO

approach itself, in particular w.r.t. the number of features. The core idea of

our proposal consists of the application of a decomposition strategy to prob-

lem (2.3). The classical Block Coordinate Descent (BCD) [15,140] algorithm

consists in performing, at each iteration, the optimization w.r.t. one block

of variables, i.e., the iterations have the form

wℓ+1
Bℓ
∈ argmin

wBℓ

L(wBℓ
;wℓ

B̄ℓ
), (2.13)

wℓ+1
B̄ℓ

= wℓ
B̄ℓ

, (2.14)

where Bℓ ⊂ {1, . . . , n} is referred to as working set, B̄ℓ = {1, . . . , n} \ Bℓ.

Now, if the working set size |B| is reasonably small, the subproblems can

2.4 Proposed method 21

be easily handled by means of a MILO model analogous to that from [128].

Carrying out such a strategy, the subproblems to be solved at each iteration

have the form

min
wBℓ

,z,t
2

N∑
i=1

ti + λ
∑
i∈Bℓ

zi

s.t. −Mzi ≤ wi ≤Mzi ∀ i ∈ Bℓ,

zi ∈ {0, 1} ∀ i ∈ Bℓ,

ti ≥ f ′(vk)(yi(w
⊤xi)− vk) + f(vk) ∀ k = 1, . . . ,K, ∀ i = 1, . . . , N.

wB̄ℓ
= wℓ

B̄ℓ

(2.15)

At the end of each iteration, we can also introduce a minimization step

of L w.r.t. the current nonzero variables. Since this is a convex minimization

step, it allows to refine every iterate up to global optimality w.r.t. the support

and to Lu-Zhang stationarity, i.e., local optimality, in terms of the original

problem. This operation has low computational cost and a great practical

utility, since it guarantees, as we will show in the following, finite termination

of the algorithm.

2.4.1 The working set selection rule

Many different strategies could be designed for selecting, at each iteration ℓ,

the variables constituting the working set Bℓ, within the BCD framework.

In this work, we propose a rule based on the violation of CW-optimality.

Given the current iterate xℓ, we can define a score function

p(wℓ, i) =

{
L(0, wℓ

j ̸=i)− λ+ λ∥wℓ∥0 if wℓ
i ̸= 0,

minwi
L(wi, w

ℓ
j ̸=i) + λ+ λ∥wℓ∥0 if wℓ

i = 0.
(2.16)

The rational of this score is to estimate what the objective function would

become if we forced the considered variable wi alone to change its status,

entering/leaving the support.

We finally select the working set Bℓ, of size b, choosing, in a greedy way,

the b lowest scoring variables, i.e., by solving the problem

Bℓ ∈ argmin
B

∑
h∈B

p(wℓ, h)

s.t. B ⊆ {1, . . . , n},
|B| = b.

(2.17)

22 Best Feature Selection in Logistic Regression

2.4.2 The complete procedure

The whole proposed algorithm is formally summarized in Algorithm 3. Ba-

sically, it is a BCD where subproblems are (approximately) solved by the

MILO reformulation and variables are selected by (2.17).

In addition, there are some technical steps aimed at making the algorithm

work from both the theoretical and the practical point of view.

In the ideal case where the subproblems are solved exactly, thanks to

our selection rule, we would be guaranteed to do at least as well as a greedy

descent step along a single variable. However, subproblems are approximated

and it happens that, solving the MILO, the true objective may sometimes

not be decreased, even if the simple greedy step would. In such cases, we

actually perform the greedy step to produce the next iterate.

Moreover, at the end of each iteration we perform the refinement step

previously discussed. Note that this step cannot increase the value of L, as
we are lowering the value of L by only moving nonzero variables.

Last, we make the stopping criterion explicit; the algorithm stops as soon

as an iteration is not able to produce a decrease in the objective value; we

then return the point wℓ.

2.4.3 Theoretical analysis

In this section, we provide a theoretical characterization for Algorithm 3.

We begin by stating a nice property of the set of local minima of problem

(2.3).

Lemma 1. Let Γ = {L(w) | w is a local minimum point of (2.3)}. Then

|Γ| ≤ 2n.

Proof. For each support set S ⊆ {1, . . . , n} let L⋆
S be the optimal value of

the problem

min
w:wS̄=0

L(w).

Let w⋆ be a local minimizer for problem (2.3). Then, from Lu-Zhang condi-

tions and the convexity of L, it is a global minimizer of

min
w:wS̄(w⋆)=0

L(w),

2.4 Proposed method 23

Algorithm 3: MILO-BCD

1 Input: w0 = 0, b < n.

2 for ℓ = 0, 1, . . . do

3 Select the working set Bℓ using rule (2.17)

4 Compute νℓ+1
Bℓ by solving problem (2.15).

5 Set νℓ+1
B̄ℓ = wℓ

B̄ℓ

6 if L(νℓ+1) ≥ L(wℓ) then

7 Set

νℓ+1 ∈ argmin
w

L(w)

s.t. ∥wℓ − w∥0 ≤ 1

wB̄ℓ = wℓ
B̄ℓ

8 Set

wℓ+1 ∈ argmin
w

L(w)

s.t. wi = 0 for all i ∈ S̄(νℓ+1)

9 if L(wℓ+1) = L(wℓ) then

10 return wℓ

and L(w⋆) = L⋆
S(w⋆) + λ|S(w⋆)|. We hence have

Γ = {L⋆
S(w⋆) + λ|S(w⋆)| | w⋆ is a local minimizer for (2.3)}

⊆ {L⋆
S + λ|S| | S ⊆ {1, . . . , n}}

and so

|Γ| ≤ |{L⋆
S + λ|S| | S ⊆ {1, . . . , n}}| ≤ |{S | S ⊆ {1, . . . , n}}| = 2n.

We go on with a statement about the relationship between the objective

function L(w) and the score function p(w, i).

Lemma 2. Let p be the score function defined as in (2.16) and let w̄ ∈ Rn.

Moreover, for all h = 1, . . . , n, let w̄h ∈ argminwh
L(wh, w̸̄=h). Then the

following statements hold

24 Best Feature Selection in Logistic Regression

1. If L(w̄h) = L(w̄) then p(w̄, h) ≥ L(w̄);

2. If L(w̄h) < L(w̄) and w̄ satisfies Lu-Zhang conditions, then p(w̄, h) =

L(w̄h).

Proof. We prove the two statements one at a time:

1. Let us assume that the thesis is false, i.e., L(w̄h) = L(w̄) and p(w̄, h) <

L(w̄). We distinguish two cases: w̄h = 0 and w̄h ̸= 0. In the former

case we have

L(w̄) > p(w̄, h) = min
wh

L(wh, w̄ ̸=h) + λ+ λ∥w̄∥0

= min
wh

L(wh, w̄ ̸=h) + λ+ λ∥w̸̄=h∥0

≥ min
wh

L(wh, w̄ ̸=h) + λ∥wh∥0 + λ∥w̸̄=h∥0

= min
wh

L(wh, w̄ ̸=h) + λ∥(wh, w̸̄=h)∥0

= L(w̄h) = L(w̄),

which is absurd. In the latter case, we have

L(w̄) > p(w̄, h) = L(0, w̸̄=h)− λ+ λ∥w̄∥0
= L(0, w̸̄=h) + λ∥(0, w̸̄=h)∥0
≥ L(w̄h) = L(w̄),

which is again a contradiction; hence we get the thesis.

2. We again distinguish two cases: w̄h = 0 and w̄h ̸= 0. In the first case

we have

L(w̄h) = min
wh

L(wh, w̄ ̸=h)

= min

{
min
wh ̸=0

L(wh, w̸̄=h),L(0, w̸̄=h)

}
= min

{
min
wh ̸=0

L(wh, w̸̄=h),L(w̄)
}

But since we know L(w̄h) < L(w̄), we can imply that

min
wh ̸=0

L(wh, w̄ ̸=h) < L(0, w̸̄=h)

2.4 Proposed method 25

and we can also write

L(w̄h) = min
wh ̸=0

L(wh, w̄ ̸=h)

= min
wh ̸=0

L(wh, w̄ ̸=h) + λ∥(wh, w̸̄=h)∥0

= min
wh ̸=0

L(wh, w̄ ̸=h) + λ+ λ∥w̸̄=h∥0

= min
wh ̸=0

L(wh, w̄ ̸=h) + λ+ λ∥w̄∥0

= min
wh

L(wh, w̄ ̸=h) + λ+ λ∥w̄∥0

= p(x̄, h).

In the second case, since w̄ satisfies Lu-Zhang conditions, we have

w̄h ∈ argminwh
L(wh, w̸̄=h). Therefore

w̄h ∈ argmin
wh ̸=0

L(wh, w̸̄=h) + λ∥(wh, w̄ ̸=h)∥0 = argmin
wh ̸=0

L(wh, w̄ ̸=h).

Since L(w̄h) < L(w̄) = minwh ̸=0 L(wh, w̸̄=h), we get w̄h = (0, w̸̄=h).

We finally obtain

L(w̄h) = L(w̄h) + λ∥w̄h∥0
= L(0, w̄ ̸=h) + λ∥(0, w̄ ̸=h)∥0
= L(0, w̄ ̸=h) + λ∥w̸̄=h∥0
= L(0, w̄ ̸=h) + λ∥w̄∥0 − λ

= p(w̄, h).

We are finally able to state finite termination and optimality properties

of the returned solution of the MILO-BCD procedure.

Proposition 3. Let {wℓ} be the sequence generated by Algorithm 3. Then

{wℓ} is a finite sequence and the last element w̄ is a CW-minimum for

problem (2.3).

Proof. From the instructions of the algorithm, for all ℓ = 1, 2, . . ., we have

that

wℓ ∈ argmin
w

L(w)

s.t. wi = 0 for all i ∈ S̄(wℓ),

26 Best Feature Selection in Logistic Regression

hence ∇iL(wℓ) = 0 for all i ∈ S(wℓ), i.e., wℓ satisfies Lu-Zhang conditions

and is therefore a local minimum point for problem (2.3). From Lemma

1, we thus know that there exist finite possible values for L(wℓ). Moreover,

{L(wℓ)} is a nonincreasing sequence. We can conclude that in a finite number

of iterations we get L(wℓ) = L(wℓ+1), activating the stopping criterion.

We now prove that the returned point, w̄ = wℓ̄ for some ℓ̄ ∈ N, is CW-

optimal. Assume by contradiction that w̄ is not CW-optimal. Then, there

exists h ∈ {1, . . . , n} such that minwh
L(wh, w̸̄=h) < L(w̄).

We show that this implies that there exists t ∈ {1, . . . , n} such that t ∈ B ℓ̄

and minwt
L(wt, w̄ ̸=t) < L(w̄). Assume by contradiction that for all j ∈ B ℓ̄

it holds minwj L(wj , w̸̄=j) = L(w̄). Letting i any index in the working set

B ℓ̄ and recalling Lemma 2, we have∑
j∈Bℓ̄

p(wℓ̄, j) =
∑

j∈Bℓ̄\{i}

p(wℓ̄, j) + p(wℓ̄, i)

≥
∑

j∈Bℓ̄\{i}

p(wℓ̄, j) + L(wℓ̄)

>
∑

j∈Bℓ̄\{i}

p(wℓ̄, j) + p(wℓ̄, h)

=
∑

j∈Bℓ̄∪{h}\{i}

p(wℓ̄, j),

which contradicts the working set selection rule (2.17).

Now, either L(νℓ+1) < L(wℓ̄) after steps 4-5 of the algorithm, or, after

step 7, we get

L(νℓ+1) ≤ min
wt

L(wt, w
ℓ̄
̸=t) < L(wℓ̄).

Therefore, since step 8 cannot increase the value of L, we get L(wℓ̄+1) <

F ℓ̄, but this contradicts the fact that the stopping criterion at line 9 is

satisfied at iteration ℓ̄.

2.4.4 Finding good CW-optima

We have shown in the previous section that Algorithm 3 always returns a

CW-optimal solution. Although this allows us to cut off a lot of local minima,

there are in practice many low-quality CW-minima. For this reason, we

2.5 Experiments 27

introduce in our algorithm an heuristic aimed at leaving bad CW-optima

where it may get stuck.

In detail, we do as follows. Instead of stopping the algorithm as soon as

the objective value does not decrease, we try to repeat the iteration with a

different working set. In doing this, we obviously have to change the working

set selection rule. This operation is repeated up to a maximum number of

times. If after testing a suitable amount of different working sets a decrease

in the objective function cannot be achieved, the algorithm stops.

Specifically, we define a modified score function

p̂(wℓ, i) = p(wℓ, i) + 2ri − 1, (2.18)

where ri is the number of times the i-th variable was in the working set in

the previous attempts.

The idea of this working set selection rule is to first try a greedy selection.

Then, if that first attempt failed, we penalize (exponentially) variables that

were tried more times and could not provide improvements in the end. This

penalty is heuristic. In fact, we may end up with repeating the search over

the same working set from the same starting point. However, we can keep

track of the working set used throughout the outer iteration, in order to

avoid duplicate computations.

Note that such a modification does not alter the theoretical properties of

the algorithm; on the other hand, it has a massive impact on the empirical

performance.

2.5 Experiments

This section is dedicated to a computational comparison between the ap-

proach proposed in this chapter and the state-of-the-art algorithms described

in Section 2.3. In our experiments we took into account 11 datasets for bi-

nary classification tasks, listed in Table 2.1, from the UCI Machine Learning

Repository [42]. In fact, the digits dataset is inherently for multi-class

classification; we followed the same binarization strategy as [128], assigning

a positive label to the examples from the largest class and a negative one

to all the others. Moreover, we removed data points with missing variables,

encoded the categorical variables with a one-hot vector and normalized the

other ones to zero mean and unit variance. In Table 2.1 we also reported

28 Best Feature Selection in Logistic Regression

the number n of data points and the number p of features of each dataset,

after the aforementioned preprocessing operations.

Dataset n p Abbreviation

Parkinsons 195 22 parkinsons

Heart (Statlog) 270 25 heart

Breast Cancer Wisconsin (Prognostic) 194 33 breast

QSAR Biodegradation 1055 41 biodeg

SPECTF Heart 267 44 spectf

Spambase 4601 57 spam

Optical Recognition of Handwritten Digits 3823 62 digits

Libras Movement 360 90 libras

A2A 2265 123 a2a

W2A 2470 300 w2a

Madelon 2000 500 madelon

Table 2.1: List of datasets used for the experiments on best subset selection

in logistic regression.

These datasets constitute a benchmark to evaluate the performance of

the algorithms under examination, namely: Forward Selection and Backward

Elimination Stepwise heuristics, LASSO, Penalty Decomposition, Concave

approximation, the Outer Approximation method in its original form, in the

adapted version for cardinality-penalized problems and also in the variant

exploiting the approximated dual problems, MILO and our proposed method

MILO-BCD. All of these algorithms are described in Section 2.3.

All the experiments described in this section were performed on a ma-

chine with Ubuntu Server 18.04 LTS OS, Intel Xeon E5-2430 v2 @ 2.50GHz

CPU and 16GB RAM. The algorithms were implemented in Python 3.7.4,

exploiting Gurobi 9.0.0 [58] for the outer approximation method, MILO and

MILO-BCD. The scipy [141] implementation of the L-BFGS algorithm de-

fined in [91] was employed for local optimization steps of all methods. A

time limit of 10000 seconds was set for each method.

Both the stepwise methods (forward and backward) exploit L-BFGS [91]

as internal optimizer. The forward selection version uses L-BFGS to opti-

mize the logistic with respect to one variable, whereas backward elimination

defines his starting point exploiting L-BFGS to optimize the model w.r.t. all

the variables.

Concerning LASSO, we solved Problem (2.7) using the scikit-learn

2.5 Experiments 29

implementation [117], with LIBLINEAR library [46] as internal optimizer,

for each value of the hyperparameter λ. Each λ value was chosen so that

two different hyperparameters, λ1 ̸= λ2, would not produce the same level

of sparsity and to avoid the zero solution. More specifically, we defined our

set of hyperparameters by computing the LASSO path, exploiting to the

scikit-learn function l1 min c. All the obtained solutions were refined

by further optimizing w.r.t. the nonzero components only by means of L-

BFGS. At the end of this grid search we selected the solution, among these

one, providing the best information criterion value.

Penalty Decomposition requires to set a large number of hyperparame-

ters: in our experiments we set ε = 10−1, η = 10−3 and σε = 1 for all the

datasets. We ran the algorithm multiple times for values of τ and στ taken

from a small grid. L-BFGS was again used as internal solver. The best

solution obtained, in terms of information criterion, was retained at the end

of the process.

Concave approximation, theoretically, requires the solution of a sequence

of problem. However, as outlined in Section 2.3, a single problem with

fixed approximation hyperparameter µ can be solved in practice [124]. In

our experiments, Problem (2.10) was solved by using L-BFGS. Again, we

retain as optimal solution the one that, after an L-BFGS refining step w.r.t.

the nonzero variables, minimizes the information criterion among a set of

resulting points obtained for different values of µ.

It is important to highlight that the refining optimization step is crucial

for methods like the Concave Approximation or LASSO; as a matter of

fact, without this precaution, the computed solutions don’t even necessarily

satisfy the Lu-Zhang conditions.

All variants of the Outer Approximation method expoit Gurobi to han-

dle the MILP subproblems and L-BFGS for the continuous ones. As sug-

gested by [17], a single branch and bound tree is constructed to solve all

the MILP subproblems, adding cutting-type constraints dynamically as lazy

constraints. Moreover, the starting cut is decided by means of the first-order

heuristic described in the referenced work. For the cardinality-constrained

version of the algorithm, we set a time limit of 1000 seconds for the solution

of any individual problem of the form (2.11) with a fixed value of s. As

for the dual formulation, we set γ = 104 to make the considered problem

as close as possible to the formulation tackled by all other algorithms. The

approximated version of the dual problem, which is quadratic, is efficiently

30 Best Feature Selection in Logistic Regression

Dataset Method AIC ℓ0 Time (s)

parkinsons

Forward Stepwise 129.2567 5 0.280

Backward Stepwise 126.6948 17 0.172

LASSO 129.7412 16 6.290

Penalty Decomposition 134.1499 2 22.486

Concave Approximation 129.6589 17 2.899

Outer Approximation CC 115.8998 9 ≥ 10000

Outer Approximation CP 120.6478 11 ≥ 10000

Outer Approximation Dual 128.1812 17 3.278

MILO 113.5371 8 12.531

MILO-BCD 113.5005 8 93.708

heart

Forward Stepwise 197.6972 11 0.577

Backward Stepwise 216.6682 23 0.038

LASSO 202.4335 15 2.282

Penalty Decomposition 226.1013 4 49.500

Concave Approximation 206.4321 17 1.384

Outer Approximation CC 206.8911 12 ≥ 10000

Outer Approximation CP 263.2117 5 ≥ 10000

Outer Approximation Dual 207.2493 19 4.087

MILO 195.7757 11 41.593

MILO-BCD 195.6242 11 95.399

breast

Forward Stepwise 180.4932 6 0.470

Backward Stepwise 163.2610 33 0.413

LASSO 156.6797 24 21.321

Penalty Decomposition 189.2942 2 8.044

Concave Approximation 158.11729 24 3.398

Outer Approximation CC 166.1055 34 ≥ 10000

Outer Approximation CP 202.8904 9 ≥ 10000

Outer Approximation Dual 161.6405 31 6.675

MILO 147.5119 19 86.250

MILO-BCD 147.6781 17 236.126

biodeg

Forward Stepwise 703.9588 20 3.582

Backward Stepwise 661.6047 32 0.417

LASSO 665.1640 32 65.344

Penalty Decomposition 671.8854 18 232.120

Concave Approximation 663.5171 24 5.789

Outer Approximation CC 678.4316 42 ≥ 10000

Outer Approximation CP 1263.0706 6 ≥ 10000

Outer Approximation Dual 681.6687 31 29.329

MILO 653.4768 23 6885.277

MILO-BCD 654.4053 25 707.356

spectf

Forward Stepwise 178.9840 6 0.797

Backward Stepwise 180.0595 28 0.214

LASSO 181.4678 13 8.966

Penalty Decomposition 222.8672 2 55.287

Concave Approximation 181.8271 17 3.788

Outer Approximation CC 178.8349 12 ≥ 10000

Outer Approximation CP 222.3555 5 ≥ 10000

Outer Approximation Dual 206.1484 38 10.766

MILO 168.5162 15 1293.650

MILO-BCD 168.3443 15 205.6255

libras

Forward Stepwise 53.3215 11 2.558

Backward Stepwise 152.0723 76 0.470

LASSO 28.0720 14 5.413

Penalty Decomposition 142.4580 2 530.951

Concave Approximation 70.0072 35 12.532

Outer Approximation CC 33.4904 11 ≥ 10000

Outer Approximation CP 72.4350 6 ≥ 10000

Outer Approximation Dual 64.0018 32 58.061

MILO 14.2040 7 ≥ 10000

MILO-BCD 14.1557 7 654.227

Table 2.2: Results of AIC minimization in logistic regression with different

optimization methods on small datasets.

2.5 Experiments 31

Dataset Method AIC ℓ0 Time (s)

spam

Forward Stepwise 1906.5143 45 36.136

Backward Stepwise 1901.9650 46 1.468

LASSO 1892.6580 53 1209.108

Penalty Decomposition 5244.4292 3 ≥ 10000

Concave Approximation 1916.1159 51 13.654

Outer Approximation CC 1963.0467 52 ≥ 10000

Outer Approximation CP 2138.2306 36 ≥ 10000

Outer Approximation Dual 1931.7670 58 161.062

MILO 1909.0709 44 ≥ 10000

MILO-BCD 1904.2989 44 8442.004

digits

Forward Stepwise 378.6893 25 13.139

Backward Stepwise 341.8344 42 1.894

LASSO 346.9967 43 2154.283

Penalty Decomposition 7168.3316 1 ≥ 10000

Concave Approximation 338.1436 31 24.398

Outer Approximation CC 386.4583 64 ≥ 10000

Outer Approximation CP 686.1014 12 ≥ 10000

Outer Approximation Dual 372.3541 44 125.282

MILO 323.6231 26 ≥ 10000

MILO-BCD 322.7531 25 6557.441

a2a

Forward Stepwise 1605.9851 34 20.864

Backward Stepwise 1659.0279 87 4.038

LASSO 1615.6245 60 394.008

Penalty Decomposition 1676.8714 16 605.042

Concave Approximation 1647.3086 84 17.422

Outer Approximation CC 1710.0609 120 ≥ 10000

Outer Approximation CP 2581.0224 2 ≥ 10000

Outer Approximation Dual 1663.0632 53 ≥ 10000

MILO 1607.3254 52 ≥ 10000

MILO-BCD 1589.5884 37 8553.430

w2a

Forward Stepwise 395.0422 51 283.327

Backward Stepwise 479.2162 169 137.361

LASSO 721.0487 294 ≥ 10000

Penalty Decomposition 1973.6854 1 ≥ 10000

Concave Approximation 534.2647 166 144.470

Outer Approximation CC 760.3417 301 ≥ 10000

Outer Approximation CP 833.2059 7 ≥ 10000

Outer Approximation Dual 722.9003 294 207.279

MILO 358.5662 82 ≥ 10000

MILO-BCD 339.7765 55 ≥ 10000

madelon

Forward Stepwise 2506.9165 91 461.957

Backward Stepwise 2528.5802 156 431.609

LASSO 2523.0742 103 1795.424

Penalty Decomposition 2638.5021 4 833.624

Concave Approximation 2769.9642 340 47.042

Outer Approximation CC 2652.4555 9 ≥ 10000

Outer Approximation CP 2765.2852 2 ≥ 10000

Outer Approximation Dual 2657.4810 15 ≥ 10000

MILO 2616.5531 16 ≥ 10000

MILO-BCD 2504.0655 102 ≥ 10000

Table 2.3: Results of AIC minimization in logistic regression with different

optimization methods on large datasets.

32 Best Feature Selection in Logistic Regression

solved with Gurobi instead of L-BFGS.

As concerns MILO and MILO-BCD, we employed the V2 set of interpo-

lation points for both methods, in order to have a good trade-off between

accuracy and computational burden. Moreover, for MILO-BCD we set the

cardinality of the working set b to 20 for all the problems. We report in

Section 2.5 the results of preliminar computational experiments that appear

to support our choice. All the subproblems were solved with Gurobi. For

MILO-BCD we employ the heuristic discussed in Section 2.4.4. For each

problem, the maximum number of consecutive attempts with no improve-

ment, before stopping the algorithm, is set to n. Note that, in order to

improve the algorithm efficiency, we instantiate a single MILP problem with

n variables and dynamically change the box constraints based on the current

working set. The continuous optimization steps needed to perform steps 7

and 8 of Algorithm 3 are performed by using L-BFGS.

In Tables 2.2, 2.3, 2.4 and 2.5 the computational results of minimizing

AIC and BIC respectively on the 11 datasets are shown. For each algorithm

and problem, we can see the information criterion value at the returned so-

lution, its zero norm and the total runtime. We can observe the effectiveness

of the MILO-BCD approach w.r.t. the other methods. In particular in 8

out of 11 test problems MILO-BCD found the best AIC value, while in the

remaining three cases it attains a very close second-best result. The results

of minimizing BIC are very similar: for 9 out of 11 datasets MILO-BCD

returns the best solution and in the remaining two it ranks at the second

place. We can also note that, in cases where p is large such as spam, digits,

a2a, w2a and madelon datasets, our method, within the established time

limit, is able to find a much better quality solution with respect to the other

algorithms (with the only exception of spam for the AIC), and in particular

compared to MILO.

As for the efficiency, Tables 2.2, 2.3, 2.4 and 2.5 also allow to evalu-

ate the computational burden of MILO-BCD. As expected, our method is

slower than the approaches that are not based on Mixed Integer Optimiza-

tion, which on the other hand provide lower quality solutions. However,

compared to standard MILO, we can see a considerable improvement in

terms of computational time with both the small and the large datasets.

In Figure 2.1 we plot the cumulative distribution of absolute distance

from the optimum attained by each solver, computed upon the 22 subset

selection problems. The x-axis values represent the difference in absolute

2.5 Experiments 33

Dataset Method BIC ℓ0 Time (s)

parkinsons

Forward Stepwise 142.4486 3 0.198

Backward Stepwise 166.7417 12 0.165

LASSO 140.6959 2 6.391

Penalty Decomposition 277.1788 1 25.056

Concave Approximation 147.2337 4 2.922

Outer Approximation CC 139.1962 6 ≥ 10000

Outer Approximation CP 139.1962 6 5533.104

Outer Approximation Dual 145.6313 3 3.412

MILO 137.6446 6 16.276

MILO-BCD 137.6011 6 93.572

heart

Forward Stepwise 225.7059 5 0.337

Backward Stepwise 279.0788 19 0.065

LASSO 227.2449 5 2.350

Penalty Decomposition 317.3171 1 61.155

Concave Approximation 251.8435 12 2.156

Outer Approximation CC 236.8324 3 ≥ 10000

Outer Approximation CP 288.0285 5 ≥ 10000

Outer Approximation Dual 234.3866 7 4.045

MILO 223.7984 6 22.865

MILO-BCD 223.6797 6 116.618

breast

Forward Stepwise 195.8299 2 0.216

Backward Stepwise 265.9623 32 0.354

LASSO 195.8299 2 21.225

Penalty Decomposition 195.8299 2 7.972

Concave Approximation 203.5140 6 3.201

Outer Approximation CC 194.2193 4 ≥ 10000

Outer Approximation CP 231.7141 8 ≥ 10000

Outer Approximation Dual 195.8300 2 6.664

MILO 192.4211 10 653.077

MILO-BCD 193.5695 5 124.760

biodeg

Forward Stepwise 782.2522 13 2.560

Backward Stepwise 792.7384 26 0.400

LASSO 785.1660 22 65.498

Penalty Decomposition 950.2008 4 420.761

Concave Approximation 772.6349 22 6.917

Outer Approximation CC 880.5540 12 ≥ 10000

Outer Approximation CP 1154.3736 5 ≥ 10000

Outer Approximation Dual 835.4689 31 29.016

MILO 746.8531 14 ≥ 10000

MILO-BCD 745.1778 13 2305.093

spectf

Forward Stepwise 203.9442 4 0.573

Backward Stepwise 237.7547 17 0.252

LASSO 208.8296 7 8.949

Penalty Decomposition 277.1788 1 25.056

Concave Approximation 228.256224 12 3.867

Outer Approximation CC 214.4389 3 ≥ 10000

Outer Approximation CP 224.2627 5 ≥ 10000

Outer Approximation Dual 251.6325 7 10.649

MILO 196.8356 5 231.938

MILO-BCD 196.8238 5 115.597

libras

Forward Stepwise 101.5028 4 1.145

Backward Stepwise 270.8327 46 0.970

LASSO 71.4674 9 5.453

Penalty Decomposition 182.2357 1 42.429

Concave Approximation 131.7340 17 14.591

Outer Approximation CC 75.3065 9 ≥ 10000

Outer Approximation CP 153.6910 5 ≥ 10000

Outer Approximation Dual 132.1737 10 58.047

MILO 41.3979 7 ≥ 10000

MILO-BCD 53.0895 9 642.618

Table 2.4: Results of BIC minimization in logistic regression with different

optimization methods on small datasets.

34 Best Feature Selection in Logistic Regression

Dataset Method BIC ℓ0 Time (s)

spam

Forward Stepwise 2361.1337 27 28.446

Backward Stepwise 2140.7302 32 2.0124

LASSO 2177.5219 40 1214.969

Penalty Decomposition 6184.8715 1 ≥ 10000

Concave Approximation 2196.5090 38 16.464

Outer Approximation CC 2336.2203 58 ≥ 10000

Outer Approximation CP 3894.7351 10 ≥ 10000

Outer Approximation Dual 2275.2687 51 157.805

MILO 2150.2450 30 ≥ 10000

MILO-BCD 2137.9834 31 ≥ 10000

digits

Forward Stepwise 552.1658 13 8.110

Backward Stepwise 468.9395 20 2.615

LASSO 529.0165 24 2160.987

Penalty Decomposition 5299.8033 0 ≥ 10000

Concave Approximation 516.442699 28 32.288

Outer Approximation CC 640.2697 10 ≥ 10000

Outer Approximation CP 1696.2871 5 ≥ 10000

Outer Approximation Dual 596.1621 28 128.011

MILO 448.3050 14 ≥ 10000

MILO-BCD 441.0145 15 9949.433

a2a

Forward Stepwise 1741.3958 15 10.727

Backward Stepwise 2016.2528 64 5.798

LASSO 1764.5871 15 397.503

Penalty Decomposition 1860.2444 5 607.869

Concave Approximation 1873.3706 44 21.709

Outer Approximation CC 2028.2982 11 ≥ 10000

Outer Approximation CP 2268.7472 4 ≥ 10000

Outer Approximation Dual 1829.5696 14 ≥ 10000

MILO 1754.9999 16 ≥ 10000

MILO-BCD 1733.8513 17 2933.3452

w2a

Forward Stepwise 614.3182 18 107.705

Backward Stepwise 1320.8765 143 147.459

LASSO 2524.0133 293 ≥ 10000

Penalty Decomposition 1979.8373 1 ≥ 10000

Concave Approximation 919.0693 70 166.238

Outer Approximation CC 879.0359 2 ≥ 10000

Outer Approximation CP 931.5931 3 ≥ 10000

Outer Approximation Dual 2531.5618 294 205.223

MILO 671.9868 20 ≥ 10000

MILO-BCD 579.0229 26 8842.6791

madelon

Forward Stepwise 2660.6283 3 24.179

Backward Stepwise 2732.3224 15 488.801

LASSO 2661.9344 6 1852.270

Penalty Decomposition 2772.5887 0 75.713

Concave Approximation 3030.0118 86 152.799

Outer Approximation CC 2677.8156 4 ≥ 10000

Outer Approximation CP 2781.6611 2 ≥ 10000

Outer Approximation Dual 2689.3907 2 ≥ 10000

MILO 2681.9310 1 ≥ 10000

MILO-BCD 2660.6283 3 ≥ 10000

Table 2.5: Results of BIC minimization in logistic regression with different

optimization methods on large datasets.

2.5 Experiments 35

value between the information criterion obtained and the best one found,

while y-axis reports the fraction of solved problems within a certain distance

from the best. As it is possible to see, MILO-BCD clearly outperforms the

other methods. As a matter of fact, MILO-BCD always found a solution

that is distant less than 15 from the optimal one and in around the 80% of

the problems it attained the optimal solution. We can also see that for all

the other methods there is a number of bad cases where the obtained value is

very far from the optimal one. Note that we consider the absolute distance

from the best, instead of a relative distance, since it is usually the difference

in IC values which is considered in practice to assess the quality of a model

w.r.t. another one [25].

Finally, we highlight that MILO-BCD manages to greatly increase the

performance of MILO, without making its interface more complex. As a

matter of fact, we have only added a hyperparameter that controls the car-

dinality of the working set and experimentally appears to be extremely easy

to tune. Indeed, note that all the experiments were carried out using the

same working set size for each dataset and, despite this choice, MILO-BCD

shown impressive performances in all the considered datasets.

0 25 50 75 100 125 150 175 200
∆abs

0.0

0.2

0.4

0.6

0.8

1.0

F
ra

ct
io

n
of

p
ro

b
le

m
s

Forward Stepwise

Backward Stepwise

LASSO

Penalty Decomposition

Concave Approximation

Outer Approximation CC

Outer Approximation CP

Outer Approximation Dual

MILO

MILO-BCD

Figure 2.1: Each curve represents the fraction of the 22 classification prob-

lems for which the corresponding solver obtains an absolute error less or

equal than ∆abs w.r.t. the optimal value.

36 Best Feature Selection in Logistic Regression

Varying the working set size

The value of the working set size b may greatly affect the performance of

the MILO-BCD procedure, in terms of both quality of solutions and running

time. For this reason, we performed a study to evaluate the behavior of the

algorithm as the value of b changes. We ran MILO-BCD on the problems

obtained from datasets at different scales: heart, breast, spectf, and a2a.

AIC is used as GOF measure.

Dataset b AIC ℓ0 Time (s)

heart

2 198.7826 11 8.326

8 195.7715 10 35.240

14 195.7715 10 42.222

20 195.6242 11 95.399

26 - - -

32 - - -

breast

2 176.3391 7 10.079

8 158.0725 13 36.012

14 154.6846 17 72.4643

20 147.6781 17 236.126

26 147.0381 19 435.3751

32 147.0381 19 2077.4473

spectf

2 171.9253 12 19.333

8 175.4713 7 43.999

14 169.4771 18 118.313

20 168.3443 15 205.6255

26 168.3443 15 485.486

32 168.3443 15 1245.422

a2a

2 1591.7767 35 430.714

8 1595.2172 37 1333.7368

14 1590.7749 35 1984.113

20 1589.5884 37 8553.430

26 1586.7499 39 ≥ 10000

32 1592.8824 37 ≥ 10000

Table 2.6: Results obtained by the MILO-BCD procedure on the best subset

selection problem based on AIC with four datasets for different values of

working set size b.

2.5 Experiments 37

The results are reported in Table 2.6 and Figure 2.2. We can see that a

working set size of 20, as employed in the experiments of the previous section,

provides a good trade-off. Indeed, the running time seems to grow in general

with the working set size, whereas the optimal solution is approached only

when large working sets are employed. We can see that in some cases a

slightly larger value of b allows to retrieve even better solutions than those

obtained in the experiments done, but the computational cost significantly

increases. In the end, as can be observed in this Section, the choice b = 20

experimentally led to excellent results on the entirety of our benchmark.

2

8 14
20

0 20 40 60 80 100

195.5

196

196.5

197

197.5

198

198.5

199

(a) heart

2

8

14

20 26 32

0 500 1000 1500 2000

145

150

155

160

165

170

175

180

(b) breast

2

8

14

20 26 32

0 200 400 600 800 1000 1200

168

170

172

174

176

(c) spectf

2

8

14

20

26

32

0 2k 4k 6k 8k 10k

1586

1588

1590

1592

1594

1596

(d) a2a

Figure 2.2: Trade-off between runtime and solution quality for different val-

ues of the working set size in MILO-BCD, on the best subset selection prob-

lem based on AIC for the four considered problems.

38 Best Feature Selection in Logistic Regression

2.6 Final considerations

In this Chapter, we considered the problem of best subset selection in lo-

gistic regression, with particular emphasis on the IC-based formulation. We

introduced an algorithm combining mixed-integer programming models and

decomposition techniques like the block coordinate descent. The aim of the

algorithm is to find high quality solutions even on larger scale problems,

where other existing MIP-based methods are unreasonably expensive, while

heuristic and local-optimization-based methods produce very poor solutions.

We theoretically characterized the features and the behavior of the pro-

posed method. Then, we showed the results of wide computational exper-

iments, proving that the proposed approach indeed is able to find, in a

reasonable running time, much better solutions than a set of other state-of-

the-art solvers; this fact appears particularly evident on the problems with

higher dimension.

Future research will be focused on the definition of possibly more effective

and efficient working set selection rules for our algorithm. Upcoming work

may also be aimed at adapting the proposed algorithm to deal with different

or more general problems.

Chapter 3

Pruning of Fully Connected

Layer’s Nodes

Training of neural networks can be reformulated in spectral space,

by allowing eigenvalues and eigenvectors of the network to act

as target of the optimization instead of the individual weights.

Working in this setting, we show that the eigenvalues can be used

to rank the nodes’ importance within the ensemble. Indeed, we

will prove that sorting the nodes based on their associated eigen-

values, enables effective pre- and post-processing pruning strate-

gies to yield massively compacted networks (in terms of the num-

ber of composing neurons) with virtually unchanged performance.

The proposed methods are tested for different architectures, with

just a single or multiple hidden layers, and against distinct clas-

sification tasks of general interest.

39

40 Pruning of Fully Connected Layer’s Nodes

3.1 Preamble

In this Chapter we will discuss a relevant byproduct of the spectral learning

scheme [30, 52] (discussed in Section 3.2). More specifically, we will argue

that the eigenvalues do provide a reliable ranking of the nodes, in terms of

their associated contribution to the overall performance of the trained net-

work. Working along these lines, we will empirically prove that the absolute

value of the eigenvalues is an excellent marker of the node’s significance in

carrying out the assigned discrimination task. This observation can be effec-

tively exploited, downstream of training, to filter the nodes in terms of their

relative importance and prune the unessential units so as to yield a more

compact model, with almost identical classification abilities. For the sake

of completeness, let us emphasize a substantial difference between [30, 52]

and the one proposed in this Chapter: in Giambagli et al. [52] and Chicchi

et al. [30] the focus is on designing a training algorithm in the spectral do-

main while, in this work, we propose a novel idea to effectively prune fully

connected layers by exploiting the spectral training.

The effectiveness of the proposed method has been tested for different

feed-forward architectures, with just a single or multiple hidden layers, by

invoking several activation functions, and against distinct datasets for image

recognition, with various levels of inherent complexity. Building on these

findings, we will also propose a two stages training protocol to generate min-

imal networks (in terms of allowed computing neurons) which outperform

those obtained by hacking off dispensable units from a large, fully trained,

apparatus. This strategy can be seen as an effective way to discover sub-

networks (a.k.a. “winning tickets” [50]) with recorded performance compa-

rable to those displayed by their unaltered homologous, after a proper round

of training [50]. More specifically, after a first round of training which solely

acts on the eigenvalues, one can identify the most relevant nodes, as follows

the magnitude of the associated eigenvalues. Since the first training stage

is just targeted to eigenvalues, the eigenvectors obtained after pruning are

still bearing reflexes of the random initialization and thus represent a sort of

“winning ticket” [50]. In this respect, according to the above reasoning, the

proposed two stages strategy can be seen as a novel and efficient way to dis-

cover optimal sub-networks. Finally, both the proposed approaches address

the same underlying problem of fitting the best model with an ℓ0 constraint

on the eigenvalues and, as a consequence, on the number neurons.

3.2 Preliminary 41

3.2 Preliminary

In standard neural network training one seeks to optimize the weights that

link pairs of neurons belonging to adjacent layers of the selected architecture

[55]. This is achieved by computing the gradient of the loss with respect to

the sought weights, a procedure which amounts to operate in the so called

direct space of the network [52]. Alternatively, the learning can be carried

out in reciprocal space: the spectral attributes (eigenvalues and eigenvectors)

of the fully-connected layer define the actual target of the optimization.

In the following, we follow mainly the results of [30], where an extension

of the method originally introduced in [52] is handed over. In a nutshell, the

procedure introduced in [52] and further refined in [30], enables a substantial

compression of the space of trainable parameters. The spectral method lever-

ages on a limited subset of key parameters which impact on the whole set of

weights in direct space. Particularly relevant, in this respect, is the setting

where the eigenmodes of the inter-layer transfer operators align along ran-

dom directions. In this case, the associated eigenvalues constitute the sole

trainable parameters. When employed for classifications tasks, the accu-

racy displayed by the spectral scheme restricted to operate with eigenvalues

is slightly worse than that reported when the learning is carried in direct

space, for an identical architecture and by employing the full set of trainable

parameters. To bridge the gap between conventional and spectral methods

in terms of measured performances, one can also train the elements that

populate the non trivial block of the eigenvectors matrix [52]. By resorting

to apt decomposition schemes, it is still possible to contain the total number

of trainable parameters, while reaching stunning performances in terms of

classification outcomes [30].

Consider a deep feed-forward network made of ℓ distinct layers. Each

layer is labelled with a discrete index i (= 1, ..., ℓ). Denote by Ni the number

of the neurons, the individual computing units, that pertain to layer i. Then,

we posit N =
∑ℓ

i=1 Ni and introduce a column vector x⃗(1), of size N , the

first N1 entries referring to the supplied input signal. As anticipated, we

will be mainly concerned with datasets for image recognition, so we will use

this specific case to illustrate the more general approach of spectral learning.

This means that, the first N1 elements of x⃗(1) are the intensities (from the

top-left to the bottom-right, moving horizontally) as displayed on the pixels

of the image presented as an input. All other entries of x⃗(1) are identically

equal to zero.

42 Pruning of Fully Connected Layer’s Nodes

The aim of the procedure is to map x⃗(1) into an output vector x⃗(ℓ) , still

of size N : the last Nℓ elements are the intensities displayed at the output

nodes, where reading is eventually performed. The applied transformation

is composed by a suite of linear operations, interposed to non linear filters.

To exemplify the overall strategy, consider the generic vector x⃗(k), with k =

1, ..., ℓ − 1, as obtained after k execution of the above procedure. At the

successive iteration, one gets x⃗(k+1) = A(k)x⃗(k), where A(k) is a N × N

matrix with a rather specific structure (schematically depicted in Fig. 3.2).

Further, a suitably defined non-linear function f(·, βk) is applied to x⃗(k+1),

where βk identifies an optional bias. Eq. (3.1) summarizes the chain of

operation described above.

To proceed in the analysis, we cast A(k) = Φ(k)Λ(k)
(
Φ(k)

)−1
by invok-

ing spectral decomposition. Here, Λ(k) denotes the diagonal matrix of the

eigenvalues of A(k). Following [30], we set
(
Λ(k)

)
jj

= 1 for j <
∑k−1

i=1 Ni

and j >
∑k+1

i=1 Ni. The remaining Nk +Nk+1 elements are initially assigned

to random entries, as e.g. extracted from a uniform distribution, and define

a first basin of target variables for the spectral learning scheme. Then, Φ(k)

is the identity matrix IN×N , with the inclusion of a sub-diagonal Nk+1×Nk

block, denoted by ϕ(k), see Fig. 3.3. This choice amounts to assume a feed-

forward architecture. It can be easily shown that
(
Φ(k)

)−1
= 2IN×N −Φ(k),

which readily yields A(k) = Φ(k)Λ(k)
(
2IN×N −Φ(k)

)
. The off-diagonal

elements of Φ(k) define a second set of adjustable parameters to be self-

consistently modulated during active training.

To implement the learning scheme on these basis, we consider x⃗(ℓ), the

image on the output layer of the input vector x⃗(1) (see Figure 3.1 for a

graphical illustration):

x⃗(ℓ) = f
(
A(ℓ−1)...f

(
A(1)x⃗(1), β1

)
, βℓ−1

)
(3.1)

Since we are dealing with image classification, we can calculate z⃗ =

softmax(x⃗(ℓ)). We will then use z⃗ to compute the categorical cross-entropy

loss function CCE(l(x⃗(1)), z⃗), where l(x⃗(1)) is the label which identifies the

category to which x⃗(1) belongs, via one-hot encoding [1].

The loss function can thus be minimized by acting on the spectral pa-

rameters, i.e. the ensemble made of non trivial eigenvalues and/or the asso-

ciated eigendirections. Moreover, it is possible to derive a closed analytical

expression for w
(k)
ij , the weights of the edges linking nodes i (belonging to

layer k + 1) and j (sitting on layer k) in direct space, as a function of the

3.2 Preliminary 43

Figure 3.1: A sketch of the spectral learning framework. Image taken from

[52].

underlying spectral quantities.

We begin by recalling that A(k) is a N × N matrix. From A(k) we

select a square sub-block of size (Nk + Nk+1) × (Nk + Nk+1), formed by

the elements A
(k)
i′,j′ with i′ =

∑k−1
s=1 Ns + i and j′ =

∑k−1
s=1 Ns + j, with

i = 1, ..., Nk + Nk+1, j = 1, ..., Nk + Nk+1. We use A(k) to identify the

obtained matrix and proceed in analogy for Λ(k) and Φ(k). Then:

A
(k)
ij =

[
Φ(k)Λ(k)

(
2I −Φ(k)

)]
ij

=
[
2Φ(k)Λ(k)

]
ij
−
[
Φ(k)Λ(k)Φ(k)

]
ij

=α
(k)
ij − β

(k)
ij

(3.2)

From hereon, we will omit the apex (k). Assume λ1 . . . λNk+Nk+1
to

identify the eigenvalues of the transfer operator A, namely the diagonal

entries of Λ. Hence, Λij =
∑Nk+Nk+1

j=1 δijλj .

44 Pruning of Fully Connected Layer’s Nodes

Figure 3.2: A schematic outline of the structure of transfer matrix A(k),

bridging layer k to layer k+1. The action of A(k) on x⃗(k) is also graphically

illustrated.

The quantities αij and βij read:

αij = 2

Nk+Nk+1∑
k=1

Φikλkδkj = 2Φijλj

βij =

Nk+Nk+1∑
k,m=1

ΦikλkδkmΦmj

=
∑

m∈I∪J
δimλmΦmj

where j ∈ J = (1, ..., Nk) refer to the nodes at the departure layer (k),

whereas i ∈ I = (Nk + 1, ..., Nk +Nk+1) stand for those at arrival. Hence,

I ∪ J = [1, ..., Nk + Nk+1]. The above expression for βij can be further

3.2 Preliminary 45

Figure 3.3: The structure of matrix Φ(k) is schematically displayed.

manipulated to eventually yield

βij =
∑
m∈J

ΦimλmΦmj +
∑
m∈I

ΦimλmΦmj

= Φijλj + λiΦij

and therefore Equation (3.2) as

αij − βij = 2Φijλj − Φijλj − λiΦij

= (λj − λi)ϕij

(3.3)

Therefore, rewriting everything in a more convenient notation, we obtain:

A
(k)
ij = w

(k)
ij =

(
λ
(k)
m(j) − λ

(k)
l(i)

)
Φ

(k)
l(i),m(j) (3.4)

where l(i) =
∑k

s=1 Ns + i and m(j) =
∑k−1

s=1 Ns + j, with i ∈ (1, ..., Nk+1)

and j ∈ (1, ..., Nk). In the above expression, λ
(k)
m(j) stand for the first Nk

eigenvalues of Λ(k). The remaining Nk+1 eigenvalues are labelled λ
(k)
l(i). In

46 Pruning of Fully Connected Layer’s Nodes

the above expression, λ
(k)
m(j) stand for the first Nk eigenvalues of Λ(k). The

remaining Nk+1 eigenvalues are labelled λ
(k)
l(i).

To help comprehension denote by x
(k)
j the activity on nodes j. Then, the

activity x
(k)
i on node i reads:

x
(k+1)
i =

Nk∑
j=1

(
λ
(k)
m(j)Φ

(k)
l(i),m(j)x

(k)
j

)
− λ

(k)
l(i)

Nk∑
j=1

(
Φ

(k)
l(i),m(j)x

(k)
j

)
(3.5)

The eigenvalues λ
(k)
m(j) modulate the density at the origin, while λ

(k)
l(i) set

the excitability of the receiver nodes, weighting the network activity in its

immediate neighbourhood. As remarked in [30], this can be rationalized

as the artificial analogue of the homeostatic plasticity, the strategy used by

living neurons to maintain the synaptic basis for learning, respiration, and

locomotion [135].

Starting from this background, we shall hereafter operate within a sim-

plified setting which is obtained by imposing λ
(k)
m(j) = 0. This implies that

λ
(k)
l(i) are the sole eigenvalues to be actively involved in the training. As we

shall prove, these latter eigenvalues provide an effective criterion to rank a

posteriori, i.e. upon training being completed, the relative importance of the

nodes belonging to the examined network. This motivates us to introduce,

and thoroughly test, an effective spectral pruning strategy which seeks at re-

moving the nodes deemed unessential, while preserving the overall network

classification score. The Methods Section is entirely devoted to explain in

detail the proposed strategy, that we shall contextualize with reference to

other existing methodologies.

3.3 Related work

Generally speaking, it is possible to ideally group various approaches for

network compression into five different categories: Weights Sharing, Network

Pruning, Knowledge Distillation, Matrix Decomposition and Quantization

[29,113].

Weights Sharing defines one of the simplest strategies to reduce the num-

ber of parameters, while allowing for a robust feature detection. The key

idea is to have a shared set of model parameters between layers, a choice

which reflects back in an effective model compression. An immediate exam-

ple of this methodology are the convolutional neural networks [84]. A refined

3.3 Related work 47

approach is proposed in Bat et al. [9] where a virtual infinitely deep neural

network is considered. Further, in Zhang et al. [151] an ℓ1 group regularizer

is exploited to induce sparsity and, simultaneously, identify the subset of

weights which can share the same features.

Network Pruning is arguably one of the most common technique to com-

press Neural Network: in a nutshell it aims at removing a set of weights

according to a certain criterion (magnitude, importance, etc). Chang et

al. [28] proposed an iterative pruning algorithm that exploits a continu-

ously differentiable version of the ℓ 1
2
norm, as a penalty term. Molchanov

et al. [109] focused on pruning convolutional filters, so as to achieve better

inference performances (with a modest impact on the recorded accuracy)

in a transfer leaning scenario. Starting from a network fine-tuned on the

target task, they proposed an iterative algorithm made up of three main

parts: (i) assessing the importance of each convolutional filter on the final

performance via a Taylor expansion, (ii) removing the less informative filters

and (iii) re-training the remaining filters, on the target task. Inspired by

the pioneering work in [50], Pau de Jorge et al. [37] proved that pruning at

initialization leads to a significant performance degradation, after a certain

pruning threshold. In order to overcome this limitation they proposed two

different methods that enable an initially trimmed weight to be reconsidered

during the subsequent training stages.

Knowledge Distillation is yet another technique, firstly proposed by Hin-

ton et al. [66]. In its simplest version Knowledge Distillation is implemented

by combining two objective functions. The first accounts for the discrepancy

between the predicted and true labels. The second is the cross-entropy be-

tween the output produced by the examined network and that obtained by

running a (generally more powerful) trained model. In [119] Polino et al.

proposed two approaches to mix distillation and quantization (see below):

the first method uses the distillation during the training of the so called stu-

dent network under a fixed quantization scheme while the second exploits a

network (termed the teacher network) to directly optimize the quantization.

Mirzadeh et al. [106] analyzed the regime in which knowledge distillation

can be properly leveraged. They discovered that the representation power

gap of the two networks (teacher and student) should be bounded for the

method to yield beneficial effects. To resolve this problem, they inserted an

intermediate network (the assistant), which sits in between the teacher and

the student, when their associated gap is too large.

48 Pruning of Fully Connected Layer’s Nodes

Matrix Decomposition is a technique that remove redundancies in the

parameters by the means of a tensor/matrix decomposition. Masana et

al. [102] proposed a matrix decomposition method for transfer learning sce-

nario. They showed that decomposing a matrix taking into account the acti-

vation outperforms the approaches that solely rely on the weights. In [114],

Novikov et al. proposed to replace the dense layer with its Tensor-Train rep-

resentation [115]. Yu et al. [148] introduced a unified framework, integrating

the low-rank and sparse decomposition of weight matrices with the feature

map reconstructions.

Quantization, as also mentioned above, aims at lowering the number of

bits used to represent any given parameter of the network. Stock et al. [134]

defined an algorithm that quantize the model by minimizing the reconstruc-

tion error for inputs sampled from the training set distribution. The same

authors also claimed that their proposed method is particularly suited for

compressing residual network architectures and that the compressed model

proves very efficient when run on CPU. In Banner et al. [10] a practical 4-bit

post-training quantization approach was introduced and tested. Moreover, a

method to reduce network complexity based on node-pruning was presented

by He et al. in [65]. Once the network has been trained, nodes are classified

by means of a node importance function and then removed or retained de-

pending on their score. The authors proposed three different node ranking

functions: entropy, output-weights norm (onorm) and input-weights norm

(inorm). In particular, the input-weights norm function is defined as the

sum of the absolute values of the incoming connections weights. As we will

see this latter defines the benchmark model that we shall employ to challenge

the performance of the trimming strategy here proposed. Finally, it is worth

mentioning the Conditional Computation methods [13, 143, 144]: the aim is

to dynamically skip part of the network according to the provided input so

as to reduce the computational burden.

Summing up, in contrast with the pruning techniques which primarily

pursue the goal of enforcing a sparsification by cutting connections from the

trained neural network, the idea of our method is to a posteriori identify the

nodes of the trained network which prove unessential. This yields a more

compact neural network, in terms of composing neurons, with unaltered

classification performance. The method relies on the spectral learning [30,52]

and exploits the fact that eigenvalues are credible parameters to gauge the

importance of a given node among those composing the destination layer.

3.4 Proposed method 49

In short, our aim is to make the network more compact by removing nodes

classified as unimportant, according to a suitable spectral rating.

3.4 Proposed method

We detail here the spectral procedure to make a trained network smaller,

while preserving its ability to perform classification.

To introduce the main idea of the proposed method, we make reference

to formula (3.4) and assume the setting where λ
(k)
m(j) = 0. The information

travelling from layer k to layer k + 1 gets hence processed as follows: first,

the activity on the departure node j is modulated by a multiplicative scaling

factor Φ
(k)
l(i),m(j), specifically linked to the selected (i, j) pair. Then, all in-

coming (and rescaled) activities reaching the destination node i are summed

together and further weighted via the scalar quantity λ
(k)
l(i). This latter eigen-

value, downstream of the training, can be hence conceived as a distinguishing

feature of node i of layer k + 1. Assume for the moment that Φ
(k)
l(i),m(j) are

drawn from a given distribution and stay put during optimization. Then,

every individual neuron bound to layer k + 1 is statistically equivalent (in

terms of incoming weights) to all other nodes, belonging to the very same

layer. The eigenvalues λ
(k)
l(i) gauge therefore the relative importance of the

nodes, within a given stack, and as reflecting the (randomly generated) web

of local inter-layer connections (though statistically comparable). Large val-

ues of |λ(k)
l(i)| suggest that node i on layer k + 1 plays a central role in the

economy of the neural network functioning. This is opposed to the setting

when |λ(k)
l(i)| is found to be small. Stated differently, the subset of trained

eigenvalues provide a viable tool to rank the nodes according to their de-

gree of importance. As such, they can be used as reference labels to make

decision on the nodes that should be retained in a compressed analogue of

the trained neural network, with unaltered classification performance. As

empirically shown in the Results section with reference to a variegated set

of applications, the sorting of the nodes based on the optimized eigenvalues

turns out effective also when the eigenvectors get simultaneously trained,

thus breaking, at least in principle, statistical invariance across nodes.

As we will clarify, the latter setting translates in a post-training spec-

tral pruning strategy, whereas the former materializes in a rather efficient

pre-training procedure. The non linear activation function as employed in

the training scheme leaves a non trivial imprint, which has to be critically

50 Pruning of Fully Connected Layer’s Nodes

assessed.

More specifically, in carrying out the numerical experiments here reported

we considered two distinct settings, as listed below:

1. As a first step, we will begin by considering a deep neural network

made of N neurons organized in ℓ layers. The network will be initially

trained by solely leveraging on the set of tunable eigenvalues. Then, we

will proceed by progressively removing the neurons depending on their

associated eigenvalues (as in the spirit discussed above). The trimmed

network, composed by a total of M < N units, still distributed in ℓ

distinct layers, can be again trained acting now on the eigenvectors,

while keeping the eigenvalues frozen to the earlier determined values.

This combination of steps, which we categorize as pre-training, yields

a rather compact neural network (M can be very small) which per-

forms equally well than its fully trained analogue made of N computing

nodes.

2. We begin by constructing a deep neural network made of N neurons

organized in ℓ layers. This latter undergoes a full spectral training,

which optimizes simultaneously eigenvectors and the eigenvalues. The

trained network can be compressed, by pruning the nodes which are

associated to eigenvalues (see above) with magnitude smaller that a

given threshold. This is indeed a post-training pruning strategy, as it

acts ex post on a fully trained device.

To evaluate the performance of the proposed spectral pruning strategies

(schematically represented in the flowchart of Figure 3.4), we also introduced

a reference benchmark model. This latter can be conceptualized as an im-

mediate overturning of the methods in direct space. Simply stated, we train

the neural network in the space of the nodes, by using standard approaches

to the learning. Then, we classify the nodes in terms of their relevance using

a proper metric to which shall make reference below, and consequently trim

the nodes identified as less important. When adopting the spectral view-

point, one can rely on the eigenvalues to rank the nodes importance. As

remarked above, in fact, the eigenvalues at the receiver nodes set a local

scale for the incoming activity, the larger the eigenvalue (in terms of mag-

nitude) the more important the role played by the processing unit. As a

surrogate of the eigenvalues, when anchoring the train in direct space, we

can consider the quantity
∑Nk

j=1 |wij |, for each neuron i belonging to layer

3.4 Proposed method 51

Train Λ, Φ	with Spectral
Method

Evaluate 𝜆!"# , the 𝑞#$
percentile of the distribution of

eigenvalues Λ

Prune all the marked nodes, i.e.
put their respective eigenvalue

Λ % = 0.

Spectral Pruned Network

Train only Λ	with Spectral
Method

Train remaining Λ, Φ	with
Spectral Layer

Spectral Pruned Network

Post-training method (ii) Pre-training method (i)

Light pre-training

Full training on the
reduced network

Full training

Spectral Pruning Spectral Pruning

For each layer 𝑘 mark all the
nodes 𝑖 such that Λ % < 𝜆!"# ,

with 𝑖 ∈ 𝑁&'(+ 1,…	N&

Figure 3.4: Flowchart of the pre- and post- speactral training pruning strate-

gies as presented in section 3.4.

k + 1, see also [65]. The absolute value prevents mutual cancellations of

sensible contributions bearing opposite signs, which could incidentally hide

the actual importance of the examined node.

In all explored cases, the pruning is realized by imposing a threshold

on the reference indicator (be it the magnitude of the eigenvalues or the

cumulated flux of incoming –and made positive– weights). Pointedly, the

respective indicator is extracted for every node in the arrival layer. Then a

percentile q is chosen and the threshold fixed to the q-th percentile. Nodes

displaying an indicator below the chosen threshold are removed and the

accuracy of the obtained (trimmed) neural network assessed on the test-set.

The codes employed, as well as a notebook to reproduce our results, can be

found in the public repository of this project 1.

1https://github.com/Jamba15/SpectralTools

https://github.com/Jamba15/SpectralTools

52 Pruning of Fully Connected Layer’s Nodes

3.5 Experiments

In order to assess the effectiveness of the eigenvalues as a marker of the node’s

importance (and hence as a potential target for a cogent pruning procedure)

we will consider a fully connected feed-forward architecture. Applications of

the explored methods will be reported for ℓ = 3 and ℓ > 3 configurations.

The nodes that compose the hidden layers are the target of the implemented

pruning strategies. As we shall prove, it is possible to get rid of the vast ma-

jority of nodes without reflecting in a sensible decrease in the test accuracy, if

the filter, either in its pre- or post-training versions, relies on the eigenvalues

ranking. Moreover, it is also important to stress that, in general terms, the

pruning of unessential nodes improves the computational efficiency of the

network. As a matter of fact, reducing the number of output nodes leads a

compression in terms of both memory and inference time which is directly

proportional to the number of removed elements. As an example, by pruning

a fraction α (< 1) of the total nodes, we obtain a new layer with α ·N less

neurons and a memory reduction of α ·N times the number of input features.

For our test, we used three different datasets of images. The first is

the renowned MNIST database of handwritten digits [83], composed by

greyscale images of dimension 28× 28 pixels. The second is Fashion-MNIST

(F-MNIST) [146] (an image dataset of Zalando’s items) which are still de-

picted with a greyscale with dimension 28 × 28 but display an enhanced

degree of inherent complexity for what concerns the type of classification

requiredas compared to the basic MNIST benchmark model (more complex

shapes, patterns on items). The last one is CIFAR-10 [78] a richer dataset

composed by 32 × 32 RGB images of complex real-world objects divided

in 10 classes. In the main text we report our findings for Fashion-MNIST.

Analogous investigations carried out for MNIST and CIFAR10 are reported.

Further, different activation functions have been employed to evaluate the

performance of the methods. In the following we will report into two sepa-

rate sub-sections the results pertaining to either the single or multiple hidden

layers settings.

3.5.1 Single hidden layer

In Figure 3.7 the performance of the inspected methods are compared for

the minimal case study of a three layers network. The intermediate layer,

the sole hidden layer in this configuration, is set to N2 = 500 neurons. The

3.5 Experiments 53

accuracy of the different methods are compared, upon cutting at different

percentile, following the strategies discussed in the Methods and compared

with the benchmark model (the orange profile). In the benchmark model,

the neural network is trained in direct space, by adjusting the weights of

each individual inter-nodes connection. Then, the absolute value of the in-

coming connectivity is computed and used as an importance rank of the

nodes’ influence on the test accuracy (analogous to the way in which we use

the eigenvalues). Such a model has been presented and discussed by He et

al. in [65]. Following this assessment, nodes are progressively removed from

the trained network, depending on the imposed percentile, and the ability of

the trimmed network to perform the sought classification (with no further

training) tested. We choose this particular type of trimming as a bench-

mark to our spectral pruning technique for the following reasons. First, it

also amount to removing nodes from the collection, and not just sparsify

the weight of the associated transfer matrices. Then, both approaches build

on the concept of nodes ranking, as obtained from a suitable metric, which

is respectively bound to direct vs. spectral domains. The abovementioned

procedure is repeated 5 times and the mean value of the accuracy plotted in

the orange curve of Figure 3.7. The shaded region stands for the semi dis-

persion of the measurements. A significant drop of the network performance

is found when removing a fraction of nodes larger than 60 % from the second

layer.

The blue curve Figure 3.7 refers instead to the post-processing spec-

tral pruning based on the eigenvalues and identified, as method (ii), in the

Methods Section. More precisely, the three layers network is trained by

simultaneously acting on the eigenvectors and the eigenvalues of the asso-

ciated transfer operators, as illustrated above. The accuracy displayed by

the network trained according to this procedure is virtually identical to that

reported when the learning is carried out in direct space, as one can clearly

appreciate by eye inspection of Figure 3.7. Removing the nodes based on the

magnitude their associated eigenvalues, allows one to keep stable (practically

unchanged) classification performance for an intermediate layer that is com-

pressed of about 70% of its original size. In this case the spectral pruning is

operated as a post-processing filter, meaning that the neural network is only

trained once, before the nodes’ removal takes eventually place.

At variance, the green curve in Figure 3.7 is obtained following method

(i) from the Methods Section, which can be conceptualized as a pre-training

54 Pruning of Fully Connected Layer’s Nodes

manipulation. Based on this strategy, we first train the network on the set of

tunable eigenvalues, than reduce its size by performing a compression that

reflects the ranking of the optimized eigenvalues and then train again the ob-

tained network by acting uniquely on the ensemble of residual eigenvectors.

The results reported in Figure 3.7 indicate that, following this procedure, it

is indeed possible to attain astoundingly compact networks with unaltered

classification abilities. Moreover, the total number of parameters that need

to be tuned following this latter procedure is considerably smaller than that

on which the other methods rely. This is due to the fact that only the random

directions (the eigenvectors) that prove relevant for discrimination purposes

(as signaled by the magnitude of their associated eigenvalues) undergoes the

second step of the optimization. This method can also be seen as a simi-

lar kind of [50]. As a matter of fact, the initial training of the eigenvalues

uncovers a sub-network that, once trained, obtains performances compara-

ble to the original model. More specifically, the uncovered network can be

seen as a winning ticket [50]. That is, a sub-network with an initialization

particularly suitable for carrying out a successful training.

We report (see Figures 3.5a, 3.5b, 3.5c, 3.6a and 3.6b) on the performance

of the proposed trimming strategies, as applied to MNIST and Fashion-

MNIST, for a single hidden layer architecture and using the same setting

as before. In particular, we will show ELU, tanh and ReLU for MNIST (ii)

tanh, and ReLU as additional activation functions for Fashion-MNIST.

Next, we shall generalize the analysis to the a multi-layer setting (ℓ > 3),

reaching analogous conclusions.

3.5.2 Multiple hidden layers

The results achieved in the simplified context of a single hidden layer net-

work also apply within the framework of a multi-layers setting.

To prove this statement we set to consider a ℓ = 5 feedforward neural net-

work with ELU activation. Here, N1 = 784 and N5 = 10 as reflecting

the specificity of the employed dataset. The performed tests follows closely

those reported above, with the notable difference that now the ranking of the

eigenvalues is operated on the pool of N2 +N3 +N4 neurons that compose

the hidden bulk of the trained network. In other words, the selection of the

neuron to be removed is operated after a global assessment, i.e. scanning

across the full set of nodes, without any specific reference to an a priori

chosen layer.

3.5 Experiments 55

(a) (b) (c)

Figure 3.5: Accuracy on the MNIST database with respect to the percentage

of trimmed nodes (selected from the 500 neurons that compose the sole hid-

den layer), in a three layers feedforward architecture. The results reported

in each panel refer to a different selection of the nonlinear activation func-

tions, respectively ELU (a), ReLU (b) and tanh (c). In orange, the results

obtained by using the trimming procedure based on the absolute value of

the incoming connectivity. In blue, the results obtained when filtering the

nodes after a full spectral training (post-training). The curve in green dis-

plays the accuracy of the trimmed networks generated upon application of

the pre-training filter. In this case, the examined network is initially trained

on the set of eigenvalues, while keeping the eigenvectors frozen. After hav-

ing removed unessential nodes, based on their associated eigenvalues, the

network undergoes another training phase that is solely targeted to adjust-

ing the entries of the residual eigenvectors. The shadowed region represents

the semi-dispersion over 5 independent realizations. When using the ReLU

function, trimming on the absolute value of the incoming connectivity yields

slightly better results than what found when using the post-training spectral

filter. The two stages spectral trimming proves always more effective.

In Figure 3.8 the results of the analysis are reported, assuming N2 =

N3 = N4 = 500. The conclusions are perfectly in line with those reported

above for the one layer setting, except for the fact that now the improvement

of the spectral pruning over the benchmark reference are even superior. The

orange curve drops at percentile 20, while the blue begins its descent at

about 60 %. The green curve, relative to the sequential two steps training,

stays stably horizontal up to about 90 %.

Finally, see Figures 3.9a, 3.9b, 3.9c, 3.10a and 3.10b we report the result

for multiple activation functions (ELU, ReLU, and tanh) for both MNIST

56 Pruning of Fully Connected Layer’s Nodes

(a) (b)

Figure 3.6: Accuracy on the Fashion-MNIST database with respect to the

percentage of trimmed nodes (selected from the 500 neurons that compose

the sole hidden layer), in a three layers feedforward architecture. The results

reported in each panel refer to a different selection of the nonlinear activation

functions, respectively ReLU (b) and tanh (c). Symbols and conclusions are

in line with those reported for the case of MNIST.

and Fashion-MNIST. In line with the setting choose above, we will assume

a five layered deep neural network with N2 = N3 = N4 = 500.

3.5.3 CIFAR-10

To assess the flexibility of the schemes outlined in Section III-B we here

consider the CIFAR10 dataset and assume a modified MobileNetV2 [126]

adding two dense layer at the end of the network. During training we freeze

all the layers (pretrained on ImageNet), except for the two appended dense

layers. These latter are trained in the spectral domain from scratch. Working

in this setting, the pruning is performed on the first dense layer by using both

strategies (i) and (ii), as introduced in the main body of the chapter. Here

again the results are compared to those obtained when using the absolute

value of the incoming connectivity as an alternative trimming criterion (see

Figures 3.11a, 3.11b and 3.11c). As a further step in the analysis, we also

introduce and test a ℓ1-norm regularization acting on the eigenvalues, so as

to induce a sparse solution [7]. All experiments are performed by using a

3.5 Experiments 57

Figure 3.7: Accuracy on the Fashion-MNIST database with respect to the

percentage of trimmed nodes (from the hidden layer), in a three layers feed-

forward architecture. Here, N2 = 500, while N1 = 784 and N3 = 10, as

reflecting the structural characteristics of the data. In orange the results ob-

tained by pruning the network trained in direct space, based on the absolute

value of the incoming connectivity (see main text). In blue, the results ob-

tained when filtering the nodes after a full spectral training (post-training).

The curve in green reports the accuracy of the trimmed networks generated

upon application of the pre-training filter. Symbols stand for the averaged

accuracy computed over 5 independent realizations. The shadowed region is

traced after the associated semi-dispersion.

58 Pruning of Fully Connected Layer’s Nodes

Figure 3.8: Accuracy on the Fashion-MNIST database with respect to the

percentage of pruned nodes (from the hidden layers), in a five layers feed-

forward architecture. Here, N2 = N3 = N4 = 500, while N1 = 784 and

N5 = 10, as reflecting the structural characteristics of the data. Symbols

and colors are chosen as in Figure 3.7.

MobileNetV2 based architecture. The first dense layer is made of 512 nodes

with an ELU activation function (others activation functions yield analogous

results). The following regularization loss functions are considered depending

on whether the training takes place in the reciprocal (spectral layer) or direct

space:

3.5 Experiments 59

(a) (b) (c)

Figure 3.9: Accuracy on the MNIST database with respect to the percentage

of trimmed nodes (from the set of N2+N3+N4 neurons). The results in each

panel refer to different choices of the non linear function, ELU (a), ReLU (b)

and tanh (c). Symbols are chosen as for the case of the single hidden layer

setting. It should be remarked that the spectral trimming strategies proves

definitely more effective than the benchmark model anchored to direct space,

also when the ReLU function is employed, in the case of multiple hidden

layers.

• Spectral regularization

Lspec
r = γ ∗

Nℓ−1∑
i=1

|λ(ℓ−1)
i |

• Connectivity regularization

Lconn
r = γ ∗

∑
i,j

|w(ℓ−1)
ij |

where γ stands for a suitable regularizer weight.

Clearly Lconn
r is equivalent to a regularization which acts on the incoming

absolute connectivity. In fact, |
∑

i |xi|| =
∑

i |xi|.
The ℓ1 regularization impacts significantly on the classification accuracy, as

it can be clearly appreciated by direct inspection of Figure 3.12.

Choosing the correct regularizer weight (γ), the performance of the network

are stable across various range of pruning thresholds, even at the highest

percentile.

60 Pruning of Fully Connected Layer’s Nodes

(a) (b)

Figure 3.10: Accuracy on the Fashion-MNIST database with respect to the

percentage of trimmed nodes (from the set of N2 +N3 +N4 neurons). The

results in each panel refer to different choices of the non linear activation

function, ReLU (a) and tanh (b). For the symbols, see the caption of the

Figures above. Also in this case the spectral filters prove always superior.

(a) (b) (c)

Figure 3.11: Accuracy on the CIFAR10 database with respect to the per-

centage of trimmed nodes (from the ℓ − 1 layer). The results in each panel

refer to different non linear functions, respectively ELU (a), ReLU (b) and

tanh (c). Symbols are chosen in analogy with the above (the result drawn

in green are based on two different runs).

3.6 Final considerations

In this Chapter we have discussed a relevant byproduct of a spectral ap-

proach to the learning of deep neural networks. The eigenvalues of the

3.6 Final considerations 61

(a) (b) (c)

Figure 3.12: Computed accuracy on the CIFAR10 dataset against the per-

centage of trimmed nodes (from the first of the two dense layers appended

to the MobileNet-like architecture). The panels displays the performance

of the network as according to each trimming procedure, and using weights

(W) for the ℓ1 regularizer. In panel (a) and (b) pre-training (based on two

runs) and post-spectral filter, respectively; in panel (c) the reduction schem

based on the absolute connectivity.

transfer operator that connects adjacent stacks in a multi-layered architec-

ture provide an effective measure of the nodes importance in handling the

information processing. By exploiting this fact we have introduced and suc-

cessfully tested two distinct procedures to yield compact networks –in terms

of number of computing neurons– which perform equally well than their

untrimmed original homologous. One procedure (referred as (ii) in the de-

scription) is acknowledged as a post processing method, in that it acts on

a multi-layered network downstream of training. The other (referred as (i))

is based on a sequence of two nested operations. First the eigenvalues are

solely trained. After the spectral pruning took place, a second step in the

optimization path seeks to adjust the entries of the eigenvectors that popu-

late a trimmed space of reduced dimensionality. The total number of trained

parameters is small as compared to that involved when the pruning acts as

a post processing filter. Despite that, the two steps pre-processing proto-

col yields compact devices which outperform those obtained with a single

post-processing removal of the unessential nodes.

As a benchmark model, and for a neural network trained in direct space,

we decided to rank the nodes importance based on the absolute value of

the incoming connectivity. This latter appeared as the obvious choice, when

aiming at gauging the local information flow in the space of the nodes, see

also [65]. In principle, one could consider to diagonalizing the transfer op-

62 Pruning of Fully Connected Layer’s Nodes

erators as obtained after a standard approach to the training and make use

of the computed eigenvalues to a posteriori sort the nodes relevance. This

is however not possible as the transfer operator that links a generic layer k

to its adjacent counterpart k + 1, as follows the training performed in di-

rect space, is populated only below the diagonal, with all diagonal entries

identically equal zero. All associated eigenvalues are hence are zero and

they provide no information on the relative importance of the nodes of layer

k+1, at variance with what happens when the learning is carried out in the

reciprocal domain.

Summing up, by reformulating the training of neural networks in spectral

space, we identified a set of sensible scalars, the eigenvalues of suitable oper-

ators, that unequivocally correlate with the influence of the nodes within the

collection. This observation translates in straightforward procedures to gen-

erate efficient networks that exploit a reduced number of computing units.

Tests performed on different settings corroborate this conclusion.

Chapter 4

Pruning of Convolutional

Layer’s Filters

Identifying, possibly in an automated and efficient manner, the

proper structure for a deep network to tackle a specific task is

one of the most relevant problems in modern machine learning.

In some cases, starting from a given architecture, the final neural

architectures must be subject to constraints on the network’s size.

In this particular setting, we usually refer to Neural Compres-

sion. Taking inspiration from the recently proposed differentiable

architectural search framework, we consider generic bilevel pro-

gramming problems with sparsity constraints to solve the network

compression problem. These problems underlie a combinatorial

aspect since they imply a strong sparsity requirement hidden in

the training problem. We provide the definition and a thorough

theoretical analysis of a tailored penalty decomposition approach

for this class of problems.

63

64 Pruning of Convolutional Layer’s Filters

4.1 Preamble

One of the most relevant problems in modern machine learning is that of

identifying, possibly in an automated and efficient manner, the right struc-

ture for a deep network to tackle a specific task; this is the well-known

problem of Neural Architecture Search (NAS). The required neural architec-

tures may be subject to constraints; for example, bounds on the size of the

network may be imposed in order for the model to be employable with lim-

ited hardware. In this particular setting, we usually refer to Neural Network

Compression.

In a popular work of 2018, Liu et al. [92] proposed DARTS, a methodol-

ogy for NAS which is based on differentiable optimization tools and that has

subsequently been improved in recent years. Moreover, differentiable opti-

mization techniques have also been proposed for neural compression prob-

lems, e.g., [27, 111]. In this Chapter we propose a compression techniques

based on a bilevel optimization problem. In such approaches of neural net-

work training, not only weights are optimized so as to minimize training loss,

but some hyperparameters are also optimized, trying to improve the perfor-

mance on the validation set and, in parallel, selecting only the relevant part

of the network. Similar bilevel setting can also be found in hyperparameters

optimization [48, 100, 118], data denoising [94, 123], meta-learning [49, 122],

data poisoning [76,104].

As we will detail later in this Chapter, both in DARTS [92] and in com-

pression algorithms decisions of combinatorial nature are implicitly made.

As a matter of fact, we are basically requiring a sparse solution after the

model’s training.

Sparsity is a recurrent requirement in real-world optimization problems

[139] and different classes of methods have been proposed to deal with

sparsity-constrained problems, even in the nonlinear nonconvex case [11,

24, 80]. Among these algorithms, the class of Penalty Decomposition (PD)

methods received attention in recent years [82,98]. Indeed, [27] showed that

a penalty decomposition approach is effective with neural compression prob-

lems: a sequential penalty method allows the weights to progressively adapt

to the sparse structure of the network and avoids performance drops that

are typical of methods that carry out abrupt thresholding operations. An

analogous reasoning can be made for DARTS, where sparsity is induced by

simplex constraint and involves a final discretization step that often under-

mines the predictive performance of the obtained network.

4.2 Related work 65

Motivated by the above remarks, we consider generic bilevel program-

ming problems with sparsity constraints. For this class of problems, we pro-

vide the definition and a thorough theoretical analysis of a tailored penalty

decomposition approach.

We outline that, similarly to the sequential penalty method proposed

by [103] for smooth deep bilevel problems, we are able to prove theoretical

results of convergence under suitable assumptions. This is in contrast with

the approaches born from [92]: as we will discuss in detail, [92] is not de-

signed to solve the considered bilevel problem. In its faster, but effective,

formulation is rather an algorithm for a Nash equilibrium problems that, as

we see later in Section 4.2.1, lack of convergence guarantees.

4.2 Related work

Liu et al. [92] propose a method to solve problems of the form

min
α,w̄

f(w̄, α)

s.t. w̄ ∈ argmin
w

g(w,α),
(4.1)

where f usually denote the validation loss, g the training loss, α are hyper-

parameters and w are the weights of the network (this bilevel formulation

also appear on hyperparameters optimization [49]). More specifically, they

propose a method where the following two operations are (approximately)

carried out repeatedly:

wk+1 ∈ argmin
w

g(w,αk) αk+1 ∈ argmin
α

f(wk+1, α). (4.2)

For the sake of completeness, we also report that they propose a slightly

more complex (but slower) method were another gradient step is considered

inside 4.2.

4.2.1 Alternate Minimization Approaches

Convergence properties for the above-mentioned algorithm 4.2 are not known.

As a matter of fact, even Liu et al. [92] state that convergence properties

of DARTS are not clear and theoretical analysis concerning this aspect was

not provided. In this Section, we argue that convergence results for Liu et

al. [92] proposal are not known because, basically, there is not any.

66 Pruning of Convolutional Layer’s Filters

Carefully looking at the algorithmic structure of this simplified approach,

we realize that this is in fact not designed to directly tackle bilevel formu-

lation (4.1). The two optimization steps are carried out optimizing two

different objective functions with respect to two disjoint subset of variables.

Specifically, this process can be interpreted as a non-cooperative game be-

tween two players that independently try to improve their own reward. In

other words, the optimization problem underlying this well-known approach

is in fact a Nash equilibrium problem, defined by the pair of problems:

argmin
w

g(w,α) argmin
α

f(w,α).

Recalling that a solution (w̄, ᾱ) is a Nash equilibrium if

f(w̄, ᾱ) ≤ f(w̄, α) ∀α, g(w̄, ᾱ) ≤ g(w, ᾱ) ∀w.

It should be easy to see (see Example 2) that such a Nash equilibrium is not

necessarily a solution of the bilevel problem (4.1) where we basically seek for

optimality of f with respect to the entire pair of variables (w,α).

Gauss-Seidel type alternate minimization schemes like (4.2) are known

in the literature of equilibrium problems as Best-response algorithms [45].

Unfortunately, these methods are not guaranteed to converge to Nash equi-

libria: convergence results can be stated if potential games are taken into

account. Moreover, in this latter setting, convergence can be guaranteed if

there are only two players, or under convexity assumptions on the potential

function (i.e., a function that both players are implicitly optimizing at each

step) and introducing a proximal-point regularizer [45].

However, if f and g denote training and validation losses, a potential

function [110] is unlikely to exist.

In conclusion, although methods of the form (4.2) have empirically proven

to perform quite well in deep bilevel optimization tasks, it is not possible to

support these good results with theoretical results: the methods are indeed

designed to tackle a weaker formulation of the problem and not necessarily

convergent even under strong regularity assumptions.

Hereafter, we provide a counterexample to illustrate the issues discussed

in this Section.

Example 2. Let us consider the following Nash equilibrium problem:

min
x

f(x, y) = x2 − 4xy, min
y

g(x, y) = (1− y)2 + 4xy.

4.2 Related work 67

The above game is defined by two unconstrained, continuously differentiable

strictly convex optimization problems, i.e., strong regularity assumptions

hold. However, a potential function does not exist for this game. Forcing

the first order optimality conditions for the two problems, it is easy to see

that the optimal solution for a player, for a given strategy of the other player,

is given by

x∗(y) = 2y y∗(x) = 1− 2x.

The (unique) Nash equilibrium is thus attained at (x, y) = (2/5, 1/5). How-

ever, consider the Best Response algorithm starting at (0, 0); a sequence of

solutions is produced as follows:

(0, 0)
y=1−−→ (0, 1)

x=2−−→ (2, 1)
y=−3−−−−→ (2,−3) x=−6−−−−→ (−6,−3) ...−→

which is clearly a divergent sequence; in fact,

yk+1 = 1− 2xk = 1− 4yk = . . . =

k∑
i=0

(−4)k−i =

k∑
j=0

(−4)j ,

which is a classical divergent geometric series.

Now, let us consider the “corresponding” bilevel problem

min
x

f(x, y) = x2 − 4xy

s.t. y ∈ argmin
y

g(x, y) = (1− y)2 + 4xy.

The lower-level problem is convex for all x and the corresponding solution is

always unique; thus Assumption 1 holds and we can reformulate the problem

as
min
x,y

f(x, y) = x2 − 4xy

s.t. y = 1− 2x.

Substituting the linear constraint in the objective function, we get

min
x

x2 − 4x+ 8x2 = 9x2 − 4x,

whose minimizer is at x = 2/9. The feasible pair (2/9, 5/9) is thus the

optimal solution of the bilevel problem, and has indeed an objective value of

−4/9 which is better that the value (−4/25) attained at the Nash equilibrium

point (2/5, 1/5).

68 Pruning of Convolutional Layer’s Filters

Thus, applying the best response algorithm in this case we might obtain

a divergent sequence, and even in fortunate cases we would only converge

to a Nash equilibrium which is suboptimal for the bilevel problem. On the

other hand, standard algorithms for constrained optimization are in general

guaranteed to converge to a feasible stationary point under constraints qual-

ification; in the considered case, we have linear constraints and a convex

objective function, thus we would be guaranteed to converge to the global

minimizer of the problem [14].

4.3 Proposed method

Let f(w, α) and g(w, α) the validation and the training losses (w are the

network weights and α are the hyper-parameters). Moreover, we modify the

standard 2D convolutional layer (Conv2d) with weights w ∈ RCout×Cin×K0×K0

where: Cout is the number of output channels, Cin the number of input chan-

nels and, K0, K1 are the kernel dimensions. For the sake of simplicity and

without loss of generality, in the following, we will assume K0 = K1 = K.

More specifically, considering an input tensor x ∈ RCin×H×W , the j-th out-

put channel of Conv2d(x) is defined as

Conv2d(x)[j, :, :] =

Cin∑
i=0

w[j, i, :, :]⊛ x[i, :, :]

where ⊛ denotes the cross-correlation operator. We propose to add a set of

hyper-parameters α ∈ RCout to control the scale of each output filter (see

Figure 4.1). Therefore, we define our GatedConv2d (see Figure 4.1 to see

how the hyper-parameters control the network behavior) as

GatedConv2d(x)[j, :, :] =

Cin∑
i=0

(w[j, i, :, :] · α[j])⊛ x[i, :, :] (4.3)

Finally, taking inspiration from the bilevel problem proposed in Liu et

al. [92], we optimize the hyper-parameters α with respect to the validation

set and adding a constraint on the maximum number of α different from

zero. Spefically, we wanto to solve the following bilevel problem:

min
α,w̄

f(w̄, α)

s.t. w̄ ∈ argmin
w

g(w,α)

∥α∥0 ≤ C

(4.4)

4.3 Proposed method 69

Input Features Output FeaturesGated Conv2D

Conv2D Alpha

X

X

X

X

Figure 4.1: Our proposed Conv Layer

where C is the maximum number of channels that can be used.

4.3.1 Theoretical analysis

For this theoretical analysis, we can abstract from the particular realization

of f and g being two loss functions. As a matter of fact, the theory developed

in this part of the Chapter is more general and can be applied to more

general problems. Specifically, let f : Rn × Rm → R and g : Rn × Rm → R
two continuously differentiable functions. We are interested in solving bilevel

70 Pruning of Convolutional Layer’s Filters

optimization problem of the form

min
α

f(w̄, α)

s.t. w̄ ∈ argmin
w

g(w,α),

∥α∥0 ≤ C,

(4.5)

where the peculiarity of the problem lies in the sparsity constraint required

for the upper-level variables α.

Under suitable assumptions (e.g., the convexity of g(·, α) for all α), the

lower level problem can straightforwardly be substituted by a constraint

∇wg(w̄, α) = 0. Moreover, under the assumption that the optimal set of the

lower-level problem is a singleton for all α, the optimistic and pessimistic

variants of problem (4.5) coincide [129]; under these hypotheses, we are

allowed to reformulate problem (4.5) as

min
w,α

f(w,α)

s.t. h(w,α) = ∇wg(w,α) = 0,

∥α∥0 ≤ C.

(4.6)

In the following discussions, we will always assume that the aforemen-

tioned assumptions are satisfied. More explicitly, we assume that the follow-

ing statement holds.

Assumption 1. A pair (w̄, ᾱ) is a feasible solution for problem (4.5) if and

only if it is feasible for problem (4.6). Moreover, (w̄, ᾱ) is an optimal solution

of problem (4.5) if and only if it is optimal for problem (4.6).

Applying the classical variable splitting technique [57, 72], the problem

can be equivalently rewritten as

min
w,α,β

f(w,α)

s.t. h(w,α) = 0,

∥β∥0 ≤ C,

α = β.

(4.7)

Basically, a new vector of variables β has been introduced, to decouple the

objective function and the sparsity constraint. Then, variables α and β

are linked by a simple equality constraint. The latter can thus be handled

4.3 Proposed method 71

in a quadratic penalty fashion; since, as also done in [103], the constraint

∇wg(w,α) = 0 can be seen as a generic differentiable equality constraint and

moved into the penalty function, we can associate problem (4.7) with the

overall penalty function

ϕγ(w,α, β) = f(w, α) +
γ

2
∥h(w, α)∥2 + γ

2
∥α− β∥2. (4.8)

Indeed, function ϕγ(w,α, β) can be used in a sequential penalty type

framework (see Algorithm 4). In particular, given a sequence of penalty pa-

rameters {γk} such that γk → ∞ and a sequence {ϵk} such that ϵk → 0, a

sequence {wk, αk, βk} can be constructed such that, for all k, the optimiza-

tion problem

min
w,α,β

ϕγk
(w,α, β)

s.t. ∥β∥0 ≤ C
(4.9)

is approximately solved up to stationarity, i.e., the following conditions hold:

∥∇wϕγk
(wk, αk, βk)∥+ ∥∇αϕγk

(wk, αk, βk)∥ ≤ ϵk (4.10)

βk ∈ argmin
∥β∥0≤C

ϕγk
(wk, αk, β) (4.11)

We shall note that, by the definition of ϕγ(w,α, β), condition (4.11) is clearly

equivalent to

βk ∈ argmin
∥β∥0≤C

∥β − αk∥2. (4.12)

Moreover, it is important to highlight that the solution of Problem (4.12)

can be computed in closed form [98], setting

βk
i =

{
αk
i if i ∈ G,

0 otherwise,
(4.13)

where G denotes a set of C indices corresponding to the greatest elements

of αk in absolute value. We denote by G(αk) the set of all the possible such

sets.

Now, in order to obtain a sequence of points satisfying conditions (4.10) -

(4.11), we can resort to an alternate minimization scheme, as done in Penalty

Decomposition approaches [98]. The instructions for this inner solver for

subproblems of the form (4.9) are reported in Algorithm 5. Note that, in

order to obtain convergence guarantees without convexity assumptions, a

72 Pruning of Convolutional Layer’s Filters

Algorithm 4: Penalty Decomposition approach for problem (4.7)

Data: f, g, α0, w0, β0, C > 0, N > 0, γ0, ∆ > 1, ϵ0, δ < 1

Result: wN , αN

1 ϕγk
(w, α, β)← f(w, α) + γk

2 ∥∇wg(w, α)∥2 + γk

2 ∥α− β∥2
2 for k = 0, . . . N do

3 Find (αk+1, wk+1, βk+1) to satisfy (4.10) and (4.11)

4 γk+1 ← γk ·∆
5 ϵk+1 ← ϵk · δ

proximal point term [56] is added in the update subproblem for the w and α

variables,. Interestingly, we do not need to modify the β-update subproblem

to obtain a convergent algorithm, as we will show later in this work, so that

we are still allowed to use the closed form formula (4.13) for the projection

onto the sparse set.

Algorithm 5: Alternate minimization for Problem (4.9)

Data: ϕγk
, αk, wk, βk, ϵk > 0, ρ > 0

Result: wk+1, αk+1, βk+1

1 ℓ← 0

2 α̂ℓ, ŵℓ, β̂ℓ ← αk, wk, βk

3 while ∥∇wϕγk
(α̂ℓ, ŵℓ, β̂ℓ)∥2 + ∥∇αϕγk

(α̂ℓ, ŵℓ, β̂ℓ)∥2 > ϵk do

4 ŵℓ+1 ← argminw ϕγk
(w, α̂ℓ, β̂ℓ) + ρ∥w − ŵℓ∥2

5 α̂ℓ+1 ← argminα ϕγk
(ŵℓ+1, α, β̂ℓ) + ρ∥α− α̂ℓ∥2

6 β̂ℓ+1 ← argminβ : ∥β∥0≤C ∥α̂ℓ+1 − β∥2

7 ℓ← ℓ+ 1

8 αk+1, wk+1, βk+1 ← α̂ℓ, ŵℓ, β̂ℓ

The combination of Algorithms 4 and 5 provides an effective method to

tackle problem (4.5). In the next section, we provide a theoretical analysis

justifying this claim under suitable assumptions.

4.3 Proposed method 73

4.3.2 Convergence analysis

In this section, we carry out the convergence analysis of the proposed ap-

proach. Firstly, we state a reasonable assumption that we will make through-

out the rest of the chapter.

Assumption 2. The function f : Rn × Rm → R has bounded level sets

upon its domain, i.e., {(w,α) | f(w,α) ≤ η} is bounded for any η ∈ R.

Next, we begin the discussion recalling some basic concepts in sparse

optimization.

The support of variable α associated with the cardinality constraint is

the index set of nonzero elements of α and is denoted by

I1(α) = {i | αi ̸= 0}.

Moreover, we shall introduce a further concept.

Definition 3 ([12]). Let α ∈ Rm such that ∥α∥0 ≤ C. A super support set

J at α is an index set such that

• J ⊇ I1(α);

• |J | = C.

The set of all support sets at α is denoted by J (α).

Now, we are able to introduce the necessary optimality conditions for

problem (4.5). Firstly, we recall the Lu-Zhang conditions for the single level

problem (4.6).

Definition 4 ([81,82,98]). A point (w̄, ᾱ) satisfies Lu-Zhang conditions for

problem (4.6) if there exist multipliers λ ∈ Rn, ξ ∈ Rm and J ∈ J (ᾱ) such
that

∇wf(w̄, ᾱ) +

n∑
i=1

λi∇whi(w̄, ᾱ) = 0, (4.14)

∇αf(w̄, ᾱ) +

n∑
i=1

λi∇αhi(w̄, ᾱ) + ξ = 0, (4.15)

ξi = 0 for all i ∈ J. (4.16)

Next, we introduce a suitable constraint qualification for problem (4.6).

74 Pruning of Convolutional Layer’s Filters

Definition 5 ([98]). Let (w̄, ᾱ) ∈ Rn ×Rm. Let ∇h1(w̄, ᾱ), . . . ,∇hn(w̄, ᾱ)

denote the gradients (w.r.t. both w and α) of the components of h(w̄, ᾱ),

i.e.,

∇hi(w̄, ᾱ) =

(
∂g(w̄, ᾱ)

∂w1∂wi
, . . . ,

∂g(w̄, ᾱ)

∂wn∂wi
,
∂g(w̄, ᾱ)

∂α1∂wi
, . . . ,

∂g(w̄, ᾱ)

∂αm∂wi

)T

.

Moreover, let ej ∈ Rn+m, j = 1, . . . ,m, be the element of the canonical bases

in Rn+m corresponding to variable αj . Then, (w̄, ᾱ) satisfies the extended

Robinson condition for a set G ∈ G(ᾱ), with {1 . . . ,m}\G = {j1, . . . , jm−C},
if the vectors ∇h1(w̄, ᾱ), . . . ,∇hn(w̄, ᾱ), ej1 , . . . , ejm−C

are linearly indepen-

dent.

Basically, the extended Robinson condition for a set G ∈ G(ᾱ) is the

classical linear independence constraint qualification (LICQ) for the problem

where the constraints αi = 0 for all i /∈ G have been added. Also note that,

at a feasible point, G(ᾱ) = J (ᾱ), i.e., G is a super support set for ᾱ.

We are finally able to state the necessary optimality condition for the

bilevel problem (4.5).

Proposition 4. Let (w̄, ᾱ) be an optimal solution of problem (4.5). If (w̄, ᾱ)

satisfies the (extended) Robinson condition for some J ∈ J (ᾱ), then it also

satisfies Lu-Zhang conditions for problem (4.6).

Proof. An optimal solution of the bilevel problem (4.5) is certainly a solution

of the single level problem (4.6) by Assumption 1. Now, from [98, Theorem

2.1], since (w̄, ᾱ) satisfies the Robinson condition for some super support set

J ∈ J (ᾱ), we know that (w̄, ᾱ) satisfies the Lu-Zhang conditions for problem

(4.6) with the super support set J .

We are now ready to turn to the properties of the proposed algorithm.

We begin the analysis proving that the three-blocks alternate minimiza-

tion scheme (Algorithm 5) indeed produces an approximate solution to the

penalty subproblem in finite time. In order to do that, however, we prelimi-

narily have to prove a nice property of ϕγk
.

Lemma 3. The penalty function ϕγ(w,α, β) has bounded level sets for any

γ > 0.

Proof. Consider any η ∈ R. From Assumption 2, the level set Lf (η) =

{(w,α)|f(w,α) ≤ η} is bounded. Let us consider Lϕγ
(η) = {(w,α, β) |

ϕγ(w,α, β) ≤ η} for any γ ≥ 0.

4.3 Proposed method 75

Assume by contradiction that Lϕγ (η) is not bounded, i.e., there exists

{wt, αt, βt} such that (wt, αt, βt) ∈ Lϕγ
(η) for all t and ∥(wt, αt, βt)∥ → ∞.

Then, either ∥(wt, αt)∥ → ∞ or ∥βt∥ → ∞.

If ∥(wt, αt)∥ → ∞, we have f(wt, αt) > η for t sufficiently large, be-

ing Lf (η) bounded. But then, from the definition of ϕγ(w,α, β), we have

for t sufficiently large ϕγ(wt, αt, βt) ≥ f(wt, αt) > η, which contradicts

{wt, αt, βt} ⊆ Lϕγ
(η).

Thus, ∥βt∥ → ∞ while ∥(wt, αt)∥ stays bounded. However,

ϕγ(wt, αt, βt) = f(wt, αt) +
γ

2

(
∥αt − βt∥2 + ∥h(wt, αt)∥2

)
> η

for t sufficiently large, as ∥αt − βt∥2 → ∞ and ∥h(wt, αt)∥2 ≥ 0 and f is

bounded having compact level sets. This again is a contradiction, which

completes the proof.

Proposition 5. Algorithm 5 cannot infinitely cycle and produces in a finite

number of iterations a point (wk+1, αk+1, βk+1) such that conditions (4.10)

and (4.11) are satisfied.

Proof. Condition (4.11) is trivially satisfied for every ℓ from the instruc-

tions of the algorithm. Now, assume by contradiction that the sequence

{ŵℓ, α̂ℓ, β̂ℓ} is infinite, i.e., condition (4.10) is never satisfied by (ŵℓ, α̂ℓ, β̂ℓ).

From the instructions of the algorithm we have

ϕγk
(ŵℓ+1, α̂ℓ+1, β̂ℓ+1) ≤ ϕγk

(ŵℓ+1, α̂ℓ+1, β̂ℓ)

≤ ϕγk
(ŵℓ+1, α̂ℓ, β̂ℓ)− ρ∥α̂ℓ+1 − α̂ℓ∥2

≤ ϕγk
(ŵℓ+1, α̂ℓ, β̂ℓ)

≤ ϕγk
(ŵℓ, α̂ℓ, β̂ℓ)− ρ∥ŵℓ+1 − ŵℓ∥2

≤ . . . ≤ ϕγk
(ŵ0, α̂0, β̂0),

(4.17)

hence the sequence {ŵℓ, α̂ℓ, β̂ℓ} belongs to the level set Lϕγk
(ϕγk

(ŵ0, α̂0, β̂0)),

which is bounded by Lemma 3. Thus, there exists T ⊆ {0, 1, . . .} such that

lim
ℓ→∞
ℓ∈T

(ŵℓ, α̂ℓ, β̂ℓ) = (ŵ, α̂, β̂).

Moreover, since the sequence {ϕγk
(ŵℓ, α̂ℓ, β̂ℓ)} is monotone decreasing, it

has limit Φ⋆, which is finite being ϕγk
bounded below, i.e., recalling the

76 Pruning of Convolutional Layer’s Filters

continuity of ϕγk
, we have

Φ⋆ = lim
ℓ→∞

ϕγk
(ŵℓ, α̂ℓ, β̂ℓ) = lim

ℓ→∞
ℓ∈T

ϕγk
(ŵℓ, α̂ℓ, β̂ℓ) = ϕγk

(ŵ, α̂, β̂).

Thus, taking the limits in (4.17) and by the squeeze theorem we have

lim
ℓ→∞

∥(ŵℓ+1 − ŵℓ, α̂ℓ+1 − α̂ℓ)∥2 = 0.

From the instructions of the algorithm, recalling the first order optimality

conditions, we also know that, for all ℓ ∈ T , it holds

∇wϕγk
(ŵℓ+1, α̂ℓ, β̂ℓ) = 0, ∇αϕγk

(ŵℓ+1, α̂ℓ+1, β̂ℓ) = 0,

therefore, since ∥ŵℓ+1 − ŵℓ∥ → 0 and ∥α̂ℓ+1 − α̂ℓ∥ → 0, taking again the

limits for ℓ→∞, ℓ ∈ T , we get by the continuity of the gradient

∇wϕγk
(ŵ, α̂, β̂) = 0, ∇αϕγk

(ŵ, α̂, β̂) = 0.

The last result implies that, for ℓ ∈ T sufficiently large, we have

∥∇wϕγk
(ŵ, α̂, β̂)∥+ ∥∇αϕγk

(ŵ, α̂, β̂)∥ ≤ ϵk,

which is a contradiction.

The above proposition guarantees that, for any γk > 0, the Alternate

Minimization scheme actually provides a point satisfying the conditions re-

quired at each iteration of Algorithm 4.

We are finally able to state the main convergence result of this chapter.

The proof partly follows the the reasoning of [98, Theorem 4.3]. However,

we still report it here not only for the sake of completeness, but also because

of differences in Algorithm 4 w.r.t. the original PD scheme that lead to

changes in the proof. In fact, in [98] the knowledge of a feasible point is

(unreasonably) assumed, which enables to design a convergent scheme under

weaker regularity assumptions on the constraints.

Proposition 6. Let {γk}, {ϵk} and {wk, αk, βk} be sequences such that

γk → ∞, ϵk → 0 and for (wk, αk, βk) satisfies conditions (4.11) and (4.10).

If (w̄, ᾱ, β̄) is an accumulation point of {wk, αk, βk}, then one of the two

following conditions hold:

1. (w̄, ᾱ, β̄) is feasible for problem (4.7), (w̄, ᾱ) is a feasible solution of

Problem (4.6) and satisfies Lu-Zhang conditions;

4.3 Proposed method 77

2. there exists G ∈ G(ᾱ) such that the extended Robinson conditions is

not satisfied by (w̄, ᾱ) for G.

Proof. Let K ⊆ {0, 1, . . .} be a infinite subsequence of iterations such that

lim
k→∞
k∈K

(wk, αk, βk) = (w̄, ᾱ, β̄).

If there exists G ∈ G(ᾱ) such that the Robinson condition is not satisfied,
we are in case 2 and our assertion is true. Thus, let us now assume that the
Robinson condition is satisfied for all G ∈ G(ᾱ). From the instructions of
the algorithm, we have that for any k∥∥∥∥∥∇wf(wk+1, αk+1) + γk

n∑
i=1

hi(wk+1, αk+1)∇whi(wk+1, αk+1)

∥∥∥∥∥
+

∥∥∥∥∥∇αf(wk+1, αk+1) + γk(αk+1 − βk+1) + γk

n∑
i=1

hi(wk+1, αk+1)∇αhi(wk+1, αk+1)

∥∥∥∥∥ ≤ ϵk.

(4.18)

Dividing both sides by γk we get∥∥∥∥∥∇wf(wk+1, αk+1)

γk
+

n∑
i=1

hi(wk+1, αk+1)∇whi(wk+1, αk+1)

∥∥∥∥∥
+

∥∥∥∥∥∇αf(wk+1, αk+1)

γk
+ (αk+1 − βk+1) +

n∑
i=1

hi(wk+1, αk+1)∇αhi(wk+1, αk+1)

∥∥∥∥∥ ≤
ϵk

γk
.

Let K1 ⊆ K be a further subsequence such that I1(βk+1) = G ∈ G(αk+1) for
all k ∈ K1; such a subsequence exists since the number of possible index sets
is finite. Then we can define d̃k+1 = αk+1−βk+1, where, by (4.13), d̃k+1

j = 0

for all j ∈ G and d̃k+1,j = αk+1,j if j /∈ G. We thus have, for all k ∈ K1,∥∥∥∥∥∇wf(wk+1, αk+1)

γk
+

n∑
i=1

hi(wk+1, αk+1)∇whi(wk+1, αk+1)

∥∥∥∥∥
+

∥∥∥∥∥∇αf(wk+1, αk+1)

γk
+ d̃k+1 +

n∑
i=1

hi(wk+1, αk+1)∇αhi(wk+1, αk+1)

∥∥∥∥∥ ≤
ϵk

γk
.

Recalling that {ϵk} is bounded, γk → ∞, f, h,∇f , and ∇h are continuous

functions, we have taking the limits for k ∈ K1, k →∞:

n∑
i=1

hi(w̄, ᾱ)∇whi(w̄, ᾱ) = 0

and

d̃+

n∑
i=1

hi(w̄, ᾱ)∇αhi(w̄, ᾱ) = 0,

78 Pruning of Convolutional Layer’s Filters

where d̃ = ᾱ − β̄, i.e., d̃j = ᾱj if j /∈ G and d̃j = 0 if j ∈ G. Putting

everything together, we obtain

∑
i∈{1,...,m}\G

eiᾱi +

n∑
i=1

hi(w̄, ᾱ)∇hi(w̄, ᾱ) = 0,

which is only possible if h(w̄, ᾱ) = 0 and ᾱi = 0 for all i ∈ {1, . . . ,m} \ G
(i.e., ᾱ − β̄ = 0), since the extended Robinson condition holds for G and

thus ∇h1(w̄, ᾱ), . . . ,∇hn(w̄, ᾱ) and ei for i ∈ {1, . . . ,m} \ G are linearly

independent.

The point (w̄, ᾱ, β̄) is thus feasible for problem (4.7) and thus (w̄, ᾱ) is

feasible for problem (4.6).

In order to prove stationarity condition for the limit points, let us define

λk
i = γkhi(wk+1, αk+1) for all i = 1, . . . , n and ξk = γk(αk+1 − βk+1).

We show that {λk, ξk}K is a bounded sequence. By contradiction, assume

∥λk, ξk∥ → ∞; let us define (λ̂k, ξ̂k) = (λk, ξk)/∥λk, ξk∥ for all k ∈ K. The

sequence {λ̂k, ξ̂k} is bounded by definition, since ∥λ̂k, ξ̂k∥ = 1 for all k ∈ K.

Dividing by ∥λk, ξk∥ both sides of equation (4.18) and taking the limit for

k ∈ K (along a suitable subsequence where λ̂k → λ̄ and ξ̂k → ξ̄ if needed),

k →∞, recalling ∥λk, ξk∥ → ∞ and the continuity of ∇f , and ∇h, we get

n∑
i=1

λ̄i∇whi(w̄, ᾱ) = 0

and

ξ̄ +

n∑
i=1

λ̄i∇αhi(w̄, ᾱ) = 0.

Now, taking again if needed a subsequence such that I1(βk+1) = G ∈
G(αk+1) for all k, we have ξk+1

i = γk(αk+1,i − βk+1,i) = 0 for all k for all

i ∈ G and thus ξ̄i = 0 for all i ∈ G.
Since the extended Robinson condition holds at (w̄, ᾱ) for G and ∥λ̄, ξ̄∥ =

1, this is absurd, by similar reasonings as above.

Thus {λk+1, ξk+1}K is a bounded sequence. Taking a subsequence if

necessary, let (λ⋆, ξ⋆) be an accumulation point of {λk+1, ξk+1}K ; taking

the limits in (4.18), we get

∇wf(w̄, ᾱ) +

n∑
i=1

λ⋆
i∇whi(x̄) = 0

4.4 Experiments 79

and

∇αf(w̄, ᾱ) + ξ⋆ +

n∑
i=1

λ⋆
i∇αhi(x̄) = 0

with, by analogous reasoning as before, ξ⋆i = 0 for all i ∈ G ∈ G(ᾱ) = J (ᾱ),
where the last inequality comes from the feasibility of the limit point. This

completes the proof.

4.4 Experiments

This section is devoted to reporting and discussing the proposed methods’

proof of concept results. Specifically, in the following, we report: results

based on quadratic functions that satisfy all the hypotheses done in theory

and results obtained training a ResNet20 on CIFAR10.

4.4.1 Convex case

For the convex case, as case of study, we consider problems of the form

min
x,ȳ

f(x, ȳ) =
1

2
(1− x)TQ1(1− x) + λ1x

T ȳ

s.t. ȳ ∈ argmin
y

g(x, y) =
1

2
yTQ2y − λ2x

T y

∥x∥0 ≤ C

(4.19)

where Q ∈ RN×N are positive semi-definite matrices, λ ∈ R, x and y are

vectors in RN .

To solve Problem (4.19) we use both the alternating minimization ap-

proach and our penalty decomposition algorithm. Specifically, in Table 4.1,

since the matrices Q and the parameters λ are sampled, respectively, from

an uniform distribution in [−1, 1] and a random integer from 0 to 15, we

report the number of times the algorithm converge to a solution (out of five

attempts).

Even if a more extended set of experiments is needed, Table 4.1 confirms

the intuition reported in the first part of this Chapter: our proposed algo-

rithm is more stable than the Alternating Minimization approach proposed

in DARTS [92].

Finally, to strengthen the soundness of our approach we report the value

of the function f (lower is better) for the case N = 5 and C = 5 in Table 4.2.

80 Pruning of Convolutional Layer’s Filters

Parameter Alternating Minimization Penalty Decomposition

N = 10, C = 1 2 4

N = 10, C = 3 0 4

N = 10, C = 5 1 4

N = 5, C = 3 1 4

Table 4.1: Number of convergent experiments (out of five attempts) for the

tested algorithms. Higher number means a more stable algorithm.

Alternating Minimization Penalty Decomposition

122.9 21.0

62.6 9

318.8 12.8

0.3 3×10−5

35.2 7.4

Table 4.2: Comparison between the value of the outer objective functions

f (lower is better) for both the methods. We run these experiments using

N = 5 and C = 5.

We use this setting because, from our experiments, removing the cardinality

constraint helps the Alternating Minimization’s stability.

4.4.2 Non-convex case

We focus this part on preliminary experiments on ResNet architecture [63]

trained on CIFAR-10 [79]. Moreover, we compare three different approaches

against our proposal: Alternating Minimization, Random Pruning, and Chan-

nel pruning based on the norm of the filter.

We implement Random pruning as a post-training pruning. More specif-

ically, after a full training of the model, we randomly remove a certain per-

centage of filters and refine the pruned architecture. It is important to

highlight that, as reported in [89, 93], random pruning is an effective and

robust baseline for network compression tasks.

For the Channel pruning approach [88, 142], we use a strategy similar

to the one followed for Random pruning: after a full network training, we

4.5 Final considerations 81

Method Pruned Channels Test Accuracy (↑)
Baseline 0 % 90.44

Our proposal

75 %

82.16 ± 0.68

Alternating Minimization 78.86 ± 0.82

Random Pruning 81.40 ± 0.16

Norm Pruning 81.41 ± 0.24

Table 4.3: ResNet20 channel pruning on CIFAR-10, we run each experiments

three times with different seed. The first row refers to the full ResNet-20’s

accuracy while the others refer to the accuracy reached removing 75% of the

channel filters.

remove a percentage of filters following a ranking based on the filter’s weight

norm.

Finally, we follow the Alternating Minimization approach proposed in [92]

for DARTS.

In Table 4.3 we report the results obtained pruning 75% of ResNet-20’s

convolutional filters. Specifically, we run each algorithm with different seeds

three times and report the mean and standard deviation of the obtained

results. As it is possible to see, our proposal obtains better results compared

to the other considered approaches.

4.5 Final considerations

Bilevel optimization formulation, as emerged from a recent stream of work,

can be used to model the problem of neural network compression. In this

Chapter, we discussed a general penalty decomposition approach suitable to

solve such problems with an additional ℓ0-norm constraint. In contrast to

our proposed algorithm, we prove that the popular alternate minimization

approach followed by Liu et al. [92] does not have theoretical convergence

results for such bilevel problems. In addition to this theoretical analysis,

we also show some preliminary empirical results to prove our algorithm’s

soundness.

82 Pruning of Convolutional Layer’s Filters

Chapter 5

Normalization Free ResNet-like

models

Batch Normalization is an essential component of all state-of-

the-art neural networks architectures. However, since it intro-

duces many practical issues, much recent research has been de-

voted to designing normalization-free architectures. In this chap-

ter, we show that weight initialization is key to train ResNet-like

normalization-free networks. In particular, we propose a slight

modification to the summation operation of a block output to the

skip-connection branch, so that the whole network is correctly ini-

tialized. We show that this modified architecture achieves com-

petitive results on CIFAR-10, CIFAR-100, and ImageNet without

further regularization nor algorithmic modifications.

83

84 Normalization Free ResNet-like models

5.1 Preamble

Batch normalization [71], in conjunction with skip connections [63, 64], has

allowed the training of significantly deeper networks. Nowadays, most state-

of-the-art architectures use batch normalization since it yields well behaved

gradients (removing mean-shift, avoiding vanishing or exploding gradients)

and, moreover, it introduces a regularizing effect [67,99]. Anyhow, while skip

connections can be easily implemented and integrated in any network archi-

tecture without major drawbacks, batch normalization poses a few practical

challenges. As already observed and discussed by [21, 22], batch normaliza-

tion adds a significant memory overhead, introduces a discrepancy between

training and inference time, has a tricky implementation in distributed train-

ing, performs poorly with small batch sizes [147] and breaks the independence

between training examples in a minibatch, which can be extremely harmful

for some learning tasks [86,96].

In this Chapter, we propose a simple modification of the residual block

that, together with a careful initialization, allows to train deep residual net-

works without any normalization layer. With such scheme, standardization

layers or algorithmic modifications are not required.

The main contributions described in this Chapter are:

• We show that while the proposals of [21, 22] enjoy a perfect forward

variance (as already noted by [22]), it puts the network in a regime of

exploding gradients. This is shown by looking at the variance of the

derivatives of the loss with respect to the feature maps at different

depths;

• We propose a simple modification of the residual layer and then develop

a suitable initialization scheme building on the work of [62];

• We show that the proposed architecture achieves competitive results on

CIFAR-10 [78], CIFAR-100 [79] and ImageNet [38] which we consider

evidence supporting our theoretical claims.

5.2 Preliminary

In this part of the Chapter, we report the operations performed inside a

Batch Normalization module [71]. Specifically, let x ∈ RN×C×H×W a tensor

5.2 Preliminary 85

Figure 5.1: A sketch of how Batch Normalization computes mean and vari-

ance for each batch. Image adapted from “becominghuman.ai”.

modeling the input of Batch Normalization where N is the number of exam-

ples inside the batch, C is the number of feature maps, and H, W are the

feature map spatial dimensions. Batch Normalization performs the following

two consecutive operations

x̂ =
x− µ

σ2

and

y = αx̂+ β.

In these operations, it is important to highlight two parts. On the one

hand, the coefficients α and β model a linear transformation on the normal-

ized (zero mean and unitary variance) input tensor x̂. These two parameters

are learned during optimization, like standard network weights. While in the

other hand, the vectors µ and σ2 in RC represent the channel-wise mean and

the variance across the whole batch (Figure 5.1 highlights how the vectors

are computed). More specifically, we have

µc =
1

NHW

N∑
i=0

H∑
j=0

W∑
k=0

x[i, c, j, k] ∀ c ∈ [0, . . . C]

and

σ2
c =

1

NHW

N∑
i=0

H∑
j=0

W∑
k=0

(x[i, c, j, k]− µc)
2 ∀ c ∈ [0, . . . C].

To conclude, since the training of a neural network is performed using

batches of data, the actual mean and variance used to normalize the input

tensor is defined averaging multiple batch statistics.

86 Normalization Free ResNet-like models

5.3 Related work

As highlighted in a number of recent studies [5,35,59], weights initialization

is crucial to make deep networks work in absence of batch normalization.

In particular, the weights at the beginning of the training process should

be set so as to correctly propagate the forward activation and the backward

gradients signal in terms of mean and variance.

This kind of analysis was first proposed by [53] and later extended by [62].

These seminal studies considered architectures composed by a sequence of

convolutions and Rectified Linear Units (ReLU), which mainly differ from

modern ResNet architectures for the absence of skip-connections.

The analysis in [62] investigates the variance of each response layer ℓ

(forward variance). More specifically, considering the response of each layer

ℓ:

zℓ = g(xℓ−1), xℓ = Wℓzℓ,

where x is a k2c× 1 vector that represents co-located k× k pixels in c input

channels, Wℓ is a d× n matrix where d is the number of filters and g(·) is a
nonlinear activation function. In the following, we will consider the classical

ReLU, g(z) = max(0, z).

Formally, let us consider normally distributed input data

xℓ−1 ∼ N (0, σ2).

It is well known that with this particular activation we get a Rectified Normal

Distribution [6, 133] with central moments:

µg = E[g(zl)] =
σ√
2π

, σ2
g = Var[g(zℓ)] =

σ2

2
− σ2

2π
.

From the basic properties of variance we also have

E[g(zℓ)2] = µ2
g + σ2

g =
σ2

2
. (5.1)

Making the assumption that the weights W (we omit for simplicity the

dependency on layer ℓ) at a network’s layer ℓ are i.i.d. with zero mean (µW =

0) and that have zero correlation with the input (hence Var[Wg(xℓ−1)] =

σ2
Wσ2

g , putting V ar[W] = σ2
W), we obtain for the output elements that

E[xℓ] = ninµgµW = 0

5.3 Related work 87

and
Var[xℓ] = nin[E[W 2z2ℓ]− (E[Wzℓ])

2]

= nin[E[W 2]E[z2ℓ]− (E[W]E[zℓ])2]
= nin[(µ

2
W + σ2

W)(µ2
g + σ2

g)− µ2
Wµ2

g]

= nin[σ
2
g(µ

2
W + σ2

W) + σ2
Wµ2

g]

= nin[σ
2
W (µ2

g + σ2
g)].

(5.2)

where nin = k2c with k the filter dimension and c the number of input

channels (fan in). Hence if input has unit variance (σ2 = 1) we obtain

output unit variance by initializing W in such a way that

Var[W] =
2

nin
. (5.3)

Similarly we can perform the analysis w.r.t. the gradients signal.

For back-propagation, we can also write

∂L
∂zℓ

= Ŵ
∂L
∂xℓ

,

where L is the loss function and Ŵ is a suitable rearrangement of W . If

weights W are initialized with zero mean from a symmetric distribution, ∂L
∂zℓ

will also have zero mean. We can assume ∂L
∂xℓ

and Ŵ to be uncorrelated.

In addition,
∂L

∂xℓ−1
=

∂L
∂xℓ

g′(xℓ−1);

being g the ReLU, g′(xℓ−1) is either 0 or 1 with equal probability, hence,

assuming g′(xℓ−1) and
∂L
∂xℓ

uncorrelated, we get

E
[

∂L
∂xℓ−1

]
=

1

2
E
[
∂L
∂xℓ

]
=

1

2
E
[
Ŵ
]
E
[

∂L
∂xℓ−1

]
= 0,

E

[(
∂L

∂xℓ−1

)2
]
= Var

[
∂L

∂xℓ−1

]
=

1

2
Var

[
∂L
∂xℓ

]
.

Therefore, we can conclude that

Var

[
∂L

∂xℓ−1

]
=

1

2
Var

[
∂L
∂xℓ

]
=

1

2
Var

[
Ŵ

∂L
∂xℓ

]
=

nout

2
σ2
WVar

[
∂L
∂xℓ

]
.

88 Normalization Free ResNet-like models

Thus, the initialization

Var[W] =
2

nout
, (5.4)

where nout = k2d with k the filter dimension and d the number of output

channels (fan out), allows to preserve the variance of gradients.

Note that equations (5.3) and (5.4) only differ for a factor which, in most

common network architectures, is in fact equal to 1 in the vast majority of

layers. Therefore, the initialization proposed by [62] should generally lead

to the conservation of both forward and backward signals.

In a recent work [22] argued that initial weights should not be consid-

ered as random variables, but are rather the realization of a random process.

Thus, weights mean and variance are empirical values different from those

of the generating random process. Hence, normalization of the weights ma-

trix should be performed after sampling to obtain the desired moments.

Moreover, they argue that channel-wise responses should be analyzed. The

derivations in (5.2) should be revised in order to consider expected value and

the variance of any single channel i of the output xℓ and to take into account

constant σ2
Wi

and µWi
= 0; specifically, we obtain

Var[xℓi] =

nin∑
j=1

Var[Wijzℓj] =

nin∑
j=1

W 2
ijVar[zℓj]

= nin

σ2
g ·

1

nin

nin∑
j=1

W 2
ij

= Nσ2

g(µ
2
Wi

+ σ2
Wi

)

= ninσ
2
gσ

2
Wi

,

so that we retrieve the following initialization rule to preserve an activation

signal with unit variance:

Var[Wi] =
γ2
g

nin
, (5.5)

where γ2
g = 2/(1 − 1

π) for the ReLU activation. Note that if mean and

variance are preserved channel-wise, then they are also preserved if the whole

layer is taken into account.

The authors do not take into account the backward variance. The au-

thors [22] show that the latter initialization scheme allows to experimentally

preserve the channel-wise activation variance, whereas He et al. technique

only works at the full-layer level.

5.3 Related work 89

In the ResNet setting, initialization alone is not sufficient to make the

training properly work without batch normalization, if the commonly em-

ployed architecture with Identity Shortcuts (see Figure 5.2a) is considered.

In particular, the skip-branch summation

xℓ = xℓ−1 + fℓ(xℓ−1), (5.6)

at the end of each block does not preserve variance, causing the phenomenon

known as internal covariate shift [71].

In order to overcome this issue, Batch Normalization has been devised.

More recently, effort has been put into designing other architectural and

algorithmic modifications that dot not rely on batch statistics.

Specifically, [8,36,152] modified the skip-identity summation as to down-

scale the variance at the beginning of training, biasing, in other words, the

network towards the identity function, i.e., computing

xℓ+1 = xℓ−1 + αfℓ(xℓ−1).

This has the downside that α must be tuned and is dependent on the number

of layers. More specifically, α is often initialized to zero so that the gradient is

dominated, early on in the training, by the skip path. While these approaches

have been shown to allow the training of very deep networks, they still

struggle to obtain state-of-the-art test results on challenging benchmarks.

As a matter of fact, as outlined in [22], while these solutions enjoy good

convergence on the training set, they appear not to be sufficient to make

deep ResNets reach state-of-the-art test accuracies.

Similarly, [131] suggest to compute the output of the residual branch as

a weighted sum between the identity and the non-linear branch. Formally,

the residual layer becomes

xℓ = αℓxℓ−1 + βℓf(xℓ−1),

where coefficients αℓ and βℓ can be set so that the forward variance is con-

served by imposing that α2
ℓ + β2

ℓ = 1. Different strategies can be employed

to choose their relative value.

More recently, [22] proposed to additionally perform a runtime layer-wise

normalization of the weights [70, 120], together with the empirical channel-

wise intialization scheme. However, we show in the following that the latter

scheme, while enjoying perfectly conserved forward variances, induces the

network to work in a regime of exploding gradients, i.e., the variance of the

90 Normalization Free ResNet-like models

gradients of the shallowest layers is exponentially larger than that of the

deepest ones. Reasonably, [21] found the use of a tailored adaptive gradient

clipping to be beneficial because of this reason.

5.4 Proposed Method

(a) Standard pre-activated Residual

Block

(b) Generalized Normalizer-Free Resid-

ual Block

Figure 5.2: Architectures of Residual Blocks. For both pictures the grey

arrow marks the easiest path to propagate the information.

In order to overcome the issue discussed at the end of the previous section,

we propose to modify the residual block of ResNet architectures so that,

at the beginning of the training, the mean of either the activations or the

gradients is zero and the variance is preserved throughout the network. In

our view, our proposal is a natural extension of the work of [62] for the

case of ResNet architectures. Note that, to develop an effective initialization

scheme, the residual block has to be slightly modified.

Namely, we propose the following general scheme (see Figure 5.2b):

xℓ = c · (h(xℓ−1) + fℓ(xℓ−1)) , (5.7)

where c is a suitable constant, h is a generic function operating on the skip

branch and fℓ(xℓ−1) represents the output of the convolutional branch.

5.4 Proposed Method 91

We are able, through a proper initialization, to have zero mean and con-

trolled variance (either backward or forward) for each block fℓ.

In a typical ResNet architecture, fℓ is a sequence of two or three con-

volutions, each one preceded by a ReLU activation - pre-activation [64] -

allowing to control both mean and variance through the standard initializa-

tion schemes (5.3) and (5.4). Note that post-activated ResNets do not allow

fℓ to have zero (either gradient or activation) mean, which corroborates the

analysis done by [63].

We perform the analysis in this general setting, deriving the condition

h and c must satisfy in order to preserve either the forward or backward

variance. Then, we propose different ways in which h and c can be defined

to satisfy such conditions.

5.4.1 Forward Case

Firstly, we note that initializing the weights of each block f following rule

(5.3), hypothesizing that E[xℓ−1] = 0 and Var[xℓ−1] = 1, we can easily obtain

that

E[fℓ(xℓ−1)] = E[xℓ−1] = 0, Var[fℓ(xℓ−1)] = Var[xℓ−1] = 1.

Recalling [131], we can make the reasonable assumption that fℓ(xℓ−1)

and h(xℓ−1) have zero correlation, thus, getting

E[xℓ] = c · (E[h(xℓ−1)]) + E[fℓ(xℓ−1)])

= c · E[h(xℓ−1)]

Var[xl] = c2 · (Var[h(xℓ−1)] + Var[fℓ(xℓ−1)])

= c2 · (Var[h(xℓ−1)] + 1)

i.e., the activation signal can be preserved by defining h so that E[h(xℓ−1)] =

0 and Var[h(xℓ−1)] =
1
c2 − 1.

5.4.2 Backward Case

For the gradients at layer ℓ− 1, we have

∂L
∂xℓ−1

=
∂L
∂xℓ

∂xℓ

∂xℓ−1
= c · ∂L

∂xℓ

(
∂h(xℓ−1)

∂xℓ−1
+

∂fℓ(xℓ−1)

∂xℓ−1

)
.

92 Normalization Free ResNet-like models

We can assume by induction that the gradients at layer l have zero mean,

i.e., E
[

∂L
∂xℓ

]
= 0. Then, we get

E
[

∂L
∂xℓ−1

]
= c · E

[
∂L
∂xℓ

∂xℓ

∂xℓ−1

]
= c · E

[
∂L
∂xℓ

]
E
[

∂xℓ

∂xℓ−1

]
= 0.

Assuming zero correlation between ∂L
∂xℓ

and ∂xℓ

∂xℓ−1
, we can further write

Var

[
∂L

∂xℓ−1

]
= c2

(
Var

[
∂L
∂xℓ

]
Var

[
∂h(xℓ−1)

∂xℓ−1
+

∂fℓ(xℓ−1)

∂xℓ−1

]
+Var

[
∂L
∂xℓ

]
E
[
∂h(xℓ−1)

∂xℓ−1
+

∂fℓ(xℓ−1)

∂xℓ−1

]2
+E

[
∂L
∂xℓ

]2
Var

[
∂h(xℓ−1)

∂xℓ−1
+

∂fℓ(xℓ−1)

∂xℓ−1

])

= c2
(
Var

[
∂L
∂xℓ

](
Var

[
∂h(xℓ−1)

∂xℓ−1

]
+Var

[
∂fℓ(xℓ−1)

∂xℓ−1

])
+Var

[
∂L
∂xℓ

](
E
[
∂h(xℓ−1)

∂xℓ−1

]
+ E

[
∂fℓ(xℓ−1)

∂xℓ−1

])2

+E
[
∂L
∂xℓ

]2 (
Var

[
∂h(xℓ−1)

∂xℓ−1

]
+Var

[
∂fℓ(xℓ−1)

∂xℓ−1

]))
.

Now, we also know that, if we initialize the weight of each block fℓ by rule

(5.4), it holds E
[
∂fℓ(xℓ−1)
∂xℓ−1

]
= 0 and Var

[
∂fℓ(xℓ−1)
∂xℓ−1

]
= C. Therefore we can

conclude

Var

[
∂L

∂xℓ−1

]
= c2 ·Var

[
∂L
∂xℓ

](
Var

[
∂h(xℓ−1)

∂xℓ−1

]
+ 1

)
+ c2 ·Var

[
∂L
∂xℓ

]
E
[
∂h(xℓ−1)

∂xℓ−1

]2
.

(5.8)

The preservation of the gradients signal can thus be obtained by suitably

defined h and c.

We argue that some of the techniques proposed by [21, 22] to train deep

Residual Networks (weight normalization layers, adaptive gradient clipping,

etc.) become necessary because initialization (5.5) focuses on the preserva-

tion of the forward activation signal while disregarding the backward one.

Indeed, the correction factor γ2
g = 2/(1 − 1

π) in (5.5) breaks the conser-

vation property of the gradients signal, as opposed to (5.3). As we back-

propagate through the model, the factor γ2
g amplifies the gradients signal at

5.4 Proposed Method 93

each layer, so that the gradients at the last layers are orders of magnitude

larger than those at the first layers (going from output to input layers), i.e.,

the network is in a regime of exploding gradient. In the section devoted to

the numerical experiments we will show the forward and backward behaviour

of these nets.

5.4.3 Gradient signal preserving setups

It is well know that exploding gradients make training hard (from an opti-

mization perspective). Indeed, without further algorithmic or architectural

tricks we are unable to train very deep networks. It is important to note that

in the seminal analyses from [53] and [62] the derivation implied that preserv-

ing the forward variance entailed preserving also the backward variance too

(at least to some reasonable amount). Indeed forward and backward vari-

ance can be equally preserved if, as already noted, for each layer, the number

of input and output channels is equal. On the contrary, in the derivation

of [21, 22], this relationship between forward and backward variance is lost

so that conserving the forward variance implies exploding gradients.

For this reason, in the following we mainly focus on the backwards signal,

which we argue being a more important thing to look at when forward and

backward variance are not tightly related. For this reason, we propose three

different possible schemes for choosing c and h in (5.7). In particular:

1. scaled identity shortcut (IdShort): h(x) = x, c =
√
0.5.

This choice, substituting in (5.8), leads to

Var

[
∂L

∂xℓ−1

]
=

1

2
·
(
Var

[
∂L
∂xℓ

]
· 1 + Var

[
∂L
∂xℓ

]
· 1
)

= Var

[
∂L
∂xℓ

]
,

i.e., the variance of gradients is preserved. As for the activations, we

get E[xℓ] = 0 and

Var[xℓ] = 0.5 · (1 + 1) = 1.

Thus, activations signal is preserved for all layers where input and

output have the same size.

Note that the latter scheme is significantly different from approaches,

like those from [8, 36, 152], that propose to add a (learnable) scalar

94 Normalization Free ResNet-like models

that multiplies the skip branch. In fact, in the proposed scheme the

(constant) scalar multiplies both branches and aims at controlling the

total variance, without biasing the network towards the identity like in

the other approaches.

This is the simplest variance preserving modification of the original

scheme that can be devised, only adding a constant scalar scaling at

the residual block.

2. scaled identity shortcut with a learnable scalar (LearnScalar):

h(x) = αx, α initialized at 1, c =
√
0.5. In (5.8) we again get at

initialization

Var

[
∂L

∂xℓ−1

]
=

1

2
·
(
Var

[
∂L
∂xℓ

]
· 1 + Var

[
∂L
∂xℓ

]
· α2

)
= Var

[
∂L
∂xℓ

]
,

and similarly as above we also obtain the forward preservation at all

layers with N = N̂ .

3. scaled identity shortcut with a (1 × 1)-strided convolution

(ConvShort): h(x) = Wsx initialized by (5.4), c =
√
0.5. Since

we use He initialization on the convolutional shortcut [64], we have

E
[
∂h(xℓ−1)
∂xℓ−1

]
= 0 and Var

[
∂h(xℓ−1)
∂xℓ−1

]
= 1, hence we obtain in (5.8)

Var

[
∂L

∂xℓ−1

]
=

1

2
·
(
Var

[
∂L
∂xℓ

]
· 2 + Var

[
∂L
∂xℓ

]
· 0
)
.

Again, if we consider the layers with equal size for inputs and outputs,

we also get E[xℓ] = 0 and Var[xℓ] = 0.5 · (1 + 1) = 1.

Note that this setting (without the scale factor) is commonly used

in most ResNet architectures when xℓ−1 and fℓ(xℓ−1) have not the

same pixel resolution (for instance because f contains some strided

convolution) or the same number of channels.

5.5 Experiments

We start the investigation by numerically computing forward and backward

variances for the different initialization schemes. We employ the recently

5.5 Experiments 95

introduced Signal Propagation Plots [22] for the forwards variance and a

modification that looks at the gradients instead of the activations for the

backwards case.

We employ the ResNet-50 and ResNet-101 architectures to extract the

plots.

In particular we extract the plots for

• classical ResNet with He initialization, fan in mode (5.3) and fan out

mode (5.4);

• same of the preceding with batch normalization;

• ResNet with the three proposed residual summation modifications and

their proper intialization to preserve the backwards variance1;

• same as the preceding but employing the intialization of Brock et al.

[22].

For all the initialization schemes, we perform the empirical standardiza-

tion to zero mean and desired variance of weights at each layer, after the

random sampling.

From Figure 5.3 we first note that, as already pointed out by [22], clas-

sical ResNets with He initialization do not preserve neither forwards nor

backwards signals while the use of batch normalization manages to fix things

up. Interestingly, we note that the observed trends are more conspicuous in

deeper networks.

Next, we note that employing the proposed strategies (with proper ini-

tialization) we are able to conserve the variance of the gradients. On the

contrary, the initialization proposed by [22] amazingly preserves the forward

signal but puts the network in a regime of exploding gradients. Namely, the

variance of the gradients exponentially increases going from the deepest to

the shallowest residual layers. Additionally, we can also note how the pro-

posed strategies also preserve the activations variance, up to some amount,

while when employing the scheme of [22] the relationship between forward

and backward variance is lost.

We continue the analysis by performing a set of experiments on the well-

known CIFAR-10 dataset [78] in order to understand if an effective training

1Note that, as in the standard implementation, in IdShort and LearnScalar we employ

ConvShort when x has not the same pixel resolution or number of channels of f(x).

96 Normalization Free ResNet-like models

0.0 2.5 5.0 7.5 10.0 12.5 15.0
Depth

10 10

10 8

10 6

10 4

10 2

100

102

104

Va
ria

nc
e

Forward

0.0 2.5 5.0 7.5 10.0 12.5 15.0
Depth

10 10

10 8

10 6

10 4

10 2

100

102

104

Backward
ResNet BN (He fan-in)
ResNet BN (He fan-out)
ResNet (He fan-in)
ResNet (He fan-out)
IdShort (Our)
IdShort (Brock et al.)
LearnScalar (Our)
LearnScalar (Brock et al.)
ConvShort (Our)
ConvShort (Brock et al.)

(a) ResNet-50

0 5 10 15 20 25 30
Depth

10 9

10 6

10 3

100

103

106

109

Va
ria

nc
e

Forward

0 5 10 15 20 25 30
Depth

10 9

10 6

10 3

100

103

106

109

Backward
ResNet BN (He fan-in)
ResNet BN (He fan-out)
ResNet (He fan-in)
ResNet (He fan-out)
IdShort (Our)
IdShort (Brock et al.)
LearnScalar (Our)
LearnScalar (Brock et al.)
ConvShort (Our)
ConvShort (Brock et al.)

(b) ResNet-101

Figure 5.3: Signal propagation plots representing the variance of the forward

activations (on the left) and the backward gradients variance (on the right)

under different initialization schemes: both values refer to residual block out-

put. The x-axis is the residual layer depth, while on the y-axis the variance

of the signal is reported in a logarithmic scale.

can be actually carried out under the different schemes and compare them

in terms of both train and test accuracy. In particular, we are interested

in checking out if the proposed schemes can reach batch normalization test

5.5 Experiments 97

performance.

All the experiments described in what follows have been performed using

SGD with an initial learning rate of 0.01, a momentum of 0.9 and a batch

size of 128 (100 for ImageNet), in combination with a Cosine Annealing

scheduler [97] that decreases the learning rate after every epoch. Moreover,

in addition to the standard data augmentation techniques, we have also

employed the recently proposed RandAugment method [34] and, just for

ImageNet, the Label Smoothing technique [150].

In Figure 5.4 both train and test accuracies are shown for all the config-

urations. The results report the mean and the standard deviation of three

independent runs.

The first thing to notice is that with the initialization scheme of [22] we

are unable to train the network (the curve is actually absent from the plot)

for both ResNet-50 and ResNet-101. This is due to the fact that the network,

at the start of the training, is in a regime of exploding gradients, as observed

in the SPPs.

On the contrary, we can see how, thanks to the correct preservation of

the backward signals, training is possible for all the proposed schemes when

a gradient preserving initialization scheme is employed.

We also notice that, while all the schemes achieve satisfactory test accu-

racies, only the ConvShort modification has an expressive power able to close

the gap (and even outperform at the last epochs) with the network trained

using with Batch Normalization. Thus, according to Figure 5.4a and 5.4b,

ConvShort appears to be an architectural change that, in combination with

the proposed initialization strategy, is able to close the gap with a standard

pre-activated ResNet with Batch Normalization.

To confirm the effectiveness of the proposed method we also considered

more resource-intensive settings, where gradient clipping is expected to be

necessary. In particular, we considered the well-known datasets CIFAR-

100 [79] and ImageNet [38]. Based on the results obtained with CIFAR-10,

we decided to test the most promising among our architectures, namely,

ConvShort modification. Because of the limitations of the hardware and the

computational resources at our disposal, we have not been able to carry out

experiments with all the configurations. Moreover, no accurate hyperparam-

eter validation could be carried out and experiments have been performed

with a single random seed.

In Figure 5.5 we report the results obtained using our ShortConv mod-

98 Normalization Free ResNet-like models

0 50 100 150 200 250 300
Epoch

85
86
87
88
89
90
91
92
93
94
95
96
97
98

Ac
cu

ra
cy

 [%
]

Train

BatchNorm (Our)
IdShort (Our)
LearnScalar (Our)
ConvShort (Our)
IdShort (Brock et al.)
LearnScalar (Brock et al.)
ConvShort (Brock et al.)

0 50 100 150 200 250 300
Epoch

Test

(a) ResNet-50

0 50 100 150 200 250 300
Epoch

85
86
87
88
89
90
91
92
93
94
95
96
97
98

Ac
cu

ra
cy

 [%
]

Train

BatchNorm (Our)
IdShort (Our)
LearnScalar (Our)
ConvShort (Our)
IdShort (Brock et al.)
LearnScalar (Brock et al.)
ConvShort (Brock et al.)

0 50 100 150 200 250 300
Epoch

Test

(b) ResNet-101

Figure 5.4: Test and Train accuracies of ResNet under different combina-

tions of residual block modifications and initialization: standard ResNet

with BatchNorm and IdShort, LearnScalar, ConvShort using both [22] and

ours initialization. Each experiment has been run three times: the solid line

is the mean value while the surrounding shadowed area represents the stan-

dard deviation. Finally, the x-axis is the epoch at the which the accuracy

(reported in the y-axis) has been computed.

ification and a standard ResNet-50 with BatchNormalization. Training is

5.5 Experiments 99

Model Input Resolution Params (M) #FLOPs (G)

ResNet-50 BatchNorm 32× 32× 3 38.02 4.2

ResNet-50 IdShort 32× 32× 3 23.47 2.6

ResNet-50 LearnScalar 32× 32× 3 23.47 2.6

ResNet-50 ConvShort 32× 32× 3 38.02 4.2

ResNet-101 BatchNorm 32× 32× 3 74.78 8.92

ResNet-101 IdShort 32× 32× 3 42.41 5.02

ResNet-101 LearnScalar 32× 32× 3 42.41 5.02

ResNet-101 ConvShort 32× 32× 3 74.78 8.92

Table 5.1: Computational cost and number of parameters of the considered

architectures.

Figure 5.5: Comparison of Train and Test accuracies of ResNet-50 between

standard ResNet with BatchNorm and ConvShort with our initialization us-

ing CIFAR-100. Values on x-axis denote the epoch at the which the accuracy

on the y-axis has been computed.

slower for our setup, but the performance gap eventually disappears and

testing accuracy of our approach becomes even slightly superior at the end

of the process. In Figure 5.6 we show the results obtained with our Short-

Conv on the well-know ImageNet dataset. In order to evaluate the soundness

of our proposal, we compare our results with the accuracy, reported on Py-

Torch [116], reached by a standard ResNet-50 trained on ImageNet. We can

observe that the performance obtained with our architecture is in line with

100 Normalization Free ResNet-like models

the state-of-the-art.

Figure 5.6: Results obtained training ResNet-50 with our ConvShort mod-

ification on ImageNet. Values on x-axis denote the epoch at the which

the accuracy on the y-axis has been computed. The dashed red line is the

accuracy reported by PyTorch [116] for a standard ResNet-50 trained on

ImageNet.

The overall trend seems to indicate that DNNs can be trained up to state-

of-the-art performance even without BN, even if this might come at the cost

of a longer training; moreover, a strong data augmentation might be needed

to compensate the lack of the implicit regularization effects of BN.

To conclude, we report the number of parameters and FLOPs for the

considered architecture in Table 5.1. It is important to note that, despite

ConvShort and BatchNorm have the same computational cost, our proposed

method have some desirable characteristics (like the independence between

the examples in a mini-batch). Moreover, the others configurations can be

employed as more light-weight alternatives.

5.6 Final considerations

In this Chapter we discussed a slight architectural modification of ResNet-

like architectures that, coupled with a proper weights initialization, can train

deep networks without the aid of Batch Normalization. Such initializa-

tion scheme is general and can be applied to a wide range of architectures

5.6 Final considerations 101

with different building blocks. Importantly, our strategy does not require

any additional regularization nor algorithmic modifications, as compared to

other approaches. We show that this setting achieves competitive results on

CIFAR-10, CIFAR-100, and ImageNet. The obtained results are in line with

the discussed theoretical analysis.

102 Normalization Free ResNet-like models

Chapter 6

Conclusion

In this dissertation, we discussed the problem of efficiency in Machine Learn-

ing. As we saw, efficiency can be declined in many ways: reducing the input

feature set, pruning the neural network’s nodes (both in fully connected or

convolutional layers), or removing complex components like Batch Normal-

ization. Each of these problems can be addressed using different techniques,

and, as it is possible to imagine, designing a generic algorithm to address

all of them is not possible. For this reason, in this thesis, we discuss, in

each Chapter, a possible solution to address one of the problems mentioned

above. Summarizing the contributions of each Chapter we have:

In Chapter 2, we define an algorithm to select the best subset of features

in a logistic regression problem. This algorithm, under suitable assumptions,

has strong theoretical guarantees and shows robust empirical results.

In Chapter 3, we propose a novel approach to prune fully connected

layers. In particular, exploiting the recently developed spectral reformulation

[52], it is possible to rank the node’s importance easily. According to this

ranking, removing the less important ones is possible.

In Chapter 4, we propose a first analysis of a novel way to filter con-

volutional channel filters. More specifically, given an initial architecture, it

is possible to formulate the problem of finding the best subset of convolu-

tional filters as a bilevel optimization problem with a sparsity constraint. In

this context, we develop, under suitable assumptions, a penalty decomposi-

tion algorithm to solve the bilevel problem, and we show some preliminary

empirical results.

In Chapter 5, we characterize how the forward and backward signals prop-

103

104 Conclusion

agate inside ResNet-like models. Exploiting this analysis, we define a robust

initialization that allows successful training without Batch Normalization.

To conclude, considering the results obtained for each proposal, we iden-

tify some possible future works. Specifically:

• Taking into consideration the problem of feature subset selection, the

case of multi-class classification is also of great interest. However, the

problem is challenging. Specifically, the complexity in directly extend-

ing the approach described in Chapter 2 to the multinomial case lies in

defining the piece-wise linear approximation of the objective function.

Indeed, in the multi-class scenario, the number of weights is n × m,

being m the number of classes, and N×m pieces of the objective func-

tion need to be approximated. Thus, we have to handle an increas-

ingly high number of variables and constraints, which might become

rapidly unmanageable, even exploiting our decomposition approach.

Hence, future work might focus on devising alternative decomposition

approaches designed to tackle the multinomial case.

• The extensions for the procedures described in Chapter 3 are two-fold.

Preliminary results show that a suitable regularization of the eigenval-

ues yields a general improvement of the proposed method. Moreover,

a possible extension for the convolutional layers can be designed.

• Improve the empirical analysis proposed in Chapter 4 to strengthen

the soundness of the proposed approach.

Appendix A

Publications

This research activity has led to publications in international journals and

conferences. These are listed below.1

International Journals

1. Enrico Civitelli, Matteo Lapucci, Fabio Schoen, Alessio Sortino. “An

effective procedure for feature subset selection in logistic regression

based on information criteria”, Computational Optimization and Ap-

plications, 80 (1), 1-32.

2. Lorenzo Buffoni, Enrico Civitelli, Lorenzo Giambagli, Lorenzo Chic-

chi, Duccio Fanelli. “Spectral pruning of fully connected layers”, Sci-

entific reports , 12 (1), 1-9.

Submitted

1. Enrico Civitelli, Alessio Sortino, Matteo Lapucci, Francesco Bagat-

tini, Giulio Galvan. “A Robust Initialization of Residual Blocks for

Effective ResNet Training without Batch Normalization”, IEEE Trans-

actions on Neural Networks and Learning Systems. (Submitted after

major revision)

1The author’s bibliometric indices are the following: H -index = 2, total number of

citations = 10 (source: Google Scholar on January 27, 2023).

105

106 Publications

International Conferences and Workshops

1. Gabriele Goretti, Benedetta Terenzi, Elisabetta Cianfanelli, Pierluigi

Crescenzi, Carlo Colombo, Enrico Civitelli. “A phygital approach

to playful experience in learning process for kids with special educa-

tional needs”, in International Conference on Education Technology

and Computers, London (United Kingdom), 2020.

2. Andrea Gemelli, Sanket Biswas, Enrico Civitelli, Josep Lladós, Si-

mone Marinai. “Doc2Graph: a Task Agnostic Document Understand-

ing Framework based on Graph Neural Networks”, in European Con-

ference on Computer Vision (ECCV) - Workshop, Tel Aviv (Israel),

2022.

Preprint

1. Tommaso Aldinucci, Enrico Civitelli, Leonardo Di Gangi, Alessio

Sestini. “Contextual Decision Trees”.

Patents

1. Tommaso Bianconcini, Enrico Civitelli, Simone Magistri, Francesco

Sambo, Leonardo Sarti, Fabio Schoen, Leonardo Taccari. “Systems

and Methods for Utilizing Machine Learning for Vehicle Detection of

Adverse Conditions”, U.S. Patent and Trademark Office. (Requested)

To be published

1. Enrico Civitelli, Gabriel Villalonga, Antonio M. López. “On-board

Depth Estimation fusing RADAR and Single-Camera Data”.

2. Enrico Civitelli, Simone Magistri, Tommaso Bianconcini, Leonardo

Sarti, Francesco Sambo, Leonardo Taccari, Fabio Schoen. “Are large

models really necessary to detect adverse driving conditions from on-

board camera?”.

Bibliography

[1] C. C. Aggarwal et al., “Neural networks and deep learning,” Springer, vol. 10,

pp. 978–3, 2018.

[2] H. Akaike, “Information theory and an extension of the maximum likelihood

principle,” in Selected papers of Hirotugu Akaike. Springer, 1998, pp. 199–

213.

[3] ——, “A new look at the statistical model identification,” IEEE Transactions

on Automatic Control, vol. 19, no. 6, pp. 716–723, 1974.

[4] Z. Allen-Zhu, Y. Li, and Y. Liang, “Learning and generalization in overpa-

rameterized neural networks, going beyond two layers,” Advances in neural

information processing systems, vol. 32, 2019.

[5] D. Arpit, V. Campos, and Y. Bengio, “How to initialize your network?

robust initialization for weightnorm & resnets,” in Advances in Neural

Information Processing Systems, H. Wallach, H. Larochelle, A. Beygelzimer,

F. d'Alché-Buc, E. Fox, and R. Garnett, Eds., vol. 32. Curran Associates,

Inc., 2019. [Online]. Available: https://proceedings.neurips.cc/paper/2019/

file/e520f70ac3930490458892665cda6620-Paper.pdf

[6] D. Arpit, Y. Zhou, B. Kota, and V. Govindaraju, “Normalization propaga-

tion: A parametric technique for removing internal covariate shift in deep

networks,” in International Conference on Machine Learning. PMLR, 2016,

pp. 1168–1176.

[7] F. Bach, R. Jenatton, J. Mairal, and G. Obozinski, “Optimization with

sparsity-inducing penalties,” Found. Trends Mach. Learn., vol. 4, no. 1, p.

1–106, Jan. 2012. [Online]. Available: https://doi.org/10.1561/2200000015

[8] T. Bachlechner, B. P. Majumder, H. H. Mao, G. W. Cottrell,

and J. J. McAuley, “Rezero is all you need: Fast convergence at

large depth,” CoRR, vol. abs/2003.04887, 2020. [Online]. Available:

https://arxiv.org/abs/2003.04887

[9] S. Bai, J. Z. Kolter, and V. Koltun, “Deep equilibrium models,” arXiv

preprint arXiv:1909.01377, 2019.

107

https://proceedings.neurips.cc/paper/2019/file/e520f70ac3930490458892665cda6620-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/e520f70ac3930490458892665cda6620-Paper.pdf
https://doi.org/10.1561/2200000015
https://arxiv.org/abs/2003.04887

108 BIBLIOGRAPHY

[10] R. Banner, Y. Nahshan, E. Hoffer, and D. Soudry, “Post-training 4-bit

quantization of convolution networks for rapid-deployment,” arXiv preprint

arXiv:1810.05723, 2018.

[11] A. Beck and Y. C. Eldar, “Sparsity constrained nonlinear optimization: Op-

timality conditions and algorithms,” SIAM Journal on Optimization, vol. 23,

no. 3, pp. 1480–1509, 2013.

[12] A. Beck and N. Hallak, “On the minimization over sparse symmetric sets:

projections, optimality conditions, and algorithms,” Mathematics of Opera-

tions Research, vol. 41, no. 1, pp. 196–223, 2016.

[13] E. Bengio, P.-L. Bacon, J. Pineau, and D. Precup, “Conditional computation

in neural networks for faster models,” arXiv preprint arXiv:1511.06297, 2015.

[14] D. P. Bertsekas, “Nonlinear programming,” Journal of the Operational Re-

search Society, vol. 48, no. 3, pp. 334–334, 1997.

[15] D. P. Bertsekas and J. N. Tsitsiklis, Parallel and distributed computation:

numerical methods. Prentice hall Englewood Cliffs, NJ, 1989, vol. 23.

[16] D. Bertsimas and V. Digalakis Jr, “The backbone method for ultra-high di-

mensional sparse machine learning,” arXiv preprint arXiv:2006.06592, 2020.

[17] D. Bertsimas, A. King et al., “Logistic regression: From art to science,”

Statistical Science, vol. 32, no. 3, pp. 367–384, 2017.

[18] D. Bertsimas, A. King, and R. Mazumder, “Best subset selection via a mod-

ern optimization lens,” The annals of statistics, pp. 813–852, 2016.

[19] P. Bonami, L. T. Biegler, A. R. Conn, G. Cornuéjols, I. E. Grossmann, C. D.

Laird, J. Lee, A. Lodi, F. Margot, N. Sawaya et al., “An algorithmic frame-

work for convex mixed integer nonlinear programs,” Discrete Optimization,

vol. 5, no. 2, pp. 186–204, 2008.

[20] H. Bozdogan, “Akaike’s information criterion and recent developments in

information complexity,” Journal of Mathematical Psychology, vol. 44, no. 1,

pp. 62–91, 2000.

[21] A. Brock, S. De, S. L. Smith, and K. Simonyan, “High-performance large-

scale image recognition without normalization,” ArXiv, vol. abs/2102.06171,

2021.

[22] A. Brock, S. De, and S. L. Smith, “Characterizing signal propagation to close

the performance gap in unnormalized resnets,” in International Conference

on Learning Representations, 2020.

[23] L. Buffoni, E. Civitelli, L. Giambagli, L. Chicchi, and D. Fanelli, “Spectral

pruning of fully connected layers,” Scientific reports, vol. 12, no. 1, pp. 1–9,

2022.

BIBLIOGRAPHY 109

[24] O. P. Burdakov, C. Kanzow, and A. Schwartz, “Mathematical programs with

cardinality constraints: reformulation by complementarity-type conditions

and a regularization method,” SIAM Journal on Optimization, vol. 26, no. 1,

pp. 397–425, 2016.

[25] K. P. Burnham and D. R. Anderson, “Practical use of the information-

theoretic approach,” in Model Selection and Inference. Springer, 1998, pp.

75–117.

[26] ——, “Multimodel inference: understanding aic and bic in model selection,”

Sociological methods & research, vol. 33, no. 2, pp. 261–304, 2004.

[27] M. A. Carreira-Perpinán and Y. Idelbayev, ““learning-compression” algo-

rithms for neural net pruning,” in Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, 2018, pp. 8532–8541.

[28] J. Chang and J. Sha, “Prune deep neural networks with the modified l {1/2}
penalty,” IEEE Access, vol. 7, pp. 2273–2280, 2018.

[29] Y. Cheng, D. Wang, P. Zhou, and T. Zhang, “A survey of model compression

and acceleration for deep neural networks,” arXiv preprint arXiv:1710.09282,

2017.

[30] L. Chicchi, L. Giambagli, L. Buffoni, T. Carletti, M. Ciavarella, and

D. Fanelli, “Training of sparse and dense deep neural networks: Fewer pa-

rameters, same performance,” Physical Review E, vol. 104, no. 5, p. 054312,

2021.

[31] E. Civitelli, M. Lapucci, F. Schoen, and A. Sortino, “An effective procedure

for feature subset selection in logistic regression based on information crite-

ria,” Computational Optimization and Applications, vol. 80, no. 1, pp. 1–32,

2021.

[32] E. Civitelli, A. Sortino, M. Lapucci, F. Bagattini, and G. Galvan, “A robust

initialization of residual blocks for effective resnet training without batch

normalization,” arXiv preprint arXiv:2112.12299, 2021.

[33] Y. Cooper, “Global minima of overparameterized neural networks,” SIAM

Journal on Mathematics of Data Science, vol. 3, no. 2, pp. 676–691, 2021.

[34] E. D. Cubuk, B. Zoph, J. Shlens, and Q. V. Le, “Randaugment: Practical

automated data augmentation with a reduced search space,” in Proceedings

of the IEEE/CVF Conference on Computer Vision and Pattern Recognition

(CVPR) Workshops, June 2020.

[35] Y. N. Dauphin and S. Schoenholz, “Metainit: Initializing learning by

learning to initialize,” in Advances in Neural Information Processing

Systems, H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc,

E. Fox, and R. Garnett, Eds., vol. 32. Curran Associates, Inc.,

110 BIBLIOGRAPHY

2019. [Online]. Available: https://proceedings.neurips.cc/paper/2019/file/

876e8108f87eb61877c6263228b67256-Paper.pdf

[36] S. De and S. Smith, “Batch normalization biases residual blocks towards

the identity function in deep networks,” Advances in Neural Information

Processing Systems, vol. 33, 2020.

[37] P. de Jorge, A. Sanyal, H. S. Behl, P. H. Torr, G. Rogez, and P. K. Dokania,

“Progressive skeletonization: Trimming more fat from a network at initial-

ization,” arXiv preprint arXiv:2006.09081, 2020.

[38] J. Deng, W. Dong, R. Socher, L. Li, Kai Li, and Li Fei-Fei, “Imagenet:

A large-scale hierarchical image database,” in 2009 IEEE Conference on

Computer Vision and Pattern Recognition, 2009, pp. 248–255.

[39] L. Di Gangi, M. Lapucci, F. Schoen, and A. Sortino, “An efficient optimiza-

tion approach for best subset selection in linear regression, with application

to model selection and fitting in autoregressive time-series,” Computational

Optimization and Applications, vol. 74, no. 3, pp. 919–948, 2019.

[40] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Un-

terthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly et al., “An image

is worth 16x16 words: Transformers for image recognition at scale,” arXiv

preprint arXiv:2010.11929, 2020.

[41] K. Dowling, R. Guzikowski, J. Ladd, H. Pangels, S. Singh, and W. Whit-

taker, “Navlab an autonomous navigation testbed,” in Vision and Naviga-

tion. Springer, 1990, pp. 259–282.

[42] D. Dua and C. Graff, “UCI machine learning repository,” 2017. [Online].

Available: http://archive.ics.uci.edu/ml

[43] M. A. Duran and I. E. Grossmann, “An outer-approximation algorithm for

a class of mixed-integer nonlinear programs,” Mathematical programming,

vol. 36, no. 3, pp. 307–339, 1986.

[44] M. Efroymson, “Multiple regression analysis,” Mathematical Methods for

Digital Computers, pp. 191–203, 1960.

[45] F. Facchinei, V. Piccialli, and M. Sciandrone, “Decomposition algorithms for

generalized potential games,” Computational Optimization and Applications,

vol. 50, no. 2, pp. 237–262, 2011.

[46] R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and C.-J. Lin, “LIBLIN-

EAR: A library for large linear classification,” Journal of Machine Learning

Research, vol. 9, pp. 1871–1874, 2008.

[47] A. Fawzi, M. Balog, A. Huang, T. Hubert, B. Romera-Paredes,

M. Barekatain, A. Novikov, F. J. R Ruiz, J. Schrittwieser, G. Swirszcz

https://proceedings.neurips.cc/paper/2019/file/876e8108f87eb61877c6263228b67256-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/876e8108f87eb61877c6263228b67256-Paper.pdf
http://archive.ics.uci.edu/ml

BIBLIOGRAPHY 111

et al., “Discovering faster matrix multiplication algorithms with reinforce-

ment learning,” Nature, vol. 610, no. 7930, pp. 47–53, 2022.

[48] L. Franceschi, M. Donini, P. Frasconi, and M. Pontil, “Forward and reverse

gradient-based hyperparameter optimization,” in International Conference

on Machine Learning. PMLR, 2017, pp. 1165–1173.

[49] L. Franceschi, P. Frasconi, S. Salzo, R. Grazzi, and M. Pontil, “Bilevel pro-

gramming for hyperparameter optimization and meta-learning,” in Interna-

tional Conference on Machine Learning. PMLR, 2018, pp. 1568–1577.

[50] J. Frankle and M. Carbin, “The lottery ticket hypothesis: Finding sparse,

trainable neural networks,” arXiv preprint arXiv:1803.03635, 2018.

[51] A. Gemelli, S. Biswas, E. Civitelli, J. Lladós, and S. Marinai, “Doc2graph:

a task agnostic document understanding framework based on graph neural

networks,” arXiv preprint arXiv:2208.11168, 2022.

[52] L. Giambagli, L. Buffoni, T. Carletti, W. Nocentini, and D. Fanelli, “Machine

learning in spectral domain,” Nature communications, vol. 12, no. 1, pp. 1–9,

2021.

[53] X. Glorot and Y. Bengio, “Understanding the difficulty of training deep

feedforward neural networks,” in Proceedings of the thirteenth international

conference on artificial intelligence and statistics. JMLR Workshop and

Conference Proceedings, 2010, pp. 249–256.

[54] A. Gómez and O. Prokopyev, “A mixed-integer fractional optimization ap-

proach to best subset selection,” Optimization-online, 2018.

[55] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press,

2016, http://www.deeplearningbook.org.

[56] L. Grippof and M. Sciandrone, “Globally convergent block-coordinate tech-

niques for unconstrained optimization,” Optimization methods and software,

vol. 10, no. 4, pp. 587–637, 1999.

[57] M. Guignard and S. Kim, “Lagrangean decomposition: A model yielding

stronger lagrangean bounds,” Mathematical programming, vol. 39, no. 2, pp.

215–228, 1987.

[58] L. Gurobi Optimization, “Gurobi optimizer reference manual,” 2020.

[Online]. Available: http://www.gurobi.com

[59] B. Hanin and D. Rolnick, “How to start training: The effect of

initialization and architecture,” in Advances in Neural Information

Processing Systems, S. Bengio, H. Wallach, H. Larochelle, K. Grauman,

N. Cesa-Bianchi, and R. Garnett, Eds., vol. 31. Curran Associates, Inc.,

2018. [Online]. Available: https://proceedings.neurips.cc/paper/2018/file/

d81f9c1be2e08964bf9f24b15f0e4900-Paper.pdf

http://www.deeplearningbook.org
http://www.gurobi.com
https://proceedings.neurips.cc/paper/2018/file/d81f9c1be2e08964bf9f24b15f0e4900-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/d81f9c1be2e08964bf9f24b15f0e4900-Paper.pdf

112 BIBLIOGRAPHY

[60] E. J. Hannan and B. G. Quinn, “The determination of the order of an autore-

gression,” Journal of the Royal Statistical Society: Series B (Methodological),

vol. 41, no. 2, pp. 190–195, 1979.

[61] T. Hastie, R. Tibshirani, and J. Friedman, The elements of statistical learn-

ing: data mining, inference, and prediction. Springer Science & Business

Media, 2009.

[62] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers: Surpassing

human-level performance on imagenet classification,” in Proceedings of the

IEEE international conference on computer vision, 2015, pp. 1026–1034.

[63] ——, “Deep residual learning for image recognition,” in 2016 IEEE Con-

ference on Computer Vision and Pattern Recognition (CVPR), 2016, pp.

770–778.

[64] ——, “Identity mappings in deep residual networks,” in European conference

on computer vision. Springer, 2016, pp. 630–645.

[65] T. He, Y. Fan, Y. Qian, T. Tan, and K. Yu, “Reshaping deep neural network

for fast decoding by node-pruning,” in 2014 IEEE International Conference

on Acoustics, Speech and Signal Processing (ICASSP), 2014, pp. 245–249.

[66] G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a neural

network,” arXiv preprint arXiv:1503.02531, 2015.

[67] E. Hoffer, I. Hubara, and D. Soudry, “Train longer, generalize better: Closing

the generalization gap in large batch training of neural networks,” in Proceed-

ings of the 31st International Conference on Neural Information Processing

Systems, ser. NIPS’17. Red Hook, NY, USA: Curran Associates Inc., 2017,

p. 1729–1739.

[68] D. W. Hosmer Jr, S. Lemeshow, and R. X. Sturdivant, Applied logistic re-

gression. John Wiley & Sons, 2013, vol. 398.

[69] A. Howard, M. Sandler, G. Chu, L.-C. Chen, B. Chen, M. Tan, W. Wang,

Y. Zhu, R. Pang, V. Vasudevan et al., “Searching for mobilenetv3,” in

Proceedings of the IEEE/CVF international conference on computer vision,

2019, pp. 1314–1324.

[70] L. Huang, X. Liu, Y. Liu, B. Lang, and D. Tao, “Centered weight normaliza-

tion in accelerating training of deep neural networks,” in IEEE International

Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29,

2017. IEEE Computer Society, 2017, pp. 2822–2830.

[71] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network

training by reducing internal covariate shift,” in International Conference on

Machine Learning. PMLR, 2015, pp. 448–456.

BIBLIOGRAPHY 113

[72] K. Jörnsten, M. Näsberg, and P. Smeds, Variable Splitting: A New La-

grangean Relaxation Approach to Some Mathematical Programming Models,

ser. LiTH MAT R.: Matematiska Institutionen. University of Linköping,

Department of Mathematics, 1985.

[73] J. Jumper, R. Evans, A. Pritzel, T. Green, M. Figurnov, O. Ronneberger,

K. Tunyasuvunakool, R. Bates, A. Ž́ıdek, A. Potapenko et al., “Highly accu-

rate protein structure prediction with alphafold,” Nature, vol. 596, no. 7873,

pp. 583–589, 2021.

[74] S. Kamiya, R. Miyashiro, and Y. Takano, “Feature subset selection for the

multinomial logit model via mixed-integer optimization,” in The 22nd Inter-

national Conference on Artificial Intelligence and Statistics, 2019, pp. 1254–

1263.

[75] S.-J. Kim, K. Koh, M. Lustig, S. Boyd, and D. Gorinevsky, “An interior-

point method for large-scale ℓ1-regularized least squares,” IEEE journal of

Selected Topics in Signal Processing, vol. 1, no. 4, pp. 606–617, 2007.

[76] P. W. Koh and P. Liang, “Understanding black-box predictions via influence

functions,” in International conference on machine learning. PMLR, 2017,

pp. 1885–1894.

[77] S. Konishi and G. Kitagawa, Information criteria and statistical modeling.

Springer Science & Business Media, 2008.

[78] A. Krizhevsky and G. Hinton, “Learning multiple layers of features from tiny

images,” University of Toronto, Toronto, Ontario, Tech. Rep. 0, 2009.

[79] A. Krizhevsky, V. Nair, and G. Hinton, “Cifar-10 (canadian institute for ad-

vanced research),” URL http://www. cs. toronto. edu/kriz/cifar. html, vol. 5,

no. 4, p. 1, 2010.

[80] M. Lapucci, T. Levato, F. Rinaldi, and M. Sciandrone, “A unify-

ing framework for sparsity constrained optimization,” arXiv preprint

arXiv:2104.13244, 2021.

[81] M. Lapucci, “Theory and algorithms for sparsity constrained optimization

problems,” 2022.

[82] M. Lapucci, T. Levato, and M. Sciandrone, “Convergent inexact penalty de-

composition methods for cardinality-constrained problems,” Journal of Op-

timization Theory and Applications, vol. 188, no. 2, pp. 473–496, 2021.

[83] Y. LeCun, “The mnist database of handwritten digits,” http://yann. lecun.

com/exdb/mnist/, 1998.

[84] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hub-

bard, and L. D. Jackel, “Backpropagation applied to handwritten zip code

recognition,” Neural computation, vol. 1, no. 4, pp. 541–551, 1989.

114 BIBLIOGRAPHY

[85] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning

applied to document recognition,” Proceedings of the IEEE, vol. 86, no. 11,

pp. 2278–2324, 1998.

[86] J. Lee, D. Joo, H. G. Hong, and J. Kim, “Residual continual learning,” in

Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, 2020,

pp. 4553–4560.

[87] S.-I. Lee, H. Lee, P. Abbeel, and A. Y. Ng, “Efficient ℓ1 regularized logistic

regression,” in AAAI, vol. 6, 2006, pp. 401–408.

[88] H. Li, A. Kadav, I. Durdanovic, H. Samet, and H. P. Graf, “Pruning filters

for efficient convnets,” arXiv preprint arXiv:1608.08710, 2016.

[89] Y. Li, K. Adamczewski, W. Li, S. Gu, R. Timofte, and L. Van Gool, “Revisit-

ing random channel pruning for neural network compression,” in Proceedings

of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,

2022, pp. 191–201.

[90] Y. Li, X. Jin, J. Mei, X. Lian, L. Yang, C. Xie, Q. Yu, Y. Zhou, S. Bai,

and A. L. Yuille, “Neural architecture search for lightweight non-local net-

works,” in Proceedings of the IEEE/CVF Conference on Computer Vision

and Pattern Recognition, 2020, pp. 10 297–10 306.

[91] D. C. Liu and J. Nocedal, “On the limited memory BFGS method for large

scale optimization,” Mathematical Programming, vol. 45, no. 1-3, pp. 503–

528, 1989.

[92] H. Liu, K. Simonyan, and Y. Yang, “DARTS: Differentiable architecture

search,” in International Conference on Learning Representations, 2019.

[Online]. Available: https://openreview.net/forum?id=S1eYHoC5FX

[93] S. Liu, T. Chen, X. Chen, L. Shen, D. C. Mocanu, Z. Wang, and M. Pech-

enizkiy, “The unreasonable effectiveness of random pruning: Return of the

most naive baseline for sparse training,” arXiv preprint arXiv:2202.02643,

2022.

[94] T. Liu and D. Tao, “Classification with noisy labels by importance reweight-

ing,” IEEE Transactions on pattern analysis and machine intelligence,

vol. 38, no. 3, pp. 447–461, 2015.

[95] G. Liuzzi and F. Rinaldi, “Solving ℓ0-penalized problems with simple con-

straints via the Frank-Wolfe reduced dimension method,” Optimization Let-

ters, vol. 9, no. 1, pp. 57–74, 2015.

[96] V. Lomonaco, D. Maltoni, and L. Pellegrini, “Rehearsal-free continual learn-

ing over small non-iid batches.” in CVPR Workshops, 2020, pp. 989–998.

[97] I. Loshchilov and F. Hutter, “SGDR: Stochastic gradient descent with warm

restarts,” arXiv preprint arXiv:1608.03983, 2016.

https://openreview.net/forum?id=S1eYHoC5FX

BIBLIOGRAPHY 115

[98] Z. Lu and Y. Zhang, “Sparse approximation via penalty decomposition meth-

ods,” SIAM Journal on Optimization, vol. 23, no. 4, pp. 2448–2478, 2013.

[99] P. Luo, X. Wang, W. Shao, and Z. Peng, “Towards understanding regular-

ization in batch normalization,” 2019.

[100] D. Maclaurin, D. Duvenaud, and R. Adams, “Gradient-based hyperparame-

ter optimization through reversible learning,” in International conference on

machine learning. PMLR, 2015, pp. 2113–2122.

[101] S. Magistri, F. Sambo, F. Schoen, D. C. de Andrade, M. Simoncini,

S. Caprasecca, L. Kubin, L. Bravi, and L. Taccari, “A lightweight deep learn-

ing model for vehicle viewpoint estimation from dashcam images,” in 2020

IEEE 23rd International Conference on Intelligent Transportation Systems

(ITSC). IEEE, 2020, pp. 1–6.

[102] M. Masana, J. van de Weijer, L. Herranz, A. D. Bagdanov, and J. M. Alvarez,

“Domain-adaptive deep network compression,” in Proceedings of the IEEE

International Conference on Computer Vision, 2017, pp. 4289–4297.

[103] A. Mehra and J. Hamm, “Penalty method for inversion-free deep bilevel

optimization,” in Asian Conference on Machine Learning. PMLR, 2021,

pp. 347–362.

[104] S. Mei and X. Zhu, “Using machine teaching to identify optimal training-set

attacks on machine learners,” in Twenty-Ninth AAAI Conference on Artifi-

cial Intelligence, 2015.

[105] A. Miller, Subset selection in regression. Chapman and Hall/CRC, 2002.

[106] S. I. Mirzadeh, M. Farajtabar, A. Li, N. Levine, A. Matsukawa, and

H. Ghasemzadeh, “Improved knowledge distillation via teacher assistant,”

in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34,

no. 04, 2020, pp. 5191–5198.

[107] R. Miyashiro and Y. Takano, “Mixed integer second-order cone programming

formulations for variable selection in linear regression,” European Journal of

Operational Research, vol. 247, no. 3, pp. 721–731, 2015.

[108] ——, “Subset selection by Mallows’ Cp: A mixed integer programming ap-

proach,” Expert Systems with Applications, vol. 42, no. 1, pp. 325–331, 2015.

[109] P. Molchanov, S. Tyree, T. Karras, T. Aila, and J. Kautz, “Pruning con-

volutional neural networks for resource efficient inference,” arXiv preprint

arXiv:1611.06440, 2016.

[110] D. Monderer and L. S. Shapley, “Potential games,” Games and economic

behavior, vol. 14, no. 1, pp. 124–143, 1996.

116 BIBLIOGRAPHY

[111] H. Mousavi, M. Loni, M. Alibeigi, and M. Daneshtalab, “Pr-darts: Pruning-

based differentiable architecture search,” arXiv preprint arXiv:2207.06968,

2022.

[112] M. Nagel, R. A. Amjad, M. Van Baalen, C. Louizos, and T. Blankevoort, “Up

or down? adaptive rounding for post-training quantization,” in International

Conference on Machine Learning. PMLR, 2020, pp. 7197–7206.

[113] J. O. Neill, “An overview of neural network compression,” arXiv preprint

arXiv:2006.03669, 2020.

[114] A. Novikov, D. Podoprikhin, A. Osokin, and D. Vetrov, “Tensorizing neural

networks,” arXiv preprint arXiv:1509.06569, 2015.

[115] I. V. Oseledets, “Tensor-train decomposition,” SIAM Journal on Scientific

Computing, vol. 33, no. 5, pp. 2295–2317, 2011.

[116] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,

T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf,

E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy,

B. Steiner, L. Fang, J. Bai, and S. Chintala, “Pytorch: An imperative

style, high-performance deep learning library,” in Advances in Neural

Information Processing Systems 32. Curran Associates, Inc., 2019,

pp. 8024–8035. [Online]. Available: http://papers.neurips.cc/paper/

9015-pytorch-an-imperative-style-high-performance-deep-learning-library.

pdf

[117] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,

M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,

D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-learn:

Machine learning in Python,” Journal of Machine Learning Research, vol. 12,

pp. 2825–2830, 2011.

[118] F. Pedregosa, “Hyperparameter optimization with approximate gradient,” in

International conference on machine learning. PMLR, 2016, pp. 737–746.

[119] A. Polino, R. Pascanu, and D. Alistarh, “Model compression via distillation

and quantization,” arXiv preprint arXiv:1802.05668, 2018.

[120] S. Qiao, H. Wang, C. Liu, W. Shen, and A. Yuille, “Micro-batch training

with batch-channel normalization and weight standardization,” 2020.

[121] A. Radhakrishnan, M. Belkin, and C. Uhler, “Overparameterized neural net-

works implement associative memory,” Proceedings of the National Academy

of Sciences, vol. 117, no. 44, pp. 27 162–27 170, 2020.

[122] A. Rajeswaran, C. Finn, S. M. Kakade, and S. Levine, “Meta-learning

with implicit gradients,” Advances in neural information processing systems,

vol. 32, 2019.

http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf

BIBLIOGRAPHY 117

[123] M. Ren, W. Zeng, B. Yang, and R. Urtasun, “Learning to reweight examples

for robust deep learning,” in International conference on machine learning.

PMLR, 2018, pp. 4334–4343.

[124] F. Rinaldi, F. Schoen, and M. Sciandrone, “Concave programming for min-

imizing the zero-norm over polyhedral sets,” Computational Optimization

and Applications, vol. 46, no. 3, pp. 467–486, 2010.

[125] F. Rosenblatt, “The perceptron: a probabilistic model for information stor-

age and organization in the brain.” Psychological review, vol. 65, no. 6, p.

386, 1958.

[126] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen, “Mo-

bilenetv2: Inverted residuals and linear bottlenecks,” in Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition (CVPR),

June 2018.

[127] K. A. Sankararaman, S. De, Z. Xu, W. R. Huang, and T. Goldstein, “The

impact of neural network overparameterization on gradient confusion and

stochastic gradient descent,” in International conference on machine learn-

ing. PMLR, 2020, pp. 8469–8479.

[128] T. Sato, Y. Takano, R. Miyashiro, and A. Yoshise, “Feature subset selec-

tion for logistic regression via mixed integer optimization,” Computational

Optimization and Applications, vol. 64, no. 3, pp. 865–880, 2016.

[129] M. Schmidt and Y. Beck, “A gentle and incomplete introduction to bilevel

optimization,” 2021.

[130] G. Schwarz et al., “Estimating the dimension of a model,” The Annals of

Statistics, vol. 6, no. 2, pp. 461–464, 1978.

[131] J. Shao, K. Hu, C. Wang, X. Xue, and B. Raj, “Is normalization indispens-

able for training deep neural network?” Advances in Neural Information

Processing Systems, vol. 33, 2020.

[132] X. Shen, W. Pan, Y. Zhu, and H. Zhou, “On constrained and regularized

high-dimensional regression,” Annals of the Institute of Statistical Mathe-

matics, vol. 65, no. 5, pp. 807–832, 2013.

[133] N. D. Socci, D. D. Lee, and H. Sebastian Seung, “The rectified gaussian

distribution,” Advances in Neural Information Processing Systems, pp. 350–

356, 1998.

[134] P. Stock, A. Joulin, R. Gribonval, B. Graham, and H. Jégou, “And the bit

goes down: Revisiting the quantization of neural networks,” arXiv preprint

arXiv:1907.05686, 2019.

[135] D. J. Surmeier and R. Foehring, “A mechanism for homeostatic plasticity,”

Nature neuroscience, vol. 7, no. 7, pp. 691–692, 2004.

118 BIBLIOGRAPHY

[136] T. Suzuki, H. Abe, T. Murata, S. Horiuchi, K. Ito, T. Wachi, S. Hirai,

M. Yukishima, and T. Nishimura, “Spectral pruning: Compressing deep

neural networks via spectral analysis and its generalization error,” arXiv

preprint arXiv:1808.08558, 2018.

[137] M. Tan and Q. Le, “Efficientnet: Rethinking model scaling for convolutional

neural networks,” in International conference on machine learning. PMLR,

2019, pp. 6105–6114.

[138] R. Tibshirani, “Regression shrinkage and selection via the lasso,” Journal of

the Royal Statistical Society: Series B (Methodological), vol. 58, no. 1, pp.

267–288, 1996.

[139] A. M. Tillmann, D. Bienstock, A. Lodi, and A. Schwartz, “Cardinality

minimization, constraints, and regularization: A survey,” arXiv preprint

arXiv:2106.09606, 2021.

[140] P. Tseng, “Convergence of a block coordinate descent method for nondiffer-

entiable minimization,” Journal of Optimization Theory and Applications,

vol. 109, no. 3, pp. 475–494, 2001.

[141] P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy, D. Cour-

napeau, E. Burovski, P. Peterson, W. Weckesser, J. Bright, S. J. van der

Walt, M. Brett, J. Wilson, K. Jarrod Millman, N. Mayorov, A. R. J. Nelson,

E. Jones, R. Kern, E. Larson, C. Carey, İ. Polat, Y. Feng, E. W. Moore,

J. Vand erPlas, D. Laxalde, J. Perktold, R. Cimrman, I. Henriksen, E. A.

Quintero, C. R. Harris, A. M. Archibald, A. H. Ribeiro, F. Pedregosa, P. van

Mulbregt, and SciPy 1.0 Contributors, “SciPy 1.0: Fundamental Algorithms

for Scientific Computing in Python,” Nature Methods, vol. 17, pp. 261–272,

2020.

[142] H. Wang, Q. Zhang, Y. Wang, L. Yu, and H. Hu, “Structured pruning for

efficient convnets via incremental regularization,” in 2019 International Joint

Conference on Neural Networks (IJCNN). IEEE, 2019, pp. 1–8.

[143] X. Wang, F. Yu, Z.-Y. Dou, T. Darrell, and J. E. Gonzalez, “Skipnet: Learn-

ing dynamic routing in convolutional networks,” in Proceedings of the Euro-

pean Conference on Computer Vision (ECCV), September 2018.

[144] X. Wang, F. Yu, L. Dunlap, Y.-A. Ma, R. Wang, A. Mirhoseini, T. Darrell,

and J. E. Gonzalez, “Deep mixture of experts via shallow embedding,” in

Uncertainty in Artificial Intelligence. PMLR, 2020, pp. 552–562.

[145] J. Weston, A. Elisseeff, B. Schölkopf, and M. Tipping, “Use of the zero-

norm with linear models and kernel methods,” Journal of Machine Learning

Research, vol. 3, no. Mar, pp. 1439–1461, 2003.

BIBLIOGRAPHY 119

[146] H. Xiao, K. Rasul, and R. Vollgraf, “Fashion-mnist: a novel image

dataset for benchmarking machine learning algorithms,” arXiv preprint

arXiv:1708.07747, 2017.

[147] J. Yan, R. Wan, X. Zhang, W. Zhang, Y. Wei, and J. Sun, “Towards

stabilizing batch statistics in backward propagation of batch normalization,”

in International Conference on Learning Representations, 2020. [Online].

Available: https://openreview.net/forum?id=SkgGjRVKDS

[148] X. Yu, T. Liu, X. Wang, and D. Tao, “On compressing deep models by low

rank and sparse decomposition,” in Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, 2017, pp. 7370–7379.

[149] G.-X. Yuan, C.-H. Ho, and C.-J. Lin, “An improved GLMNET

for L1-regularized logistic regression,” Journal of Machine Learning

Research, vol. 13, no. 64, pp. 1999–2030, 2012. [Online]. Available:

http://jmlr.org/papers/v13/yuan12a.html

[150] C.-B. Zhang, P.-T. Jiang, Q. Hou, Y. Wei, Q. Han, Z. Li, and M.-M. Cheng,

“Delving deep into label smoothing,” IEEE Transactions on Image Process-

ing, vol. 30, pp. 5984–5996, 2021.

[151] D. Zhang, H. Wang, M. Figueiredo, and L. Balzano, “Learning to share:

Simultaneous parameter tying and sparsification in deep learning,” in Inter-

national Conference on Learning Representations, 2018.

[152] H. Zhang, Y. N. Dauphin, and T. Ma, “Residual learning without

normalization via better initialization,” in International Conference on

Learning Representations, 2019. [Online]. Available: https://openreview.

net/forum?id=H1gsz30cKX

[153] Z. Zheng, Y. Fan, and J. Lv, “High dimensional thresholded regression and

shrinkage effect,” Journal of the Royal Statistical Society: Series B (Statis-

tical Methodology), vol. 76, no. 3, pp. 627–649, 2014.

https://openreview.net/forum?id=SkgGjRVKDS
http://jmlr.org/papers/v13/yuan12a.html
https://openreview.net/forum?id=H1gsz30cKX
https://openreview.net/forum?id=H1gsz30cKX

	Contents
	Introduction
	Best Feature Selection in Logistic Regression
	Preamble
	Preliminary
	Related work
	Proposed method
	The working set selection rule
	The complete procedure
	Theoretical analysis
	Finding good CW-optima

	Experiments
	Final considerations

	Pruning of Fully Connected Layer's Nodes
	Preamble
	Preliminary
	Related work
	Proposed method
	Experiments
	Single hidden layer
	Multiple hidden layers
	CIFAR-10

	Final considerations

	Pruning of Convolutional Layer's Filters
	Preamble
	Related work
	Alternate Minimization Approaches

	Proposed method
	Theoretical analysis
	Convergence analysis

	Experiments
	Convex case
	Non-convex case

	Final considerations

	Normalization Free ResNet-like models
	Preamble
	Preliminary
	Related work
	Proposed Method
	Forward Case
	Backward Case
	Gradient signal preserving setups

	Experiments
	Final considerations

	Conclusion
	Publications
	Bibliography

