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Abstract 

Global agendas are converging to address the overlapping challenges related to climate change, disaster risk 

reduction and sustainable development. Thus, the respective research communities, that until a few years 

ago were working separately, should take the opportunity to further share and integrate knowledge and 

approaches. This would be particularly useful when dealing with water since its management involves 

multiple stakeholders, often with different opinions about its use. Indeed, water scarcity, which occurs when 

water supply fails to satisfy water demand, and water shortage, a lack of water supply of acceptable quality, 

caused either by climatic, infrastructural, or hydrological factors, are two of the main global challenges which 

will be likely worsened by climate change, hampering food security in many countries of the world.  

This thesis revolves around four manuscripts that investigate the research topics in two study areas. I first 

apply the approaches of the disaster and climate research communities in Central and Southern Tuscany, Italy, 

starting with a drought risk assessment, in the first manuscript, and continuing with a climate change impact 

assessment, also evaluating the adaptive capacity of agricultural systems, in the second and third 

manuscripts, by applying the Soil and Water Assessment Tool + (SWAT+). In this study area, I also analyze the 

uncertainty in future climate aridity due to climate models and the vegetation responses to CO2. Furthermore, 

I assess the impact of agricultural adaptation strategies on hydrological fluxes, an aspect which is often 

neglected. 

As a second case study, I selected the Juba and Shabelle catchments in Somalia, an area which is highly 

exposed to extreme events and with a population mainly composed of small-holder agro-pastoral 

communities. In this fourth manuscript of the thesis, I integrate both approaches including indicators 

obtained after simulations of the SWAT+ agro-hydrological model in a climate risk assessment framework. In 

this way, the representation of climate change hazard and resilience, defined as the combination of coping, 

adaptive and transformative capacities, is improved. 

Combining climate change impact and risk assessment, I provide useful information to be used by local 

decision-makers in Italy and Somalia to better tackle water-related, agricultural climate change challenges. 

Furthermore, in the four manuscripts of the thesis, I highlight specific issues and uncertainties of these 

methodologies and explore solutions to address them. Finally, I propose an example framework to combine 

the approaches to show how the integration is beneficial and helps to deliver a clear and robust message to 

achieve greater policy impact for a better water management.  
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Chapter 1  Introduction 

1.1 General context 

Due to the potentially dramatic consequences and the uncertain cascading impacts on livelihoods, climate 

change is almost unanimously recognized as one of humanity’s greatest challenges. Human activities have 

been responsible for climate change since the pre-industrial period and further global warming will affect the 

global water cycle, including the frequency and severity of extreme events (Arias et al., 2021). In general, 

warming induces evaporation and more water vapour in the atmosphere and increases the frequency and 

intensity of both droughts and heavy precipitation (Trenberth, 2011). While there is a large confidence that 

temperatures are increasing almost everywhere, past changes and future projections of precipitation show 

much more variability and uncertainty. An increase in globally-averaged precipitation has been observed in 

the last decades as is also expected in the future. Some regions, however, are experiencing a decrease in 

precipitation (Gutiérrez et al., 2021). 

In recent years, after decades of steady decline, the number of people suffering from hunger has slightly 

increased, with Africa being the continent with the highest prevalence of undernourishment (FAO et al., 

2019). Throughout the world, actual yields are far from their potential, also in some regions of the North 

(Schils et al., 2018). Nevertheless, high yield gaps are typically related to sub-Saharan Africa, where many 

recurrent limiting factors, such as water, climate, soil fertility and pests, affect the productivity, resilience and 

sustainability of agroecosystems (Tittonell and Giller, 2013; van Ittersum et al., 2013). Indeed, closing yield 

gaps and increasing resource efficiency are considered among the most effective strategies to achieve 

sustainable intensification (Mueller et al., 2012). Major efforts by the whole agriculture-related sectors will 

be needed to find effective solutions to feed the increasing world population, without further degrading 

natural resources (Foley et al., 2011). 

Negative impacts of the changing climate on food security have already been observed, caused either by 

increased temperatures, changes in precipitation patterns, and a higher frequency of extreme events, such 

as droughts, floods and heat and cold waves (FAO, 2016; IPCC, 2018). Climate change will also produce 

unpredictable effects on pests, diseases and weeds that will likely harm future crop yields (Bindi and Olesen, 

2011; Ciscar et al., 2018; Giannakopoulos et al., 2009; Spano et al., 2020). Conversely, CO2 concentration 

increases will benefit crop yield through the CO2 fertilization effect and stomatal conductance suppression, 

with the effects being greater for C3 crops (Ainsworth and Long, 2005; Webber et al., 2018). Nevertheless, 

climate change impacts will be highly variable according to the sector and location in the world and, in some 

cases, they will be mostly beneficial (Kang et al., 2009; Roudier et al., 2011). Regardless of the sign and 

magnitude of climate change effects, adaptation strategies will have a crucial role in limiting crop yield losses 

or enhancing the unlikely positive climate changes (Bindi and Olesen, 2011; Reidsma et al., 2015). This calls 

for the need to address the global climate change challenge with diverse, localized, context-specific 

adaptation strategies (Iglesias et al., 2010; Pasqui and Di Giuseppe, 2019). 

When considering the water resources - and even more in the context of climate change - strong and urgent 

actions need to be implemented to address the two main water-related challenges, namely water shortage 

and water scarcity (FAO, 2020). Currently, 3.2 billion people live in agricultural areas with high levels of water 

scarcity or shortage, agriculture accounts for more than 70% of global water withdrawals, and almost half of 

irrigation occurs at the expense of environmental flow requirements (FAO, 2020; Mekonnen and Gerbens-

Leenes, 2020). Improved water management strategies are crucial in drylands - which cover about 46.2% of 

the global land - where climate change will strongly exacerbate water stresses (Biazin et al., 2023; IPCC, 2018). 
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Water shortage refers to a shortage of water supply of acceptable quality, caused either by climatic, 

infrastructural, or hydrological factors, while water scarcity occurs when water supply fails to satisfy water 

demand (FAO, 2020; Ruane, 2012). Water shortage is mainly driven by biophysical factors which are expected 

to increase due to the warming climate and the greater frequency of extreme events (Rojas et al., 2019). 

Furthermore, several river basins are going to experience enhanced water scarcity caused by multiple drivers 

which will increase water demand and the changes in the hydrological cycle which will reduce water 

availability (Estrela et al., 2012; Garrote et al., 2015; Masia et al., 2018). 

In agriculture, water shortage mainly threatens rainfed agriculture, while water scarcity issues refer mostly to 

irrigated agriculture (FAO, 2020). Having in mind that there is a continuum in technologies from fully irrigated 

to fully rainfed systems, different and integrated strategies need to be implemented to tackle these water-

related challenges (FAO, 2020). In rainfed agriculture, water shortage is generally addressed by increasing 

plant uptake capacity, reducing evaporation and drainage losses, and harvesting more water (Rockström and 

Falkenmark, 2015; Piemontese et al., 2020), while for water scarcity in irrigated agriculture, the main 

solutions are to enhance the water productivity and to improve irrigation systems (Molden et al., 2010; Oweis 

and Hachum, 2006). 

Adaptation strategies encompass a wide range of practices, tools and policies put in place by various 

stakeholders at different scales. Among them, farmers will have a crucial role in coping with climate change, 

by modifying their choices and management practices. Agricultural adaptation strategies can be categorized 

as planned (hard, institutional) and autonomous (soft, farmer-led). Planned adaptations refer to major 

structural changes at larger scales that generally require high investments and longer times, while 

autonomous adaptations consist of adjustments at smaller and shorter scales to optimize production (Bindi 

and Olesen, 2011). Autonomous adaptations, which generally are overlooked by decision-makers, might have 

a crucial role as they are highly accepted and will be easily implemented by farmers themselves (Bonzanigo 

et al., 2016; Varela-Ortega et al., 2016). Examples of such practices are changes in varieties, sowing date, 

input utilization, and management. 

As a result of the increasing concerns about climate change impacts, new methods and approaches are now 

being applied to better understand how to address these impacts. Climate change adaptation and mitigation 

are the main focus of the United Nations Climate Change Conferences that led for example to the Paris 

Agreement (2015). Furthermore, it is also largely discussed in the other most important and recent global 

agendas. For example, “Climate Action” is included within the 17 Sustainable Development Goals to urgently 

tackle climate change impacts (UN, 2015). Moreover, experts from the disaster risk reduction community are 

always more actively involved in studying climate change impacts and dynamics (Marzi et al., 2021; Mysiak 

et al., 2018), following the Sendai Framework for Disaster Risk Reduction (UNISDR, 2015). Vogt et al. (2018) 

describe two different approaches for the assessment of risk. The disaster risk reduction community applies 

the contextual/factor approach, which generally relies on combined indicators, while the climate change 

adaptation community focuses on the outcome/impact approach, mainly based on quantitative measures of 

the relationship between stressor and response (Vogt et al., 2018). Notably, as a lesson learned from the 

previous Hyogo Framework for Action, adopted in 2005, it is reported: 

“The intergovernmental negotiations on the post 2015 development agenda, financing for 

development, climate change and disaster risk reduction provide the international community with a 

unique opportunity to enhance coherence across policies, institutions, goals, indicators and 

measurement systems for implementation, while respecting the respective mandates. Ensuring 
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credible links, as appropriate, between these processes will contribute to building resilience and 

achieving the global goal of eradicating poverty.” (UNISDR, 2015). 

The challenges related to climate change, disaster risk reduction and sustainable development are 

overlapping. From the global agendas also strongly emerges the opportunity for synergies that can be 

achieved. The academic community is advancing towards enhanced collaboration and knowledge-sharing 

among various fields, and the latest Intergovernmental Panel on Climate Change (IPCC) reports (AR5 and AR6) 

include all the challenges of the various agendas. Nevertheless, the integration between the approaches and 

methodologies of the disaster, climate change and development communities remains far from optimal 

(Challinor et al., 2010; Marzi et al., 2021; Mochizuki et al., 2018). 

1.2 Key methodological concepts 

Water scarcity and shortage are core challenges of the climate crisis, considering that water resource 

management is already facing several problems (FAO, 2020). Water resource management is a cutting-edge 

theme that involves multiple stakeholders and disciplines but, despite the efforts, solutions and policies are 

barely coordinated and effective (UN, 2020). The intrinsic nature of the water resource makes it difficult to 

account for. Furthermore, stakeholders might value water differently and might have opposite perspectives 

on its optimal use, especially when and where water is scarcer (UN, 2021). Another important challenge in 

water accounting is how to deal with the different scales at which water management is implemented 

(Chukalla et al., 2020; Gómez et al., 2020). To address these challenges, researchers developed frameworks, 

indicators, and methodologies to try to comprehensively analyze water uses to improve integrated water 

management (Biazin et al., 2023; Dalla Marta et al., 2018; Ruane, 2012), which is fundamental for addressing 

climate change impacts and risks. In this section, the key methodological concepts applied in this thesis are 

briefly introduced. 

1.2.1 Climate and drought risk assessments 

An established framework to evaluate climate risk, promoted also by the IPCC, is to conceptualize it as the 

combination of hazard, exposure and vulnerability (equation 1). According to the IPCC definitions, risk is “the 

potential for adverse consequences on lives, livelihoods, health, ecosystems and species, economic, social 

and cultural assets, services (including environmental services) and infrastructure”, hazard is “the potential 

occurrence of a natural or human-induced physical event or trend or physical impact that may cause loss of 

life, injury, or other health impacts, as well as damage and loss to property, infrastructure, livelihoods, service 

provision, ecosystems and environmental resources”, exposure is “the presence of people, livelihoods, 

species or ecosystems, environmental functions, services, and resources, infrastructure, or economic, social, 

or cultural assets in places and settings that could be adversely affected” and vulnerability is “the propensity 

or predisposition to be adversely affected and encompasses a variety of concepts and elements including 

sensitivity or susceptibility to harm and lack of capacity to cope and adapt” (IPCC, 2014). 

𝑅𝑖𝑠𝑘 = 𝐻𝑎𝑧𝑎𝑟𝑑 ∙ 𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒 ∙ 𝑉𝑢𝑙𝑛𝑒𝑟𝑎𝑏𝑖𝑙𝑖𝑡𝑦        (1) 

Many climate risk and vulnerability assessments have been performed considering drought or other hazards 

(Hagenlocher et al., 2019; Jurgilevich et al., 2017; Merz et al., 2014) from global to regional and local scales 

(Ahmadalipour et al., 2019; Carrão et al., 2016; Cotti et al., 2022; De Groeve et al. 2015; Mysiak et al. 2018). 

The Index for Risk Management (InfoRM) is one of the most interesting applications of composite indicators 

to improve the allocation of resources and the response to emergencies (De Groeve et al., 2015). The InfoRM 

index was recently updated to take into account climate change (Marzi et al., 2021), being probably the most 
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advanced coupling of disaster risk reduction and climate change adaptation communities’ approaches. Other 

indexes exist and, interestingly, they show little agreement in hazard patterns, while there is a high correlation 

between socioeconomic vulnerability and lack of coping and adaptive capacities patterns (Garschagen et al., 

2021). The choice of the hazard represented is one of the reasons for this discrepancy, but even when 

considering only one hazard its representation is not obvious. This is especially true for drought, which is 

extremely subtle and difficult to define and quantify (Hall and Leng, 2019; Satoh et al., 2021). Typically, four 

types of droughts are defined, namely meteorological, agricultural, hydrological and socio-economic droughts 

(Mishra and Singh, 2010). Another crucial problem in drought risk assessments is that only past and present 

drought hazards are generally considered (Hagenlocher et al., 2019). This calls for increased integration 

between disaster risk and climate change communities’ approaches. Adaptation capacity is also poorly 

represented in climate change assessments (Andrijevic et al., 2023). Finally, estimating hazards is common 

practice, but the focus should indeed be on the actual impacts (Enenkel et al., 2020). 

1.2.2 Scenarios for the future: the SSP narratives and the climate models  

For the fifth IPCC assessment report (AR5), the scenarios were based on four Representative Concentration 

Pathways (RCPs) to represent alternative pathways of greenhouse gas emissions (Moss et al., 2010). The RCPs 

were used as the basis for the Coupled Model Intercomparison Project – phase 5 (CMIP5), providing four 

different radiative forcings. A parallel effort of the climate change research community established plausible 

global developments referred to as Shared Socioeconomic Pathways (SSPs, Riahi et al., 2017). In the newest 

framework, the SSPs were coupled with the RCPs and were used for CMIP6 (O’Neill et al., 2016). The five SSPs 

are based on different storylines/narratives and have low, intermediate or high adaptation and mitigation 

challenges (O’Neill et al., 2017). SSP1 – “Sustainability” and SSP3 – “Regional rivalry” are at the extreme with 

low and high mitigation and adaptation challenges, respectively. SSP2 – “Middle of the road” has intermediate 

challenges. SSP4 – “Inequality” has high adaptation challenges but low for mitigation, while the opposite is 

valid for SSP5 – “Conventional development”. The SSP narratives facilitate integrated analysis of future climate 

impacts, vulnerabilities, and adaptation and mitigation strategies. SSP outputs are not meant to be directly 

analysed when advising for climate policy, but they can be used as a tool to produce effective and 

understandable assessments for policymakers (O’Neill et al., 2017). 

Climate change modelling is the preliminary part of all impact, adaptation and risk research. Until their most 

recent report, the IPCC based the majority of their conclusions on climate-change projections from General 

Circulation Models (GCMs). These models simulate future climate at horizontal resolutions of 50-200 km, 

which is insufficient to realistically represent climatological conditions for regional studies. To obtain finer 

resolutions, Regional Climate Models (RCMs) are often used to dynamically downscale GCMs (Rummukainen, 

2016; Doblas-Reyes et al., 2021) and results from the Coordinated Regional Downscaling Experiment 

(CORDEX, Giorgi and Gutowski, 2015) have been widely used in the latest IPCC report (Gutiérrez et al., 2021). 

Apart from better topographic maps and finer details, RCMs improve upon GCMs through a more realistic 

representation of atmospheric processes. Over Europe, for instance, more than 11 RCMs contribute to a large 

ensemble of climate projections at a resolution of 12.5 km within the EURO-CORDEX initiative (Jacob et al., 

2014, 2020). These are nowadays commonly used as input for climate-impact studies for Europe and the 

Mediterranean region. GCMs and RCMs are forced considering multiple radiative forcings, expressed as RCPs. 

Despite their wide adoption, there are large uncertainties in future projections due to differences in the future 

scenarios, GCM and RCM errors, as well as substantial internal climate variability (Hawkins and Sutton, 2011). 
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1.2.3 Crop and hydrological models: the SWAT+ agro-hydrological model 

When dealing with water management, distinct approaches can be observed in the study of climate change 

impacts and relative adaptation strategies. Most of the studies regard either the future water dynamics of 

the basins – with an emphasis on the water balance at the catchment scale – or the expected future crop 

water requirements – with an emphasis on crop productivity at the field scale - while rarely both aspects are 

combined (Garg et al., 2020; Gómez et al., 2020; Huai et al., 2020; Van Gaelen et al., 2017). Researchers select 

one of these perspectives based on their background, scale of analysis, data availability and target adaptation 

strategies to be investigated. Correspondingly, two different kinds of models are generally used: crop-growth 

and hydrological models (Gómez et al., 2020; Siad et al., 2019). The former are process-based models which 

simulate crop growth using soil, climate, plant, and management data as inputs; they are typically point-

based, used for field-scale simulations, and mainly applied by agronomists and plant scientists (Holzworth et 

al., 2015; Rivington and Koo, 2010). Hydrological models are used to estimate, predict, and manage water 

distribution and fluxes; they are mainly applied at the catchment scale by hydrologists and, depending on the 

spatial discretization of the parameters, they are classified as lumped, semi-distributed, or distributed (Siad 

et al., 2019). When referring to agronomic adaptation strategies, crop-growth models are surely the most 

applied. The spatial application at different spatial scales of these point-based models to include the soil, 

climate, and management variability is nowadays common (Lorite et al., 2013; Tenreiro et al., 2020), even if 

horizontal processes related to water dynamics are neglected (van Noordwijk et al., 2022). 

Hydrological models that include modules to simulate crop growth demonstrated to be an option to perform 

spatial analyses at wider scales (e.g. Bär et al., 2015; Schierhorn et al., 2014). Coupling crop-growth models 

and hydrological models, or directly using integrated agro-hydrological models, might be effective solutions 

to perform more comprehensive and meaningful analyses of agronomic adaptation strategies (Gómez et al., 

2020; Siad et al., 2019). Among the many agro-hydrological models available, the Soil and Water Assessment 

Tool (SWAT) modelling suite (Arnold et al., 1998) is one of the most applied. SWAT is an integrated hydrological 

model which includes several modules that allow the simulation of the most important processes related to 

water and land resources, such as hydrological balance, erosion, water pollution, climate change and crop 

growth (Aloui et al., 2023). SWAT+ is an updated version of the model characterized by higher flexibility in the 

representation and connection of the spatial units (Bieger et al., 2017).  

1.2.4 The resilience concept  

The resilience concept was first introduced in ecology by Holling (1973) and assumes different interpretations 

according to the various disciplines. According to Folke et al. (2010), resilience thinking has three central 

aspects: resilience, which is “the capacity of a socio-ecological system to continually change and adapt yet 

remain within critical thresholds”, adaptability, which is “the capacity to adjust responses to changing external 

drivers and internal processes and thereby allow for development along the current trajectory” and 

transformability, which is “the capacity to cross thresholds into new development trajectories”. Most of the 

early work on resilience focused on the capacity of the systems to absorb shocks and maintain their functions 

(Folke, 2006). Comparing how the IPCC defined resilience in the third (AR3), fourth (AR4), and fifth (AR5) 

assessment reports, it is possible to observe how the concept evolved from the AR3, where resilience was 

the “amount of change a system can undergo without changing state” to a more complex definition that 

includes the coping, adaptive and transformative capacities (Jones, 2019). The definition given within the 

IPCC AR5 includes the most important aspects of resilience. Here, resilience is “the capacity of social, 

economic and environmental systems to cope with a hazardous event or trend or disturbance, responding or 
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re-organizing in ways that maintain their essential function, identity and structure, while also maintaining the 

capacity for adaptation, learning and transformation” (IPCC, 2014). 

The resilience perspective is nowadays applied in multiple fields and it is at the core of sustainable 

development (Barrett and Constas, 2014; Barron et al., 2021; EU, 2016; Jeans et al., 2017; UN, 2015), risk 

management (Manyena, 2006; Marzi et al., 2019; Mochizuki et al., 2018) and climate change (IPCC, 2022) 

research. The resilience concept is also widely applied in water research, but mostly considering the 

engineering resilience of water supply infrastructure (Rodina, 2019). In disaster risk research, resilience is 

generally considered the opposite of vulnerability (Manyena, 2006; Mochizuki et al., 2018). Despite the great 

interest and the high number of papers published, there is still debate on how to practically apply the 

resilience concept in sustainable development (Barron et al., 2021), disaster risk (Mochizuki et al., 2018) and 

water research (Dewulf et al., 2019). 

1.3 Study areas 

The approaches and methodologies used in the thesis were applied in sensible case studies relevant to 

climate change impact, risk and adaptation studies (Fig. 1.1). Hence, the assessments alone provide useful 

and actionable information available to local decision-makers and practitioners. Further information about 

the study areas and the maps can be found in the respective chapters. 

 

Figure 1.1: The study catchments considered in the thesis. 
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In the first study, corresponding to Chapter 2, the study area is represented by five coastal, agricultural 

catchments in Central and Southern Tuscany, namely the Cecina (925 km2), Cornia (485 km2), Bruna (745 km2), 

Ombrone (3,565 km2) and Albegna (832 km2) catchments. Italy is in the middle of the Mediterranean region, 

which is a hotspot for climate change mainly due to precipitation (Lionello and Scarascia, 2018). A shared 

characteristic of the five catchments is that they are highly water-stressed especially in the lowland coastal 

plains during the summer season, due to the concomitant water demands for irrigation and domestic use for 

tourism. 

In the second and third studies, corresponding to Chapters 3 and 4, the Ombrone is selected as the main 

study catchment for being the largest and most representative of the five considered. The choice was made 

considering the outcomes of the drought risk assessment, which showed that coastal municipalities within 

the Ombrone catchment had the highest risk and some internal municipalities had the highest exposure. 

Municipalities with high exposure were related mainly to the high-value wines’ production, in areas like the 

Chianti hills and the Val d’Orcia. Furthermore, for the catchments others than the Ombrone, a lower amount 

of data was available, especially regarding river flow measurements. 

In the Italian study area, the approaches and methodologies used in the thesis were applied in different 

studies, and therefore sequentially in time. As a final case study, corresponding to Chapter 5, to test a 

framework for the integration of the approaches, Somalia was selected, with a focus on the Juba and Shabelle 

catchments, 216,728 km2 and 297,455 km2 respectively. This is a very relevant area for the climate change, 

disaster and sustainable development research communities. The Juba and Shabelle are the only two 

permanent rivers in Somalia, and in their valleys is estimated that 90% of the food production in Somalia is 

produced (Basnyat, 2007). The population is mainly composed of agro-pastoral communities living in rural 

areas and agriculture and livestock contribute to more than 60% of the gross domestic product of Somalia 

(Mourad, 2022). Droughts and floods are frequent and often result in casualties, forced migrations and huge 

economic losses. Furthermore, Somalia is extremely vulnerable due to the weak governance and political 

instability, that also resulted in a civil war in the 1990s. Despite the relevance of the study area, very few 

studies were conducted in the Juba and Shabelle catchments. 

1.4 Objectives, research questions and thesis structure 

The scheme of the thesis is reported in Figure 1.2. One general research objective and two specific ones are 

the fundamental basis of the thesis. The four chapters of the thesis linked to manuscripts also have specific 

research questions. Each chapter has a research question more related to the assessments and one 

addressing specific methodological, theoretical or conceptual issues. Assessment research questions provide 

useful information for local decision-makers and practitioners to adapt their management strategies for the 

present and account for future climate change impacts. The other research questions are of interest to the 

larger community, as they focus on generalized and neglected issues and the integration of the different 

approaches used in this thesis.  In Chapter 6, the discussion is organized to address the two specific objectives, 

including the answers to the research questions. Then, limitations and opportunities for further research are 

discussed, and some key messages are provided as conclusions. 
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Figure 1.2: The scheme of the thesis with the six chapters and their titles. For Chapters 2, 3, 4 and 5, the title of the corresponding 
manuscript is reported. In the table below are reported the part of the specific objectives addressed in each chapter. 

The main, general objective of the thesis is to assess the expected impacts of climate change on crop 

production and hydrology and to evaluate the most promising agronomic adaptation strategies, integrating 

climate risk assessment and agro-hydrological modelling approaches, towards greater policy impact for better 

water management. Other objectives are related more specifically to the climate change impact and risk 

assessments of the selected study areas, as well as to the improvement and integration of the methodologies 

used: 
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O1. To evaluate the future climate impacts, risk and its components and to quantify the adaptive 

capacity of agricultural systems in the selected study areas, highlighting uncertainties and 

neglected issues. 

O2. To improve the climate risk assessment methodology and integrate it with agro-hydrological 

modelling, to perform more relevant and comprehensive climate change risk/impact 

assessments. 

As summarized in Figure 1.2, the first objective is addressed in the four chapters with manuscripts of the 

thesis, namely Chapters 2, 3, 4 and 5. Risk, hazard, vulnerability and exposure are assessed in Chapters 2 and 

5. The climate change impacts on hydrological fluxes and agricultural outputs are assessed in Chapters 3, 4 

and 5. The adaptive capacity of agricultural systems is evaluated in Chapters 4 and 5, and possible adaptation 

strategies are also discussed in Chapter 2. The uncertainties and neglected issues of the first objective are 

mainly analysed in the specific research questions of Chapters 2, 3 and 4. The second objective is more related 

to climate/drought risk assessments, and therefore mainly to Chapters 2 and 5. Nevertheless, since the 

second objective refers to the inclusion of agro-hydrological modelling within risk assessments, the analyses 

of Chapters 3 and 4 were crucial to achieving this objective.  

In Chapter 2, I conducted a drought risk assessment of the main study area, five catchments in Central and 

Southern Tuscany, Italy. While assessing the patterns of risk, hazard, exposure and vulnerability of the 

municipalities within these five catchments, I also addressed some crucial limitations that characterize this 

kind of assessment, as reported by Hagenlocher et al. (2019), proposing an integrated and detailed 

methodological process to conduct drought risk assessments. This analysis was also fundamental to deciding 

the study catchment to be modelled in the following papers. The research questions specific to this chapter 

are:  

- What are the drought hazard, exposure, vulnerability and risk patterns in the coastal 

catchments of Southern and Central Tuscany?  

- How can the reliability and actionability of (drought/climate) risk assessments be improved? 

In Chapter 3, I performed a climate change impact assessment of the Ombrone catchment, selected after the 

drought risk assessment as the most representative study catchment among the five analysed. I prepared, 

calibrated and validated a SWAT+ model and forced it with five EURO-CORDEX RCMs. Here, I analysed future 

climate patterns as predicted by the climate models used, focusing mainly on temperature and precipitation. 

Furthermore, I evaluated future aridity conditions, considering the uncertainty in precipitation and 

atmospheric water demand projections. In addition to the effects of altered climate variables due to climate 

change, I also evaluated the effects of increased CO2 concentration. The research questions specific to this 

chapter are:  

- What is the expected future climate in the Ombrone catchment and how climate change will 

affect the water balance and aridity conditions? 

- What is the uncertainty caused by climate models and vegetation responses to CO2 when 

estimating future hydrological fluxes and aridity conditions? 

The study reported in Chapter 4 is an integration of the previous climate change impact assessment, with a 

focus on agricultural systems. Using the same climate models and re-calibrating the SWAT+ model of the 
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Ombrone catchment, I evaluated the impacts on crop yields and water footprint. Moreover, I assessed the 

adaptive capacity of the agricultural systems by simulating simple, autonomous, agronomic adaptation 

strategies, both individually and in combinations. Notably, I also evaluated the effects of these management 

changes on the water balance components of the catchment, an aspect which is often overlooked. The 

research questions specific to this chapter are:  

- What is the adaptive capacity of the agricultural systems of the Ombrone catchment and 

which strategies are the most important? 

- Are the impacts of management changes on hydrological fluxes and agricultural outputs 

comparable in magnitude to those caused by climate change? 

Finally, in Chapter 5 I applied the main methodologies used in the other studies, trying to integrate them 

efficiently and making use of the lessons learned. As a case study, I selected Somalia with a focus on its two 

perennial rivers, the Juba and the Shabelle. I performed a climate risk assessment including indicators 

elaborated from outputs of the SWAT+ agro-hydrological model, to provide a more accurate representation 

of hazards and adaptive capacity. The research questions specific to this chapter are:  

- What will be the impacts of climate change on Somali agricultural systems and how will risk 

evolve under the five SSP narratives considered? 

- How can agro-hydrological modelling be coherently included within climate risk assessment 

frameworks to improve the representation of future hazards and resilience? 
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Chapter 2  Drought risk assessment 

The manuscript reported as Chapter 2 was published in Agricultural Water Management (complete reference: 

Villani, L., Castelli, G., Piemontese, L., Penna, D., & Bresci, E. (2022). Drought risk assessment in Mediterranean 

agricultural watersheds: A case study in Central Italy. Agricultural Water Management, 271, 107748. 

https://doi.org/10.1016/j.agwat.2022.107748). 

2.1 Abstract  

Mediterranean watersheds are expected to face increased and more severe drought events due to climate 

change. Urgent actions are needed to shift from a reactive approach to a proactive one, for which drought 

risk assessment is fundamental. Nevertheless, the current methodology to calculate composite risk indicators 

is still debated, undermining the overall robustness and validity of drought risk assessment. Furthermore, 

different socio-ecological contexts, spatiotemporal scales, and data availability hamper the homogenization 

of the procedures. We present a complete drought risk assessment performed for the agricultural systems of 

five Italian coastal watersheds, introducing a simple robustness evaluation method to validate the assessment 

tool, combined with archetype analysis to link the outputs with adaptation strategies. Forty-two (42) 

indicators were finally included to represent hazard, exposure, and vulnerability. Past and future drought 

hazards were estimated considering multiple types of droughts with data from public observatories. Results 

showed that hazard was higher for the southern part of Tuscany, exposure was higher in the coastal and high-

value wine producers’ municipalities, while vulnerability patterns were less clear. Major adaptation efforts 

should target specific watersheds of the Grosseto province, which showed the highest drought risk. Archetype 

analysis was then used to suggest possible adaptation strategies for each cluster of municipalities 

individuated, allowing a context-specific generalization of the insights. In the pursue of shared and 

homogeneous guidelines to estimate drought risk, by introducing the robustness evaluation and the 

archetype analysis, this study proposes innovative methodologies to address major limitations of most 

drought risk assessments. 

2.2 Introduction  

The occurrence and severity of droughts - defined as “periods of abnormally dry weather long enough to 

cause a serious hydrological imbalance” (IPCC, 2012) – are expected to increase in the future due to climate 

change (Dai, 2011; IPCC, 2022). The Italian peninsula, being in the centre of the Mediterranean region, which 

is considered a hotspot for climate change (MedECC, 2020; Spano et al., 2020; Zollo et al., 2016), will likely 

face more frequent and intense drought events (Cammalleri et al., 2020; Caporali et al., 2021; Castellari et 

al., 2014; OECD, 2021). Typically, droughts have been considered a natural phenomenon triggered by a lack 

of precipitation, characterized in terms of frequency, severity, duration, and extent (Zargar et al., 2011). Many 

types of droughts have been identified, namely, the meteorological drought, “a lack of precipitation over a 

region for a period of time”, the agricultural drought, “a period with declining soil moisture and consequent 

crop failure”, the hydrological drought, “a period with inadequate surface and subsurface water resources for 

established water uses”, and the socioeconomic drought, “a failure of water resources systems to meet water 

demands” (Mishra and Singh, 2010). In the past, these types of droughts were considered to propagate from 

meteorological to agricultural, hydrological and socioeconomic droughts; this approach has been recently 

questioned for its over-simplification since it fails to account for the feedback and the trade-offs between 

social and physical processes, the direct effect of human-induced climate change, and the long-term 

environmental impacts (AghaKouchak et al., 2021; Crausbay et al., 2017; Di Baldassarre et al., 2021; Van Loon 
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et al., 2016). As a result, the terms “ecological drought” and “human-induced hydrological drought” were 

recently introduced (Crausbay et al., 2017; Van Loon et al., 2016). A further step will need to be done to 

improve our understanding of “anthropogenic drought”, a multidimensional and multiscale phenomenon that 

should be intended as a “process” rather than a “product” (AghaKouchak et al., 2021). 

Globally, it is estimated that drought damages account for a fifth of the total damages caused by natural 

hazards (WMO and GWP, 2017). In Europe, the annual economic losses caused by droughts are estimated to 

be around € 9 billion (€ 1.4 billion for Italy), mostly related to the agricultural sector (Cammalleri et al., 2020), 

with significant spatial variability between different regions (García-León et al., 2021). The entity of the losses, 

along with the expected increase due to climate change, boosted the interest of researchers and decision-

makers towards this topic (Hagenlocher et al., 2019). To better deal with droughts, more and more studies 

call for a shift from the so-called “reactive” approach, taken in emergency situations and considered 

technically and economically inefficient, towards a “proactive” approach, including appropriate measures 

developed with the involvement of multiple stakeholders (Carrão et al., 2016; Murthy et al., 2015; Vogt et al., 

2018). Specifically, it is claimed that the preparation and mitigation costs are by far lower compared to the 

relief costs, which significantly surge in case of inaction (Vogt et al., 2018; WMO and GWP, 2017). Drought 

vulnerability and risk assessments are considered of major importance to develop sound and effective 

strategies to tackle drought (WMO and GWP, 2014; World Bank, 2019).  

Commonly, drought hazard is defined using drought indicators to quantify the severity, frequency, intensity, 

and duration of droughts. Many drought hazard indicators exist to describe meteorological, agricultural, and 

hydrological droughts (Kchouk et al., 2022; Mishra and Singh, 2010; Zargar et al., 2011), which might refer 

directly to physical variables such as precipitation, evapotranspiration, soil moisture or streamflow, or can 

infer drought from vegetation health. Despite the availability of multiple hazard indicators, drought risk 

assessments are generally carried out with the use of one or a few hazard indicators. To account for the 

complexity of the drought phenomenon, considering hazard indicators of meteorological, agricultural, and 

hydrological droughts, might improve the prediction of the drought hazard (Sun et al., 2012; World Bank, 

2019). Furthermore, the most common approach to represent drought hazard is by using past data; 

nevertheless, many authors (e.g. Hagenlocher et al., 2019; Vogt et al., 2018) claim the importance of including 

predictions of future drought, but at the cost of higher uncertainty (Mysiak et al., 2018). Finally, many drought 

observatories exist around the world; they were mainly conceived to forecast drought and to support 

decision-makers with early warning systems. However, it is possible to obtain meaningful and easily accessible 

data about droughts from their monitoring activity, which is a service that is still probably underestimated. 

Hence, the utilization of data obtained from drought observatories is not only convenient but more 

meaningful as they can be used also by non-experts (Magno et al., 2018). 

Two major limitations to the validity and practical use of drought risk assessments are commonly shared: only 

11% of them conduct any form of validation and, generally, there is a missing link with possible adaptation 

strategies (Hagenlocher et al., 2019). The robustness of the methodology applied can be evaluated with 

uncertainty or sensitivity analyses (OECD, 2008), sometimes referred to as internal validation (Carrão et al., 

2016; Fontaine and Steinemann, 2009), or by comparing results with external information, referred to also as 

external validation. Finding suitable data for external validation might be impossible in some cases, even more 

when dealing with small scales. Additionally, the validation with external datasets is complicated by the fact 

that composite indicators aim to represent complex past and future dynamics. Hence, the validity of 

composite indicators is generally evaluated by performing uncertainty and sensitivity analyses (OECD, 2008). 

Even if examples exist, a shared, simple but at the same time robust methodology for internal validation is 

still missing. Regarding the missing link with adaptation strategies, it is known that drought risk assessments 
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constitute the basis for decision-makers to take action, cope with drought, and start discussing drought 

management (Hagenlocher et al., 2019; OECD, 2008). However, the main outputs of drought risk assessments 

are usually detailed maps and rankings, that might be hard to understand, contextualize, and use. An 

emerging methodology to address this limitation is archetype analysis - an approach for identifying recurrent 

patterns within cases and supporting a context-specific generalization of insights (Eisenack et al., 2019; 

Oberlack et al., 2019) – that can be used to enhance the interpretation of drought risk assessments and 

simplify the operational implications for designing possible adaptation strategies.  

The main objective of this study is to propose a detailed and integrated drought risk assessment of 

Mediterranean agricultural systems and present an application to the municipalities located in coastal 

watersheds of central and southern Tuscany (Central Italy). These areas are susceptible to drought especially 

during summer months, due to the concurrent high water demands for domestic and agricultural uses. Key 

innovations introduced with this paper are (1) a complete robustness evaluation of the assessment by 

applying alternative methodologies in crucial steps of the drought risk assessment; (2) the analysis of the 

results not only with maps and rankings but also by applying an archetype analysis, to streamline the 

identification of exposure and vulnerability patterns for planning possible adaptation strategies.  

2.3 Methodology 

The methodology of the present study draws on the approach introduced by OECD (2008) and by the drought 

risk assessments of Hagenlocher et al. (2018) and Meza et al. (2020), to propose a more integrated 

assessment including a robustness evaluation and archetype analysis in eight operational steps: 

1. Conceptual framework; 

2. Study area; 

3. Identification of indicators; 

4. Data acquisition and pre-processing; 

5. Multicollinearity analysis; 

6. Normalization and weighted aggregation; 

7. Robustness evaluation; 

8. Archetype analysis. 

2.3.1 Conceptual framework 

A drought risk assessment needs to be clearly framed starting from its funding components of risk, hazard, 

exposure, and vulnerability (Hagenlocher et al., 2019). Risk can be defined as “the potential for adverse 

consequences for human or ecological systems” (IPCC, 2022); hazard is “the possible, future occurrence of 

natural or human-induced physical events that may have adverse effects on vulnerable and exposed 

elements”; exposure considers “the inventory of elements in an area in which hazard events may occur”; 

vulnerability refers to “the propensity of exposed elements […] to suffer adverse effects when impacted by 

hazard events”, determined by physical, social, economic, and environmental factors (Cardona et al., 2012).  

A Drought Hazard Index (DHI) and a Drought Exposure Index (DEI) were calculated as the arithmetic mean of 

the selected indicators. For the Drought Vulnerability Index (DVI), the components proposed by Meza et al. 

(2020, 2019) with some minor modifications were considered. Hence, DVI was calculated with the formula: 

𝐷𝑉𝐼 =  
𝑆𝑆+𝐸𝑆+𝐿𝐶𝐴𝐶

3
           (1) 
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where SS, ES, and LCAC are Social and Ecological Susceptibilities and Lack of Coping and Adaptive Capacity, 

respectively.  

Similarly to Prabnakorn et al. (2019), the indexes were then aggregated to calculate the Drought Risk Index 

(DRI) with the formula:   

𝐷𝑅𝐼 =  𝐷𝐻𝐼 ∙  𝐷𝐸𝐼 ∙  𝐷𝑉𝐼 ∙  100        (2) 

To assess drought hazard including different types of droughts, data of river discharge, groundwater levels, 

and precipitation from the Regional Hydrological Service (SIR) of the Tuscany region were considered; 

however, they were not homogeneously distributed in the study area considered and long series were 

available only for few locations. Therefore, the assessment was finally based on drought hazard indicators 

derived from remote sensing data. Still, a higher number of indicators compared to other assessments to 

represent more types of droughts, referring both to past and future conditions, was included. Since the 

assessment was conducted for agriculture, the indicators selected to estimate exposure represented 

infrastructural, social, and economic features of agricultural systems. The vulnerability was calculated through 

a composite indicator combining SS, ES, and LCAC (Meza et al., 2020). Generally, susceptibility is defined using 

only socioeconomic indicators; including environmental or ecological indicators is fundamental since 

agriculture has a strong impact on these components and agroecosystems are, by definition, social-ecological 

systems (Hagenlocher et al., 2019). For this assessment, indicators of the current lack of coping and the future 

lack of adaptative capacities were included to partially consider future vulnerability.  

2.3.2 Study area 

The assessment was performed for five coastal watersheds of central and southern Tuscany: the Cecina, 

Cornia, Bruna, Ombrone, and Albegna watersheds (Fig. 2.1). To allow for a sufficient discretization of the 

watersheds and to provide more accurate information that can be used when planning adaptation and 

mitigation strategies, municipalities (Local Administrative Units) were considered as units of analysis. A 

municipality was considered in the assessment if at least 10% of its area fell within any of the five watersheds. 

Finally, 58 municipalities were selected in four provinces (NUTS3): Pisa, Livorno, Siena, and Grosseto. 

Coastal areas of Tuscany are particularly prone to drought as they currently receive the lowest amount of 

precipitation in the region (Caporali et al., 2021; Magno et al., 2018) and, in the future, they will likely increase 

their susceptibility to drought. Additionally, the main coastal streams show very reduced discharges in late 

spring and summer (Rossetto et al., 2013). The coastal watersheds are typically characterized upland by 

forests and rainfed agricultural areas, mainly grains and extensive rangeland (Märker et al., 2008; Orlandini 

et al., 2011). Olive trees are widespread as well as vineyards, with the latter being abundant in the Chianti 

hills, the famous high-value wine production area of central Tuscany. On the other hand, irrigated crops are 

prevalent in the coastal plains, with an important part of the irrigation supply pumped from the coastal 

aquifers (Rossetto et al., 2013). Additionally, tourism and other activities further stress the water resource 

uses during the summer months, with seawater intrusion and pollution of the aquifers that affect the 

sustainability of water extraction (Barazzuoli et al., 2008, 1999; Bianchi et al., 2011; Grassi et al., 2007). Past 

studies reported that some irrigated areas of the coastal plains suffered water deficit for six months per year 

and, despite the adoption of more efficient irrigation systems, farmers had to switch to less water-demanding, 

less profitable, and salinity-tolerant crops, or leave their lands uncultivated (Bianchi et al., 2011; Rossetto et 

al., 2013). Particularly vulnerable is the situation of the Cornia watershed since the groundwater of the aquifer 

also contributes to the water needs of Elba Island (Rossetto et al., 2018).   
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Figure 2.1: Tuscany region with the watersheds selected for the analysis. 

2.3.3 Identification of indicators 

All the data used to calculate the indicators were extracted from public databases at regional, national, or 

European levels. After a detailed literature review and after checking the availability and validity of the data, 

46 indicators were included in the analysis. Tables 2.1, 2.2, and 2.3 report the lists of indicators of drought 

hazard, exposure, and vulnerability, respectively.  

Past hazard indicators (Table 2.1), namely the Standardized Precipitation Index (SPI) (McKee et al., 1993) and 

the Vegetation Health Index (VHI) (Kogan, 1995), were obtained from the drought observatory of the Tuscany 

Region (Magno et al., 2018). Similarly, to express the future drought hazard, the ready-to-use Climate Impact 

Indicators (SMHI, 2021) available in the Copernicus Climate Data Store were used, representing Mean 

Temperature (MT) in °C, Mean Precipitation (MP) in mm/day, Longest Dry Spell (LDS) in number of days, and 

Total number of Dry Spells (TDS) of more than five days for 30-years periods. 

SPI is the most used drought hazard indicator (Kchouk et al., 2022); it proved to be reliable and convenient 

since it can be easily calculated at multiple time scales by using only precipitation data. Furthermore, it allows 

comparisons between different locations due to its standardization. The main drawback of this index is that 

it considers only precipitation and does not include temperature, which is fundamental in drought analyses 

and even more in the context of climate warming (Di Lena et al., 2014). The drought observatory of the 

Tuscany region calculates the SPI with accumulation periods of 3, 6, and 12 months using validated daily 

CHIRPS data from 1981 (Magno et al., 2018), which were included to consider different drought types and 

impacts (Di Lena et al., 2014; Stagge et al., 2015). The definitions of duration, severity and frequency provided 

by Vogt et al. (2018) were used to calculate the hazard indicators. Duration is the total number of months 

below the threshold, the severity is the algebraic sum of the SPI values below the threshold level (as in Di 

Lena et al., 2014), and the frequency is the number of drought events of one or more months duration 

individuated when SPI dropped below the selected threshold. Drought onset was considered when the SPI 
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value was below -1.0, the threshold of “moderate drought”. VHI is one of the most common agricultural 

drought hazard indicators, widely used to study drought from vegetation status, and the drought observatory 

of the Tuscany Region provides VHI values starting from 2010 (Magno et al., 2018). The VHI is a combination 

of the Temperature Condition Index (TCI), calculated with land surface temperature data, and the Vegetation 

Condition Index (VCI), calculated with NDVI data. Similar definitions of duration, severity and frequency used 

for the SPI were also applied to the VHI; the threshold value below which vegetation is considered stressed is 

40 (Kogan, 2001). 

Table 2.1: Drought hazard indicators used for past and future drought, with the data source, data availability, spatial and temporal 
resolutions, and a brief description. 

Indicator Data source 
Data 
availability 

Spatial 
resolution 

Temporal 
resolution 

Data description 

Past drought – Severity, Duration, Frequency 
Standardized 
Precipitation Index (3, 
6, 12) 

CNR Drought 
Observatory 

1981-onwards 5 km Monthly 
Average value at the 
municipality level 

Vegetation Health 
Index 

CNR Drought 
Observatory 

2010-onwards 250 m 16 days 
Average value at the 
municipality level 

Future drought – short, medium and long term 

Temperature at 2 m 
above the ground 

EURO-CORDEX – 
Copernicus Climate Data 

Store 

1971-2000;  
2011-2040;  
2041-2070;  
2071-2100. 

5 km 
30 year-time 

periods 
Absolute mean value 
over 30 years 

Precipitation 
EURO-CORDEX – 

Copernicus Climate Data 
Store 

1971-2000;  
2011-2040;  
2041-2070;  
2071-2100. 

5 km 
30 year-time 

periods 
Absolute mean value 
over 30 years 

Number of dry spells 
EURO-CORDEX – 

Copernicus Climate Data 
Store 

1971-2000;  
2011-2040;  
2041-2070;  
2071-2100. 

5 km 
30 year-time 

periods 
Total number over 30 
years 

Longest dry spell 
EURO-CORDEX – 

Copernicus Climate Data 
Store 

1971-2000;  
2011-2040;  
2041-2070;  
2071-2100. 

5 km 
30 year-time 

periods 
Longest value over 30 
years 

The Climate Impact Indicators derived from EURO-CORDEX bias-corrected projections (SMHI, 2021). MT, MP, 

LDS, and TDS were used as future drought hazard indicators for the short (2011-2040), medium (2041-2070) 

and long (2071-2100) projection periods. These indicators were extracted from four Regional Climate Models 

(CCLM4-8-17, RACMO22E, RCA4, REMO2009), considering the Representative Concentration Pathway 4.5 and 

the different realizations available (SMHI, 2021). In total, the simulations considered in the ensemble were 

eight. Considering the duration, frequency, and severity of SPI3, SPI6, SPI12, and VHI, and MT, MP, LDS, and 

TDS in the short, medium, and long future periods, a total number of 24 indicators were finally considered to 

assess drought hazard (Table 2.1). 

Five exposure indicators, which represent infrastructural, social, and economic features of agriculture in the 

coastal watersheds of Tuscany, were selected (Table 2.2). “Share of agricultural area” and “Volume of water 

used for irrigation” were included to consider both rainfed and irrigated agriculture. In many assessments, 

irrigation is considered as a measure to cope with drought (Carrão et al., 2016; Murthy et al., 2015), while 

others considered it as an asset exposed to drought (Meza et al., 2020). Indeed, irrigated agriculture might 

not suffer negative impacts during flash droughts of a few months’ duration; nevertheless, it is highly 

impacted when prolonged droughts force authorities to restrict irrigation supplies (Gómez Gómez and Pérez 

Blanco, 2012; Masia et al., 2018; World Bank, 2019). For the economic dimension, the “Value of agricultural 
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products” was included, while for the social dimension the “Share of workers occupied in agriculture”. 

Additionally, “Share of horticulture and fruticulture” was considered as an exposure indicator since these 

crops are highly valuable, irrigated, and with high water requirements.  

Table 2.2: Drought exposure indicators used, with the data source, the method of relativization or standardization, and corresponding 
references. 

Indicator Data source Calculation Reference 

Share of agricultural area 
Tuscany region 

(2019) 

𝐴𝑔𝑟𝑖𝑐𝑢𝑙𝑡𝑢𝑟𝑎𝑙 𝑎𝑟𝑒𝑎 (ℎ𝑎)

𝑇𝑜𝑡𝑎𝑙 𝑎𝑟𝑒𝑎 (ℎ𝑎)
% 

Carrão et al. (2016), Hagenlocher et 
al. (2019) 

Volume of water used for 
irrigation  

ISTAT – 2010 
𝐼𝑟𝑟𝑖𝑔𝑎𝑡𝑖𝑜𝑛 𝑤𝑎𝑡𝑒𝑟 (𝑚3)

𝐴𝑔𝑟𝑖𝑐𝑢𝑙𝑡𝑢𝑟𝑎𝑙 𝑎𝑟𝑒𝑎 (ℎ𝑎)
 Meza et al. (2020)* 

Value of agricultural 
products 

ISTAT – 2010 
𝑉𝑎𝑙𝑢𝑒 𝑜𝑓 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠 (𝑒𝑢𝑟𝑜)

𝐴𝑔𝑟𝑖𝑐𝑢𝑙𝑡𝑢𝑟𝑎𝑙 𝑎𝑟𝑒𝑎 (ℎ𝑎)
 Ortega-Gaucin et al. (2021) 

Share of workers occupied 
in agriculture  

ISTAT – 2011 
𝑊𝑜𝑟𝑘𝑒𝑟𝑠 𝑖𝑛 𝑎𝑔𝑟𝑖𝑐𝑢𝑙𝑡𝑢𝑟𝑒

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑤𝑜𝑟𝑘𝑒𝑟𝑠
 % 

Hagenlocher et al. (2019), Ortega-
Gaucin et al. (2021) 

Share of horticulture and 
fruticulture 

ISTAT – 2010 
𝐻𝑜𝑟𝑡𝑖𝑐𝑢𝑙𝑡𝑢𝑟𝑒 +  𝐹𝑟𝑢𝑖𝑡𝑐𝑢𝑙𝑡𝑢𝑟𝑒 (ℎ𝑎)

𝐴𝑔𝑟𝑖𝑐𝑢𝑙𝑡𝑢𝑟𝑎𝑙 𝑎𝑟𝑒𝑎 (ℎ𝑎)
% / 

* The indicator used in this study is very similar to the one considered in the “reference” column 

A total of 17 drought vulnerability indicators were selected, representing SS, ES, and LCAC (Table 2.3). 

Indicators of SS (“Education of farmers”, “Age of farmers” and “Unemployment”) are typically included in 

drought risk assessments. For ES, soil quality indicators considering data extracted from the Pedological 

Database of the Tuscany region, which provides detailed soil information, were considered, as well as the 

“Share of protected areas” calculated from the network Natura 2000. Selected indicators of LCAC refer to 

farm agricultural practices. Despite controversial results and opinions about organic agriculture (e.g. Clark 

and Tilman, 2017), the “Share of organic agriculture” was included as a vulnerability indicator, as it is 

commonly assumed that organic farms are less dependent on external inputs, apply good practices such as 

crop rotation, and are more diversified, and, therefore, have also an increased resilience to adverse events, 

such as drought (Märker et al., 2008; Sharafi et al., 2020); in addition, financial incentives to sustain organic 

agriculture also decrease the vulnerability of organic farms. Soil conservation practices are also considered to 

improve the capacity to cope with drought (Hagenlocher et al., 2019; Sharafi et al., 2020); hence, the “Share 

of land with minimum or no-tillage”, available for cereal crops, was included. Other good practices linked to 

the informatization of farming were included with the indicators “Share of crops managed with the help of 

software” and “Share of land irrigated with decision support systems”. The other indicators were related to 

irrigation, namely “Irrigation System”, “Irrigation Source”, and “Share of irrigable land”. By including the latter, 

which was used as a proxy for the possibility to perform supplemental irrigation, might seem a contradiction 

with the decision to consider irrigated land as an exposed element; however, at the same time, irrigable land 

(or supplemental irrigation) is a fundamental adaptation strategy. 

2.3.4 Data acquisition and pre-processing 

The selected indicators were transformed from absolute to relative values or standardized, as indicated in 

Tables 2.2 and 2.3 to allow meaningful comparisons between municipalities of different size. For this 

procedure, the use of data from the same datasets was preferred. The indicators in which data were divided 

into categories, namely “Age of farmers”, “Education of farmers”, “Irrigation System”, and “Irrigation Source”, 

were ranked according to their vulnerability and assigned the lowest value “0” to the less vulnerable category 

and the highest value “1” to the most vulnerable one. Young and educated farmers were considered less 

vulnerable; regarding the “Irrigation System”, drip irrigation was considered the less vulnerable, followed by 

sprinkler, furrow, and flood irrigation; for the “Irrigation Source”, groundwater within the farm was considered 
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the less vulnerable, followed by private reservoirs within the farm, irrigation water from irrigation consortia, 

and surface water outside of the farm. For both “Irrigation System” and “Irrigation Source”, to the category 

“Other” was assigned the value “0.5”. The same procedure was applied to the indicators obtained from the 

Pedological Database of the Tuscany Region, which were divided according to their quality into 8 or 4 classes; 

for these indicators, only the agricultural soils were considered.  

Few missing values were present for the exposure and vulnerability indicators. Although methods exist to 

replace missing data (OECD, 2008), we decided to keep them to not include further uncertainty in the model 

by estimating missing values. Hence, for the three municipalities with missing data, namely Monteroni 

d’Arbia, Gaiole in Chianti, and Radda in Chianti, results had to be evaluated even more cautiously.   

Table 2.3: Drought vulnerability indicators used, grouped for Social Susceptibility, Ecological Susceptibility, and Lack of Coping and 
Adaptive Capacity, with the data source, the method of relativization or standardization, and corresponding references. 

Indicator Data source Calculation Reference 

Social Susceptibility 

Education of farmers ISTAT – 2010 Categorical* 
Hagenlocher et al. (2019), Meza 
et al. (2019) 

Age of farmers ISTAT – 2010 Categorical* 
Hagenlocher et al. (2019), Meza 
et al. (2019) 

Unemployment ISTAT - 2011 
𝑊𝑜𝑟𝑘𝑒𝑟𝑠

𝐴𝑐𝑡𝑖𝑣𝑒 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛
 % 

Hagenlocher et al. (2019), Meza 
et al. (2019) 

Ecological Susceptibility 

Share of protected areas Natura 2000 
𝑃𝑟𝑜𝑡𝑒𝑐𝑡𝑒𝑑 𝑎𝑟𝑒𝑎𝑠

𝑇𝑜𝑡𝑎𝑙 𝑎𝑟𝑒𝑎
 % 

Hagenlocher et al. (2019), Meza 
et al. (2019) 

Soil erosion 
Pedological DB 

(Tuscany region) 
Categorical* 

Hagenlocher et al. (2019), 
Ortega-Gaucin et al. (2021) 

Soil fertility 
Pedological DB 

(Tuscany region) 
Categorical* 

Hagenlocher et al. (2019)**, 
Meza et al. (2019)** 

Soil salinity 
Pedological DB 

(Tuscany region) 
Categorical* Ortega-Gaucin et al. (2021)** 

Soil depth 
Pedological DB 

(Tuscany region) 
Categorical* 

Hagenlocher et al. (2019), Hoque 
et al. (2021), Meza et al. (2019) 

Climate interference 
Pedological DB 

(Tuscany region) 
Categorical* Hoque et al. (2021) 

Water Deficit 
Pedological DB 

(Tuscany region) 
Categorical* 

Hoque et al. (2021), Murthy et al 
(2015) 

Lack of coping and adaptive capacity 

Irrigation system ISTAT – 2010 Categorical* 
Hagenlocher et al. (2019)** 
Sharafi et al., (2020)** 

Irrigation source ISTAT – 2010 Categorical* 
Hagenlocher et al. (2019)** 
Sharafi et al., (2020)** 

Share of organic agriculture 
Tuscany region 

(2019) 

𝑂𝑟𝑔𝑎𝑛𝑖𝑐 𝑎𝑔𝑟𝑖𝑐𝑢𝑙𝑡𝑢𝑟𝑒 𝑙𝑎𝑛𝑑 (ℎ𝑎)

𝐴𝑔𝑟𝑖𝑐𝑢𝑙𝑡𝑢𝑟𝑎𝑙 𝑎𝑟𝑒𝑎 (ℎ𝑎)
 % Sharafi et al., (2020)** 

Share of irrigable land ISTAT – 2010 
𝐼𝑟𝑟𝑖𝑔𝑎𝑏𝑙𝑒 𝑙𝑎𝑛𝑑 (ℎ𝑎)

𝐴𝑔𝑟𝑖𝑐𝑢𝑙𝑡𝑢𝑟𝑎𝑙 𝑎𝑟𝑒𝑎 (ℎ𝑎)
 % Hagenlocher et al. (2019) 

Share of land with minimum 
or no-tillage 

ISTAT – 2010 
𝑀𝑖𝑛𝑖𝑚𝑢𝑚 𝑇𝑖𝑙𝑙𝑎𝑔𝑒 (ℎ𝑎)

𝐶𝑒𝑟𝑒𝑎𝑙 𝑐𝑟𝑜𝑝𝑠 (ℎ𝑎)
 % 

Hagenlocher et al. (2019)**, 
Sharafi et al., (2020)** 

Share of crops managed with 
the help of software 

ISTAT – 2010 
𝐿𝑎𝑛𝑑 𝑤𝑖𝑡ℎ 𝑠𝑜𝑓𝑡𝑤𝑎𝑟𝑒𝑠 (ℎ𝑎)

𝐶𝑒𝑟𝑒𝑎𝑙 𝑐𝑟𝑜𝑝𝑠 (ℎ𝑎)
 % Hagenlocher et al. (2019)** 

Share of land irrigated with 
decision support systems 

ISTAT – 2010 
𝐿𝑎𝑛𝑑 𝑤𝑖𝑡ℎ 𝐷𝑆𝑆 (ℎ𝑎)

𝐴𝑔𝑟𝑖𝑐𝑢𝑙𝑡𝑢𝑟𝑎𝑙 𝑎𝑟𝑒𝑎 (ℎ𝑎)
 % 

Hagenlocher et al. (2019)** 
Sharafi et al., (2020)** 

*Categorical indicators’ methodology is described in the text  
** The indicator used in this study is very similar to the one considered in the “reference” column 
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2.3.5 Assessment of multicollinearities 

Collinearity – or multicollinearity – occurs when two or more predictor variables are linearly related (Dormann 

et al., 2013). Generally, a multicollinearity analysis is performed to avoid the overrepresentation of the 

processes represented by the selected indicators (Ortega-Gaucin et al., 2021). Multicollinearity was assessed 

by applying the Spearman correlation matrix for the relativized and standardized exposure and vulnerability 

indicators in line with Meza et al. (2020). Compared to other similar studies, a very restrictive threshold 

(|r|>0.4) was considered to decide which indicators to further evaluate. The rationale for deciding whether 

to exclude an indicator was to assess if it expressed the same process as another one. 

2.3.6 Normalization and weighted aggregation 

The normalization was performed with the max-min method, which is convenient since it can be used with 

all the weighting methods (OECD, 2008). Due to the lack of justification for assuming that one indicator is 

more important than others, there is no consensus in the literature about the best weighting method. Hence, 

in our assessment, equal weights were considered, which is the most common weighting method in 

composite indicators (OECD, 2008) and has already been applied in other drought risk assessments (Brooks 

et al., 2005; Nauditt et al., 2022; Naumann et al., 2014; Prabnakorn et al., 2019). The normalized values of 

the indicators were directly used in the calculation of DHI, DEI, and DVI. However, it is important to notice 

that DHI, DEI, and DVI had different numbers of indicators; therefore, for example, exposure indicators 

contributed more compared to vulnerability indicators. Similarly, DVI was calculated as the mean of SS, ES, 

and LCAC, which are represented by 3, 5, and 6 indicators, respectively; hence, SS indicators contributed more 

to the final DRI compared to ES and LCAC indicators.  

2.3.7 Robustness evaluation 

Even though it is generally neglected, the robustness of the procedure should always be evaluated, 

considering that many of the steps of drought risk assessments have significant uncertainties (Hagenlocher 

et al., 2019). Ideally, uncertainty and sensitivity analyses should evaluate all the potential sources of 

uncertainty, including selection of indicators, normalization, weighting and aggregation methods, etc. (OECD, 

2008). In drought risk assessments, the most uncertain parts of the methodology are the selection of 

individual indicators and weights (Murthy et al., 2015; Naumann et al., 2014), which are generally evaluated 

by including and excluding single indicators and applying different weighting methods. Instead, external 

validation has been performed in drought risk assessments using impact data (crop yield losses, population 

affected) (Hagenlocher et al., 2019; Meza et al., 2020), soil moisture data (Hoque et al., 2021), consulting 

experts (Brooks et al., 2005; Fontaine and Steinemann, 2009), or comparing results with external datasets 

(Ortega-Gaucin et al., 2021).  

To verify the robustness of our model, both internal and external validations were considered. However, a 

good dataset could not be found for the selected study area at the municipality scale. Therefore, a specific 

uncertainty analysis to account for the most sensible choices to develop the DRI was performed: 

1. Excluding individual exposure and vulnerability indicators. 

2. Including excluded indicators with the multicollinearity analysis. 

3. Using different weighting schemes for the calculation of the DEI and DVI. 

4. Aggregating the DHI, DEI, and DVI with arithmetic mean instead of using formula (2). 



20 
 

The different weighting methods considered were the use of proportional weights (PW) (Naumann et al., 

2014) – in our case by calculating the DVI without using ES, SS, and LCAC and formula (1), hence assigning 

proportional weights – and by applying an Analytical Hierarchical Process (AHP) (Cantini et al., 2019), by 

creating the pair comparison matrix and calculating the weights through geometric mean for both exposure 

and vulnerability indicators. Finally, the output of the uncertainty analysis – i.e. the rank of the municipality 

assigned by the composite indicator Rank (CIm), and the average shift in municipalities’ rankings (�̅�𝑠) - were 

compared to evaluate the effect of these different methodologies (Naumann et al., 2014; OECD, 2008). The 

average shift was calculated as the average of the absolute differences in municipalities’ ranks to a reference 

ranking – which in our case is the rank calculated with equal weights – in the N municipalities, with the 

equation: 

�̅�𝑠 =  
1

𝑁
∑ |𝑅𝑎𝑛𝑘𝑟𝑒𝑓(𝐶𝐼𝑚) − 𝑅𝑎𝑛𝑘(𝐶𝐼𝑚)|𝑁

𝑚=1          (3) 

2.3.8 Archetype analysis 

Given the high number and diversity of indicators used in our drought risk assessment, the interpretation of 

the results might be complicated, affecting the potential usability of the insights provided in the assessment. 

To address this problem, archetype analysis, which is an emerging methodology to find recurrent patterns 

within cases and provide a simplified, but contextual, interpretation of results, was used (Eisenack et al., 2019; 

Oberlack et al., 2019). Akin to the approach used in other spatial archetypes research (Piemontese et al., 

2021), a hierarchical cluster analysis was applied to understand the recurrent patterns of drought indicators 

within the selected municipalities. The municipalities were clustered through the Ward method (Ward, 1963) 

considering the whole set of normalized exposure and vulnerability indicators, also including the missing data, 

without further preprocessing; then, clusters were compared with boxplots and other basic statistics. Finally, 

considering that the ultimate objective of drought risk assessments is to provide the basis for developing 

drought management strategies (Hagenlocher et al., 2019; Hayes et al., 2004), the archetypes were used to 

discuss specific adaptation measures in municipalities with similar drought risk profiles. 

2.4 Results 

2.4.1 Multicollinearity analysis 

Several significant (p-value<0.05) multicollinearities were detected. As a result, the indicator “Share of 

horticulture and fruticulture” was excluded from exposure indicators since it was highly correlated with 

“Value of Agricultural Products” and “Volume of water used for irrigation”. For the vulnerability indicators, 

“Climate interference” and “Water deficit” were excluded since their variability was explained by other 

indicators, namely “Soil erosion” and “Soil fertility”. Similarly, “Share of land irrigated with decision support 

systems” was excluded because of its high correlation with “Irrigable land”; in this case, the decision was also 

based on the data quality, which was lower for the excluded indicator. On the other hand, the indicator “Soil 

depth” showed a relatively high and significant correlation with “Soil erosion”, but we decided to keep them 

both since they represent different processes. Finally, after the multicollinearity analysis, one exposure and 

three vulnerability indicators were excluded; hence, the number of indicators used to calculate the DRI was 

42. 
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2.4.2 Robustness evaluation 

Results in terms of �̅�𝑠 (Fig. 2.2) showed that DRI was more affected when individual exposure indicators were 

excluded, with an average �̅�𝑠 of 5.19. The indicator that was most impacting when excluded was the “Share 

of agricultural land” with an �̅�𝑠 of 6.45; this value was largely influenced by the extremely high difference in 

rankings of the municipality Monteroni d’Arbia, which was 43. As expected, excluding individual vulnerability 

indicators had a lower effect on DRI, since they were 14 in total (while the exposure indicators were only 4). 

A significant effect was also found by applying the AHP weighting method; assigning weights based on 

personal opinions, and giving more importance to indicators related to the irrigation practice, resulted in a 

�̅�𝑠 of 4.62, with a maximum shift of 16 for the municipality Gaiole in Chianti. Finally, the use of PW, the 

inclusion of the indicators excluded after the multicollinearity analysis, and the aggregation of DHI, DEI, and 

DVI with arithmetic mean, did not have a remarkable effect on �̅�𝑠. Summing up, our study confirms the 

findings of other drought risk assessments (Murthy et al., 2015; Naumann et al., 2014), that individuated as 

major sources of uncertainty the selection of indicators and the weighting method.  

 

Figure 2.2: Results of the uncertainty analysis reported according to the average shift in rankings (�̅�𝑠) grouped as: excluding individual 
exposure indicators; excluding individual vulnerability indicators; different weighting method; different aggregation method; including 
excluded indicators. 

Analysing the shifts in rankings of the single municipalities with the alternative methods, it is possible to affirm 

that, with some exceptions, the rankings were confirmed and the variations were minimal (Fig. A2.4), 

validating the assessment and confirming the robustness of the methodology. The municipalities that showed 

the highest �̅�𝑠 were also those with missing data, namely Radda in Chianti, ranked 23rd, and Monteroni 

d’Arbia, ranked 14th. The other municipality with missing data was Gaiole in Chianti, which was ranked 5th; 

probably this explains why the �̅�𝑠 was not as high as the others, since shifts upwards in the ranking had a 

minimal effect.   
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2.4.3 Drought risk mapping and ranking 

Maps of DHI, DEI, DVI, and DRI are reported in Figure 2.3, while the rankings of the municipalities are reported 

in the appendix. Maps and rankings are briefly discussed in this section, while further analysis and discussion 

are performed when presenting the results of the cluster analysis.  

Results of the DHI clearly showed that the Southern and Western (the coastal) municipalities will likely 

experience the highest drought hazard. In particular, the province of Grosseto, which includes the Albegna, 

Bruna, and lower Ombrone watersheds, will be the most affected. The most exposed municipalities were 

found in the coast - emblematic is the case of Campiglia Marittima with a very large share of land cultivated 

with industrial tomatoes, requiring high amounts of irrigation water - and where high-value wines are 

produced, such as Gaiole in Chianti and Montalcino. When analysing the drought vulnerability, it is necessary 

to consider that the indicators used to calculate DVI were 14; hence, results were more diversified without 

clear patterns. In general, it is possible to affirm that inland municipalities, located mostly in the provinces of 

Pisa and Siena, farthest from the coast and the main urban centres, were the most vulnerable. By combining 

the indexes, DRI provided an overall estimation of the risk; as expected, the coastal municipalities of the 

province of Grosseto were found to be the most at risk. 

 

Figure 2.3: Maps of the DHI, DEI, DVI, and DRI; in light red the municipalities with the lowest values, and in dark red those with the 
highest. Watershed boundaries are depicted in yellow. 

2.4.4 Archetype analysis 

The hierarchical cluster analysis yielded seven clusters (Fig. 2.4). The characteristics of exposure and 

vulnerability of the clusters are reported as boxplots in Figures 2.5 and 2.6, while the main characteristics and 

the possible adaptation strategies are listed in Table 2.4. The clusters individuated were named according to 
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the most distinctive characteristics of the municipalities included. Cluster 1 – “high coastal irrigation” – 

comprised coastal municipalities spread among the five watersheds considered; cluster 2 – “high-value 

products” – comprised the wine producers’ municipalities of the Chianti hills in the upper Ombrone 

watershed, except Sassetta; cluster 3 – “high inland irrigation” – and 4 – “prevalence of agricultural land” – 

were mainly composed by inland municipalities of the provinces of Siena and Pisa; the municipalities of 

cluster 5 – “erosion-prone and vulnerable irrigation sources” – and 7 – “erosion-prone and vulnerable 

irrigation systems” – were spread among the provinces without an evident spatial pattern; cluster 6 – 

“prevalence of agricultural workers” – consisted in municipalities of the hills closest to the coast, mainly in 

the Grosseto province. 

 

Figure 2.4: Spatial visualization of the seven clusters individuated in the Tuscany region. 

 

Figure 2.5: Boxplots of the normalized exposure indicators for the seven clusters individuated. The line represents the median, the box 
the upper and lower quartiles, the whiskers the highest and lowest values excluding outliers, and dots potential outliers. 
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By analyzing the main characteristics of exposure and vulnerability of the seven clusters (Fig. 2.5 and 2.6), 

possible adaptation strategies targeted to the specific characteristics of those clusters of municipalities can 

be suggested (Table 2.4). Certainly, further information needs to be considered when planning interventions, 

but these indications can be considered as a starting point. Being the most prone to drought hazard and risk, 

major efforts will have to be directed at the municipalities of cluster 1, and in particular the province of 

Grosseto and the Albegna, Bruna, and lower Ombrone watersheds. 

 

Figure 2.6: Boxplots of the normalized vulnerability indicators for the seven clusters individuated. The line represents the median, the 
box the upper and lower quartiles, the whiskers the highest and lowest values excluding outliers, and dots potential outliers. Light 
orange, light green, and light blue backgrounds represent indicators of Social Susceptibility, Ecological Susceptibility, and Lack of 
Coping and Adaptive Capacity, respectively. 
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Table 2.4: Characteristics of the seven clusters and suggested specific adaptation strategies. 

Some patterns can also be described by observing the DHI, DEI, DVI, and DRI for each cluster (Fig. 2.7) and 

the rankings of the municipalities belonging to different clusters (in the appendix). Even though drought 

hazard indicators were not included in the cluster analysis, the municipalities of clusters 1 and 6 ranked 

highest since they mostly represent the Grosseto province. Considering the DEI, the highest-ranked are 

municipalities of clusters 1 and 6, but also those of cluster 2 such as Gaiole in Chianti and Montalcino. The 

values of the DVI were less stretched; however, there is a prevalence of the municipalities of clusters 3, 4, 5, 

and 7 in the highest ranks. Being DRI the aggregation of DHI, DEI, and DVI, the highest rankings of the 

municipalities of the clusters 1 and 6 – except the municipality Gaiole in Chianti of cluster 2 – can be easily 

explained. 

Cluster Characteristics Specific adaptation strategies 

1: 
High coastal irrigation 

- High volumes of irrigation water  
- High irrigable areas 
- High unemployment  
- Low organic agriculture 
- Deep soils 
- Negligible erosion 
- Low soil fertility 

- Increase water productivity 
- Improve irrigation efficiency 
- Managed aquifer recharge 
- Reduce water use (domestic and 

industrial) 
- Increase water supply (e.g. desalination, 

wastewater treatment) 
- New reservoirs 

2: 
High-value products 

- High-value products 
- High share of agricultural workers 
- High susceptibility to erosion 
- Youngest and most educated 

farmers 
- Diffused use of software to aid in 

crop management 
- Low vulnerability of irrigation 

systems 

- Supplementary irrigation 
- Farm ponds 

3: 
High inland irrigation 

- High volumes of irrigation water  
- High share of protected areas 

- New reservoirs 
- Improve irrigation efficiency 

4: 
Prevalence of agricultural land 

 

- High share of agricultural land 
- Good soil fertility 
- High salinity 

 

5: 
Erosion-prone and vulnerable 

irrigation sources 

- High erosion rates 
- Low organic agriculture 
- Vulnerable irrigation sources  
- Vulnerable irrigation systems 

- Shift from surface irrigation methods to 
pressurized systems 

- Soil conservation measures (e.g. contour 
trenches, terraces) 

- Conservation agriculture (no tillage, cover 
crops) 

6: 
Prevalence of agricultural 

workers 

- High share of agricultural workers  
- Good share of land with minimum 

tillage 
 

7: 
Erosion-prone and vulnerable 

irrigation systems 

- Quite-high share of agricultural 
workers 

- High erosion rates 
- Shallow soils 
- Very fertile soils 
- The most vulnerable irrigation 

systems 

- Shift from surface irrigation methods to 
pressurized systems 

- Soil conservation measures (e.g. contour 
trenches, terraces) 

- Conservation agriculture (no tillage, cover 
crops) 
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Figure 2.7: Boxplots of DHI, DEI, DVI, and DRI for the seven clusters. The line represents the median, the box the upper and lower 
quartiles, and the whiskers the highest and lowest values excluding outliers. 

2.5 Discussion 

2.5.1 Past and future drought hazard 

Interesting results were found in the estimation of drought hazard. Correlations between the total severity, 

duration, and frequency calculated with SPI3, SPI6, SPI12, and VHI in the 58 municipalities were poor, 

meaning that if we selected only one of them a different pattern of drought hazard would have been found. 

The non-standardized indicators of future hazard showed very high correlations when considering the same 

indicator in the short-, medium-, and long-term future, while much worse correlations between different 

indicators; however, this was expected since these indicators do not directly estimate drought. Although many 

studies have been conducted on drought hazard indicators, these results confirm the need for further 

research to individuate the best indicators – both used individually and in an ensemble – to more accurately 

account for drought. Interestingly, the correlation between the DHI calculated with past and future hazard 

indicators showed a coefficient of determination of 0.42; hence, past drought hazard dynamics are expected 

to be confirmed in the future. In our opinion, the use of multiple drought hazard indicators to represent 

different drought types added value to the assessment and was theoretically sound, since the impacts on 

agriculture are represented by different accumulation periods for SPI (Stagge et al., 2015; Vergni and Todisco, 

2011), even more so when including irrigated areas (Bachmair et al., 2018; Huang et al., 2018). 

2.5.2 Selection of indicators and limitations 

The choice of vulnerability and exposure indicators is also critical and needs to be justified properly in the 

conceptual framework. Even though some authors consider that a fundamental characteristic of drought risk 
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assessment is their objectivity and simplicity (Naumann et al., 2014), a relatively high number of indicators 

to include more information was used. As a result, we did not find clear vulnerability patterns both in the 

mapping and in the cluster analysis. However, vulnerability is influenced by many processes, thus over-

simplifications might lead to unrealistic estimates. To sum up, a good balance should be found in the number 

of indicators, with multicollinearity analysis that proved to be useful for this scope. Additionally, we used 

some specific indicators in addition to the generic ones, which is commonly advised against, since specific 

vulnerability indicators should be linked to specific exposure indicators (Carrão et al., 2016). For example, 

irrigation indicators should be weighted more where volumes of irrigation water are higher, but to account 

for these complex processes would further complicate the procedure. Again, we argue that the benefits of 

the inclusion of a higher number of indicators outweigh these negative aspects. Certainly, data limitation is a 

recurrent problem in many regions of the world and the indicators selection is a crucial step that needs to be 

carefully performed according to data availability, objectives, spatial scale, unit of analysis etc. Hazard 

indicators can be calculated with remote sensing-based products; hence, the problem is restricted to 

exposure and vulnerability indicators. Given that at least one representative indicator is available for the risk 

components of equations (1) and (2), the approach can be replicated, using either a sub-set of the indicators 

we proposed or inferring them from other studies (e.g. Hagenlocher et al., 2019; Meza et al., 2019). 

The inclusion of irrigated areas as an exposure indicator is highly recommended when dealing with developed 

countries. In some global (Carrão et al., 2016), continental (Naumann et al., 2014), and regional (Murthy et 

al., 2015; Prabnakorn et al., 2019) assessments it is considered a measure of coping capacity that reduces 

vulnerability, but this can be considered true only in some developing countries where irrigation is not largely 

practiced. Possibly, the use of different irrigated- and rainfed-specific indicators to represent vulnerability as 

in Meza et al. (2020) is a more appropriate approach, but in many cases rainfed and irrigated agriculture 

coexist, making it difficult to perform separated analyses.  

A recurrent problem in drought studies is that to predict drought risk we consider drought hazards rather 

than impacts which, in the end, are what really matters (Enenkel et al., 2020). Furthermore, the role of local 

stakeholders is crucial for developing sound and effective strategies to cope with extreme events and climate 

change (Hayes et al., 2004; Nguyen et al., 2016; Vogt et al., 2018; World Bank, 2019), but the integration of 

local and expert knowledge in drought monitoring and adaptation is challenging due to the reciprocal 

scepticism (Giordano et al., 2013). Also, farmers’ perceptions of drought do not always correspond to the 

commonly used drought indicators (Giordano et al., 2013; Stagge et al., 2015; Urquijo and De Stefano, 2016). 

Including hard and soft data, quantitative and qualitative data, and local and expert knowledge might allow 

performing a more detailed and meaningful drought risk assessment and should be considered in further 

research. 

2.5.3 Linking the results with adaptation strategies 

Comparing risk assessment outputs with similar assessments is difficult due to the context-specific meaning 

of the results. Also, no similar drought risk assessment has been performed for central and southern Tuscany. 

Hence, results were compared with more general climate risk analysis (for multiple natural hazards) 

performed at the national level with the provinces (NUTS3) as the units of analysis. Consistent with the results 

of our assessment, Mysiak et al. (2018) found that the Grosseto province has higher potential climate change 

impacts and lower adaptive capacity compared with the other provinces. Similarly, Spano et al. (2020) 

reported a lower adaptive capacity to climate change for the same area. Furthermore, the PNACC (2018) 

confirms our results in terms of risk patterns and the highest risk for the province of Grosseto, which has a 

medium-high adaptive capacity and high potential impacts; instead, the province of Livorno has a medium-
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high adaptive capacity and medium-low potential impacts, while the provinces of Pisa and Siena have a high 

adaptive capacity, with the first one with expected medium potential impacts and the latter with high 

potential impacts. Projected climate change impacts on yields of durum and common wheat and maize 

reported in Spano et al. (2020) do not show clear differences within the areas considered in our assessment; 

overall, negative impacts for maize and slight increases in yield for wheat are expected. 

Because of the high number of indicators used in the comprehensive risk assessment, we used archetype 

analysis to link the results of the risk assessment with possible adaptation strategies. Archetype analysis, by 

identifying municipalities with overall similar characteristics and risk profiles, can help decision-makers to 

better target the most relevant adaptation strategies.  To show the potentiality of the approach proposed in 

this research, the suggested adaptation strategies for clusters 1 (“high coastal irrigation”) and 2 (“high-value 

products”), which are the most representative, are discussed in detail. Municipalities of cluster 1 have a high 

drought risk (Fig. 2.7) driven by intense irrigation. Potential adaptation strategies include increasing water 

productivity and improving irrigation efficiency (e.g. Mantino et al., 2017), as well as increasing storage with 

new reservoirs. At the same time, seawater intrusion and groundwater pollution and depletion need to be 

considered (Barazzuoli et al., 2008, 1999; Grassi et al., 2007). Therefore, the use of nature-based solutions 

such as the managed aquifer recharge, already tested in a pilot project in the Cornia watershed, represents a 

very promising solution that could significantly reduce the vulnerability of groundwater-based irrigation areas 

(Rossetto et al., 2019, 2018). Additionally, these municipalities have the highest water demand in summer, in 

which the highest crop irrigation requirements coincide with the touristic season and with the lowest 

precipitation and highest evapotranspiration. Hence, further interventions to reduce other water uses 

(domestic and industrial) and increase water supply (e.g. desalination, wastewater treatment) could be 

beneficial (Mantino et al., 2017). On the other hand, municipalities of the second cluster show high exposure 

and low vulnerability to drought (Fig. 2.7). In addition to the highest income related to agriculture, this cluster 

has the youngest and most educated farmers; thus, the most likely to adopt innovative adaptation strategies. 

One crucial intervention is supplemental (or emergency) irrigation (Matese et al., 2018), which is still 

underdeveloped in the vineyards of Tuscany because of the limited availability of irrigation water (D. Bianchi 

et al., 2021). A possible solution is represented by runoff harvesting structures, such as farm ponds, which 

have been already suggested for the hilly areas of central Tuscany to overcome summer water shortage 

(Napoli et al., 2014). 

In addition to the cluster-specific adaptation strategies proposed in Table 2.4, cross-cutting strategies such as 

improved agronomic management, drought-resistant varieties, cropping patterns’ change and diversification, 

and crop insurance could be also considered to tackle drought. Win-win solutions with negligible side effects 

can be achieved by upgrading surface irrigation systems in erosion-prone areas (suggested in particular for 

clusters 5 and 7) and using alternative water sources such as desalinization and wastewater treatment 

(especially in cluster 1). Recent initiatives of the Italian government and other associations (ANBI and 

Coldiretti) strongly reintroduced the debate about the implementation of new reservoirs to cope with 

drought. If properly designed, respecting the ecosystems and ensuring sufficient environmental flows, this 

strategy can significantly reduce drought vulnerability in the context of climate change (Masia et al., 2018; 

Sordo-Ward et al., 2019). However, many examples of negative feedback exist linked to water infrastructures, 

such as increased water consumption and the sense of over-reliance that increases vulnerability (Di 

Baldassarre et al., 2021, 2018). Similar unintended negative consequences might also be promoted by crop 

insurance (Deryugina and Konar, 2017; OECD, 2021). Furthermore, the well-known efficiency paradox shows 

how water savings at the field scale with improved irrigation efficiencies might lead to increased water 

consumption at the watershed scale (Dumont et al., 2013; Grafton et al., 2018). These and other 
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counterintuitive dynamics further complicate the planning of some drought adaptation strategies. To deal 

with such complexity and uncertainty, the involvement of multiple stakeholders is crucial.  

2.6 Conclusion 

A complete drought risk assessment was conducted for 58 municipalities belonging to five coastal watersheds 

of Central and Southern Tuscany (Central Italy). The proposed approach allowed to produce a policy-relevant 

drought risk assessment, even though adjustments could further improve the methodology. The use of data 

from public drought observatories proved to be reliable and useful; furthermore, the inclusion of multiple 

drought hazard indicators provided a more comprehensive analysis of drought risk. The use of future 

projections to account for climate change impacts also confirmed the patterns of past hazards; however, 

future patterns of vulnerability and exposure should also be considered. Moreover, the inclusion of social and 

environmental indicators improved the comprehensiveness of the assessment. Robustness evaluation is 

necessary to validate the methodology used; in our case, we performed it with an internal validation, but 

comparing results with an external dataset is equally important. The robustness evaluation confirmed that 

the most uncertain parts of the methodology to calculate composite indicators are the choice of indicators 

and the weighting method. Finally, archetype analysis was successfully used to link the results of the 

assessment with possible adaptation strategies.   

Composite indicators are debated and sometimes controversial, with multiple pros and cons; they need to be 

constructed and used carefully, so as not to foster policies with unintended negative impacts (OECD, 2008). 

Suggested adaptation strategies were proposed based on a literature review and our knowledge but, of 

course, caution and further analyses are needed when planning and investing economic resources. 

Southernmost municipalities of Tuscany showed to be the most at risk, in particular those belonging to the 

Albegna, Bruna and lower Ombrone watersheds. Also, major efforts should be devoted to the coastal 

municipalities since multiple sectors use the water resource, and the demand is particularly concentrated in 

the summer months. The results of this assessment are meant to be used by local decision-makers and 

experts to plan and promote more tailored and proof-based adaptation strategies. Ideally, the results of this 

drought risk assessment will be the base to fuel the discussion about drought management to involve farmers 

and other interested stakeholders.  
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Chapter 3  Climate change impact assessment 

The manuscript reported as Chapter 3 was published in Agricultural Water Management (complete reference: 

Villani, L., Castelli, G., Yimer, E. A., Chawanda, C. J., Nkwasa, A., Van Schaeybroeck, B., van Griensven., A., 

Penna, D. & Bresci, E. (2024). Impacts of climate change and vegetation response on future aridity in a 

Mediterranean catchment. Agricultural Water Management, 299, 108878, 

https://doi.org/10.1016/j.agwat.2024.108878). 

3.1 Abstract  

The Mediterranean region’s climate is projected to become warmer and drier but future projections of 

precipitation are uncertain, especially in the Northern part. Additionally, the difficulty in determining the 

plant physiological responses caused by CO2 rising complicates the estimation of future evaporative demand, 

increasing the uncertainty of future aridity assessments. The main objective of this study is to estimate the 

effect of climate change and stomatal conductance reduction on projected water balance components and 

the resulting impact on aridity in a medium-sized catchment of Central Italy. We validate and couple a 

hydrological model with climate projections from five regional climate models and perform simulations 

considering or not the vegetation responses. Results show that their inclusion significantly affects potential 

evapotranspiration. The other water balance components, namely actual evapotranspiration, water yield, 

percolation and irrigation, are also influenced but with less significant changes. Considering or not the CO2 

suppression effect on stomatal conductance, coupled with the uncertainty related to precipitation, highly 

influences the estimation of future aridity as the future climate classification ranges from “humid” to “semi-

arid” depending on the simulation and climate model, even if model outputs need to be evaluated cautiously 

with CO2 concentration higher than 660 ppm. 

3.2 Introduction 

The Mediterranean area is considered a hotspot for climate change since, compared to other regions, 

temperatures will rise 20% faster and precipitation will decrease 4% faster per degree of warming than the 

global average (Lionello and Scarascia, 2018). Moreover, it will face increased extreme heat, heavy 

precipitation, and hydrological and agricultural droughts (Arias et al., 2021). Focusing on future precipitation 

in the Mediterranean region, many studies highlighted a clear North-South gradient, with the Southern areas 

facing the most severe impacts of climate change. Despite the great uncertainty, the zero-change line in 

precipitation is usually estimated to cross Northern and Central Italy (e.g., Coppola et al., 2021; Mariotti et 

al., 2015; Spano et al., 2020). 

Understanding future precipitation trends and their spatial patterns in Italy is crucial given their large socio-

economic and environmental impact (WHO, 2018). Indeed, according to the Organisation for Economic Co-

operation and Development classification, Italy is currently considered a medium-high water-stressed country 

since more than 30% of renewable water resources are used, with a large share dedicated to agriculture 

(PNACC, 2018). Furthermore, water availability and demand are very inhomogeneously distributed 

throughout the country. Past studies on precipitation variability, reviewed and analysed by Caporali et al. 

(2021), showed that there is a negative trend in total annual precipitation for the whole Italian territory, which 

is most pronounced in the winter season. Interestingly, these past trends oppose future precipitation 

projections that simulate a reduction in summer precipitation and a slight increase in winter (Spano et al., 

2020). More specifically, over Central Italy, no significant past trends were obtained for yearly precipitation, 

while significant positive trends in autumn and winter were identified. At the same time, meteorological 
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drought analyses showed an increasing trend in both severity and frequency for two other regions in Central 

Italy, Abruzzo and Umbria (Di Lena et al., 2014; Vergni and Todisco, 2011). 

Past and future warming over land has a strong impact on the atmospheric evaporative demand (here 

referred to as potential evapotranspiration, PET), leading to a reduction in soil moisture and increased 

agricultural and ecological droughts (Douville et al., 2021; Seneviratne et al., 2021). Vicente-Serrano et al. 

(2022a) stressed the importance of PET changes in the observed increase in agricultural and ecological 

droughts. Temperature and humidity are strongly linked and the change in relative humidity is tightly related 

to the soil-moisture availability (Drobinski et al., 2020). The surface-drying effect due to increased 

temperatures will be reduced in the Northern Mediterranean due to the availability of sufficient soil moisture 

(Tramblay et al., 2020). Mariotti et al. (2015) inferred that in Europe future evapotranspiration changes over 

land were mainly linked to changes in projected precipitation. Surface insolation is projected to increase over 

the whole Mediterranean, mainly because of reduced cloudiness (Coppola et al., 2021). On the other hand, 

soil moisture is projected to decrease in many areas of the Mediterranean, but again with high uncertainties; 

for example, no significant changes are projected over large parts of Italy (Mariotti et al., 2015).  

When trying to assess the future aridity conditions, another major source of uncertainty is the direct effect 

of CO2 concentration increase through changes in plant transpiration and growth (Manzoni et al., 2022; 

Vicente-Serrano et al., 2022b). CO2 rising boosts crop growth through the CO2 fertilization effect and reduces 

plant transpiration and PET through the CO2 suppression effect on stomatal conductance (Zhang et al., 2022). 

Overall, the decrease in transpiration caused by the stomatal conductance reduction is compensated by the 

increase in transpiration caused by the CO2 fertilization effect (Manzoni et al., 2022), especially in dry and 

semi-arid climates (Fatichi et al., 2016). Increasing CO2, therefore, has an indirect effect on runoff which is the 

main factor explaining the discrepancy between a projected increased future runoff as predicted by climate 

models and a drying trend that is projected from future drought and aridity estimations (Yang et al., 2019). 

Globally, the greening effect of CO2 rising and climate change was demonstrated with evidence from the last 

ice age and the historical era (Scheff, 2018; Zhu et al., 2016). Assessing future aridity conditions using 

temperature-based indices without accounting for the CO2 fertilization and stomatal suppression effects may 

result in an incomplete assessment (Scheff, 2018; Swann et al., 2016). Nevertheless, the current increase in 

CO2 concentration is occurring at an unprecedented rate at which ecosystems might not be able to take 

advantage; also, nutrient availability might limit the positive effect of CO2 fertilization (Scheff, 2018). Climate 

models already take into account the CO2 fertilization mechanism, but this effect might be overestimated, 

and caution is suggested when directly using the outputs of climate models in the estimation of future 

drought (Vicente-Serrano et al., 2022a).  

While the uncertainty related to projected precipitation is vastly explored in literature, the one related to PET, 

linked mainly to the CO2 suppression effect on stomatal conductance, is rarely estimated. The objective of 

this study is to demonstrate the importance of considering the plant physiological responses to CO2, mainly 

stomatal conductance reduction, when calculating projected PET, quantifying the difference in simulated 

water balance components and aridity when considering or not the vegetation responses. The impacts of 

climate change on water resources such as the water balance components and river flows are frequently 

assessed by coupling climate and hydrological models (Tramblay et al., 2020). Among the various hydrological 

models, the Soil and Water Assessment Tool (SWAT) has been frequently used in the Mediterranean region, 

including for climate change analyses in Italy (Aloui et al., 2023). Here, we use as meteorological data five 

bias-corrected EURO-CORDEX Regional Climate Models (RCMs) and evaluate their projected trends for 

precipitation and temperature in the Ombrone catchment in Central Italy. These are then used to force the 

SWAT+ model (Arnold et al., 2018; Bieger et al., 2017) to simulate future water balance. We evaluate the 
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model performance in predicting monthly streamflow using a multi-site calibration and validation process. 

We then simulate PET with constant and decreasing stomatal conductance and assess the effect of the plant 

physiological responses to CO2 on aridity and other water balance components. In this study, we also focus 

on the SWAT+ approach to estimate PET upon exceedance of the 660 ppm threshold, which is considered the 

maximum value at which the equations used by the model are valid. Understanding the mechanisms behind 

and improving the quantification of the CO2 suppression effect on stomatal conductance and CO2 fertilization 

will allow the development of more robust aridity projections which, in turn, are required to optimally plan 

potential adaptation measures. 

3.3 Methodology 

3.3.1 Study area: the Ombrone catchment 

Coastal, small-to-medium-sized, intermittent and ephemeral rivers prevail in the Mediterranean region, 

accounting for more than half of the total area (Ducrocq et al., 2016). The Ombrone catchment, located in 

Central and Southern Tuscany, is a typical example of a Mediterranean catchment, with an area of 3552 km2, 

a maximum elevation of 1738 m.a.s.l., and the river outlet in the Tyrrhenian Sea (Fig. 3.1). The Ombrone river 

is the second longest river of Tuscany with a length of 161 km and has several tributaries, including the Arbia, 

Merse, Farma and Orcia (Diodato et al., 2023). The Ombrone catchment is almost entirely included in the 

provinces of Siena and Grosseto. As emerged from Chapter 2, this part of Tuscany is considered significantly 

water-stressed due to the high concomitant water demand for agriculture and tourism, especially in the 

coastal areas. Southern Tuscany is also the area of the region that receives less precipitation and is 

experiencing the most pronounced increases in dry spell occurrence (Bartolini et al., 2022). Furthermore, the 

analysis conducted by Diodato and Bellocchi (2008) classified this area as prone to agricultural drought. 

According to the Köppen classification, the prevalent climate can be described as a hot-summer 

Mediterranean (Csa) climate (Beck et al., 2018), characterized by hot, dry summers and cool, humid winters, 

with an annual precipitation of 600-1100 mm according to the data used in this study. The climate of the 

internal areas of the Ombrone catchment is more continental compared to the coastal areas, with slightly 

higher precipitation and shorter summers (Diodato et al., 2023). Future projections indicate that this might 

shift towards hot and cold semi-arid (BSh and BSK) climates (Beck et al., 2018). The Ombrone catchment is 

characterized by hilly and mountainous areas with slopes of over 20% and torrential streams (Diodato et al., 

2023). According to the Corine Land Cover of 2018 used in this study, the main land covers of the catchment 

are forest (39%) and herbaceous annual crops (46.87%), and the other types of vegetation are permanent 

pastures (4.28%), vineyards (3.84%), and olive groves (1.89%). The remaining parts of the catchment are 

covered with artificial surfaces, shrubland and bare land. 

In the last sixty years, Tuscany has experienced significant economic growth that led to a reduction in the 

number of farms and the abandonment of cultivated land, especially in the less productive areas (Napoli et 

al., 2017). The upland areas of the Ombrone catchment in the Siena province are mainly cultivated with non-

irrigated crops such as cereals, olives, and grapevine. Vineyards and olive groves are widespread in the whole 

of Tuscany and are prevalent in rugged and sloped areas prone to erosion (Napoli et al., 2014; Napoli and 

Orlandini, 2015). In the coastal areas of the Grosseto province, irrigation is more widely used and orchards 

and horticultural crops are common. Water is thereby pumped mainly from the coastal aquifer of the 

Grosseto plain, which suffers from overexploitation, seawater intrusion, and pollution (Aldinucci et al., 2012; 

Zucaro and Tudini, 2008). 
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Figure 3.1: The Ombrone catchment with the three gauging stations, the subbasins, and the boundaries of the provinces of Siena and 
Grosseto. 

3.3.2 The SWAT+ model 

The SWAT+ model is a restructured version of SWAT that offers better spatial discretization of the catchment, 

improved code maintenance and more flexibility in representing management practices compared to the 

original version (Arnold et al., 2018; Bieger et al., 2017). This dynamical model uses a daily time step, and 

represents the catchment with a semi-distributed approach, by dividing it into subbasins, landscape units, 

and Hydrological Response Units (HRUs). The HRUs each have homogeneous characteristics of soil, slope, and 

land use. The different modules included in the model have been used for many applications, including 

hydrological, water quality, erosion, and climate change assessments (Aloui et al., 2023). Also, the SWAT+ 

model can simulate plant growth with the module based on a simplified version of the Environmental Policy 

Integrated Climate (EPIC) model (Neitsch et al., 2011). Plant growth is simulated here using daily-accumulated 

heat units and inhibited by water, temperature, and nutrient stress. The management schedule, including 

fertilization, irrigation, tillage, and rotations, can be specified at the HRU level, and crop parameters are 

available but can also be modified by the user. A key improvement in SWAT+ upon SWAT is the inclusion of 

decision tables, which allow for an improved representation and modelling of complex rules related to water 

and agricultural management (Arnold et al., 2018).  

The SWAT/SWAT+ modelling suite can be conveniently used to evaluate the impacts of the plant physiological 

responses to CO2, namely the CO2 suppression effect on stomatal conductance and the CO2 fertilization, on 

streamflow and water balance components (Wang et al. 2017, Wu et al., 2012). The modification of the 

Penman-Monteith approach to simulate the suppression effect on stomatal conductance included in SWAT is 

commonly applied (e.g., Lemaitre-Basset et al., 2022). In the traditional Penman-Monteith equation, stomatal 

resistance, which is the inverse of stomatal conductance, is assumed to remain constant and is therefore 

unrealistic (Lemaitre-Basset et al., 2022). Only when the Penman-Monteith method is used, SWAT+ has been 

adjusted to account for the stomatal suppression effect (Neitsch et al., 2011; Nkwasa et al., 2023). More 

specifically, in SWAT+ the stomatal resistance (rc) is allowed to change with equation 1 (Easterling et al., 1992) 
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based on an experiment that reached a CO2 concentration of 660 ppm (Morison, 1987), which is much lower 

than the projected increase by the end of the century under Representative Concentration Pathway (RCP) 

8.5. Moreover, the CO2 fertilization effect is accounted for in SWAT+ by simulating increased radiation use 

efficiency (RUE) with equation 2, which affects daily biomass accumulation (Neitsch et al., 2011). 

𝑟𝑐 =  
𝑟𝑙

(0.5 ∙ 𝐿𝐴𝐼)∙(1.4−0.4 ∙ 
𝐶𝑂2
330

 ) 
          (1) 

𝑅𝑈𝐸 =  
100 ∙ 𝐶𝑂2

𝐶𝑂2+exp (𝑟1− 𝑟2 ∙ 𝐶𝑂2)
          (2) 

where rl is the minimum effective stomatal resistance of a single leaf (s m-1), LAI is the Leaf Area Index of the 

canopy, r1 and r2 are the shape coefficients calculated by the model for each crop. 

For the SWAT+ model setup, we used the EU-DEM (version 1.0) at 25 m resolution and the 2018 Corine Land 

Cover and Land Use map from the Copernicus Land Monitoring Service. Default thresholds were used for 

channel and stream creation (17 and 171 km2, respectively). As soil map, we used the Pedological Database 

of the Tuscany Region. In this database, soil texture and organic matter content are available as average in 

the whole soil profile, while hydraulic conductivity is reported for two layers. Other information, such as soil 

depth and salinity, are reported as categorical variables. To estimate soil properties, pedotransfer functions 

are typically used (Abbaspour et al., 2019). We estimated available water capacity with the widely used 

pedotransfer function of Saxton and Rawls (2006) as in Napoli et al. (2017), bulk density with the equation 

proposed by Manrique and Jones (1991) that performs well in Italy (Pellegrini et al., 2007), the soil erodibility 

factor with the method of Williams (1995), and the soil albedo with the equation introduced in Sugathan et 

al. (2014). Climate data were obtained from the Regional Hydrological Service (SIR) of the Tuscany Region. In 

SWAT+, weather stations are created based on climate input data and assigned to the HRUs. More details on 

climate input data are available in Table A3.1. A 10 ha area threshold was applied to filter the HRUs. 

We defined a simplified representation of cropland using the four main herbaceous crops of the catchment. 

For this, we used the land covers provided by the Tuscany region through the ARTEA agency, which are 

published yearly and contain detailed field-specific characteristics of crop type, crop variety, and crop 

management. Hence, in the model, we split the herbaceous cropland use into four classes: durum wheat as 

the rainfed winter crop (30%), sunflower as the rainfed spring crop (15%), maize as the irrigated spring crop 

(15%), and alfalfa as the forage crop (40%). We checked and slightly modified the default decision tables 

already available in the model for sowing and harvesting crops to match the typical sowing and harvesting 

dates. We included in the management schedule mouldboard and harrow tillage and representative 

fertilization schemes. We prepared a decision table for automatic sprinkler irrigation of 20 mm per event 

triggered by a water stress threshold of 0.241. By using these values, we obtained volumes of irrigation of the 

same order of magnitude as compared to the most updated data retrieved from the National Institute of 

Statistics (ISTAT, 2010). In SWAT+, the water stress is calculated by comparing actual and potential plant 

transpiration (Neitsch et al., 2011). To confirm the consistency of the crop-management schedule, we 

compared it with reported crop schedules in the Tuscany region (Dalla Marta et al., 2010; Orlando et al., 2015; 

Giannini and Bagnoni, 2000; Tuscany Region, 2010). 

3.3.3 Multi-site calibration and validation 

We set up the SWAT+ model (revision 60.5.4) in QGIS for a period from 2010 until 2021. Then, we used the 

SWAT+ Toolbox to perform automatic sensitivity analysis, calibration and validation for monthly streamflow. 

The parameters considered for the automatic sensitivity analysis were selected from the literature, but we 
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also included other parameters related to the soil map (Table A3.2). We considered two years of warm-up for 

calibrations, validations and simulations. 

Monthly streamflow data for three flow gauging stations were retrieved from SIR (Fig. 3.1). After the 

automatic sensitivity analysis performed with the SWAT+ Toolbox, we started calibrating the selected 

parameters in the upstream flow station of Buonconvento, using five years of monthly flow (2017-2021). 

Then, for Sasso d’Ombrone we calibrated the parameters using the same time window and validated with 

monthly flows from 2012 to 2016, maintaining the calibrated parameters for the subbasins of Buonconvento. 

We finally repeated the same procedure for Istia, where we considered three years of data for both calibration 

(2019-2021) and validation (2013-2015). The periods for calibration and validation were selected according 

to the data availability. Hence, the calibration was performed for all three gauging stations, while the 

validation was only in two of them.  

In the automatic calibration for monthly streamflow, we used the Nash Sutcliffe Efficiency (NSE) as the 

objective function. The per cent bias (Pbias) and the RMSE-observations standard deviation ratio (RSR) were 

calculated as additional statistics to evaluate the performance of the model. The NSE quantifies how well the 

plot of observed and simulated data agree and NSE is equal to 1 for a perfect match and smaller otherwise; 

the Pbias expresses how much the modelled values differ from the observed values, with an optimal value of 

0%; the RSR is retrieved by normalizing one of the most common error index – the Root Mean Square Error 

(RMSE) – with the standard deviation of the measured data (Moriasi et al. 2007). We evaluated the model 

performances following the criteria of Moriasi et al. (2015) for NSE and Pbias, while those of Moriasi et al. 

(2007) for RSR (Table A3.3). The equations to calculate NSE, Pbias and RSR are: 

𝑁𝑆𝐸 = 1 −
∑  (𝑌𝑖

𝑜𝑏𝑠 – 𝑌𝑖
𝑠𝑖𝑚)

2𝑛

𝑖=1

∑  (𝑌𝑖
𝑜𝑏𝑠 – 𝑌𝑚𝑒𝑎𝑛)

2𝑛

𝑖=1

           (3) 

𝑃𝑏𝑖𝑎𝑠 =  
∑  (𝑌𝑖

𝑜𝑏𝑠 – 𝑌𝑖
𝑠𝑖𝑚) 

𝑛

𝑖=1

∑  𝑌𝑖
𝑜𝑏𝑠

𝑛

𝑖=1

∙ 100          (4) 

𝑅𝑆𝑅 =
𝑅𝑀𝑆𝐸

𝑆𝑇𝐷𝐸𝑉𝑜𝑏𝑠
=  

√∑  (𝑌𝑖
𝑜𝑏𝑠 – 𝑌𝑖

𝑠𝑖𝑚)
2𝑛

𝑖=1

√∑  (𝑌𝑖
𝑜𝑏𝑠 – 𝑌𝑚𝑒𝑎𝑛)

2𝑛

𝑖=1

         (5) 

where Yi
sim is the ith simulated value, Yi

obs is the ith observed value, n is the total number of observations, and 

Ymean is the average of the observed values. 

3.3.4 Climate change scenarios 

To estimate future climate changes, we used five EURO-CORDEX climate models (Jacob et al., 2014) (Table 

3.1) and RCPs 4.5 and 8.5 (Moss et al., 2010). We considered two periods of 30 years, 2041-2070 and 2071-

2100, to evaluate medium- and long-term climate change impacts, comparing the projected values with those 

of the historical simulations (from 1976 to 2005) of each climate model. The criteria for selecting the climate 

models were (1) the availability of both RCPs, (2) the availability at daily frequency of precipitation and the 

climate variables needed to calculate evapotranspiration with the Penman-Monteith method (maximum and 

minimum temperatures, relative humidity, solar radiation, and wind speed), (3) the use of a complete 

(Gregorian) calendar, (4) a horizontal RCM resolution of 0.11° over the EURO-CORDEX domain. A bias 

correction of the climate-projection data is necessary as systematic biases are present in the meteorological 
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data (Maraun and Widmann, 2018). Among the different methodologies that exist for bias correction of 

climate models, we adopted distribution mapping which is commonly used for climate and hydrological 

studies (Teutschbein and Siebert, 2012; Themeßl et al. 2011).  

We used the CMHyd software to bias correct temperature and precipitation (Rathjens et al., 2016). The 

software reprojects the data and applies the selected bias-correction method using the station data provided 

by the user. The CMHyd outputs can be directly used in the SWAT+ model without further preprocessing. 

Since bias correction is performed by comparing the historical simulation of the climate models with observed 

values before 2005, we used a lower number of stations compared to the calibration and validation period. 

The stations used for bias correction were included in the Ombrone catchment or very close and had more 

than 10 years of data as indicated in Fung (2018). More details about the climate data used for bias correction 

can be found in Table A3.1. To process the other climate variables, solar radiation, relative humidity and wind 

speed, we used the Climate Data Operators (CDO) software, version 2.0.5 (Schulzweida, 2021). These bias-

corrected climate data were then used to run historical and future simulations. In the result section, we 

detected the changes by comparing future and historical simulations for each climate model and RCP. 

In SWAT+, the crop cycle is defined with the number of days required to reach maturity, differently from the 

older version which used the number of heat units (Nkwasa et al., 2023). To account for the shortening of the 

crop cycles, we retrieved the heat units starting from the days to maturity used during the calibration and 

validation period. Then, we calculated the new crop cycle length considering the different temperatures in 

the historical and future periods. 

Table 3.1: The five climate models used in the study with the General Circulation Model (GCM) and the Regional Climate Model. 

 GCM institute GCM model RCM institute RCM model 

1 CNRM-CERFACS CNRM-CM5 CNRM-CERFACS ALADIN63 

2 CNRM-CERFACS CNRM-CM5 KNMI RACMO22E 

3 ICHEC EC-EARTH KNMI RACMO22E 

4 MPI-M MPI-ESM-LR SMHI RCA4 

5 NCC NorESM1-M GERICS REMO2015 

After the calibration and validation of the SWAT+ model, we performed simulations to assess the impacts of 

climate change considering the different climate models, RCPs, and periods. At first, we evaluated the 

magnitude and sign of the climate change signal for future precipitation and average temperature in the 

Ombrone catchment, considering the basin scale outputs of the SWAT+ model. To quantify the impacts of the 

plant physiological responses to CO2 on PET and other water balance components, we performed simulations 

with constant CO2 at 400 ppm, as in the calibration and validation, and others considering the values as 

reported by Büchner and Reyer (2022), for RCPs 4.5 and 8.5, for the historical, near and far future periods. 

We used the 30-year-average CO2 concentration since it is a fixed input parameter in the SWAT+ model. The 

average CO2 concentration for RCP 4.5 (522 and 589 ppm for the near and far futures, respectively) and the 

near future for RCP 8.5 (611 ppm) fall between the limit of the Morison experiment (330-660 ppm), while the 

average CO2 concentration for the far future of RCP 8.5 is much higher (939 ppm).  

We evaluated the impacts of climate change and vegetation responses to CO2 on future PET and estimated 

future dryness conditions with the Aridity Index (AI). AI is calculated as the ratio between precipitation and 

PET (Middleton and Thomas, 1997) and is useful for classifying the climate following the UNEP climate 

classification. Despite the intrinsic simplifications of this method, AI is used for climate classification (Massari 
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et al., 2022) and as a benchmark for aridity conditions at the regional scale (He et al., 2022). Hence, AI 

estimation is useful to evaluate the uncertainty related to RCPs and the inclusion of the stomatal conductance 

reduction caused by CO2 concentration rising.  Finally, we performed a similar analysis for the water balance 

components and other variables simulated with the SWAT+ model, namely actual evapotranspiration, water 

yield (a direct output of the model defined as the sum of surface runoff, lateral soil flow, and tile flow), 

percolation, and irrigation. 

We applied the Wilcoxon rank-sum non-parametric test to detect significant differences between historical 

and future periods and between simulations including and excluding the vegetation responses to CO2. We 

considered the yearly values of the variables considered in the analysis. The two samples used to test the 

significant differences were always selected from the same climate model. 

3.4 Results 

3.4.1 Multi-site calibration of SWAT+ 

Out of the 15 parameters pre-selected for the sensitivity analysis, we considered only the most sensitive, 

specifically cn2, esco, epco, bd, and revap_co. More details about the calibrated parameters are available in 

the supplementary materials (Table A3.2, A3.3, A3.4). Despite overestimation of peak flows, we obtained 

more than satisfactory performances according to the criteria considered in this study (Table 3.2, Fig. 3.2). 

More in detail, the model achieved very good performances in Buonconvento during the calibration period 

for the three statistics considered, while in Sasso d’Ombrone we obtained very good performances 

considering NSE and RSR and good for Pbias. For the Istia gauging station, we obtained very good 

performances for NSE and RSR during validation and good for Pbias, while during the calibration period 

satisfactory performances for NSE and Pbias and good for RSR. The reduced performance for Istia during 

calibration can be mainly attributed to a discharge peak in February 2019 (see Fig. 3.2) which might be an 

error in the observed streamflow data since it is not present in the other sites. 

Table 3.2: Model performances for monthly streamflow during calibration and validation for the three gauging stations considered. 
For Buonconvento only the calibration was carried out. 

 

 

 

 

 

Monthly streamflow Calibration Validation 

Station NSE Pbias RSR NSE Pbias RSR 

Buonconvento 0.86 1 3.2% 1 0.38 1 - -  

Sasso d’Ombrone 0.87 1 -6.3% 2 0.36 1 0.80 1 9.2% 2 0.45 1 

Istia 0.66 3 13.0% 3 0.58 2 0.80 1 8.9% 2 0.44 1 

 1 Very good; 2 Good; 3 Satisfactory.  
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Figure 3.2: Multi-site calibration and validation, with the location of the gauging stations of Buonconvento (a), Sasso d’Ombrone (b), 
and Istia (c), and the respective hydrographs with simulated and observed monthly average flows. 

3.4.2 Projected temperature and precipitation changes over the Ombrone catchment 

A positive, significant climate change signal over the Ombrone catchment was obtained for annual average 

temperatures, for all future periods and RCPs considered (Fig. 3.3, Table 3.3, A3.5). While the increase in 

temperature under RCP 4.5 was of similar magnitudes in the near and far futures, under RCP 8.5 it continued 

to rise in the far future. In the far future, the highest increases of 18% and 32% were found for NorESM1-M 

– REMO2015, under RCPs 4.5 and 8.5 respectively. The ensemble-mean temperature increase at the end of 

the century was 2.1 °C and 4 °C for RCPs 4.5 and 8.5, respectively (Table A3.5). Temperature increases were 

largest for the summer season and daily minimum temperature. For average, maximum, and minimum 

temperatures, the increases in summer were higher than those in winter, particularly for RCP 8.5. The 

ensemble-mean increases were 1.9 °C and 3.5 °C for winter average temperature, for RCPs 4.5 and 8.5, 

respectively, while for summer these were 2.3 °C and 4.8 °C (Table A3.5). 

For annual precipitation, climate change projections were much more uncertain (Fig. 3.4, Table 3.3, A3.5). 

The RCMs disagreed on the sign of change, with four RCMs predicting negligibly-small changes or increases 



39 
 

and one (NorESM1-M – REMO2015) a decrease (Table 3.3, Fig. A3.1). The ensemble-mean average annual 

precipitation increased at the end of the century by 70 and 32 mm for RCPs 4.5 and 8.5, respectively (Table 

A3.5). This difference is mainly caused by the significant decrease in precipitation by NorESM1-M – 

REMO2015 for RCP 8.5 (-21%) (Table 3.3). In RCP 4.5 the slight increase occurred by the end of the century, 

in contrast to RCP 8.5 in which the increase was found in the near future. The increases in precipitation were 

found mainly in winter, while the models indicated reduced increases or even decreases in spring and 

summer. More specifically, the ensemble-mean increases in winter average precipitation were 34 and 22 mm 

for RCPs 4.5 and 8.5 respectively, while the ensemble-mean changes for summer were 5 and -7 mm for RCPs 

4.5 and 8.5 respectively (Table A3.5). In the far future, 3 out of 5 models projected significant increases in 

precipitation under RCP 4.5. Under RCP 8.5, two predicted significant increases while NorESM1-M – 

REMO2015 significant decreases (Table 3.3). Under RCP 4.5 in the near future, CNRM-CM5-RACMO22E 

behaved differently as compared to the other climate models and was the only one showing significant 

increases of 27% in precipitation (Table 3.3). 

 

Figure 3.3: Lineplot and boxplots of future 
temperature (°C). Lineplot (a) reports the 
absolute difference between the future years 
(2041-2100) and the yearly average of the 
historical period (1976-2005), for RCPs 4.5 and 
8.5. The line represents the average of the five 
climate models, while the band is the 
confidence interval. The values of average 
temperature calculated with the same 
procedure considering annual, winter and 
summer values, for the near (b, 2041-2070) and 
far futures (c, 2071-2100), are used in the 
boxplots. 
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Figure 3.4: Lineplot and boxplots of future 
precipitation (mm). Lineplot (a) reports the 
absolute difference between the future years 
(2041-2100) and the yearly average of the 
historical period (1976-2005), for RCPs 4.5 and 
8.5. The line represents the average of the five 
climate models, while the band is the 
confidence interval. The same values 
considering annual, winter and summer 
values, for the near (b, 2041-2070) and far 
futures (c, 2071-2100), are used in the 
boxplots. 

 

 

 

 

 

 

 

 

 

 

 

3.4.3 Impacts of climate change and vegetation responses to CO2 on future potential 

evapotranspiration and future aridity 

Projected PET drastically changed, both in terms of magnitude and sign, considering RCPs 4.5 and 8.5 and due 

to the inclusion of the stomatal conductance reduction effect (Fig. 3.5a, Table 3.3). Consequently, the other 

components of the water balance such as actual evapotranspiration, water yield, percolation, and irrigation 

were similarly influenced (Fig. 3.6, Table 3.4). As expected, the changes in PET in the far future were 

particularly high for RCP 8.5. When not including the suppression effect, PET increased in line with 

temperature. In that case, under RCP 4.5, the average PET increased up to 110 mm (Table A3.6) mainly in the 

near future, while in the far future, the increases remained of a similar magnitude. This reflects the increase 

in temperature that occurred early in the near future and slowed down by the end of the century (Fig. 3.3). 

Under RCP 8.5, on the contrary, PET continued to increase until the end of the century, reaching an average 

increase of 225 mm (Table A3.7). The CO2 suppression effect balanced the temperature-induced change in 

PET, quenching its increase under RCP 4.5 to 16 mm (Table A3.6). The CO2 concentration used in the long-

term future period under RCP 8.5, on the other hand, was 939 ppm, far above the upper limit of 660 ppm of 

the Morison experiment. This explains the drop in PET in the period 2071-2100, with an ensemble-mean 

decrease of -211 mm (Table A3.7).  
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Table 3.3: Precipitation, average temperature and potential evapotranspiration in the historical, near and far future periods for the 
five climate models considered in this study. For potential evapotranspiration, the values for both cases, constant and reduced stomatal 
conductance, are reported. Significance levels of the Wilcoxon test between future and historical periods and between the two cases 
considered are also included in the table.  

Climate 

model 

Precipitation  

(mm) 

Average temperature 

(°C) 

Potential evapotranspiration (mm) 

Constant stomatal 

conductance 

Stomatal conductance 

suppression 

Historical 

1 711 13.8 1008 1020 

2 648 13.9 930 942 

3 716 13.7 990 1003 

4 693 13.9 1193 1211 

5 667 13.6 1203 1220 

Near Future 

 RCP 4.5 RCP 8.5 RCP 4.5 RCP 8.5 RCP 4.5 RCP 8.5 RCP 4.5 RCP 8.5 

1 714 (0%) 790 (11%) 15.7 (14%)** 16.1 (17%)** 1160 (15%)** 1158 (15%)** 1118 (10%)**, †† 1076 (6%)**, †† 

2 700 (8%) 820 (27%)** 15.2 (10%)** 16.0 (15%)** 998 (7%)** 1013 (9%)** 958 (2%)†† 936 (-1%)†† 

3 712 (-1%) 801 (12%) 14.9 (9%)** 15.5 (13%)** 1066 (8%)** 1083 (9%)** 1024 (2%)† 1002 (0%)†† 

4 762 (10%) 752 (9%) 15.3 (10%)** 16.2 (17%)** 1275 (7%)** 1321 (11%)** 1216 (0%)†† 1206 (0%)†† 

5 632 (-5%) 607 (-9%) 15.6 (14%)** 16.1 (18%)** 1303 (8%)** 1331 (11%)** 1250 (2%)†† 1228 (1%)†† 

Far future 

 RCP 4.5 RCP 8.5 RCP 4.5 RCP 8.5 RCP 4.5 RCP 8.5 RCP 4.5 RCP 8.5 

1 840 (18%)* 749 (5%) 16.1 (17%)** 18.0 (30%)** 1163 (15%)** 1290 (28%)** 1090 (7%)**, †† 891 (-13%)**, †† 

2 784 (21%)** 766 (18%)* 15.8 (14%)** 17.4 (26%)** 1009 (9%)** 1085 (17%)** 941 (0%)†† 733 (-22%)**, †† 

3 817 (14%)* 851 (19%)** 15.5 (13%)** 17.5 (28%)** 1055 (7%)** 1183 (19%)** 987 (-2%)†† 809 (-19%)**, †† 

4 704 (2%) 706 (2%) 15.9 (14%)** 18.1 (30%)** 1318 (10%)** 1441 (21%)** 1218 (1%)†† 924 (-24%)**, †† 

5 639 (-4%) 524 (-21%)** 16.0 (18%)** 17.9 (32%)** 1331 (11%)** 1456 (21%)** 1240 (2%)†† 976 (-20%)**, †† 

* p-value < 0.05 for the Wilcoxon rank-sum test with variables from simulations with historical and future 
** p-value < 0.01 for the Wilcoxon rank-sum test with variables from simulations with historical and future 
† p-value < 0.05 for the Wilcoxon rank-sum test with variables from simulations with constant and reduced stomatal conductance 
†† p-value < 0.01 for the Wilcoxon rank-sum test with variables from simulations with constant and reduced stomatal conductance 

The uncertainty in future precipitation as predicted by the five climate models considered (Fig. 3.4, S1, Table 

3.3) and the one in future PET as predicted by the SWAT+ model forced with the climate projections (Fig. 3.5a) 

escalated when considering AI. While AI was simulated to be around 0.65 in the historical simulations, that is 

the threshold that divides the “dry sub-humid” and “humid” climates, AI drastically disperses depending on 

the RCPs, climate models, and whether or not the CO2 suppression effect on stomatal conductance is included 

(Fig. 3.5b). By the end of the century, under RCP 4.5, the deviation between the different models will be 

higher as compared to the historical simulations. When considering stomatal conductance reduction, the AI 

values ranged between 0.83 and 0.52, while they were slightly lower with constant stomatal conductance, 

between 0.78 and 0.48. Following the more uncertain predictions under RCP 8.5, the projected AI ranged 

between 0.72 and 0.36 when considering constant stomatal conductance and between 1.05 and 0.54 when 

analysing the simulations with stomatal conductance reduction. Therefore, according to the UNEP 

classification (Middleton and Thomas, 1997), the current humid/dry sub-humid climate is predicted to shift 

towards a much more humid climate for RCP 8.5 when considering the vegetation responses to CO2, while it 

shifts towards a much more arid climate when considering the same RCP but calculated with constant 

stomatal conductance. With the driest climate projections of the NorESM1-M – REMO2015 climate model, 
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under RCP 8.5 and constant stomatal conductance, AI was predicted to be below 0.5, the threshold that 

divides “dry sub-humid” and “semi-arid” climates.  

 

Figure 3.5: Potential evapotranspiration and Aridity Index (AI) with constant or decreased stomatal conductance. (a) Lineplot of 
projected potential evapotranspiration (mm), reported as the absolute difference between the future years (2041-2100) and the yearly 
average of the historical period (1976-2005), for RCPs 4.5 and 8.5, considering constant and decreasing stomatal conductance. The 
line represents the average of the five climate models, while the band is the confidence interval. The abrupt change occurring in 2070 
is due to the fact that the CO2 concentration value was averaged and considered constant for the two future periods (2041-2070 and 
2071-2100). (b) The AI, calculated as the ratio between precipitation and potential evapotranspiration for the historical (1976-2005), 
medium-term (2041-2070) and long-term (2071-2100) future periods considering RCPs 4.5 and 8.5, and constant and increasing CO2 
concentration values. The dots represent the average values and the uncertainty is reported considering the five climate models. 

3.4.4 Impacts of climate change and vegetation responses to CO2 on future water balance 

components 

Since equation 1 used in the SWAT+ model was tested only until 660 ppm, we opted to analyze future impacts 

of climate change and vegetation responses to CO2 on water balance components only in the near future 

(2041-2070), with CO2 concentrations lower than the threshold.  

Changes in water yield and percolation were strictly linked to precipitation. In the near future, the climate 

models which predicted precipitation increases were CNRM-CM5-RACMO22E and MPI-ESM-LR-RCA4 under 

RCP 4.5 and all except NorESM1-M-REMO2015 under RCP 8.5 (Table 3.3). If the precipitation increases were 

mostly not significant, for water yield and percolation the Wilcoxon test always resulted in p-values lower 

than 5% (Table 3.4). The percentage changes were much higher for water yield and percolation as compared 

to precipitation increases, reaching up to 105% and 73% increases for CNRM-CM5-RACMO22E under RCP 8.5 

and with stomatal conductance suppression for water yield and percolation, respectively (Table 3.4). 

For evapotranspiration and constant stomatal conductance, we observed significant changes (-8%) only for 

NorESM1-M-REMO2015 under RCP 8.5. Instead, we found more significant differences when including the 

stomatal conductance suppression. For example, under both RCPs, evapotranspiration in MPI-ESM-LR-RCA4 

and NorESM1-M-REMO2015 significantly decreased by up to -11%. Irrigation amounts in the future will 

mostly decrease (Table 3.4). With constant stomatal conductance, significant decreases (-12% under both 

RCPs) were found only in MPI-ESM-LR-RCA4. Including stomatal conductance suppression, CNRM-CM5-

ALADIN63 and CNRM-CM5-RACMO22E showed significant decreases under RCP 8.5, while the decreases for 

MPI-ESM-LR-RCA4 were up to -23% under RCP 8.5. 

The variables related to temperature – PET and actual evapotranspiration – were reduced when considering 

the plant physiological responses to CO2, while those related to precipitation – water yield and percolation – 

showed an increase when the vegetation responses were included. If the changes caused by the 

inclusion/exclusion of the stomatal conductance suppression were significant for PET (Table 3.3), the changes 
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found for the other balance components were not significant in most cases. We obtained significant changes 

only under RCP 8.5 for evapotranspiration (3 models out of 5) and irrigation (2 models out of 5). Figure 3.6 

reports the absolute values of the ensemble water balances for the two cases considered in this study and 

their relative percentage difference. Differences in the historical period were minimal (1-2%) and they 

increased as the CO2 concentration was higher. Under RCP 8.5, irrigation changed the most with a difference 

of 10.1%, followed by percolation (-8%), soil evaporation (7.1%), water yield (-5.5%) and transpiration (3.2%). 

Canopy evaporation was barely affected by the change in potential evapotranspiration driven by different CO2 

concentrations. The magnitude of percentage changes caused by the vegetation responses to CO2 ranged 

between -4.8% and 4.1% for RCP 4.5, while between -8% and 10.1% for RCP 8.5. 

Table 3.4: Water yield, percolation, evapotranspiration and irrigation in the historical and near future periods for the five climate 
models and for both cases, constant and reduced stomatal conductance, considered in this study. Significance levels of the Wilcoxon 
test between future and historical periods and between the two cases considered are also included in the table.  

Climate 

model 

Water yield  

(mm) 

Percolation  

(mm) 

Evapotranspiration 

(mm) 

Irrigation  

(mm) 

Historical (Constant stomatal conductance) 

1 98 127 499 11 

2 93 112 453 11 

3 106 134 483 11 

4 91 108 513 14 

5 84 78 519 16 

Near Future (Constant stomatal conductance) 

 RCP 4.5 RCP 8.5 RCP 4.5 RCP 8.5 RCP 4.5 RCP 8.5 RCP 4.5 RCP 8.5 

1 106 (9%) 126 (29%)* 137 (8%) 158 (25%)** 482 (-3%) 515 (3%) 12 (4%) 11 (-4%) 

2 121 (30%)* 180 (94%)** 141 (25%)* 179 (60%)** 447 (-1%) 470 (4%) 11 (-1%) 10 (-5%) 

3 106 (0%) 144 (36%)* 131 (-2%) 167 (24%)* 479 (-1%) 498 (3%) 11 (7%) 10 (-5%) 

4 124 (37%)** 123 (35%)* 150 (39%)** 139 (29%)* 497 (-3%) 499 (-3%) 12 (-12%)* 13 (-12%)* 

5 85 (1%) 81 (-4%) 75 (-4%) 62 (-21%) 487 (-6%) 476 (-8%)* 16 (-5%) 16 (-3%) 

Historical (Stomatal conductance suppression) 

1 96 125 502 11 

2 92 110 457 11 

3 105 132 487 11 

4 90 105 517 15 

5 83 76 522 17 

Near future (Stomatal conductance suppression) 

 RCP 4.5 RCP 8.5 RCP 4.5 RCP 8.5 RCP 4.5 RCP 8.5 RCP 4.5 RCP 8.5 

1 110 (14%) 134 (39%)* 142 (14%) 170 (36%)** 472 (-6%)* 493 (-2%)† 11 (-1%) 10 (-14%)*, † 

2 125 (36%)* 188 (105%)** 147 (33%)** 191 (73%)** 436 (-4%) 448 (-2%) 10 (-7%) 9 (-16%)** 

3 110 (5%) 153 (46%)** 137 (4%) 180 (36%)** 468 (-4%) 475 (-2%)† 11 (0%) 9 (-14%) 

4 129 (44%)** 131 (46%)** 157 (49%)** 152 (44%)** 484 (-6%)* 476 (-8%)**, † 12 (-18%)** 11 (-23%)**, † 

5 87 (4%) 83 (0%) 80 (4%) 71 (-7%) 480 (-8%)* 463 (-11%)** 15 (-12%) 14 (-16%)† 

* p-value < 0.05 for the Wilcoxon rank-sum test with historical and future samples 
** p-value < 0.01 for the Wilcoxon rank-sum test with historical and future samples 
† p-value < 0.05 for the Wilcoxon rank-sum test with constant and reduced stomatal conductance samples 
†† p-value < 0.01 for the Wilcoxon rank-sum test with constant and reduced stomatal conductance samples 



44 
 

 

Figure 3.6: Bar plots and tables with the water balance components of the various simulations carried out in this study. The water 
balance values used are the ensembles of the five climate models. The cases of constant stomatal conductance (400 ppm) and modified 
CO2 concentration are reported with the amounts and the percentage changes (Δ column in the table). 
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3.5 Discussion 

3.5.1 Climate models’ uncertainty in the Northern Mediterranean area 

Our study further confirmed that the projected increases in temperatures in the study region are significant, 

and especially high for RCP 8.5 and during summer, consistent with previous research (e.g., Spano et al., 

2020). On the other hand, results revealed even more uncertainty regarding the future precipitation predicted 

by climate models for the Northern Mediterranean area. The ensemble mean of the five climate models 

considered in this study indicated an increase in precipitation, more accentuated during winter and for RCP 

4.5. These results look contradictory as compared to the projections for the overall Mediterranean region. 

Nevertheless, Central and Northern Italy are in a transition zone between the arid North African and the 

humid Central European climate zones, and the zero-change line predicted in past studies usually crosses this 

area (e.g., Coppola et al., 2021; Mariotti et al., 2015; Spano et al., 2020). A deeper analysis of the literature 

regarding only the Northern Mediterranean area showed very high uncertainty, and in particular when 

considering Central and Northern Italy. For example, Mariotti et al. (2015) analysed the outputs of CMIP5 

experiments, using an ensemble of climate models for RCP 4.5, and found only a minor decrease of 0.2 

mm/day during summer by the end of the 21st century, and no decrease when considering winter or annual 

precipitation over the Northern Mediterranean area. Instead, Lionello and Scarascia (2018) considered RCP 

8.5 of CMIP5 experiments and found an overall reduction of precipitation except for winter and, to a lower 

extent, spring months in the Northern Mediterranean area. The analysis of the outputs of the first EURO-

CORDEX RCMs ensemble showed that, for Italy, the climate change signal for precipitation was uncertain 

under RCP 4.5, while it was negative for Central and Southern Italy under RCP 8.5, again with a distinct 

gradient increasing southward (Jacob et al., 2014). More recently, Coppola et al. (2021) used a much larger 

ensemble of EURO-CORDEX RCMs and compared the outputs with those of CMIP5 and CMIP6 GCMs, 

considering RCP 8.5. The three ensembles agreed to show the precipitation zero-change line over the 

Northern Mediterranean during winter, while it shifted northward in summer, meaning that a decrease in 

precipitation is projected for summer months over Italy. Evin et al. (2021) also used a large ensemble of EURO-

CORDEX RCMs considering RCPs 2.6, 4.5, and 8.5 to estimate future temperatures and precipitation and the 

relative uncertainty. For Italy, they projected slight increases in winter precipitation and significant decreases 

in summer precipitation, yet with very large uncertainties. It is interesting to underline that, in this study, Italy 

emerged as the country with the lowest reduction in precipitation among the Mediterranean countries. 

Focusing only on the Italian territory, CMCC carried out a climate change analysis considering an ensemble of 

EURO-CORDEX RCMs (Spano et al., 2020). The main results confirmed the North-South gradient for 

precipitation since a reduction was found for Southern and Central Italy, mainly in summer and, to a lower 

extent, in spring months, while an increase in winter precipitation over Northern Italy. Moreover, an 

increasing trend in maximum daily precipitation was found for summer and autumn. Studies summarized in 

the draft of the National Climate Change Adaptation Plan (PNACC, 2018) reported instead a reduction in total 

precipitation, more pronounced in the Southern areas, in the summer season, and when considering RCP 8.5. 

A robust decrease in total precipitation, with similar patterns, was also found in the analysis carried out by 

Padulano et al. (2020) which also used an ensemble of EURO-CORDEX RCMs in Italy. The overall picture of 

increasing precipitation during winter and decreasing precipitation in summer is confirmed also by our 

analysis when considering RCP 8.5, but the winter increases were higher as compared to the spring and 

summer decreases, resulting in an overall, yet minor, increase. Instead, for RCP 4.5, minor increases were 

found also for the summer season. Notably, most precipitation changes in our study were not statistically 

significant. 
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For water yield and percolation, the sign of change was in line with the predicted change in precipitation, 

consistent with other studies that coupled the SWAT model with climate models in Italy. For example, Fiseha 

et al. (2014) used climate variables from one GCM downscaled with three RCMs as input to simulate future 

precipitation and hydrological water balance components in the upper Tiber basin, in Central Italy, 

considering two different scenarios of future CO2 concentrations. Except for one climate model in the lower 

emission scenario, their results showed a general decrease in precipitation and related variables, mostly 

during summer. Decreasing trends in precipitation and related water balance components such as water yield, 

groundwater recharge, and evapotranspiration were also found for the Candelaro catchment in Southern 

Italy, considering three RCMs (De Girolamo et al., 2017). Pulighe et al. (2021) applied the SWAT+ model to 

simulate the future climate in the Sulcis catchment in Sardinia with two RCMs and RCPs 4.5 and 8.5. Their 

results showed a clear decrease in precipitation only for one climate model with RCP 4.5, while slight 

increases for the other simulations. PET was predicted to significantly increase and the other water balance 

components such as surface runoff and percolation decreased because of the increased water loss to the 

atmosphere. In a small catchment of the Po River delta in Northern Italy, Pesce et al. (2019) used 10 different 

GCM-RCM combinations and found an average decrease in future precipitation, although with an unclear 

tendency, especially for RCP 4.5 in the medium-term future (2041-2070). Future water flow was projected to 

increase in the wet season and decrease during spring and summer. Finally, Glavan et al. (2015) simulated 

climate change impacts with six different climate models in a small Slovenian catchment, very close to the 

Italian border. Their results showed that PET increased as well as actual evapotranspiration if precipitation 

also increased. Also, precipitation was projected to increase with few exceptions by the end of the century, 

and stream flows showed consistent increases but higher in magnitude. This is in line with our study since we 

also observed that the percentage change in water yield was much higher as compared to the increase in 

precipitation. It is worth noting that in our study and the ones previously discussed, a subset of the available 

climate models was used, which might lead to under-representative estimates enhancing the uncertainty 

(Evin et al., 2021). 

3.5.2 Impacts of vegetation responses to CO2  

The roles of the stomatal conductance reduction and the CO2 fertilization effects caused by the CO2 

concentration rising are still unclear and debated. Experiments using earth system models showed that the 

CO2 physiological response of vegetation on evapotranspiration and long-term runoff had higher impacts 

compared to radiative or precipitation changes caused by CO2 rising (Lemordant et al., 2018). Furthermore, 

plant physiological responses to CO2 were also found to reduce future drought-stress predictions (Swann et 

al., 2016). Moreover, Skinner et al. (2018) demonstrated that the CO2-driven vegetation changes amplified 

the frequency and intensity of summer heat waves. GCMs predict higher temperatures compared to RCMs, 

and this was explained by the fact that the latter generally do not include the vegetation response to CO2 

rising since when including this effect, the temperature predicted by RCMs increased (Schwingshackl et al., 

2019). However, the study of Taranu et al. (2022) showed that plant physiology had a limited effect and did 

not explain the large discrepancies observed between GCMs and RCMs. Finally, Vicente-Serrano et al. (2022a) 

argued that the physiological effect of vegetation as included in climate models might be overestimated and 

that their outputs should be used with caution when studying future droughts. 

The CO2 rising effect on PET and therefore on all the indices that use it to infer future drought and aridity 

conditions are remarkable, yet not completely understood (Scheff, 2018; Vicente-Serrano et al., 2022b). The 

effect of CO2 rising on future mechanisms and processes relevant to the estimation of future aridity conditions 

was also analysed quantitatively in climate and hydrological studies, proving that the impacts are not 
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negligible, and stressing the importance of understanding and quantifying them better to obtain reliable 

future projections of drought and aridity. For example, Greve et al. (2019) demonstrated that the future 

estimation of PET was largely influenced by the method used to calculate it and that this uncertainty also 

affects the validity of indexes such as AI. Zhou et al. (2022) found opposite trends for past conditions in China 

when calculating PET using modified and traditional Penman-Monteith equations by including or excluding 

stomatal conductance reduction. They concluded that ignoring this effect results in a significant PET 

overestimation, especially in arid regions. However, actual evapotranspiration in arid and semi-arid regions is 

mainly controlled by soil moisture and is not very sensitive to PET (Dakhlaoui et al., 2020), meaning that this 

overestimation might be a problem in humid regions. Our analysis confirmed that the increase in PET did not 

lead to a proportional increase in actual evapotranspiration. More in detail, in our study the difference in 

annual actual evapotranspiration between the two cases considered under RCP 4.5 and 8.5 in the near future 

was around 5% (Fig. 3.6). This is consistent with the compensative effect caused by CO2 fertilization (Manzoni 

et al., 2022) and in line with the magnitudes of changes of less than 8% reported by Fatichi et al. (2016). 

Lemaitre‑Basset et al. (2022) showed that the stomatal conductance reduction effect has a significant impact 

on future runoff projections over France, while Boé (2021) reported that the decrease in evapotranspiration 

caused by the physiological effect of CO2 did not result in an increase in river flows and soil moisture due to 

reduced precipitation in summer over France. Yang et al. (2019) demonstrated that the outputs of climate 

models are similar to those of hydrological models when accounting for the suppression effect in the 

calculation of PET. Using SWAT, multiple studies showed that evapotranspiration was reduced by the plant 

physiological responses to CO2, leading to substantial increases in runoff, recharge and discharge (Ficklin et 

al., 2009; Kishawi et al., 2022; Lee et al., 2018; van Liew et al., 2012). Other studies evaluated the impact of 

the stomatal conductance reduction and CO2 fertilization by modifying SWAT to include dynamic CO2 

concentration as input, finding similar results in terms of increased streamflow and reduced evaporation 

(Butcher et al., 2014; Wang et al., 2017; Wu et al., 2012). Notably, all these studies were conducted with the 

older SWAT model versions and run over the United States.  

Our results are in line with previous studies, since the impact of vegetation responses to CO2 on future PET, 

and therefore on future water fluxes and aridity, was high when considering RCP 8.5. Particularly, Lemaitre-

Basset et al. (2022) applied the two methods that we used to estimate PET, namely the non-modified Penman-

Monteith equation and the modified Penman-Monteith as proposed by Stockle et al. (1992), finding very 

similar future trends to those we identified. In our study, differences in PET estimation ranged from more 

than 200 mm increases when considering constant stomatal conductance to decreases of the same 

magnitude when considering stomatal conductance reduction under RCP 8.5. The magnitude and sign of 

changes when considering plant physiological responses caused by CO2 concentration rising were consistent 

with other studies that applied SWAT. It is interesting to note that when past studies considered CO2 

concentration beyond 660 ppm they found significant percentage decreases in future actual 

evapotranspiration as compared to baseline periods. More specifically, Ficklin et al. (2009), Lee et al. (2018) 

and Kishawi et al. (2022) used 970 ppm, 850 ppm, and 935 ppm, obtaining decreases of 40%, 30% and 32% 

respectively. It has been already hypothesized that the simulated reduction of actual evapotranspiration 

caused by the plant physiological responses to CO2 is overestimated by SWAT, but this was attributed to 

several simplifications in the equations used by the model and not by the invalidity of the equations used 

over 660 ppm (Butcher et al., 2014; Eckhardt and Ulbrich, 2003; Lee et al., 2018). Considering the findings of 

Lemaitre‑Basset et al. (2022), we confirm that the method included in the SWAT/SWAT+ modelling suite for 

CO2 concentrations higher than the 660 ppm threshold is questionable, and simulation outcomes should be 

interpreted with caution. On the other hand, PET increases with constant stomatal conductance in our study 

amounted to 225 mm, which corresponds to more than 20% in relative change. Regarding water yield changes 
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caused by the inclusion of the plant physiological responses to CO2, our results agree with those of previous 

studies in the positive sign of change. As shown in Fig. 3.6, the magnitude of change in water yield, comparing 

simulations considering and ignoring the physiological responses, was approximately 5% under RCP 4.5, while 

it reached more than 20% under RCP 8.5 (Fig. A3.2). Butcher et al. (2014) reported increases ranging from 3 

to 38% and a median of 11%. The contribution of the plant physiological responses to CO2 estimated by Wu 

et al. (2012) amounted to 22% for streamflow by the end of this century, much higher than the effect 

quantified at 1-4% of the recent decades. Marginal increases in streamflow of approximately 1% were instead 

reported in the study conducted by Wang et al. (2017).  

In SWAT+, both the CO2 suppression effect on stomatal conductance and the CO2 fertilization effect are 

considered. Nevertheless, they are calculated in different steps since the stomatal conductance is reduced 

when using the Penman-Monteith equation to retrieve PET and the fertilization effect when calculating daily 

accumulated biomass. This might cause some inconsistencies due to the leaf- and canopy-levels transpiration 

changes caused by these two effects (Manzoni et al., 2022), but the magnitudes of the reductions in actual 

evapotranspiration and the other variables seem to confirm that the increase in biomass partially 

compensates the decrease in transpiration caused by reduced stomatal conductance. Furthermore, the 

approach of using climate inputs from GCMs or RCMs to force a hydrological model, used in our study and 

the papers previously discussed, has some limitations that need to be considered. With this one-way coupling, 

the interactions and feedback between climate and vegetation are mostly neglected (Wu et al., 2012). 

Coupling offline hydrological models which do not account for physiological responses of vegetation with 

climate models is questionable (Milly and Dunne, 2017), especially when the climate models consider these 

effects (Boé, 2021). As reported by Schwingshackl et al. (2019), most of the GCMs that they used in their 

study included the CO2 vegetation response while none of the RCMs considered it. Indeed, the physiological 

effect of vegetation induces a larger decrease in precipitation which should be compensated by a decrease in 

evapotranspiration (Boé, 2021). The opposite problem might occur if the offline hydrological model 

simulation of the physiological effect of CO2 on evapotranspiration is inconsistent with the strength of the 

vegetation response as simulated by the climate model (Boé, 2021). Furthermore, Swann et al. (2016) 

suggested that using outputs of earth system models in hydrological models may lead to overestimation of 

the future drought stress due to double counting of plant feedback on surface humidity, temperature and net 

radiation.  

3.6 Conclusion 

In this study, the SWAT+ model was forced with climate data from five EURO-CORDEX climate models to 

estimate future climate change impacts in a typical Mediterranean catchment, the Ombrone catchment in 

Central Italy. Future aridity conditions were also estimated considering constant and decreasing stomatal 

conductance. The model performed well after the multi-site calibration carried out for three gauging stations, 

considering monthly streamflow.  

In contrast to temperature, high uncertainties exist in the future trends of precipitation. Only one climate 

model predicted a clear decrease in future precipitation following RCP 8.5, while the others showed minor 

increases or constant values. The ensemble mean of winter precipitation increased, while summer 

precipitation remained almost constant or slightly decreased, with an overall increase in annual average 

precipitation.  

The impact of stomatal conductance suppression on future PET was significant and should be taken into 

account. Upon disregarding, high increases in PET were obtained, while minor PET increases or even 
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decreasing values were found upon consideration of the suppression effect. Under RCP 8.5 in the far future 

period, the differences between disregarding/including the vegetation responses to CO2 were nearly 50% in 

PET and ranged from 20 to 30% for the other water balance components (Fig. A3.2). 

The SWAT+ model considers the CO2 effect on future PET with a modification of the Penman-Monteith 

equation based on an experiment that was conducted for a range of CO2 values between 330 and 660 ppm. 

RCP 8.5 predicts much higher CO2 concentration values by the end of the century. For RCP 8.5, when 

considering stomatal conductance suppression, we found a dubious drop in PET of more than 200 mm. 

Further research is certainly needed, but the outputs of the SWAT+ model when excluding vegetation 

responses to CO2 and when considering CO2 concentrations much higher than 660 ppm are prone to large 

uncertainties. Nevertheless, the Penman-Monteith equation is recommended when using SWAT+ to assess 

future climate change impacts to account for the effect of reduced stomatal conductance.  

The uncertainty in future precipitation and atmospheric evaporative demand patterns strongly increases 

when considering measures such as the Aridity Index and, consequently, highly influences future climate 

classification. Unravelling the uncertainties related to future precipitation in transition zones, like the 

Northern Mediterranean area, and the plant physiological responses caused by rising CO2 concentration on 

future atmospheric evaporative demand is crucial to better understanding climate change impacts and 

planning more effective adaptation strategies. 
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Chapter 4 Management change impact assessment 

The manuscript reported as Chapter 4 was submitted to Agricultural Systems with the title “Exploring 

Adaptive Capacities in Mediterranean Agriculture: Insights from Central Italy's Ombrone Catchment” and is 

currently under revision. 

4.1 Abstract 

Climate change's profound implications for Mediterranean agriculture underscores the urgency of adaptation 

strategies. These strategies, whether incentivized or farmer-driven, are pivotal in mitigating yield losses and 

harnessing evolving climatic conditions. While agronomic adaptations’ influence on crop yields is well-

explored, its implications for water footprint and hydrological mass balance components remain largely 

unexplored. With this study, we aim to conduct a comprehensive assessment of the adaptive capacity of 

agricultural systems in the Ombrone catchment, Tuscany. We estimate the impacts of both climate and 

management changes on crop yield, water footprint and water balance components by comparing 

simulations with current and future climate and with and without adaptation strategies. An existing SWAT+ 

agro-hydrological model of the Ombrone catchment is re-calibrated for crop yields of durum wheat, 

sunflower and irrigated maize. The impacts of climate change are then assessed by forcing the model with 

five bias-corrected climate models. Subsequently, we simulate six autonomous agronomic adaptation 

strategies both individually and in combinations. We quantify their impacts on crop yield, water footprint, 

and water balance components, such as evaporation, water yield and soil moisture. Notably, our findings 

reveal variable and adverse impacts on crop yields under RCPs 4.5 and 8.5. Conversely, water footprints 

exhibit consistent opposing trends. Agricultural systems exhibit robust adaptive capabilities, particularly 

when multiple strategies are combined. The most impactful strategies revolve around earlier sowing and 

extended crop cycles. Supplemental irrigation and cover crops are beneficial only in specific scenarios. While 

adaptation strategies have a limited impact on basin-scale water balance components, they induce an average 

27% reduction in water yield at the cropland scale, attributed to practices like zero tillage and cover crops. In 

conclusion, our research underscores the non-negligible influence of management changes on water balance 

components in primarily agricultural catchments. Future adaptation strategy assessments should encompass 

comprehensive integration to evaluate broader impacts on water resources. 

4.2 Introduction 

Mediterranean agriculture is highly susceptible to climate change, and yield losses are projected for most 

crops, mainly caused by the expected impacts on water resources (Iglesias et al., 2011; Ludwig et al., 2011; 

Pasqui and Di Giuseppe, 2019). Increasing temperatures will shorten crop cycle length, reducing yields due to 

the shorter time to accumulate biomass, while water deficiencies will affect future yields, especially when 

occurring during sensible phases of the crop cycle. Pests, diseases, weeds, droughts, floods, and cold and heat 

waves are other factors that will be possibly influenced by climate change and that will harm crop yields (Bindi 

and Olesen, 2011; Ciscar et al., 2018; Giannakopoulos et al., 2009; Spano et al., 2020). In general, summer 

crops are expected to be more affected compared to winter crops, mainly due to drought stress (Webber et 

al., 2018). On the other hand, CO2 rising will benefit crop yields, especially C3 crops (Ainsworth and Long, 

2005; Webber et al., 2018). Also, local processes or characteristics might have a positive effect on crop yields 

and, since adaptation strategies are planned considering the local characteristics, climate change impacts 

need to be addressed at the local scale (Iglesias et al., 2010; Pasqui and Di Giuseppe, 2019). In Northern and 

Central Italy, climate change impacts are uncertain since the General Circulation Models (GCMs) and the 
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downscaled Regional Climate Models (RCMs) do not provide clear and robust projections regarding 

precipitation. This area is in the transition zone between the arid North African and the humid Central 

European climates, and past studies found that the zero-change precipitation line usually crosses this area 

(Mariotti et al., 2015; Spano et al., 2020). Regardless of the sign and magnitude of climate change, adaptation 

strategies will have a crucial role in limiting crop yield losses or enhancing the unlikely positive climate 

changes (Bindi and Olesen, 2011; Reidsma et al., 2015). 

Agricultural adaptation strategies can be categorized as planned and autonomous - sometimes referred to as 

hard and soft adaptations - where planned adaptations refer to major structural changes at larger scales that 

generally require huge investments and longer times, while autonomous adaptations consist of adjustments 

at smaller and shorter scales to optimize production (Bindi and Olesen, 2011). Numerous agronomic practices 

have been proposed to adapt to climate change as it was demonstrated that they can improve crop yield, 

crop water productivity and water savings (Jovanovic et al., 2020; van Opstal et al., 2021). Developing or 

selecting crops and varieties that perform better in modified climate conditions is usually indicated as a very 

promising strategy (Monaco et al., 2014), as well as shifting the crop calendar to better match the plant 

requirements with the climate. Conservation tillage, either reduced or completely avoided, showed to 

reinforce the small water cycle, enhance water storage, and increase soil organic carbon (Iocola et al., 2017; 

Liebhard et al., 2022; Noreika et al., 2022; Sapkota et al., 2012). Mulching is another practice that reduces 

evaporation and alleviates water scarcity (Nouri et al., 2019; Stewart and Peterson, 2015). Adjusting plant 

densities is an option to adapt the crop water needs to the actual availability (Stewart and Peterson, 2015). 

The inclusion of cover crops in the rotation resulted in gains in crop productivity and the provision of several 

ecosystem services (Adeux et al., 2021; Schipanski et al., 2014). These and other autonomous agronomic 

adaptation strategies, which are generally overlooked by decision-makers, might have a crucial role as they 

are, in most cases, highly accepted and will be easily implemented by farmers themselves (Bonzanigo et al., 

2016; Varela-Ortega et al., 2016). 

In combination with climate models such as GCMs or RCMs, crop-growth models are typically used to 

estimate future crop yields and the effects of agronomic adaptation strategies. These dynamic and process-

based models represent the state of the art over the current understanding of crop processes to simulate 

crop growth according to the specific weather, soil, management, and crop genetic characteristics (Ewert et 

al., 2015). Despite the great improvements in the last decades, these models still have important weaknesses 

that limit their application in integrated assessments. For example, some processes that might affect future 

crop yield are ignored or simplistically represented, most of the studies focus on few crops, and the required 

data to accurately set up, calibrate and validate these models are often not available (Ewert et al., 2015). 

Another major issue is the scaling up to field and catchment scales of the point-scale outputs of crop-growth 

models, necessary to obtain more meaningful assessments by considering soil, crop, climate, and 

management variabilities (Ahuja et al., 2019; Tenreiro et al., 2020).  

To carry out useful impact assessments concerning food security, the output variables of crop-growth models 

might not be sufficient. When dealing with climate change impact assessments, integrated assessments are 

usually preferred to better evaluate the whole spectrum of consequences of climate change, building 

modelling frameworks that include not only biophysical aspects, but also social, political, and economic ones 

(Ewert et al., 2015; Reidsma et al., 2015). Nevertheless, the integration of different models is usually 

challenging. Even focusing only on biophysical aspects, the outputs of crop-growth models are limited for a 

comprehensive analysis when considering broader environmental and water resource assessments. For 

example, in addition to crop yield, a typical output derived from crop-growth models commonly used in 

agricultural water management is the Water Footprint (WF) (Gobin et al., 2017; Kersebaum et al., 2016). WF, 
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defined as “the volume of freshwater used to produce the product, measured over the full supply chain” 

(Hoekstra et al., 2011), is a simple and universal metric that can be easily applied. However, it has some 

shortcomings when trying to analyse the local contexts or consider the impacts of water use downstream 

(van Noordwijk et al., 2022). More specifically, WF is limited to vertical exchanges of water and does not 

consider the lateral, or horizontal, flows that are instead included when applying hydrological models (Van 

Noordwijk et al., 2022). Hence, considering the processes and the outputs of hydrological models is surely 

helpful to better describe the soil-water interactions at scales larger than the point scale (Tenreiro et al., 

2020), and the coupling of crop-growth and hydrological models is often promoted as an optimal solution 

(Siad et al., 2019, van Gaelen et al., 2017). 

Integrated, (semi)-distributed hydrological models, such as the Soil and Water Assessment Tool (SWAT) 

(Arnold et al., 1998), might offer a solution to most of the issues highlighted in the previous paragraphs. 

Integrated agro-hydrological models generate a higher number of outputs that can be used to assess more 

comprehensively the impacts of climate change on food security and water resources, such as crop yield, WF, 

and water balance components. By using the discretization of the hydrological model, crop yields can be 

spatially simulated for each specific crop, variety, soil, climate, and management conditions. As integrated 

models are directly created with multiple modules, the problems related to coupling and the compatibility of 

the different processes, inputs, and outputs are largely avoided. The SWAT/SWAT+ modelling suite has been 

already used to evaluate not only climate change impacts on crop yield, WF, and water balance components 

but also the effect of some adaptation strategies. Numerous studies focused on assessing and optimizing 

irrigation with SWAT (e.g. Panagopoulos et al., 2012, 2014; Udias et al., 2018). The impact on crop yields of 

land management practices, such as crop rotation and tillage, have been also simulated (Parajuli et al., 2013), 

as well as the effects of climate change on the crop calendar (Marcinkowski and Piniewski, 2018). Nkwasa et 

al. (2023) applied the restructured SWAT+ version (Bieger et al., 2017) to assess climate change impacts on 

crop production and the effects of longer crop cycles. SWAT has been also applied for WF and water 

productivity assessments of improved management practices (Garg et al., 2012; Salmoral et al., 2017; Sun 

and Ren, 2014; Vaghefi et al., 2017) and proposed for integrated water resources management (D’Ambrosio 

et al., 2020; Luan et al., 2018). Pacetti et al. (2021) quantified the water supply with SWAT to estimate the 

water-related ecosystem service footprint after coupling the model outputs with indicators of green, blue and 

grey WF. 

Climate and land cover changes are known to affect the water balance and their impacts have been largely 

studied also with the SWAT model (e.g. Castelli et al., 2017; Mori et al., 2021). In the previous paragraph, we 

reported some applications of SWAT to assess the effects of agronomic adaptation strategies on crop yield 

and WF. However, the effects of the future adaptation strategies – the management changes – on the water 

balance have been mostly neglected (Noreika et al., 2021), especially when focusing on autonomous, farmer-

led, agronomic adaptation strategies (Chen et al., 2021). These effects need to be assessed as they might be 

significant, possibly changing the evaluation of the adaptation strategies if we were to consider only crop 

yield and WF. For example, it was demonstrated that the mechanization of agriculture in hilly areas led to 

increased runoff and erosion, reducing the resilience of the catchments (Napoli et al., 2017; Tarolli et al., 

2014). Most of the studies that attempted to study the impacts of management changes on water balance 

components or catchment resilience with SWAT were related to irrigation. For example, Panagopoulos et al. 

(2014) and Udias et al. (2018) estimated the effects of best management practices to optimize and reduce 

irrigation water. Similarly, Dechmi and Skhiri (2013) considered several best management scenarios and 

evaluated their effects on irrigation return flows, suspended sediments, and nutrient loads. Haro-

Monteagudo et al. (2020) performed a comprehensive multi-model analysis, including SWAT, to assess the 
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impacts of climate change on future irrigated agriculture and evaluated the sustainability of the current 

reservoir management. Taye et al. (2022) evaluated the sustainability of the intensification of groundwater-

based irrigation systems coupling SWAT and MODFLOW. A further application of the SWAT model was 

proposed by Dile et al. (2016) in which they used the model to identify suitable areas for water harvesting 

ponds and evaluate the implications of these systems on upstream and downstream ecosystem services, 

including crop yield and water productivity. Yimer et al. (2023) applied SWAT+ coupled with the gwflow 

groundwater module to assess the impact of drainage from agricultural fields. Furthermore, the impacts on 

the water balance were largely studied in the Czech Republic by considering a large-scale adoption of 

rapeseed for biofuel (Noreika et al., 2020), land use and management changes occurred in the last centuries 

(Noreika et al., 2021) and agricultural conservation practices such as conservation tillage, contour farming, 

residue incorporation, and reducing field sizes (Noreika et al., 2022). Brouziyne et al. (2018) applied SWAT not 

only to assess the impacts of climate change on water productivity and water yield but also to simulate the 

effects of two agronomic adaptation practices, namely earlier sowing and conservation tillage. Finally, Chen 

et al. (2021) performed a comprehensive assessment of agricultural practices, namely irrigation and early and 

late sowing, evaluating the impacts on water balance components and crop yields. 

Applying the integrated SWAT+ model in an agricultural catchment in Central Italy, this study aims to evaluate 

climate change impacts on crop yield and WF of three representative crops and the adaptive capacity of the 

agricultural system through autonomous agronomic adaptation strategies. We re-calibrate an existing model 

in which durum wheat is selected as the representative rainfed winter crop, while sunflower and maize as the 

rainfed and irrigated spring crops, respectively. A previous drought risk assessment (Chapter 2) showed that 

the Ombrone catchment and Southern Tuscany are vulnerable and exposed to drought hazards, even though 

future projections related to precipitation are highly uncertain (Chapter 3). The adaptive capacity of the 

agricultural system is then evaluated with scenarios simulating changes in sowing dates, supplemental 

irrigation, conservation tillage, cover crops, and longer cycle varieties. The most promising combinations of 

adaptation strategies, an aspect which is also often overlooked, are explored by analysing the synergies and 

trade-offs among them. Finally, the impacts on water balance components of the management changes via 

the proposed adaptation strategies are assessed, verifying the hypothesis that management changes can 

have a significant impact on the water balance in agricultural catchments comparable to climate and land 

cover changes. 

4.3 Methodology 

4.3.1 The SWAT+ model 

The SWAT+ model is a renovated and improved version of the SWAT model (Bieger et al., 2017; Čerkasova et 

al., 2023). SWAT+ discretizes the catchment into sub-catchments and Hydrological Response Units (HRUs), 

which are spatial units with homogeneous characteristics of soil, land use and slope. Compared to the 

previous version, SWAT+ offers greater flexibility in the definition of water and agricultural management 

practices, since it includes the possibility to use decision tables, which allow for the specification of complex 

rules to simulate more realistic operations (Arnold et al., 2018; Čerkasova et al., 2023; Nkwasa et al., 2022). 

To simulate crop yield, SWAT+ uses a module which is a simplified version of the EPIC model (Neitsch et al., 

2011). Daily biomass accumulation (Δbioact), simulated with equation 1, is adjusted for the plant growth factor 

(γr) that quantifies the water, temperature and nutrient stresses (equation 2). The total biomass (bio) and 

crop yield (yld) are then calculated with equations 3 and 4. 



54 
 

∆𝑏𝑖𝑜𝑎𝑐𝑡 = (0.5 ∙  𝐼𝑑  ∙  𝑅𝑈𝐸 ∙  (1 −𝑒𝑥𝑝  (−𝑘𝑗 ∙ 𝐿𝐷) )) ∙  𝛾𝑟       (1) 

𝛾𝑟 = 1 − 𝑀𝐴𝑋(𝑤𝑠𝑡𝑟𝑠, 𝑡𝑠𝑡𝑟𝑠, 𝑛𝑠𝑡𝑟𝑠, 𝑝𝑠𝑡𝑟𝑠)        (2) 

𝑏𝑖𝑜 =  ∑ ∆𝑏𝑖𝑜𝑎𝑐𝑡
𝑑
𝑖=1            (3) 

𝑦𝑙𝑑 =  𝑏𝑖𝑜𝑎𝑔𝑔 ∙ 𝐻𝐼 𝑓𝑜𝑟 𝐻𝐼 ≤ 1          (4) 

where Id is the photosynthetically active radiation, RUE is the radiation use efficiency, Kj is the light 

interception and LD is the leaf area index development. wstrs, tstrs, nstrs and pstrs represent water, 

temperature, nitrogen and phosphorous stresses, respectively. “MAX” is a mathematical function that returns 

the maximum value. d is days, bioagg is the above-ground biomass and HI is the Harvest Index.  

SWAT+ also simulates the CO2 fertilization and stomatal conductance suppression modifying RUE and canopy 

resistance (rc) with equations 5 (Stockle et al., 1992) and 6 (Easterling et al., 1992), respectively. The CO2 effect 

on stomatal conductance is only included when using the Penman-Monteith approach to calculate potential 

evapotranspiration. It is important to underline that the equation is based on an experiment that reached 

660 ppm (Morison, 1987) and that its validity above this threshold is dubious (Lemaitre-Basset et al., 2022).  

𝑅𝑈𝐸 =  
100 ∙ 𝐶𝑂2

𝐶𝑂2+𝑒𝑥𝑝 (𝑟1− 𝑟2 ∙ 𝐶𝑂2)
          (5) 

𝑟𝑐 =  
𝑟𝑙

(0.5 ∙ 𝐿𝐷) ∙ (1.4−0.4 ∙ 
𝐶𝑂2
330

)
          (6) 

where CO2 is the concentration of carbon dioxide in the atmosphere, rl is the minimum effective stomatal 

resistance of a single leaf, r1 and r2 are the shape coefficients.  

4.3.2 The Ombrone catchment model 

The study area is the Ombrone catchment, a medium-sized coastal catchment located in Central and Southern 

Tuscany (Fig. 4.1). The catchment is almost entirely included in the Grosseto and Siena provinces, has a 

maximum elevation of 1738 m a.s.l. and an area of 3552 km2. Significant parts of the catchment are 

characterized by hilly and mountainous areas with slopes of over 20% (Diodato et al., 2023), where the most 

cultivated crops are grapevine and olives (Napoli et al., 2014; Napoli and Orlandini, 2015). Cereals are also 

widespread, while in the coastal areas horticultural and irrigated crops are present. The Ombrone catchment 

is considered prone to agricultural drought (Diodato and Bellocchi, 2008) as it receives lower precipitation 

and experiences increased dry spell occurrence compared to other parts of Tuscany (Bartolini et al., 2022). 

Herbaceous annual crops cover an area of 46.9% according to the Corine Land Cover of 2018 used in this 

study.  

The same model of the Ombrone catchment prepared for the previous hydrological and climatological study 

was used for the simulations. For this study, the model was initially set up for 13 years for calibration and 

validation with one year of warm-up. The 2637 HRUs with herbaceous cropland were split to represent the 

typical cropping pattern of the area, considering durum wheat as the rainfed winter crop (30% of the HRU), 

sunflower as the rainfed spring crop (15%), maize as irrigated spring crop (15%), and alfalfa as the forage crop 

(40%).  
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Figure 4.1: The Ombrone catchment with the provinces of Siena and Grosseto, the catchment boundaries, the Istia gauging station 
and the land cover retrieved from the Corine Land Cover of 2018 used in this study. 

4.3.3 Calibration and validation 

In this study, we performed a new calibration and validation for crop yield. We used 12 years of provincial 

crop yield, spanning from 2010 to 2021, retrieved from the National Institute of Statistics (ISTAT) for the 

provinces of Siena and Grosseto; odd years were used for calibration while even for validation. Since the focus 

of this study was on crop yield, in addition to the sensitive crop parameters selected in the previous study 

(Table A4.2), we also included the soil evaporation compensation factor (esco), the plant evaporation 

compensation factor (epco) and available water capacity (awc) to calibrate the model as in Sinnathamby et 

al. (2017). Esco and epco in the previous study were included in the automatic calibration performed for 

streamflow, while awc was not considered since it was not sensitive enough. As we modified two parameters 

that were originally included in the calibration for streamflow, we performed an additional calibration and 

validation also for monthly streamflow modifying the cn2 parameter of the whole catchment and esco and 

epco of the HRU other than cropland. To evaluate model performance, we used the Nash-Sutcliffe Efficiency 

(NSE), the Normalized Root Mean Square Error (NRMSE) and the per cent bias (Pbias) and the criteria of 

Jamieson et al. (1991) for NRMSE and Moriasi et al. (2007) for NSE and Pbias, reported in Table A4.2. 

4.3.4 Climate projections and management 

We used five bias-corrected EURO-CORDEX climate models to simulate the future climate referred to as (1) 

CNRM-CM5-ALADIN63, (2) CNRM-CM5-RACMO22E, (3) EC-EARTH-RACMO22E, (4) MPI-ESM-LR-RCA4 and (5) 
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NorESM1-M-REMO2015. We performed the simulations for 30-year periods comparing the historical 

simulation (1976-2005) with the long-term future period (2071-2100) of the same climate model for the 

Representative Concentration Pathways (RCPs) 4.5 and 8.5. Considering two years of warm-up, the analyses 

were performed for periods of 28 years. The CO2 value that could be used as input was constant for each 

simulation, and therefore we considered the average value for the different periods and RCPs considered in 

the study. We used the most updated values about CO2 concentration projections (Büchner and Reyer, 2022), 

and it is important to underline that the value for the period 2071-2100 under RCP 8.5 is 939 ppm, much 

higher than the upper threshold of 660 ppm of the Morison experiment (Morison, 1987).  

The climatological analysis performed in Chapter 3 showed that the temperature is predicted to increase 

consistently according to the five climate models, more when considering RCP 8.5. On the other hand, 

precipitation projections are much more uncertain, with the models showing constant or slightly increasing 

values, except for NorESM1-M-REMO2015 which predicts decreasing values under RCP 8.5. The precipitation-

related variables such as soil moisture, percolation, streamflow, and water yield vary accordingly with rainfall. 

The uncertainty when using climate models is further increased when dealing with evapotranspiration since 

it is highly influenced by CO2 concentration (Lemaitre-Basset et al., 2022). As shown in Chapter 3, when 

considering the CO2 increase, the potential evapotranspiration is predicted to have similar average values in 

the long-term future for RCP 4.5, while lower and probably unrealistic for RCP 8.5.  

The crop module of the SWAT+ model is based on heat units but, differently from the original SWAT model, 

the input to specify the length of the crop cycle is days to maturity (Nkwasa et al., 2023). Hence, to consider 

the same variety with the future increase in temperature, we calculated the heat units required by the crops 

for the calibration period 2010-2021, and then we retrieved the days to maturity for the historical (1976-

2005) and future (2071-2100) periods, both for RCPs 4.5 and 8.5. We calculated the days to maturity averaging 

the maximum and minimum temperatures of the five climate models since they were very similar after bias 

correction. 

The crop management applied for calibration and validation and in the “no adaptation” (0.NA) scenario 

simulations is reported in Table A4.4. The management for the three crops considered is representative of 

the current practices and was checked with published papers and guidelines from the Tuscany Region (Dalla 

Marta et al., 2010; Giannini and Bagnoni, 2000; Orlando et al., 2015, Tuscany Region, 2010). Since detailed 

information about the irrigation schedule was not available, we applied automatic sprinkler irrigation for 

maize using the default decision table available in the model, with a water stress threshold of 0.6. We adjusted 

this value during calibration for maize yield. To simulate the optimal soil humidity conditions for sowing, we 

used the default decision tables automatically generated by the model, adjusted to obtain realistic sowing 

dates. Moreover, in SWAT+ the crops are automatically harvested at the end of the crop cycle, but we also 

specified the latest harvesting dates in the decision tables. 

4.3.5 Simulation of adaptation strategies 

To estimate the adaptive capacity of agricultural systems, we simulated several agronomic adaptation 

strategies (Table 4.1) such as earlier and later sowing dates (1.ES, 2.LS), supplemental irrigation (3.SI), longer 

crop cycle (4.LCC), and practices belonging to conservation agriculture, such as zero tillage (5.ZT) and cover 

crops (6.CC). In addition, we simulated the effect of combining the most effective adaptation strategies (7.SI-

LCC, 8.ES-LCC, 9.LCC-CC, 10.ES-SI-LCC, 11.ES-LCC-CC, 12.ES-SI-LCC-CC). Considering the RCPs, periods and 

management scenarios, we conducted a total of 135 simulations (5 historical simulations + 2 RCPs x 13 

management scenarios x 5 climate models). Overall, most of the strategies considered are simple and will be 
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easily and autonomously adopted by farmers, while others might need institutional support. The 

supplemental irrigation scenario is simulated regardless of water availability. Even if this is a simplification, 

the analysis of the outcomes of these simulations is certainly valid for crops at the field scale. It is also 

important to note that we simulated supplemental and not full irrigation, as the irrigation events were 

triggered by the water stress threshold. Furthermore, lower irrigation amounts were expected because the 

ensemble mean of the five climate models showed an increasing sign in annual precipitation and the crop 

cycles were shortened. Conservation agriculture practices are simulated as indicated in Arabi et al. (2008) and 

Kalcic et al. (2015) by reducing CN by 2 points, modifying Manning’s roughness coefficient for overland flow 

(OV_N) and including a cover crop. We did not modify the USLE cover factor as it was not relevant to our 

research objectives. 

Table 4.1: The adaptation strategies scenarios considered in the study, with the description and SWAT+ input files change.  

 Adaptation Strategy Description Input files changed 

1.ES Earlier sowing  
Sowing window anticipated by 15 days, as well as tillage and 
fertilization operations 

lum.dtl 
management.sch 

2.LS Later sowing  
Sowing window delayed by 15 days, as well as tillage and 
fertilization operations 

lum.dtl 
management.sch 

3.SI Supplemental irrigation Automatic irrigation applied also to wheat and sunflower management.sch 

4.LCC Longer crop cycles Crop cycle increased by 15 days plants.plt 

5.ZT Zero tillage 
Conventional tillage changed to zero tillage. OV_N changed to 
“notill_2-9res”. CN reduced by 2 points 

landuse.lum 
management.sch 
cntable.lum 

6.CC Cover crops 

Sowing and killing a leguminous crop (clover) when the main crop 
is not cultivated. Mouldboard tillage is also removed and harrow 
tillage is maintained. OV_N changed to “notill_2-9res”. CN 
reduced by 2 points 

landuse.lum 
management.sch  
plant.ini 
cntable.lum 

After the simulations, we elaborated the outputs of the model for each RCP and adaptation strategy. In this 

study, we report the impacts of climate change, with and without adaptation strategies, on crop yield and WF 

and the effect of the adaptation strategies on the water balance components. The impacts of climate change 

on crop yields were evaluated by analysing the 28-year average yield for each HRU and comparing the future 

period (2071-2100) with the historical simulation of the same climate model, considering RCPs 4.5 and 8.5. A 

similar comparison was carried out for WF, which was calculated as the ratio of evapotranspiration and crop 

yield, expressed in m3 kg-1, considering the annual average output files. To evaluate the effect of the 

adaptation strategies, we evaluated the relative percentage difference between the outputs of the no 

adaptation and adaptation scenarios. We performed this analysis only for the 2071-2100 future period, for 

both RCPs, without considering the historical period. Concerning the agricultural impacts, we considered 

annual average crop yield and WF. Additionally, we analysed the drought and temperature stresses (DS, TS) 

that are direct outputs of the SWAT+ model. For the impacts on the water balance, we evaluated annual 

average evaporation, actual evapotranspiration, soil moisture, water yield and percolation at the cropland 

and catchment scales. The cropland is represented by the HRUs with durum wheat, sunflower and maize 

where the adaptation strategies were implemented. Synergies (trade-offs) were investigated by assessing if 

the effect of combinations of adaptation strategies was higher (lower) than the algebraic sum of the individual 

adaptation strategies. For agricultural outputs, we considered a synergy (trade-off) if the values were higher 

(lower) than 3%, while for water balance components if they were higher (lower) than 2%. Of course, we 

considered the opposite when the negative changes were the beneficial ones, like evaporation and water 

footprint. We also analysed the outputs in terms of beneficial changes, namely increasing crop yield and 
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decreasing WF, evaporation and water yield. Finally, we evaluated the magnitude of the changes caused by 

management and climate on the agricultural – yield, WF, DS and TS – and hydrological – the water balance 

components at the cropland scale – variables, by comparing the absolute maximum percentage changes 

considering all the simulations performed. 

4.4 Results 

4.4.1 SWAT+ calibration and validation 

The calibrated values for crop yields are reported in Table 4.2, while the results in terms of calibration and 

validation performances are in Table 4.3. Overall, we obtained at least satisfactory performances for the three 

crops in the two provinces. For durum wheat and sunflower, changing only the days to maturity, esco and 

epco was almost sufficient to obtain the best parameter set, and few additional modifications were needed. 

On the other hand, for maize, we had to strongly reduce most of the parameters since the model 

overestimated yields. Because of the known limitations of the model, the aggregated statistical data used and 

the approximations in the model setup, we consider our model validated for the average annual crop yield, 

as done in other studies that applied the SWAT/SWAT+ model for crop yield estimation (Musyoka et al., 2021; 

Nkwasa et al., 2023; Srinivasan et al., 2010). Then, we calculated the heat units to retrieve the days to maturity 

for the historical (1976-2005) and future (2071-2100) periods, which were drastically reduced, in particular 

for RCP 8.5 (Table 4.4). Finally, modifying cn2 of the whole catchment and esco and epco of the HRUs other 

than cropland, we obtained at least satisfactory performances for monthly streamflow (NSE > 0.5 and Pbias 

< 25%) according to Moriasi et al. (2007) as shown in Table A4.4, except for Pbias during calibration in the 

most downstream gauging station of Istia, for which there is probably an error in the reported observed flows.  

Table 4.2: The parameters selected for calibration, the type of change, and the change in terms of percentage or new value. 

 

  

Parameters crop yield Type of change 

Final change 

Durum wheat Sunflower Maize 

Siena Grosseto Siena Grosseto Siena Grosseto 

days_mat Replace 180 180 110 90 120 120 

bm_e Percentage - - 5% - - 15% - 10% 

harv_idx Percentage - - 2.5% 5% - - 17.5% - 10% 

lai_pot Percentage - - 2.5% 5% - - 17.5% - 10% 

ext_co Percentage - - 5% - - 15% - 10% 

hu_lai_decl Percentage - - 5% - - - 

dlai_rate Percentage - - - 5% - - - 

frac_hu1 Replace - - - - 0.17 0.17 

frac_hu2 Replace - - - - 0.55 0.55 

lai_max1 Replace - - - - 0.13 0.14 

lai_max2 Replace - - - - 0.9 0.92 

esco Replace 0.5 0.9 1 0.35 0.70 1 

epco Replace 1 0.6 1 0.60 1 1 
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Table 4.3: Model performances expressed as NRMSE (%) and Pbias (%) for calibration and validation for durum wheat, sunflower, and 
maize in the Siena and Grosseto provinces. 

Crop  Province 
Calibration Validation 

NRMSE Pbias NRMSE Pbias 

Durum 

wheat 

Siena 27.50% 3 -5.08% 1 28.61% 3 7.23% 1 

Grosseto 26.21% 3 2.97% 1 17.41% 2 -0.05% 1 

Sunflower 
Siena 6.68% 1 -1.97% 1 24.23% 3 2.08% 1 

Grosseto 20.26% 3 15.97% 3 28.86% 3 -2.97% 1 

Maize 
Siena 16.87% 2 -0.27% 1 22.09% 3 0.17% 1 

Grosseto 9.34% 1 -0.22% 1 15.32% 2 -0.84% 1 

 1 Very good; 2 Good; 3 Satisfactory. 

Table 4.4: Days to maturity for durum wheat, sunflower and maize used in the simulations. 

Crop Province 
Calibrated 

(2010-2021) 

Historical 

(1976-2005) 

Future (2071-2100) 

RCP 4.5 RCP 8.5 

Durum 

wheat 

Siena 180 187 163 143 

Grosseto 180 187 163 143 

Sunflower 
Siena 110 112 99 89 

Grosseto 90 91 80 72 

Maize 
Siena 120 122 107 96 

Grosseto 120 122 107 96 

4.4.2 Climate change impacts on crop yield and water footprint 

For durum wheat, the rainfed winter crop, three climate models (CNRM-CM5-ALADIN63, CNRM-CM5-

RACMO22E, and EC-EARTH-RACMO22E) predicted decreases in crop yield up to -16.4% under RCP 4.5 and -

63.4% for RCP 8.5 considering the most pessimistic model. MPI-ESM-LR-RCA4 simulations disagreed since 

when considering RCP 4.5 yields were predicted to slightly increase, while they dropped under RCP 8.5. 

Instead, wheat yields simulated with NorESM1-M-REMO2015 increased by almost 30% under both RCPs. The 

ensemble mean for durum wheat yield was predicted to remain constant under RCP 4.5 and to decrease by 

almost -40% under RCP 8.5 (Fig. 4.2). As expected, wheat WF showed the opposite trend of crop yield, with 

the ensemble mean increasing by 24.1% and 265.3% under RCPs 4.5 and 8.5, respectively (Fig. 4.3). Analysing 

the distributions, we can assess that low values for wheat yield will be much more frequent compared to the 

historical simulations under RCP 8.5, explaining the significant increase observed for WF. Specifically, in the 

worst-case scenario (EC-EARTH-RACMO22E, RCP 8.5), a sevenfold increase in mean WF was predicted as a 

result of the very low yield, in many HRUs below 1 ton/ha. Considering most of the simulations, because of 

the very low annual average yields in many HRUs, especially under RCP 8.5, we can affirm that some parts of 

cropland will become unsuitable for wheat growth. 

For sunflower, the absolute magnitudes of changes were much smaller compared to durum wheat. Under 

RCP 4.5, sunflower yields were predicted to remain constant or increase, with ensemble mean increases of 

almost 5.1%. On the other hand, under RCP 8.5 all the models predicted decreasing yields except for 

NorESM1-M-REMO2015. The ensemble mean was predicted to decrease by almost -21.7% under RCP 8.5 

(Fig. 4.2). Considering WF under RCP 4.5, CNRM-CM5-ALADIN63, CNRM-CM5-RACMO22E and EC-EARTH-
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RACMO22E predicted increasing values by up to 53.8%, while MPI-ESM-LR-RCA4 and NorESM1-M-REMO2015 

decreasing values by up to -15.9%. Under RCP 8.5, all the models predicted increases in sunflower WF up to 

313% for EC-EARTH-RACMO22E except for NorESM1-M-REMO2015 which showed decreased WF by -26%. 

The ensemble means for sunflower WF were predicted to increase by 20.6% under RCPs 4.5 and to double 

under RCP 8.5 (Fig. 4.3). The reductions in sunflower yield predicted in the simulations were not as 

widespread and significant in magnitude as for durum wheat. Hence, no cropland is expected to become 

unsuitable for sunflower cultivation.  

Maize is an irrigated spring crop and, therefore, it is not drastically affected by changes in precipitation. In our 

study, the role of irrigation was not as important as depicted by other studies in the Mediterranean. 

Considering RCP 4.5, maize yields remained almost constant with all the climate models, while for RCP 8.5 

yields were predicted to significantly decrease. The decrease reached almost -40% for EC-EARTH-RACMO22E, 

with an ensemble-mean decrease of -21.2% (Fig. 4.2). WF was consistent with maize yield and, overall, higher 

variability in WF is expected in the future, but the magnitude of changes (absolute and relative) was not as 

high as for sunflower and durum wheat. In particular, under RCP 8.5 the maximum increase and decrease in 

maize WF were simulated by EC-EARTH-RACMO22E (more than 75% increase) and NorESM1-M-REMO2015 

(almost -30% decrease), respectively, with a moderate ensemble-mean increase of 14.9% (Fig. 4.3). Even if in 

some simulations strong reductions in maize yield were predicted, regardless of economic considerations no 

cropland is expected to become unsuitable for maize cultivation. 

 

Figure 4.2: Climate change impact on crop yield. Durum wheat, sunflower and maize yield plots are created with the absolute values 
for the historical and RCPs 4.5 and 8.5 simulations. The plots are created using the annual average yield for the respective periods 
considering all the HRUs with cropland.  
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Figure 4.3: Climate change impacts on water footprint. Durum wheat, sunflower and maize water footprint plots are created with the 
absolute values for the historical and RCPs 4.5 and 8.5 simulations. The plots are created using the annual average water footprint for 
the respective periods considering all the HRUs with cropland. 

4.4.3 The adaptive capacity of agricultural systems 

The effects of adaptation strategies on crop yield, WF, DS, TS, evaporation, actual evapotranspiration, soil 

moisture, water yield, percolation and streamflow are reported as heatmaps in Figures 4.4, 4.5, 4.6 and 4.8. 

We opted to report only RCP 4.5 outputs since the calculation of potential evapotranspiration was not 

affected by the increase in CO2 concentration above the 660 ppm threshold of the Morison experiment. Still, 

some outputs of RCP 8.5 simulations are discussed, and the heatmaps are available in the supplementary 

materials (Fig. A4.4-A4.7). In Fig. 4.7 the effect of adaptation strategies on water balance components at 

catchment and cropland scales are reported. Fig. 4.9 shows the maximum absolute impacts caused by climate 

and management changes on each variable that we considered in this study, under RCP 4.5. The beneficial 

effects of the use of adaptation strategies and their combination are plotted in Fig. 4.10 for wheat, sunflower 

and maize. We considered as beneficial effects increased crop yield and reduced WF, evaporation and water 

yield. For this figure, again we considered only the outputs of RCP 4.5.  

4.4.3.1 Effect of adaptation strategies on crop yield 

Overall, durum wheat yield had the highest relative losses predicted without adaptation strategies (Fig. 4.2). 

Nonetheless, the adaptive capacity for this crop was high (Fig. 4.4), reaching similar or increased yields 

compared to the historical simulations. The most effective adaptation strategy was 4.LCC, especially when 

considering the climate models that predicted yield decreases (CNRM-CM5-ALADIN63, CNRM-CM5-

RACMO22E and EC-EARTH-RACMO22E). Among the crops that we considered, wheat had the longest crop 

cycle and, consequently, also the higher reductions due to increased temperatures, explaining why 4.LCC was 

particularly beneficial. 1.ES also had positive effects, higher when considering MPI-ESM-LR-RCA4 and 

NorESM1-M-REMO2015, while 5.ZT and 6.CC had a negligible effect. 3.SI was particularly useful in NorESM1-

M-REMO2015, but it had little or no positive effect when considering the other models. For the individual 

adaptation strategies, the magnitudes of change were higher when considering RCP 8.5, except for 3.SI. The 
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effect of the combinations of adaptation strategies allowed to achieve more than 70% gained yields. 

Furthermore, we observed some significant synergies combining 3.SI with 1.ES and 4.LCC. As a final 

recommendation, 1.ES and 4.LCC should be always implemented regardless of the climate model, while 3.SI 

is suggested only with drier conditions.  

A good adaptive capacity was observed for sunflower (Fig. 4.4). 4.LCC was effective with CNRM-CM5-

ALADIN63, CNRM-CM5-RACMO22E and EC-EARTH-RACMO22E, even if percentages of gained yields were 

lower compared to durum wheat. 1.ES, 3.SI and 6.CC had positive effects when considering MPI-ESM-LR-RCA4 

and even more NorESM1-M-REMO2015. The change in sowing date had no significant effect in CNRM-CM5-

ALADIN63, CNRM-CM5-RACMO22E and EC-EARTH-RACMO22E. In MPI-ESM-LR-RCA4 and NorESM1-M-

REMO2015, under RCP 4.5, the effect of 4.LCC was negligible. However, we observed synergies when 4.LCC 

was combined with 3.SI and 6.CC. Overall, the potential gained yields with adaptation strategies were lower 

compared to durum wheat, but the maximum reached more than 90% when considering the complete 

combination of adaptation strategies, RCP 4.5, and NorESM1-M-REMO2015. Different from durum wheat, for 

sunflower the positive effect of combining 3.SI and 6.CC was much clearer and not alternative, especially for 

the MPI-ESM-LR-RCA4 and NorESM1-M-REMO2015. Resuming the outcomes for sunflower, we can affirm 

that 4.LCC should always be taken into consideration, while 1.ES, 3.SI, and 6.CC especially if the climate will 

get drier. 

The climate change impacts on irrigated maize yields were mainly determined by the changes in the climate 

variables other than precipitation. Hence, the adaptive capacity for this crop was lower and it was strictly 

linked with the crop cycle start and length (Fig. 4.4). As expected, the magnitude of gained yields was much 

lower, reaching no more than 25.9% under RCP 8.5. Compared to sunflower, the positive effects of 4.LCC 

under both RCPs and 1.ES under RCP 8.5 were much clearer (Fig. A4.4).  No significant synergies or trade-offs 

were observed for maize.   
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Figure 4.4: Effect of adaptation 
strategies on crop yield. 
Heatmaps created with the 
percentage changes for durum 
wheat, sunflower and maize 
yields, calculated considering 
the “no adaptation” and the 
different adaptation scenarios, 
for RCP 4.5. In the combinations 
of adaptation strategies, the 
synergies are indicated with the 
“+” symbol and trade-offs with 
“-“. 

 

 

 

 

 

 

 

 

 

4.4.3.2 Effect of adaptation strategies on water footprint 

WF showed consistent opposite values compared to crop yield (Fig. 4.5). Overall, the changes reported for 

RCP 4.5 for the three crops considered were slightly lower in magnitude compared to RCP 8.5 (Fig. A4.5). The 

strategies with increased water use, such as 3.SI and 6.CC, showed an increase in WF, more accentuated when 

these strategies had no significant positive impact on yields. Instead, it is interesting to point out that WF 

decreased for sunflower when considering NorESM1-M-REMO2015, meaning that the increase in water used 

by these strategies was justified by the increase in crop yield. WF decreased also for wheat with NorESM1-

M-REMO2015 when applying supplemental irrigation. 4.LCC showed to be crucial to reducing WF, since it 

increased crop yield without significantly increasing the annual evapotranspiration, with beneficial effects 

that were higher in CNRM-CM5-ALADIN63, CNRM-CM5-RACMO22E and EC-EARTH-RACMO22E. In MPI-ESM-

LR-RCA4 and NorESM1-M-REMO2015, 1.ES was effective in reducing the WF of durum wheat and sunflower. 

For durum wheat, a reduction was also observed with the other climate models. In CNRM-CM5-ALADIN63, 

CNRM-CM5-RACMO22E and EC-EARTH-RACMO22E, for sunflower and under RCP 4.5, 2.LS was more 

beneficial than 1.ES, even if with low-magnitude changes. Under RCP 8.5 for sunflower, 2.LS consistently 

reduced WF while 1.ES increased it, according to all climate models except for NorESM1-M-REMO2015 (Fig. 

A4.5). Due to lower crop yields and increased water retention, 5.ZT always showed minor increases in WF, 

negligible for NorESM1-M-REMO2015 for sunflower and maize. For durum wheat, a huge ensemble decrease 

in WF of -39.1% was achieved when simultaneously implementing 1.ES and 4.LCC under RCP 8.5 (Fig. A4.5), 

even if a trade-off was observed under RCP 4.5 (Fig. 4.5). On the other hand, when combining adaptation 
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strategies that decreased WF with others that increased it, such as 4.LCC with 3.SI or 6.CC, synergies were 

observed for the three crops. For sunflower, the best outcomes regarding WF were obtained mainly because 

of 4.LCC, with the highest decrease being -25% considering the ensemble mean and RCP 8.5 (Fig. A4.5). 

Similarly, for maize, the strongest reductions in WF were also achieved with 4.LCC, with a maximum decrease 

of -18.2% considering the ensemble mean and RCP 8.5 (Fig. A4.5). 

Figure 4.5: Effect of 
adaptation strategies on 
water footprint. Heatmaps 
created with the percentage 
changes in WF of wheat, 
sunflower, and maize, 
calculated considering the “no 
adaptation” and the different 
adaptation scenarios, for RCP 
4.5. In the combinations of 
adaptation strategies, the 
synergies are indicated with 
the “+” symbol and trade-offs 
with “-“. 

 

 

 

 

 

 

 

 

 

4.4.3.3 Effect of adaptation strategies on drought and temperature stress 

Overall, DS and TS decreased compared to historical simulations. This was expected for DS, since most climate 

models predicted minor increases in precipitation and the crop cycles were shortened due to the heat units’ 

requirements that were reached much faster in a warmer climate. Instead, for TS this was surprising since the 

decrease was only partially explained by the shorter crop cycles. Hence, the TS was largely caused by low 

temperatures, as also discussed by Wang et al. (2017). The results for TS are similar when considering the two 

RCPs and the spring crops maize and sunflower. Hence, in Fig. 4.6, we reported only the outputs of the 

simulations under RCP 4.5 for durum wheat and sunflower.  

DS was significantly influenced by the change in the sowing date, especially for wheat. As expected, 1.ES 

increased the DS for the winter crop and decreased it for the spring crop, while 2.LS showed consistent 

opposite results. 3.SI strongly reduced DS with ensemble-mean reductions of -41.1% and -54.8% for wheat 

and sunflower, respectively. Furthermore, 4.LCC significantly increased DS by 29% and 45.4% for wheat and 
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sunflower, respectively. Notably, 6.CC did not increase DS but slightly reduced it. Regarding TS, 1.ES increased 

while 2.LS decreased it, especially for the spring crop, confirming that lower temperature mainly contributed 

to TS. Moreover, 4.LCC increased TS mainly for the winter crop with an ensemble-mean increase of 19.2%. 

Consistently with the synergies observed for crop yield, we found synergies between 1.ES and 4.LCC only for 

sunflower, while between 3.SI and 4.LCC for both crops. Instead, no synergies or trade-offs were found for TS. 

 Figure 4.6: Effect of adaptation 
strategies on drought and 
temperature stress. Heatmaps 
created with the percentage 
changes in DS and TS of wheat and 
sunflower, calculated considering 
the “no adaptation” and the 
different adaptation scenarios, for 
RCP 4.5. For TS, we reported only the 
strategies that had an effect on it. In 
the combinations of adaptation 
strategies, the synergies are 
indicated with the “+” symbol and 
trade-offs with “-“. 

 

 

 

 

 

 

 

 

4.4.4 Effects of adaptation strategies on water balance components  

Results showed that the impacts of some adaptation strategies on some components of the water balance 

were significant, especially at the cropland scale (Fig. 4.7, 4.8) but also at the catchment scale (Fig. 4.7).  

At the cropland scale (Fig. 4.7, 4.8), the impacts of adaptation strategies on the water balance components 

were consistent in sign and generally higher in magnitude compared to the catchment scale (Fig. 4.7). The 

impact of 3.SI was reduced when considering the catchment scale, especially for evapotranspiration, water 

yield, soil moisture and percolation, while it remained almost the same for evaporation. For 4.LCC, 5.ZT and 

6.CC we also observed reduced changes for evapotranspiration, as well as for soil moisture and percolation 

for 5.ZT and 6.CC. However, these described percentage changes refer to magnitudes lower than 5%. Instead, 

the effect of 5.ZT and 6.CC on water yield was very high in cropland, with average reductions of more than -

27% under RCP 4.5. This effect was drastically reduced to approximately -5% at the catchment scale. Synergies 

between adaptation strategies were found for evaporation and evapotranspiration, mainly with 3.SI and 4.LCC 

(Fig. 4.8). 
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The most impacted water balance component at the catchment scale was evaporation, which was affected 

mainly by 1.ES and 3.SI in some specific simulations (Fig. 4.7). More precisely, evaporation was decreased by 

earlier sowing, longer crop cycle varieties and cover crops, while it was increased mainly with supplemental 

irrigation, but also with later sowing dates and zero tillage. Supplemental irrigation also increased catchment 

actual evapotranspiration. Water yield was affected to some extent by 5.ZT and 6.CC, while for 

evapotranspiration, percolation and soil moisture the impacts were negligible.  

 

Figure 4.7: Comparison of the effects of adaptation strategies on water balance components for the whole catchment and only for 
cropland where the adaptation strategies are implemented. The bar plots are created considering the percentage relative differences 
between adaptation and no adaptation scenarios. The graphs use outputs of RCP 4.5 simulations. 

4.5 Discussion 

4.5.1 Crop yield estimation with SWAT+ 

Model performances for estimating crop yield are generally lower compared to monthly streamflow. This is a 

known issue reported in other studies in which the long-term annual average was coherent with the observed 

data, but not the inter-annual variation (Musyoka et al., 2021; Nkwasa et al., 2023). Certainly, using an 

aggregated representation of cropland and management is an approximation that has an impact on the model 

performance (Abbaspour et al., 2015; Srinivasan et al., 2010). Also, controlled experimental yields are usually 

preferred to actual yields since agricultural models cannot simulate yield losses due to pests and factors other 

than nutrients, water, and temperature stresses. Finally, it is important to consider that the provincial average 

yields provided by ISTAT have large uncertainties, even if they are commonly used in research conducted in 

Italy (Bocchiola et al., 2013; Diodato and Bellocchi, 2008; Monteleone et al., 2022; Toscano et al., 2012). The 

higher variability of the simulated yields compared to observed yields can be also explained by the fact that 

aggregated observed data tend to reduce the variability of the farm scale (Eini et al. 2023). Often, the 

simulated larger variability is caused by a higher number of extremely low yields (Wang et al., 2017), as in our 

study. Nevertheless, given all these limitations, the performances of the SWAT+ model were overall at least 

satisfactory according to the performance criteria selected for this research.  
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Figure 4.8: Effect of adaptation strategies on 
evaporation, evapotranspiration, water yield, soil 
moisture and percolation, considering only 
cropland, and streamflow at the outlet. Heatmaps 
created with the percentage changes, calculated 
considering the adaptation and no adaptation 
scenarios, for RCP 4.5. In the combinations of 
adaptation strategies, the synergies are indicated 
with the “+” symbol and trade-offs with “-“. 
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4.5.2 Uncertain impacts of climate change on crops  

In our study, the ensemble means showed negligible changes for future yields under RCP 4.5 while strong 

decreases (>20%) under RCP 8.5. Nonetheless, crop yields were highly dependent on the different climate 

models used. More in detail, NorESM1-M-REMO2015 showed contrasting values with the other climate 

models. This was mainly caused by the very low historical yields simulated, which resulted in considerable 

percentage increases in the future even if the absolute values were in line with the observed yields and the 

other simulations (Fig. 4.2). The uncertainty is also reflected in analysing literature about climate change 

impacts in the Mediterranean region. For general cereals in different areas of Spain, Iglesias et al. (2010) 

reported yield changes from -60% to +30%. More specifically for winter wheat, the uncertainty in future yield 

is very high and our estimations of constant yields under RCP 4.5 and strongly decreasing values under RCP 

8.5 are within the ranges reported in the literature. For example, Ventrella et al. (2015) found increasing 

winter wheat yields in Southern Italy with the DSSAT model, while Garofalo et al. (2019) reported that yields 

are expected to remain constant in the future in the same area applying an ensemble of crop models. In the 

Italian island of Sardinia, Bird et al. (2016) simulated huge variations in future yield according to the soil 

considered in the simulations with the Aquacrop model, with a reduction in future yield of -64% in clay loam 

soils and increases of 8% and 26% on sandy loams and sandy clay loams. Interestingly, they estimated a 15% 

chance of crop failure in clay loam soils for winter wheat, and this is consistent with our consideration about 

part of the catchment that will become unsuitable for winter wheat cultivation due to extremely low annual 

average yields, for some climate models. The multi-model climate sensitivity analysis performed by Pirttioja 

et al. (2015) showed that in Spain wheat yields are expected to increase up to 30% if precipitation increases 

and with constant temperatures and to decrease with lower precipitation with magnitudes of change up to -

60% in the worst scenarios. Negative impacts on wheat yield were also reported in the study of Ruiz-Ramos 

et al. (2018) in Spain. In Egypt, El Afandi et al. (2010) found significant yield decreases of -41% for wheat. For 

our study area, the European-scale study of Moriondo et al. (2010) simulated minor changes in wheat yield, 

while in the analysis at the national scale reported by Spano et al. (2020), moderate increases were predicted 

under RCP 8.5. The moderate increases were confirmed also by the draft of the PNACC (2018) while constant 

values were predicted for RCP 4.5. Fewer specific studies are available for sunflower, which is considered 

highly vulnerable since it is a rainfed spring crop (PNACC, 2018; Spano et al., 2020). However, the climate 

change analysis of Moriondo et al. (2010) reported minor changes in sunflower yields for our study area. This 

is in line with our outputs that showed constant and decreasing sunflower yields for RCPs 4.5 and 8.5, 

respectively. Many studies evaluated the impacts of climate change on maize and, in general, more consistent 

values are reported in the literature. This can be attributed to the fact that maize as an irrigated crop is less 

affected by precipitation variability. Decreasing maize yields were found in the studies of Torriani et al. (2007), 

Tubiello et al. (2000) and Bocchiola et al. (2013). However, in this last study, with sufficient irrigation or 

precipitation and increases in temperature of less than 2°C, constant or increasing maize yields were 

predicted (Bocchiola et al., 2013). Moderate decreases were found also by Rey et al. (2011) and Gabaldon-

Leal et al. (2015) in Spain, while strong decreases of -56% were instead reported in the study of El Afandi et 

al. (2010) in Egypt. The outcomes of the simulations summarized in Spano et al. (2020) and PNACC (2018) 

confirmed the moderate decreases in maize yields in Southern Tuscany. Our results are in line with those 

reported in maize literature since we found yield decreases under RCP 8.5 and minor changes under RCP 4.5. 

WF is a common metric to estimate agricultural water consumption which entails a high degree of uncertainty 

due to the different approaches to account for the water used (Feng et al., 2021). This uncertainty escalates 

when considering future WF in the context of climate change (Wang et al., 2023) and the large range observed 

in our results seems to confirm this statement (Fig. 4.3). Global estimates of WF, considering the sum of blue 
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and green water, were estimated by Mekonnen and Hoekstra (2011) as 1.6 m3 kg-1 and 1.0 m3 kg-1 for wheat 

and maize, respectively. In a following publication, Mekonnen and Hoekstra (2012) estimated the WF of oil 

crops at 2.2 m3 kg-1. Feng et al. (2021) reported lower values for WF global averages, estimated at 1.1 m3 kg-1 

and 0.7 m3 kg-1 for wheat and maize, respectively, with the ranges of uncertainty that increased considerably 

when considering smaller scales. At the European scale, a WF of 1.4 m3 kg-1 and 0.6 m3 kg-1 was reported in 

the analysis based on the Aquacrop model of Gobin et al. (2017). Focusing only on Italy, reported WF values 

have a broad range of uncertainty. For example, in the multi-model ensemble analysis of Kersebaum et al. 

(2016), durum wheat WF in Southern Italy calculated with observed yield and simulated evapotranspiration 

was estimated within the range of 1.3-1.7 m3 kg-1. For the same area, Garofalo et al. (2019) reported WF 

values of 0.9 m3 kg-1, while Ventrella et al. (2015) found values up to 2.7 m3 kg-1 for rainfed winter durum 

wheat. When simulating future scenarios, these studies estimated a reduced WF of 0.9 m3 kg-1 (Garofalo et 

al., 2019; Ventrella et al., 2015). The irrigated maize WF in Northern Italy was estimated by Nana et al. (2014) 

at 0.5 m3 kg-1. Bocchiola et al. (2013) found minor changes in future total WF, with green and blue water 

compensating for each other in response to precipitation variability. Nevertheless, in the worst-case scenario, 

WF decreased due to the drop in maize yield (Bocchiola et al., 2013). Specific studies on sunflower are less 

common and the WF varies a lot according to the different climates. In the studies discussed by Bulut (2023) 

about sunflower WF, the values range between 1.3-3.3 m3 kg-1, with huge differences in green and blue WFs. 

Brouziyne et al. (2018) performed a water productivity analysis in Morocco and found a decrease in future 

water productivity for both rainfed wheat and sunflower due to climate change. The ensemble mean of total 

WFs estimated in our study were 1.9 m3 kg-1, 4.2 m3 kg-1 and 1.1 m3 kg-1 for durum wheat, sunflower and 

maize, respectively, slightly higher than WF values found in the literature. Nonetheless, our WF values are still 

in the range of uncertainty reported in the literature, and it is important to keep in mind that we calculated 

WF considering the annual average actual evapotranspiration as water used, and not only referring to the 

months in which the crop is grown. This approach allowed us to compare the WF of other adaptation 

strategies such as cover crops. Considering RCP 4.5, WFs slightly decreased for maize and increased for the 

rainfed crops, while for RCP 8.5 the ensemble means showed minor increases for maize but increased 

substantially for durum wheat and sunflower due to the significant drop in crop yield in many HRUs.  

The analysis reported by Webber et al. (2018) showed that heat stress will not harm future wheat and maize 

yields. These results are consistent with our study since we found decreasing temperature stress due to 

reduced crop cycle length and increased temperature. This seems counterintuitive but the optimal 

temperatures are quite high – 15 °C for durum wheat and 25 °C for sunflower and maize – and, consequently, 

the temperature stress is largely caused by low temperatures, as found and discussed also in Wang et al. 

(2017). Considering drought stress, Webber et al. (2018) reported negative impacts on maize yield in our 

study area. Our results showed maize yield reduction under RCP 8.5, but these were not strictly related to 

drought stress which was negligible due to supplemental irrigation. Regarding future irrigation, despite the 

rising temperatures and the consequent increase in evapotranspiration, other studies found reduced 

irrigation requirements for maize by up to -25% mainly due to the shortening of the crop cycle (Gabaldon-

Leal et al., 2015; Rey et al., 2011). These reductions were confirmed also in our study and the role of 

supplemental irrigation was not so important since climate models predicted slight increases in precipitation. 

4.5.3 The effectiveness of adaptation strategies 

In response to reduced precipitation, irrigation is likely to be needed in the Northern Mediterranean countries 

for typically rainfed crops, such as wheat (Saadi et al., 2015) and sunflower (Giannini et al., 2022). In Southern 

Italy, irrigation was predicted to increase future wheat yield by 11-15% (Ventrella et al., 2015) and 18% 
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(Garofalo et al., 2019) and to reduce yield variability (Ventrella et al., 2012b). Other studies conducted in the 

Mediterranean confirmed the positive effects of supplemental irrigation, such as El Afandi et al. (2010) in 

Egypt, Bird et al. (2016) in Sardinia, Ruiz-Ramos et al. (2018) in Spain, and Moriondo et al. (2010) at European 

scale. Furthermore, changes in sowing date drastically affect future yields, with variations of up to 40% found 

in Southern Italy in the study of Ventrella et al. (2012a). However, contrasting results can be found in the 

literature. For example, El Afandi et al. (2010) reported positive effects of earlier sowings, while Bird et al. 

(2016) and Moriondo et al. (2010) claimed the benefits of delayed sowing. Crop rotation (Ventrella et al., 

2012c), mulching (Bird et al. 2016) and longer crop cycles (Moriondo et al., 2010) also showed positive effects 

on wheat yield. For sunflower, the study of Giannini et al. (2022) in Sardinia reported that earlier sowing and 

supplemental irrigation have beneficial effects on yield. Focusing on our study area, the analysis of Moriondo 

et al. (2010) confirmed that anticipated sowing dates led to moderate increases in sunflower yields, 

comparable to those of longer crop cycle varieties. In the same study, the increase caused by the application 

of supplemental irrigation on future sunflower yields was higher than 75%. Maize is typically irrigated in Italy 

and an appropriate irrigation strategy is fundamental to avoid water stresses during the most critical phases 

(El Afandi et al., 2010; Gabaldon-Leal et al., 2015; Monteleone et al., 2022). Furthermore, longer crop cycles 

and earlier sowing dates showed positive effects on maize yield (Rey et al., 2011; Torriani et al., 2007; Tubiello 

et al., 2000), quantified in an increase of 14% in the study of Gabaldon-Leal et al. (2015). Regarding the 

impacts of irrigation on WF, Bocchiola et al. (2013) demonstrated the strong relation between blue water and 

precipitation for maize in Northern Italy. The historical and future WFs of the irrigated simulations for winter 

wheat in Southern Italy reported in the studies of Ventrella et al. (2015) and Garofalo et al. (2019) were lower 

as compared to the WFs of the rainfed crop, demonstrating the beneficial impact of irrigation reducing WF 

by increasing crop yields. Our results confirmed that, when irrigation increased crop yield for wheat and 

sunflower, WF consistently decreased. The water productivity analysis of Brouziyne et al. (2018) in Morocco 

showed the beneficial impact of no-tillage on the water productivity of wheat and sunflower, while 

anticipating sowing of 10 days was beneficial for wheat and unclear for sunflower. Their results about earlier 

sowing were consistent with our WF outcomes, while the beneficial impacts of zero tillage were not 

confirmed in our study. 

According to our results, adaptation strategies showed to be essential to maintain the historical crop yields. 

Furthermore, in some cases, especially when considering combinations of adaptation strategies, the SWAT+ 

model predicted increases in future yields and decreases in WF (Fig. 4.10). Considering the effect of 

adaptation strategies on agricultural outputs, namely crop yield and WF, the most promising adaptation 

strategies for durum wheat were earlier sowing and longer crop cycles, while supplemental irrigation had 

beneficial effects only with MPI-ESM-LR-RCA4 and NorESM1-M-REMO2015. For sunflower, longer crop cycles 

were always useful while earlier sowing, supplemental irrigation and cover crops only with MPI-ESM-LR-RCA4 

and NorESM1-M-REMO2015. Similar recommendations can be provided for maize, with longer crop cycles 

being the most effective strategy both in increasing crop yield and in reducing WF. Overall, we can affirm that 

in our case study, the effect of some adaptation strategies was comparable to the impacts of climate change. 

Comparing the magnitudes of change in Fig. 4.9, it is possible to observe that the maximum absolute 

percentage increases for crop yields are much higher for management changes than the changes caused by 

climate change under RCP 4.5. The increased magnitude of changes in management as compared to climate 

is more evident when considering combinations of adaptation strategies in some climate models, mainly 

NorESM1-M-REMO2015. On the other hand, the impacts of climate change on WF are much higher compared 

to those of adaptation strategies, except for total WF for maize that showed similar magnitudes of change as 

compared to the maximum management changes (Fig. 4.9). Finally, the maximum absolute changes were also 

similar when considering DS and TS (Fig. 4.9). 
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Figure 4.9: Comparison of the management and climate 
change effects on the agricultural and hydrological 
variables considered in this study, under RCP 4.5. The bar 
plot is created using the maximum absolute percentage 
change of the simulations performed in this study. For the 
water balance components, we are considering the 
outputs at the cropland scale and for streamflow the 
Sasso d’Ombrone gauging station. 

 

 

 

 

 

 

 

 

 

 

4.5.4 The impact of adaptation strategies on water balance components 

The use of an agro-hydrological model to spatially simulate crop growth and the possible management 

changes allowed for the evaluation of their impacts on water balance components, such as evaporation, 

actual evapotranspiration, water yield, percolation and soil moisture. Certainly, the SWAT+ model simplifies 

the processes influenced by management changes and further research is necessary. In our study, the area 

with herbaceous crops where the adaptation strategies were implemented corresponds to approximately 

one-third of the whole catchment, and it is interesting to note that the changes were not always reduced 

proportionally (Fig. 4.7). The outputs regarding the beneficial effects of the simulations on evaporation and 

water yield are also plotted in Fig. 4.10. To quantify how much the management changes influenced the water 

balance components, we compared them with the changes induced by climate change (Fig. 4.9).  
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Figure 4.10: The beneficial effects of adaptation strategies and of their combinations expressed in percentage changes for wheat, 
sunflower and maize, considering the ensemble mean. We selected as beneficial effect on agricultural outputs increased crop yield 
and reduced WF, while for the water balance reduced evaporation and increased water yield. For this figure, we considered only the 
outputs of RCP 4.5 and the cropland scale. 
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The impacts of adaptation strategies on water balance components are usually neglected and there are few 

studies in the literature. One example is the water productivity analysis carried out with the SWAT model by 

Brouziyne et al. (2018), which showed that earlier sowing caused a reduction in water yield lower than 5%, 

while zero tillage yielded minor changes (<1%). Salmoral et al. (2017) evaluated the impact of contour tillage 

on water balance components and found no significant changes, different from when considering 

afforestation – a land cover change – which drastically influenced basin evapotranspiration and evaporation. 

In a field-scale study about the full adoption of rapeseed for biofuel, Noreika et al. (2020) found significant 

changes in evapotranspiration, soil moisture and flow by -11.8%, 16.6% and 36.1%, respectively. According to 

Noreika et al. (2022), residue incorporation, contour farming and conservative tillage reinforced the small 

water cycle both at the field and catchment scales, except for streamflow at the outlet. Their results showed 

that soil moisture and evapotranspiration were higher with conservation practices compared to conventional 

tillage, while the opposite occurred for runoff and lateral flow, with the runoff that was more than double. 

Interestingly, they found that the scale of adoption of the practices and the distribution in the catchment did 

not affect the water balance components. Ullrich and Volk (2009) found decreases of up to -30% in surface 

runoff and more than -10% in water yield applying no-tillage compared to conventional tillage, with 

differences according to the crops and tillage dates considered. Chen et al. (2021) performed a 

comprehensive analysis of irrigation at different depths, earlier and later sowing. For irrigated maize, they 

found that earlier sowing moderately increased (<5%) evapotranspiration, soil moisture, runoff and water 

yield, while later sowing decreased them by almost the same magnitude, except for soil water for which they 

reported a decrease of -7.8%. For irrigated wheat, with earlier sowing they observed an increase of 7.3% in 

evapotranspiration and decreases of more than -10% in soil moisture, runoff and water yield, while opposite 

changes were found for later sowing dates. For rainfed wheat, except for evapotranspiration which remained 

almost constant, they reported significant decreases in soil moisture, runoff and water yield for earlier 

sowing, while consistent opposite for later sowing, with increases reaching 77.3% in soil moisture.  

In our study, while the effects of adaptation strategies on crop yield and WF were significant, the impacts on 

the water balance were generally low when considering the relative changes at the catchment scale (Fig. 4.7). 

However, in some cases and especially when considering the cropland scale, the impacts were significant and 

should not be neglected when comprehensively evaluating agronomic adaptation strategies. For example, 

water yield in cropland was significantly reduced by almost -40% when applying zero tillage and cover crops 

in one specific climate model under RCP 4.5 (Fig. 4.8). Combinations of adaptation strategies were more 

beneficial compared to individual ones (Fig. 4.10), and some synergies were observed. Furthermore, for some 

water balance components such as evaporation and actual evapotranspiration, we observed minor changes 

caused by climate change, comparable to the ones obtained for management changes, while the impacts of 

climate change were much higher as compared to those caused by management changes for water yield, soil 

moisture, percolation and streamflow (Fig. 4.9). At the catchment scale, the adaptation strategies had impacts 

of a few percentiles, with ensemble-mean changes mostly lower than 5%, with some exceptions (Fig. 4.7). 

These changes might seem negligible, but it is important to underline that we simulated very small changes. 

For example, sowing dates were shifted by only 15 days and the crop cycles were increased by the same 

number of days. As already discussed, supplemental irrigation was not so important in our study, but still, we 

could observe some impact on the water balance. With more significant management changes the impacts 

on the water balance components at the catchment scale could further escalate.  
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4.6 Conclusion 

We applied an integrated agro-hydrological model to perform a comprehensive climate change impact 

assessment and to evaluate the adaptive capacity of agricultural systems in the Ombrone catchment. Despite 

the limitations of integrated models, distributed agro-hydrological models such as SWAT+ can be very useful 

for carrying out comprehensive climate change impact assessments since their outputs are related to food 

security and water resources at both field- and catchment scales. 

Projected crop yield changes were highly variable and dependent on the crop, RCP and climate model 

considered. With RCP 8.5, the ensembles showed strong decreases in crop yields, while constant values with 

RCP 4.5. On the other hand, WF showed consistent opposite values with very high percentage changes in 

particular for durum wheat with RCP 8.5. This was the result of the very low yields (<1 ton/ha) predicted for 

durum wheat in many HRUs of the Ombrone catchment, which led us to conclude that, without adaptation, 

part of the catchment will become unsuitable for wheat growth under the worst scenarios. With the 

application of some adaptation strategies, we obtained similar or even improved yields and WFs compared 

to the historical simulations, demonstrating the high adaptive capacity of the agricultural systems. Longer 

crop cycles were found to be beneficial for the three crops considered. Earlier sowing was useful in particular 

for durum wheat and with some specific climate models and simulations also for maize and sunflower. 

Supplemental irrigation was beneficial for the rainfed crops but only with some climate models. For sunflower, 

some simulations showed the positive effect of cover crops. Many combinations of adaptation strategies 

showed interesting synergies that enhanced the positive effects or reduced the negative ones, but in some 

cases, we also observed trade-offs that should be considered. At the catchment scale, the impacts of 

management changes on water balance components were mostly lower than 5%, with some exceptions. 

However, considering only cropland we obtained more significant impacts, such as the reduction in water 

yield by almost -40% when applying zero tillage and cover crops for one specific climate model. Also, we 

simulated minor management changes and we concluded that with stronger changes the impacts on some 

water balance components could escalate. Hence, the impacts of some management changes in some 

agricultural catchments cannot be neglected when trying to assess the adaptive capacity of agricultural 

systems. To conclude, climate change impact assessment should be as integrated and comprehensive as 

possible by also considering the impacts at scales larger than the field scale, not only to include more climate, 

soil, crop, and management variabilities but also to simulate catchment-scale processes and impacts. 
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Chapter 5 Integration of the approaches 

5.1 Abstract 

Global agendas highlight how the challenges related to disaster risk reduction, sustainable development and 

climate change adaptation overlap. Despite common goals, there exist multiple approaches to risk estimation 

and management. In this study, we integrate climate risk and impact assessment methodologies to estimate 

future climate risk. We apply this framework in a sensible case study, Somalia, a country exposed to extreme 

events with a highly vulnerable population, where this kind of study is low. Considering risk as a function of 

hazard, exposure and vulnerability, we included indicators typically used in other climate risk assessments, 

mostly derived from the Shared Socio-economic Pathways (SSP) narratives, but also integrating them with 

the outputs of an agro-hydrological model forced with two climate models. In this way, we estimate future 

hazard, coping and adaptive capacity based on physical processes, instead of static proxy indicators. 

Our results show that climate risk in Somalia will decrease in the future under the “Sustainability” and 

“Conventional development” scenarios, while it will remain similar to the present for the scenarios with 

significant adaptation challenges. By the end of the century, the climate is projected to be hotter and wetter, 

with decreasing dry extreme events for all SSPs, even if with variable magnitudes. Irrigated maize yield is 

projected to be severely affected by increased temperatures, even if adaptation strategies reduce yield losses. 

Conversely, rainfed sorghum yield will mostly benefit from increased rainfall. Nevertheless, even under the 

most optimistic scenarios, sorghum and maize yields will remain very low. Consistently with the so-called 

“Scenario optimism” of the SSP narratives, the vulnerability will decrease compared to the present, while 

exposure will highly increase in “Middle of the road”, “Regional rivalry” and “Inequality” scenarios due to the 

demographic increase. 

The outcomes of this assessment can be used to understand patterns, trends and main drivers of future 

climate risk under plausible scenarios for Somalia and neighbouring countries. Future applications should 

focus on developing local narratives including relevant stakeholders and on the improvement of the 

representation of resilience by simulating additional adaptation strategies and, more importantly, the 

transformative capacity. Avoiding further integration between approaches would be a missing opportunity to 

achieve greater policy impact. 

5.2 Introduction 

Climate, demographic and socio-economic changes pose tremendous risks for the population of low-income 

countries (FAO, 2021). These vulnerabilities are exacerbated for the small-holder farmers who rely on 

agropastoral activities and live in remote rural areas (Abdi-Soojeede, 2018). The challenges related to future 

climate risk have been thoroughly studied by the development, disaster and climate change research 

communities (Mochizuki et al., 2018; Savelli et al., 2022), each one characterized by specific approaches, 

agendas, definitions and methodologies (e.g. IPCC, 2022; UNISDR, 2015). For example, the disaster risk 

reduction community applies the contextual/factor approach, which generally relies on combined indicators, 

while the climate change adaptation community focuses on the outcome/impact approach, mainly based on 

quantitative measures of the relationship between stressor and response (Vogt et al., 2018). The risk and 

vulnerability concepts are also highly intertwined with the UN Sustainable Development Goals (UN, 2015) 

and the social-ecological resilience perspective (Folke, 2006; Mochizuki et al., 2018). Even if the challenges 

addressed by the disaster, climate adaptation and sustainable development communities strongly overlap, 

more efforts are required to enhance coherence among policies, goals, indicators and measurements 
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(UNISDR, 2015). A fundamental step towards an increased integration of approaches and a clearer 

understanding of alternative future scenarios is represented by the Shared Socio-economic Pathways (SSPs, 

O’Neill et al., 2017; van Ruijven et al., 2014). Further integration between methodologies, approaches and 

collaborations between research communities is necessary to achieve greater policy impact (Challinor et al., 

2010; Marzi et al., 2021). 

The definition and conceptualization of climate risk are highly variable according to the respective research 

communities. In the last years, some agreement was reached after the IPCC framed risk as the interaction of 

hazard, exposure and vulnerability (IPCC, 2014; 2022). Estimating climate risk or vulnerability related to single 

or multi-hazards with this conceptualization is nowadays an established framework (Hagenlocher et al., 2019; 

Jurgilevich et al., 2017; Merz et al., 2014) applied at global (Carrão et al., 2016; De Groeve et al. 2015), 

continental (Ahmadalipour et al., 2019), national (Mysiak et al. 2018; Song and Lee, 2021) and regional scales 

(Cotti et al., 2022). Many risk indexes and assessments address only past and present conditions (Hagenlocher 

et al., 2019). For example, the Index for Risk Management (InfoRM) supports global humanitarian risk analysis 

by combining hazard, exposure, vulnerability and lack of coping capacity dimensions (De Groeve et al., 2015). 

To monitor agricultural drought, the Global Drought Observatory developed the Risk of Drought Impacts for 

Agriculture (RDrI-Agri), which includes similar indicators (GDO, 2021). When dealing with future climate risk, 

the assessments usually consider only the dynamics of biophysical hazards, while the socio-economic 

exposure and vulnerability are maintained constant (Birkmann et al., 2015; Jurgilevich et al., 2017). An 

exception is represented by Tabari et al. (2021), who performed a global drought and flood risk assessment 

including dynamic hazard, exposure and vulnerability indicators. In a following study, Tabari and Willems 

(2023b) assessed future drought impacts considering future exposure and vulnerability dynamics, with the 

Human Development Index projected by Cuaresma and Lutz (2015) used as a proxy for vulnerability. The same 

authors evaluated the risk of compound hot and dry events considering future population and cropland as 

exposed elements and a governance indicator developed by Andrijevic et al. (2020) as a proxy for future 

vulnerability (Tabari and Willems, 2023a). Finally, Marzi et al. (2021) integrated into the InfoRM framework 

future climate-related hazards and exposure dynamics while maintaining constant vulnerability. 

Applying the outcome/impact approach, researchers also study crop risk and vulnerability in response to 

hazards such as drought, usually relying on process-based crop models (Monteleone et al., 2022; Richter and 

Semenov, 2005; Yin et al., 2014). Similarly, for future scenarios, climate change impacts and adaptation 

strategies to reduce risk in agricultural systems are often studied with crop models (Ewert et al., 2015; 

Jägermeyr et al., 2021). Although the IPCC risk framework is not widely adopted by crop modellers, the 

coupling of the biophysical outputs such as yield with socio-economic data or models is common (Antle et 

al., 2021; Ewert et al., 2015; Ruane et al., 2017). An interesting application was performed by Simelton et al. 

(2009), who analysed vulnerability typologies based on socioeconomic characteristics with a crop failure 

index and a drought index using collected yield data. Similarly, Fraser et al. (2013) combined a crop 

vulnerability index, a hydrological model, and socioeconomic projections to identify vulnerability hotspots for 

cereal production in the world. Furthermore, De Vos et al. (2023) applied an integrated framework 

considering socio-economic development, gradual climate change and climate anomalies to evaluate future 

rice availability and stability in Africa. Despite some interesting examples, in conventional climate change 

assessments socio-economic conditions are generally assumed to remain constant (Valdivia et al., 2021). In 

the last years, a decisive step towards increased integration between biophysical and socio-economic 

dimensions was carried out by the Agricultural Model Intercomparison and Improvement Project (AGMIP), 

which produced frameworks, protocols and guidelines regarding Integrated Assessment Modelling (Ruane et 
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al., 2017), Representative Agricultural Pathways (Valdivia et al., 2015; 2021) and Regional Integrated 

Assessments (Antle et al., 2021; Rosenzweig et al., 2016). 

Compared to the risk concept, the interpretation of the resilience concept is even more open in different 

fields (Mochizuki et al., 2018). After the first introduction of the term in ecology in the early 70s, in which 

resilience was defined as a property of the systems (Holling, 1973), the concept has evolved and largely 

applied in social-ecological systems research, including the notions of adaptive and transformative capacities 

(Folke, 2006). The term resilience is also widely applied and operationalized in sustainable development 

research and policies (Barron et al., 2021; Jeans et al., 2017) and risk assessment frameworks (Marzi et al., 

2019), where is often conceptualized as the “flip side” of vulnerability (Manyena, 2006; Mochizuki et al., 

2018). Although defined and interpreted slightly differently, nowadays there is consensus that the concept of 

resilience should involve the coping, adaptive and transformative capacities of the systems, even if the 

distinction between these capacities remains vague (Mochizuki et al., 2018). Inferring from impact research 

in agriculture, these three capacities can be broadly associated with the scenarios considered when 

simulating future management. The coping capacity of the agricultural system resembles the behaviour of 

the so-called “dumb” farmer, who does not apply any change in the management (Cline, 1996). Despite being 

unrealistic, this scenario is by far the most applied in future agricultural simulations. When considering 

adaptation, a typical categorization divides the strategies into autonomous (also referred to as soft or farmer-

led) and planned (hard or institutional) adaptations, where autonomous adaptation strategies are the 

adjustments at the field or farm scales that farmers will adopt autonomously, while planned adaptations refer 

to deep transformations out of the scope of farmers’ influence that will need institutional interventions (Bindi 

and Olesen, 2011). To operationalise the resilience concept, these two categories of strategies can represent 

the adaptive and transformative capacities of agricultural systems. 

Despite the great advancements of the research communities dealing with risk, the explicit coupling of the 

approaches described in the previous paragraphs is largely missing. Combined indicators are very powerful 

tools that allow communication between academics and policymakers. Nevertheless, estimating some 

indicators using crop models can improve the representativeness and effectiveness of the combined 

indicators, especially for future conditions. The theoretical justification for the inclusion of crop indicators in 

the IPCC risk framework relies on the fact that climate change itself can be explicitly considered a hazard, 

resembling other vulnerability/risk assessments (ESCWA et al., 2017). Also, according to the IPCC, hazards are 

not defined solely as extreme events, but also as trends or physical impacts (IPCC, 2014). More specifically, 

crop models based on real physical processes could contribute to simulating future climate hazard and 

resilience. For example, agricultural drought is generally inferred considering vegetation status and deficits or 

anomalies in precipitation, soil moisture or evapotranspiration with indexes such as the Standardized 

Precipitation Evapotranspiration Index (SPEI, Vicente-Serrano et al., 2010; Yimer et al., 2022). The rationale 

for considering a drought indicator representative is to check how it correlates with drought impacts (Hall 

and Leng, 2019). Despite being widely adopted and useful, these indexes generalize drought drivers and 

ignore local contexts that are crucial for the propagation towards drought impacts (Kchouk et al., 2022), a 

problem which is amplified where these relations are unexplored, such as the African continent (Lam et al., 

2023). Furthermore, they do not consider some important characteristics of agricultural systems, such as the 

crop type or their growth stage and if they are under irrigated or rainfed management. As a result, different 

accumulation periods were found to be best correlated with drought impacts in different regions or countries 

(Bachmair et al., 2018; Huang et al., 2018; Stagge et al., 2015). Further proof of the uncertainty in the hazard 

assessment was shown in the comparative analysis of global risk indexes performed by Garschagen et al. 

(2021) where, differently to vulnerability patterns, little agreement was found for the hazard component. This 
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uncertain correlation is exacerbated when dealing with the impacts of climate change on agriculture, since 

the effects on crops are numerous and, in some cases, positive. Process-based crop models offer a valuable 

methodology to estimate crop yield and its change under future climate. Moreover, resilience is also typically 

estimated with proxy indicators using socio-economic or biophysical data, which sometimes are considered 

as general vulnerability indicators. Using crop models to derive indicators by simulating the coping, adaptive 

and transformative capacities can be a valuable alternative to quantify resilience, which is the first necessary 

step for planning resilience interventions.  

In this study, we proposed further and explicit integration between approaches to estimate current and future 

climate risk, mainly following the conceptualization and methodology of the InfoRM indexes (De Groeve et 

al., 2015; Marzi et al., 2021). More specifically, we used an agro-hydrological model – the Soil and Water 

Assessment Tool Plus (SWAT+, Bieger et al., 2017) – to retrieve hazard and resilience indicators considering 

future climate projections by the end of the century. These indicators were then combined with dynamic 

socio-economic indicators representing future exposure and vulnerability, relying on the variables derived 

from the five SSP narratives (O’Neill et al., 2017). We test the coupling of the risk-related approaches in 

Somalia, which is a country highly exposed to climate hazards and with an extremely vulnerable population, 

where extreme events are recurrent and devastating (Abdullahi et al., 2022; Ogallo et al., 2017). According to 

the EM-DAT database, 17 major droughts and 48 floods occurred since 1961, with an increasing trend in the 

last years. In Somalia, these kinds of risk-related assessments and modelling exercises are largely missing. 

Here, we aim to provide valuable insights to better understand the main trends and patterns characterising 

plausible future conditions and challenges in Somalia and other similar countries to better prepare adaptation 

strategies, demonstrating the potential of coupling different risk-related approaches towards greater policy 

impact. 

5.3 Methods  

The methodological steps were prepared based on the composite indicators’ guidelines of OECD (2008) and 

Chapter 2 and other risk assessments (De Groeve et al., 2015; Marzi et al., 2021; Hagenlocher et al., 2018). 

1. Conceptual and methodological framework definition 

2. Study area definition 

3. Indicator analysis and selection 

4. Normalization and weighted aggregation 

5. Robustness evaluation 

5.3.1 Conceptual and methodological framework definition 

We estimated climate risk for the historical and long-term future (2071-2100) periods in Somalia considering 

the five SSPs narratives and variables produced within them. With historical period, here we refer to the 

period 1985-2014 when using outputs produced with the agro-hydrological model, while to the recent past 

when considering SSP-based indicators. More details are available in the supplementary materials, part 1 and 

2. The main characteristics describing the SSP narratives useful for this study from reference papers (O’Neill 

et al., 2016; 2017) are reported in Table 5.1. We considered the framework proposed by IPCC, with risk being 

a function of hazard, exposure and vulnerability. The definitions and their references used in this study are 

reported in Table 5.2. Our focus was on agriculture and food security in conditions of water scarcity and 

drought, but we referred to a general climate risk assessment as we included mostly general exposure and 

vulnerability indicators and other extreme events, such as heat waves and heavy precipitation. Consistently 
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with the InfoRM risk index, we referred to hazard, vulnerability and exposure as dimensions, each of them 

composed eventually by multiple categories (De Groeve et al., 2015). In this study, we considered extreme 

events and crop yield change as hazard categories, while resilience, socio-economic and environmental 

susceptibilities as vulnerability categories. Finally, dimensions and categories aggregated the selected 

indicators. The scheme with the categories for each dimension, with the respective indicators and data source 

or methodology used for this assessment is reported in Fig. 5.1, while the full set of indicators is reported in 

Table 5.3. 

Table 5.1: The five SSP narratives and their main characteristics used in this study, adapted from O’Neill et al. (2016, 2017). 

General 

Code SSP126 SSP245 SSP370 SSP460 SSP585 

SSP 1 2 3 4 5 

Name Sustainability Middle of the road Regional rivalry Inequality 
Conventional 
development 

Socio-economic 
challenges 

Low Intermediate High 
High for adaptation, 
low for mitigation 

Low for adaptation, 
high for mitigation 

Forcing 
Category Low Medium High Medium High 

2100 W m-2 2.6 4.5 7.0 6.0 8.5 

Demography 

Population 
growth 

Relatively low Medium High a Relatively high Relatively low 

Urbanization High Medium Low High High 

Human 
development 

Education High Medium Low Very low/unequal a High 

Economy 
Growth per 
capita 

High b Medium, uneven Slow Low b High 

Technology Development Rapid Medium, uneven Slow Slow c Rapid 

Environment 
and natural 
resources 

Environment 
Improving 
conditions over 
time 

Continued 
degradation 

Serious 
degradation 

Continued 
degradation d 

Highly engineered 
approaches, 
successful 
management of 
local issues 

Agriculture 

Productivity 
improvement, 
diffusion of best 
practices 

Medium pace of 
technology changes, 
entry barriers to 
markets reduced 
slowly 

Low technology 
development, 
restricted trade 

High agricultural 
productivity for large-
scale industrial 
farming, low for 
small-scale farming 

Highly managed, 
resource-intensive, 
rapid increase in 
productivity 

a for high-fertility countries 
b in low-income countries 
c in non-high-tech economies and sectors 
d in low-income living areas 
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Figure 5.1: Schematic representation of the conceptual and methodological risk framework, with the components, indicators, and data 
source or methodology used. Indicators abbreviations are defined in Table 5.3. 

Table 5.2: Definitions used in the study. 

Concept Definition Reference 

Risk 

The potential for adverse consequences on lives, livelihoods, health, ecosystems and species, 

economic, social and cultural assets, services (including environmental services) and 

infrastructure. 

IPCC, 2014 

Hazard 

The potential occurrence of a natural or human-induced physical event or trend or physical 

impact that may cause loss of life, injury, or other health impacts, as well as damage and loss to 

property, infrastructure, livelihoods, service provision, ecosystems and environmental 

resources. 

IPCC, 2014 

Exposure 

The presence of people, livelihoods, species or ecosystems, environmental functions, services, 

and resources, infrastructure, or economic, social, or cultural assets in places and settings that 

could be adversely affected. 

IPCC, 2014 

Vulnerability 

The propensity or predisposition to be adversely affected. Vulnerability encompasses a variety 

of concepts and elements including sensitivity or susceptibility to harm and lack of capacity to 

cope and adapt. 

IPCC, 2014 

Susceptibility 

The physical predisposition of human beings, infrastructure, and environment to be affected by 

a dangerous phenomenon due to lack of resistance and predisposition of society and 

ecosystems to suffer harm. 

Cardona et 

al., 2012 

Resilience 

The capacity of social, economic and environmental systems to cope with a hazardous event or 

trend or disturbance, responding or reorganizing in ways that maintain their essential function, 

identity and structure, while also maintaining the capacity for adaptation, learning and 

transformation. 

IPCC, 2014 

Coping capacity 
The ability of a system or individual to respond to adverse shocks, which affects how direct risk 

translates into indirect risk. 

Mochizuki et 

al., 2018 

Adaptive 

capacity 

The ability of a system or individual to reduce direct and indirect risk through marginal or 

incremental changes to the system (that is, changes that occur within the scale of interest). 

Mochizuki et 

al., 2018 

Transformative 

capacity 

The ability of a system and individuals to address fundamental drivers of risk that are outside of 

the scale of interest or to amend the major functioning of a system, thereby changing 

mechanisms and modifying the ramifications of direct and indirect drivers of risk. 

Mochizuki et 

al., 2018 
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Table 5.3: Indicators used in the risk assessment, with the abbreviation, dimension, method, description, functional relationship with 
the dimension and data source. 

N Indicator Code Dimension Method Description Functional relationship Data source 

1 
Extreme 
precipitation  

R20 Hazard GCMs 
Annual number of 
days with P > 20 mm 

The highest the number 
of days above the 
threshold, the highest 
the hazard 

ISIMIP repository 
(data.isimip.org/search/), 
Lange and Büchner, 2021, 
elaborated in this study 

2 
Extreme 
temperature 

SU40 Hazard GCMs 
Annual number of 
days with TMAX > 40 
°C 

The highest the number 
of days above the 
threshold, the highest 
the hazard 

ISIMIP repository 
(data.isimip.org/search/), 
Lange and Büchner, 2021, 
elaborated in this study 

3 
Meteorological 
drought  

CDD Hazard GCMs 

Longest dry spell, the 
maximum number of 
consecutive dry days 
with P < 1 mm 

The longest the 
maximum dry spell, the 
highest the hazard 

ISIMIP repository 
(data.isimip.org/search/), 
Lange and Büchner, 2021, 
elaborated in this study 

4 
Hydrological 
drought  

FLO20 Hazard 
SWAT+ 

(GCMs + 
LUH2) 

Number of months 
below the 20th 
percentile threshold 
calculated in the 
historical period 

The highest the number 
of months below the 
threshold, the highest 
the hazard 

This study 

5 
Crop yield 
change 
(average) 

CYCavg 
Hazard, 

resilience 

SWAT+ 
(GCMs + 

LUH2) 

Average yield (t/ha), 
to take into account 
climate change 
impacts 

The lowest the crop 
yield, the highest the 
hazard 

This study 

6 
Crop yield 
change (low) 

CYC25 
Hazard, 

resilience 

SWAT+ 
(GCMs + 

LUH2) 

First quartile yield 
(t/ha), to take into 
account yield 
variability 

The lowest the crop 
yield, the highest the 
hazard 

This study 

7 
Water 
availability 

WTRav 
Environmental 
susceptibility 

SWAT+ 
(GCMs + 

LUH2) 

Sum of annual 
average water yield 
and recharge 
(mm/year) 

The lowest water 
available, the highest 
the vulnerability 

This study 

8 
Water 
consumption 

WTRco 
Environmental 
susceptibility 

Tethys 
Total water 
consumption (km3) 

The highest the water 
consumption, the 
highest the vulnerability 

Khan et al., 2023 

9 
Gross 
Domestic 
Product 

GDP 
Socio-

economic 
susceptibility 

SSP 
GDP per capita (billion 
US$2005/year) 

The lowest the GPD, the 
highest the vulnerability 

SSP database 
(tntcat.iiasa.ac.at/SspDb/), 
Riahi et al., 2017, IIASA, 
Cuaresma, 2017 

10 Age AGE 
Socio-

economic 
susceptibility 

SSP 

% of young, adult, and 
old population (<15 
years, between 15 and 
65 years, >65 years, 
respectively) 

The highest the share of 
young and old 
population, the highest 
the vulnerability 

SSP database 
(tntcat.iiasa.ac.at/SspDb/), 
Riahi et al., 2017, IAASA, 
Samir and Lutz, 2017 

11 Education EDU 
Socio-

economic 
susceptibility 

SSP 

% of the population 
without education and 
with primary, 
secondary and tertiary 
education 

The lowest the 
education, the highest 
the vulnerability 

SSP database 
(tntcat.iiasa.ac.at/SspDb/), 
Riahi et al., 2017, IAASA, 
Samir and Lutz, 2017 

12 Urbanization URB 
Socio-

economic 
susceptibility 

SSP 
% of the population 
living in urban areas 

The lowest the share of 
population living in 
cities, the highest the 
vulnerability 

SSP database 
(tntcat.iiasa.ac.at/SspDb/), 
Riahi et al., 2017, NCAR, Jiang 
and O’Neill, 2017 

13 
Total 
population 

POP Exposure SSP 
Total population 
(million) 

The highest the 
population, the highest 
the exposure 

SSP database 
(tntcat.iiasa.ac.at/SspDb/), 
Riahi et al., 2017, IAASA, 
Samir and Lutz, 2017 

14 Cropland CROP Exposure LUH2 
Total area (ha) with C4 
annual crops 

The highest the 
cultivated area, the 
highest the exposure 

Land Use Harmonization 2 
(luh.umd.edu/), Hurtt et al., 
2020  
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As hazard indicators, for the “extreme events” category, we included extreme precipitation (R20) and 

temperatures (SU40), longest dry spell (CDD) and low river flow (FLO20). Additionally, we framed climate 

change as a hazard itself and included “crop yield change” as a category. For vulnerability, many conceptual 

approaches exist to define it. In this study, we used the “vulnerability as an outcome”, as framed by Jurgilevich 

et al. (2017), since we considered dynamic socio-economic scenarios and adaptation strategies. Following the 

IPCC framework, we relied on indicators of susceptibility, either social, economic or ecological, and coping 

and adaptive capacities (Hagenlocher et al., 2019). We used indicators derived from the five SSP narratives, 

representing the “socio-economic susceptibility” category. Additionally, we included in the “environmental 

susceptibility” category indicators with a clear focus on water availability and consumption, which in some 

drought risk assessments are considered within physical susceptibility (Hagenlocher et al., 2019), exposure 

(GDO, 2021) or coping capacity. To consider the coping and adaptive capacities, we referred to the concept 

of resilience, which also includes the transformative capacity (Folke, 2006; Mochizuki et al., 2018). As we 

focused mainly on agriculture, we used the agro-hydrological SWAT+ model to simulate the capacity of the 

system to maintain good crop yields or increase them, considering different scenarios. More in detail, the 

coping capacity was represented in the simulations with constant fertilization and without any other 

management change, following the “dumb” farmer scenario. For adaptive capacity, we ran simulations 

considering simple agronomic autonomous adaptation strategies that will be easily implemented by farmers, 

such as changing the sowing and harvesting dates and adopting longer crop cycle varieties. Furthermore, in 

the adaptive capacity simulations, we also included the expected management changes in fertilization as 

projected in the datasets that we used. In this modelling exercise, we did not simulate any transformative 

capacity with the agro-hydrological model, even if the effects of some transformations are inherently included 

in the SSP narratives (Table 5.1). Hence, in our framework, we indirectly considered resilience indicators 

reflecting the coping and adaptive capacities through the process-based model, which was used to estimate 

future hazards. Here, resilience is considered a neutral concept in the coping capacity simulation and 

desirable resilience for the adaptive capacity simulations (Mochizuki et al., 2018) since we considered the 

best-performing adaptation strategies to calculate the final climate risk index. Finally, for exposure, we 

included the potentially affected population (POP) and cropland (CROP). Even if we recognize that cropland 

has a positive role from a food security point of view, this indicator is typically included in many climate risk 

assessments (e.g. GDO, 2021; Meza et al., 2020) and we decided to remain consistent with them. 

5.3.2 Study area definition 

Somalia is a country in the Horn of Africa with a prevalent arid and semi-arid climate (Fig. 5.2). As the average 

annual precipitation ranges from 100 to 700 mm, water resource management is fundamental in Somalia 

(Basnyat, 2007). Annual rainfall is distributed in a bimodal pattern, with long rains from March to June and 

short rains from October to November, locally known as Gu and Deyr, respectively, which corresponds to the 

growing periods when rainfed agriculture is practised (Basnyat, 2007). The interannual variability 

characterizes precipitation patterns, with recurrent extreme events such as droughts and floods (Ogallo et al., 

2017). The Juba and Shabelle rivers are the only two perennial rivers of Somalia, which originate in the Bale 

mountains of Ethiopian highlands and flow southwards towards the Indian Ocean. Their catchment areas are 

216,728 and 297,455 km2 for the Juba and Shabelle rivers respectively. These two rivers are fundamental for 

the Somali economy and social and environmental well-being (Sebhat, 2015). About two-thirds of their 

catchment area is in Ethiopia and Kenya, where more than 90% of the runoff is generated (Basnyat, 2007). 

Agriculture and livestock are the main sectors contributing to the Somali GDP (Mourad, 2022). Even if 

urbanization is increasing, the largest part of the population still lives in rural areas, with a significant 
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percentage of nomadic pastoralists (Basnyat, 2007; Michalscheck et al. 2016). The rural population has little 

access to clean water, and conflicts between different users of scarce water resources are increasing (Hashi, 

2017). The instability of the country led to a war of almost 30 years that further weakened the Somali 

institutions and increased the vulnerability of the local population (Houghton-Carr et al., 2011; Sebhat and 

Wenninger, 2014; Mourad, 2022). The vulnerability of Somalia is also enhanced by the decreasing and 

increasing trends in exports and imports at 13% and 16%, respectively (Mourad, 2022). 

The alluvial plains of the Juba and Shabelle rivers are the food basket of Somalia accounting for 90% of food 

production and 70% of cereal production (Basnyat, 2007). The main crops are maize and sorghum, cultivated 

both in rainfed and irrigated areas, with the share of land cultivated with sorghum increasing where water is 

scarcer (Basnyat, 2007; Warsame et al., 2022; 2023). The outbreak of the civil war and recurrent droughts 

and floods drastically reduced the area under irrigation, estimated in the pre-war period to be 1100 km2 under 

recession cropping and 1130 km2 under gravity and pump irrigation (Houghton-Carr et al., 2011).  

For this study, we set up the SWAT+ model for the whole Juba and Shabelle catchments (Fig. 5.2), but in the 

analysis, we calculate the physical indicators only with the outputs generated within the Somalian parts. As 

the socio-economic indicators from SSP narratives are downscaled at the national scale, we considered the 

data for the whole of Somalia, justified by the fact that the Juba and Shabelle valleys are the food basket of 

the country, accounting for most of the cereal, fruit and vegetable production. 

5.3.3 Indicator analysis and selection 

In this climate risk assessment, we retrieved indicators mainly from agro-hydrological modelling and using 

the data derived from SSP narratives (Fig. 5.1, Table 5.3). In the SWAT+ model, we divided cropland in Somalia 

based on reports from FAO and EU (Basnyat, 2007; FAO and WFP, 1997; EU, 2010). We considered sorghum 

as only rainfed, while maize was both rainfed and irrigated. To realistically represent crop cycles in the two 

rainy seasons, we considered the FAO crop calendar and then adjusted it using the monthly average Leaf Area 

Index (LAI). Then, we calibrated and validated the model for monthly streamflow at the Luuq gauging station. 

Finally, we considered two representative Hydrological Response Units (HRUs) with irrigated maize and 

rainfed sorghum and calibrated the model outputs of crop yields. More details about the model set-up, 

calibration, validation, and simulations are available in the supplementary material, part 1. We then ran the 

SWAT+ model with different inputs obtained from the Land Use Harmonization 2 (LUH2) and simulated 

different adaptation strategies reflecting the coping capacity and the adaptive changes (Table 5.4). Moreover, 

we calculated water availability with the outputs of the SWAT+ model. The dataset produced by Khan et al. 

(2023) was used to estimate historical and future water consumption. Finally, the outputs derived from 

SWAT+, climate models, LUH2 and the dataset produced by Khan et al. (2023) represented hazard, 

environmental susceptibility and, indirectly, resilience, to be coupled with the socio-economic indicators that 

represented exposure and vulnerability (Table 5.3). As discussed in section 2.1, we also included cropland 

from LUH2 as an indicator of exposure. 
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Figure 5.2: Elevation, precipitation and land cover maps of the Juba and Shabelle catchments and Somalia. The DEM (from the Shuttle 
Radar Topography Mission) and the land cover (the Copernicus Global Land cover map) are created with the data used for the SWAT+ 
model, while the precipitation map considers the long-term average of the Climate Hazards Infrared Precipitation with Stations 
(CHIRPS, Funk et al., 2015). 

Even if we performed an analysis with and without agronomic adaptation to quantify the adaptive capacities, 

in the final composite indicator we considered as the main option the yield outputs of the best-performing 

adaptation simulation, hence avoiding the “dumb” farmer scenario. For the crop yield indicators, we used the 

average and first quartile crop yields of the representative HRUs, and we applied a weighted average 

considering the percentage of irrigated area as reported in the LUH2 dataset (Table 5.4). As climate models, 

we considered the outputs of the GCMs ipsl-cm6a-lr and mri-esm2-0, the only two models available for all 

five SSPs in the ISIMIP repository (Lange and Büchner, 2021). From the dataset of Khan et al. (2023), we 

included only the ipsl-cm5a-lr climate model to remain consistent with the SWAT+ simulations. 
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As socio-economic indicators, we analysed 8 possible indicators and, finally, we considered only 5, excluding 

the “female population”, the “income Gini coefficient” and the “conflict probability”, due to data redundancy 

and similar values across the five SSP narratives and the historical period. More details about the exploratory 

analysis and the reason for inclusion or exclusion are discussed in the supplementary materials, part 2. As we 

estimated the climate risk for only one country, we did not perform any further multi-collinearity analysis. 

Table 5.4: Management schedule for the SWAT+ simulations considering the base, coping and adaptive scenarios. 

Simulation Resilience Description 
Irrigation 
maize 

Fertilization (kg/ha/yr) 

Base / / 

Historical: 6%  Historical: 13  
No Adaptation 

Coping 
capacity 

Considering only climate and CO2 concentration 
changes 

Adaptive changes:  
LCC 

Adaptive 
capacity 

Considering the fertilization and irrigation changes 
as reported in LUH2, and longer crop cycles 

SSP126: 20% 
SSP245: 1% 
SSP370: 2% 
SSP460: 2% 
SSP585: 30% 

SSP126: 24  
SSP245: 100.1  
SSP370: 10  
SSP460: 14.9  
SSP585: 37.1 

Adaptive changes:  
LCC - ES 

Adaptive 
capacity 

Considering earlier sowing (20 days) in addition to 
LCC 

Adaptive changes:  
LCC - LS 

Adaptive 
capacity 

Considering later sowing (20 days) in addition to 
LCC 

5.3.4 Normalization and weighted aggregation    

As the main normalization method, we considered the widely used min-max normalization method using 

values between 1 and 10. As the main weighting scheme, we applied equal weights, except for crop yield 

indicators where we considered the irrigated area as weight, as discussed in section 2.3. To aggregate 

indicators, we used both arithmetic and geometric means. The geometric mean is used instead of arithmetic 

mean to allow some degree of non-compensability (OECD, 2008). Since the geometric mean is always lower 

than the arithmetic mean, to reward the scenarios with higher scores, we largely followed the procedure of 

the InfoRM risk index (De Groeve et al., 2015). More in detail, we applied these steps to calculate risk: 

1. Calculate the arithmetic mean of the indicators with the two climate models and for the two growing 

seasons for crops. 

2. Normalize the indicators between 1 and 10, following the notion the higher the better. 

3. Calculate the geometric mean for the two crops, then for the categories, and finally for the 

dimensions. 

4. Reverse scale to reclassify following the notion the higher the worse. 

5. Calculate the risk index with equation 1, similar to the InfoRM risk index (De Groeve et al., 2015), 

combining the three dimensions of risk.  

𝑅𝑖𝑠𝑘 = 𝐻𝑎𝑧𝑎𝑟𝑑1/3 ∙ 𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒1/3 ∙  𝑉𝑢𝑙𝑛𝑒𝑟𝑎𝑏𝑖𝑙𝑖𝑡𝑦1/3      (1) 

To allow a simple analysis and discussion of the outcomes of the analysis, we reported the relative rank of 

the six scenarios and classified climate risk, hazard, vulnerability and exposure as “very high” (>8), “high” (6-

8), “intermediate” (4-6), “low” (2-4), “very low” (<2). Furthermore, since we conducted a study on an 

individual country and we wanted to quantify the future risk compared to the current situation, we also 

considered the percentage relative differences between projected and historical scenarios. This can be also 

considered a normalization approach as proposed by OECD (2008), defined as “distance to a reference 

measure”. 
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5.3.5 Robustness evaluation 

When constructing a composite index, multiple choices are made, which involve a high level of uncertainty 

(OECD, 2008). In the sensitivity/uncertainty analysis, we considered different weighting and aggregation 

strategies and excluded individual indicators. As different weighting methods, we attributed equal importance 

to all the indicators, calculating the final risk index as the arithmetic mean of all the indicators without 

considering the categories and dimensions, referred to as proportional weights (as in Chapter 2). As an 

alternative aggregation method, we used arithmetic mean for all the aggregation steps. Moreover, we 

considered coping capacity simulations instead of the best-performing adaptive capacity simulation. Finally, 

we excluded each crop, GCM and indicator to evaluate their effects on the final risk and the intermediate 

dimensions. The 21 alternatives considered for the robustness evaluation, in addition to the main option, are 

reported in Table 5.5. 

Table 5.5: The main and 21 alternative options that we considered to evaluate the robustness of the assessment. 

N Alternative Abbreviation Description 

0 Main option MAIN / 

1 
Arithmetic 
mean 

AM 
Aggregating the GCM outputs, crops and categories with 
arithmetic mean 

2 
Proportional 
weights 

PW 
Not considering the categories and aggregating the whole 
set of indicators with geometric mean, and not with 
Equation 1 

3 Coping capacity CC 
Using the crop yield outputs of the simulation without 
adaptation strategies 

4-5 One GCM IPSL, MRI Considering only the outputs of one GCM 

6-7 One crop MAIZE, SORG Considering only the outputs of one crop 

8-21 
Excluding 
individual 
indicators 

NOx (NO1, NO2, …, NO14) 
Excluding one indicator at a time. The x in NOx refers to 
the indicators in Table 5.3. 

At the end of the process, it is important to reflect on the different steps applied in the risk assessment, to 

focus on relevant inputs and outputs (OECD, 2008) and to understand the implications of the assessment and 

discuss possible adaptation strategies (Hagenlocher et al., 2019). In this study, we mainly focused on the 

relative changes compared to the historical simulations to investigate which aspects should be prioritized in 

the planning of adaptation/development policies. Nevertheless, we did not conduct any additional analysis 

or propose any specific adaptation strategy, as we focused on one single country and we based the 

assessment on SSP narratives, interested in future climate risk trends. Finally, we discussed the limitations of 

the approach. 

5.4 Results 

5.4.1 SWAT+ calibration 

Despite the poor input data used to set up and calibrate the model, SWAT+ was able to represent satisfactorily 

the monthly discharge at the Luuq gauging station and irrigated maize and rainfed sorghum crop yields in 

Lower Shabelle and Bakool regions, respectively (Fig. 5.3). Streamflow was underestimated by the model, but 

all the performance indicators were more than satisfactory according to the criteria of Moriasi et al. (2007). 

Moreover, SWAT+ simulated satisfactorily the crop yield and during calibration the yield variability. We 

considered the model validated for the exploratory analysis performed in this study, keeping in mind that 

most applications of the SWAT model for crop yield validate it considering the long-term annual average. 
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Figure 5.3: Calibration and validation plots and tables with performance indicators. The hydrograph with monthly streamflow refers 
to the Luuq gauging stations on the Juba River. The bar plots represent respectively irrigated maize and rainfed sorghum crop yields. 
For crop yield, the performance indicators are the per cent bias (Pbias), the root mean square error (RMSE) and the coefficient of 
determination (R2), while for streamflow, they are the Nash-Sutcliffe Efficiency (NSE), the RMSE-observations standard deviation ratio 
(RSR), Pbias and R2.  

5.4.2 Future climate and crop yield 

The two climate models showed increasing temperatures and precipitation under all SSP scenarios. 

Temperature increases were predicted to be similar considering annual or seasonal (Gu and Deyr) averages, 

with the magnitude being higher for SSPs with higher radiative forcings. For precipitation, both climate 

models projected increases in annual precipitation, but with different magnitudes and different seasonal 

patterns. For ipsl-cm6a-lr the increases reached 73.5% for annual average precipitation, while for mri-esm2-

0 they were always around 10%. In the Gu season, mri-esm2-0 projected slightly decreasing precipitation, 

compensated by the increase during the Deyr season. More detailed information about future temperature 

and precipitation can be found in the supplementary materials, part 3. 

The crop yields estimated after the coping and adaptive capacities simulations are summarized in Figure 5.4. 

Since maize was simulated as an irrigated crop, the increases in precipitation were not beneficial for crop 

yield (Fig. 5.4a,c). Instead, we observed declining crop yields mainly due to the decrease in crop cycle length 

as a result of increased temperatures. The reduction was higher for SSPs with the strongest temperature 

increases, while they were reduced, especially in the Deyr season, for SSPs 126 and 245. Sorghum crop yield 

reductions were also found for SSPs 460 and 585 in the Gu season, while for the other SSPs, slight increases 

were predicted (Fig. 5.4b). Instead, for the Deyr season, the increased precipitation will be highly beneficial 

for sorghum yield, with increases for all SSPs (Fig. 5.4d). Considering the adaptive capacity, which is the best 

adaptation strategy combining longer crop cycles and/or shifted sowing dates and modified fertilization, we 

obtained increases in crop yield compared to the coping capacity simulations for all SSPs, crops and climate 
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models. The only exception was rainfed sorghum in the Deyr season for SSPs 126 and 245, for which 

adaptation strategies were not effective (Fig. 5.4d). Often, the increase was sufficient to achieve yield 

increases compared to the historical simulations.  

The best-performing adaptation strategy was longer crop cycles with delayed sowing dates for irrigated maize 

under all SSPs and climate models, except for ipsl-cm6a-lr under SSPs 126 and 585 where earlier sowing was 

more beneficial. Maintaining the same sowing date but adopting longer crop cycle varieties was the best 

adaptation strategy for rainfed sorghum, except for mri-esm2-0 under SSP585 in the Deyr season and under 

SSPs 460 and 585 in the Gu season, where simulations with delayed sowing showed the highest crop yield. 

Finally, interesting indications were obtained by analysing the 1st quartile yield values (Fig. 5.4). While for 

irrigated maize the behaviour was similar to the average yield, for rainfed sorghum it was much more variable. 

Very importantly, the 1st quartile yield was simulated to be much higher in the Deyr season under all SSPs and 

climate models considered in this study (Fig. 5.4d). Finally, as a general comment, it is important to remember 

that the values of maize and sorghum yields were very low, around 800 kg ha-1 for irrigated maize and 160 kg 

ha-1 for rainfed sorghum. Even if the climate change hazard will be mitigated by adaptive changes, the 

simulated future yields will remain very low and the yield gap will remain unfilled. 

 

Figure 5.4: Irrigated maize and rainfed sorghum crop yields considering the coping and adaptive capacity simulations. In the coping 
capacity, the management is maintained equal for all scenarios. For the adaptive capacity, changes in sowing date, different 
fertilization amounts and increased longer crop cycles are also simulated. In the figure, the best adaptation strategy is reported. The 
bar plots show the average crop yields, while the red point plots the 1st quartile yields. The uncertainty is drawn considering the 
maximum and minimum crop yields simulated with climate inputs of the two models used. In a) and b), results are referred to the Gu 
season, while in c) and d) to the Deyr season. 

5.4.3 Indicators’ analysis 

The analysis of the relative percentage changes compared to the historical period for the individual indicators 

is useful to understand the main drivers that will affect how risk and its dimensions will evolve (Figure 5.5). 
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Regarding the extreme events indicators, extreme precipitation will mostly increase, especially for the ipsl-

cm6a-lr model that predicted higher precipitation. For mri-esm2-0, the increases in R20 were found to be 

generally lower, and under SSP370 a decrease was predicted. Extreme temperatures (SU40) will increase 

according to both climate models. The indicators related to dry conditions showed beneficial changes, with a 

lower number of longest dry spells and low flows predicted. Considering average and 1st quartile yields, the 

percentage change of the averaged values for the seasons, the crops and the climate models showed yield 

increases. Beneficial changes were always found for SSPs 126 and 245, while there was more uncertainty for 

the other scenarios, with some decreasing yield values. For the water availability indicator, future conditions 

will improve under all scenarios according to the ipsl-cm6a-lr climate model, while for mri-esm2-0 only under 

SSP585. Water consumption will increase compared to the historical period under all scenarios considered. 

For the indicators belonging to the socioeconomic susceptibility category, significant beneficial effects were 

predicted according to the datasets used in our study, mainly due to the very low performances of the 

indicators for the historical period and the so-called “Scenario optimism” of the SSP narratives. The 

population will increase for all scenarios except for SSP585, while cropland will have beneficial changes under 

SSPs 126 and 370.  

5.4.4 Future climate risk, hazard, vulnerability and exposure 

In line with the mostly negative percentage changes of Figure 5.5, indicating a decreasing risk, results showed 

that climate risk will decrease in the future under all scenarios considered (Fig. 5.6, Table 5.6). The lowest risk 

was found for SSPs 126 – Sustainability – and 585 – Conventional development (the green and purple bars in 

Figure 5.5). This is consistent with the narratives on which the SSPs themselves are based (Table 5.1), as 

scenarios with low adaptation challenges had the lowest climate risk. The categorization of the climate risk 

ranged from “intermediate” to “low”, with low differences in magnitudes due to the compensating effect of 

the various indicators. However, as shown in Figure 5.5 and Table 5.6, the individual drivers or indicators, as 

well as the dimensions, were highly different. 

Hazard was found to be the highest in the historical period and SSP585 – Conventional development - while 

low for the other SSPs (Fig. 5.7, Table 5.6). In the historical period, the “high” hazard was driven by the FLO20 

and CDD indicators, the ones reflecting dry conditions, and by low crop yields, especially for rainfed sorghum 

in the Deyr season (Fig. 5.4). High values of SU40 and R20, the indicators related to extreme wet and hot 

events, and low performance for maize yield were the main cause for the “high” hazard for SSP585 (Fig. 5.4, 

Table 5.6). For the other SSPs, the increase in temperature and precipitation was not as detrimental as for 

SSP585 in the calculation of the hazard index. Vulnerability was shown to be highest in the historical period, 

mainly driven by low water availability and low values for the indicators calculated with the outputs of the 

SSP narratives. Intermediate vulnerability scores were found for SSPs 245, 370 and 460. “Low” and “very low” 

vulnerability scores were instead retrieved for SSPs 585 and 126 respectively (Fig. 5.7, Table 5.6). Finally, 

exposure was found to be the highest in SSP245, followed by SSPs 460 and 370, while SSPs 126 and 585 

showed the lowest values (Fig. 5.7, Table 5.6). 
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Figure 5.5: The relative percentage changes compared to the historical situation of individual indicators. The changes are expressed 
considering their functional relationship with the risk. Hence, negative changes indicate a decreasing risk and vice versa. The y-axis 
has a “symlog” scale. Where more values were used for each indicator (i.e. climate models, seasons and crops), the error bar consists 
of the full range of the simulated outputs. The tables report the full set of indicators and their values. 
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Table 5.6: Hazard, vulnerability, exposure and risk of the scenarios considered in this study. The relative rank is reported as well as a 
categorization (>8 very high, 6-8 high, 4-6 intermediate, 2-4 low, <2 very low). For each dimension, the beneficial (↓, decreasing risk) 
and detrimental (↑, increasing risk) drivers (indicators) are also reported. Beneficial (detrimental) drivers are individuated as those 
>8 (<3) after the normalization step 2 in paragraph 2.4. 

5.4.5 Robustness evaluation 

The uncertainty, expressed by plotting the distributions of the climate risk index (Fig. 5.6) calculated with the 

21 alternatives of Table 5.4 (22 with the main option), was quite low only for SSP126 – Sustainability – that 

remained in the “low” risk category with all the alternative options considered. The other scenarios showed 

much more variability, with SSP370 – Regional rivalry - the most uncertain scenario. Using proportional 

weights, considering only the outputs of mri-esm2-0 climate model or the maize crop, and excluding 

individual indicators, mainly belonging to exposure and vulnerability dimensions, highly influenced the final 

climate risk score of the different scenarios. Nevertheless, with some exceptions, the scenario rankings for 

climate risk rarely varied. 

As shown in Table 5.6, the individual dimensions showed scores with wider ranges as compared to climate 

risk, mainly because of the lower number of indicators that reduced the compensative effects. The high range 

of values with few indicators is particularly evident for exposure that had only “low” or “very high” scores 

(Fig. 5.7). Being the exposure often represented by few indicators, their choice is a fundamental step as they 

highly influence the exposure index and therefore the final climate risk index. Excluding either cropland 

(NO14) or total population (NO13) had a huge effect on the final exposure score. This was particularly evident 

in SSPs 245 and 370, while the historical period, SSPs 126 and 585 had “low” scores with little uncertainty. 

Furthermore, allowing more compensation by applying arithmetic mean (AM) resulted in a lower exposure 

score, especially for the scenarios with “very high” exposure.  

 

 Historical 
SSP126 – 

Sustainability 
SSP245 – Middle 

of the road 
SSP370 – Regional 

rivalry 
SSP460 – 

Inequality 

SSP585 – 
Conventional 
development 

Hazard (rank) High (1) Low (4) Very low (6) Low (3) Low (5) High (2) 

↑ Drivers 
Dry events, crop 

yields 
  Maize yield  

Wet and hot events, 
maize yield 

↓ Drivers Wet and hot events 
Hot and dry events, 

crop yields 
Dry events, crop 

yields 
Sorghum 1st quartile 

yields 
Dry events, sorghum 

1st quartile yields 
Dry events 

Vulnerability 
(rank) 

High (1) Very low (6) Intermediate (2) Intermediate (4) Intermediate (3) Low (5) 

↑ Drivers 
Water availability, 

GDP, age, education, 
urbanization 

Water availability Water consumption GDP, education GDP, education Water consumption 

↓ Drivers Water consumption 
Water consumption, 

education, 
urbanization 

Age Age Age, urbanization 
Water availability, 

GDP, education, 
urbanization 

Exposure 
(rank) 

Low (4) Low (6) Very high (1) Very high (3) Very high (2) Low (5) 

↑ Drivers   Cropland Population Population, cropland  

↓ Drivers Population, cropland Population, cropland  Cropland  Population, cropland 

Risk (rank) Intermediate (1) Low (6) Intermediate (4) Intermediate (2) Intermediate (3) Low (5) 
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Figure 5.6: Violin plot of risk scores considering the whole set of alternatives used in the uncertainty/sensitivity analysis and the main 
option. The swarm plot represents the risk scores of the alternative options, with the main option point coloured in red. To ease the 
visualization and interpretation of the plot, we included only the alternatives that differed > |0.5| as compared to the main option. 

For climate hazard, the uncertainty related to climate models was quite high (Fig. 5.7). When considering only 

mri-esm2-0 (MRI), hazard highly increased for SSPs 245, 370 and 460, while it decreased for the historical 

period and especially for SSP585. With mri-esm2-0 under SSP585, crop yield changes were mostly beneficial, 

as well as extreme precipitation increases that were much reduced as compared to ipsl-cm6a-lr. Furthermore, 

using only the outputs of ipsl-cm6a-lr (IPSL) influenced significantly climate hazard, with for example SSP126 

which was ranked as third in climate hazard. Considering the coping capacity simulations (CC) instead of the 

adaptive capacity affected the magnitude of the scores, even if not that significantly since the two crops 

showed different responses to adaptation strategies (Fig. 5.4). Finally, considering only the maize crop 

(MAIZE), the climate hazard highly increased and reached up to “very high” scores for the scenarios in which 

maize yield mostly decreased, namely SSPs 370, 460 and 585. Here, it is important to consider that, in the 

construction of the composite indicator, maize yield was weighted with the percentage of the area under 

irrigation, and therefore it had little impact under most scenarios. When applying arithmetic mean (AM), the 

scores increased towards “intermediate” values for the SSPs that in the main alternative showed “low” 

hazard. 

Excluding indicators belonging to the environmental susceptibility category, namely water availability and 

water consumption, strongly influenced both the vulnerability scores and the scenario rankings. Without the 

water availability indicator (NO7), vulnerability increased for all the scenarios, more for SSPs 245 and 585 

which were ranked as more vulnerable compared to the historical period. On the other hand, excluding the 

water consumption indicator (NO8) worsened the conditions of the historical period and SSP126, while 

vulnerability for SSP585 was the lowest with a “very low” score. The situation was much less uncertain for 

the other category of vulnerability, namely socioeconomic susceptibility, where the values for the historical 

period were found to be the highest for all the indicators considered, followed by SSPs 370 and 460, and 

excluding individual indicators did not result in significant changes. Allowing compensation by aggregating 

indicators with the arithmetic mean (AM) had a strong impact on the absolute values of vulnerability, 

especially on SSP126 which resulted in being slightly more vulnerable as compared to SSP585. 
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Figure 5.7: The climate risk dimensions (hazard, 
vulnerability and exposure) for the six scenarios 
considered in this study. The bar plots and the red 
points correspond to the scores obtained for the 
main option, while the points represent the scores of 
the alternative options used in the 
uncertainty/sensitivity analysis, considering only the 
alternatives that differed > |0.5| as compared to the 
main option. 
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5.5 Discussion 

5.5.1 Climate change impact assessment 

The outputs of the two climate models used in this study are comparable to previous climate change analyses, 

which projected increased temperatures and precipitation by the end of the century specifically for Somalia 

(FAO et al., 2017; Ogallo et al., 2018). In our analysis, a maximum relative percentage increase for precipitation 

of more than 90% was found for ipsl-cm6a-lr under SSP585, but it is important to keep in mind that absolute 

precipitation values are low in Somalia and high percentage increases are common (SMHI, 2017). Consistent 

results are also reported for Southern Ethiopia by Gebrechorkos et al. (2023), with increased precipitation 

and streamflow predicted for the upper Juba and Shabelle rivers, and by Murken et al. (2020), who highlighted 

the projected increased hot days, tropical nights and extreme precipitation events. 

Future crop yield predictions are scarce in the area. Zooming in the maps of Jägermeyr et al. (2021), maize 

yields are predicted to decrease under SSP585. In neighbouring Ethiopia, the impacts of climate change on 

maize yields are uncertain, with some areas that will have negative effects (Murken et al., 2020). Our study 

confirms the negative impacts on maize yield, while increased rainfall benefits sorghum yield especially during 

the Deyr season. Adapting varieties is fundamental to cope with increased temperatures and avoid reductions 

in the crop cycle length (Zabel et al., 2021), as already discussed in other studies (FAO et al., 2017; Nkwasa et 

al., 2023). Consistently, our results showed that adopting longer crop cycle varieties and modifying the sowing 

date is beneficial to cope with climate change, reducing losses or even increasing crop yields. Nevertheless, 

even under the most optimistic scenarios crop yields remain at very low absolute values, which is worrying 

as the population is expected to increase in the short term and most scenarios also by the end of the century. 

Our yield projections corroborate the concerns that emerged from Ray et al. (2013), who demonstrated that 

current global yield trends are insufficient to cope with future population increases, especially in countries 

such as Somalia. 

Since our analysis is based on similar data (i.e. climate models and SSP-related variables), our results are 

highly consistent with past research. As we considered mostly dry events as hazard indicators and 

precipitation was projected to increase, the historical period had high hazard. Past literature which slightly 

differs from our results considered the SPEI as a drought indicator (Ahmadalipour et al., 2019; Tabari et al., 

2021), while climate trends and analyses with indexes considering only precipitation are consistent with our 

outcomes (Ogallo et al., 2018; Tabari et al., 2023b). High temperatures were directly detrimental to the SU40 

indicator, but also indirectly due to the reduced crop cycle length and therefore crop yield. Vulnerability was 

also the highest in the historical period, mainly due to indicators of socio-economic susceptibility, partially 

mitigated by the low water consumption. Although at a variable pace, conditions were predicted to improve 

and vulnerability to decrease, consistent with most of the other assessments and SSP narratives 

(Ahmadalipour and Moradkhani, 2018; Andrijevic et al., 2020). Finally, exposure was found to highly increase 

in the future for the scenarios with significant population increase, which correspond to the ones with lower 

education, while remaining similar for the high-development scenarios. As a result of these dimensions, the 

climate risk was projected to be higher under “Regional rivalry” and “Inequality” SSP scenarios, consistent 

with other assessments and with the SSP narratives themselves, as these are the scenarios with high 

adaptation challenges (Table 5.1).  
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5.5.2 Study limitations and further research 

In this assessment, we used the variables produced within the SSP narratives which are known to have some 

practical limitations (O’Neill et al., 2020; Marzi et al., 2021). They should be intended as a description of 

plausible future conditions to enable the research community to develop sensible assessments and not for 

direct climate policy advice (O’Neill et al., 2017). As these narratives were created focusing on the final 

outcomes, they do not include by design the feedback of climate change impact, resulting in a “Scenario 

optimism” in which no country will experience a decline in socio-economic development (Andrijevic et al., 

2020). Even if local challenges are strictly related and relevant to global dynamics, SSP narratives ignore local 

conditions (Birkmann et al., 2020; O’Neill et al., 2017). Furthermore, shocks and disruptions that might 

significantly alter future development are only implicitly considered within the SSP scenarios without 

information on causal events (O’Neill et al., 2020). These and other limitations limit the potential of the 

adoption of SSP narratives in domains beyond climate change, such as sustainable development (Marzi et al., 

2021). Despite these issues which will need to be tackled in the future, our study sums to a significant amount 

of literature that applied SSP narratives to project vulnerability and coping capacity drivers (Andrijevic et al., 

2020; Rohat et al., 2018; Yang and Cui, 2019; Tabari and Willems, 2023a, b). 

This kind of risk assessment should not be intended as a direct measure to estimate risk but interpreted in 

relative terms (OECD, 2008). Hence, the final “low” risk found here for SSPs 126 and 585 might be much 

higher if global or continental scale assessments are performed. Even if country-specific climate risk 

assessments already exist (Cochrane and Al-Hababi, 2023; Song and Lee, 2021), the risk assessment 

framework is usually applied to compare multiple spatial units, such as countries, regions or municipalities. 

In our assessment, we adopted the same methodology to compare future scenarios in a single country. 

Moreover, we also used a process-based crop model to include yield projections and to partially represent 

resilience with specific agronomic adaptation strategies. We argue that this provides very valuable insights 

and that the coupling of risk-related methodologies enhances and multiplies the effectiveness of this kind of 

assessment. Furthermore, we underline the importance of considering, at least, simple adaptation strategies 

and avoiding the “dumb” farmer scenario. Despite the adaptive capacity, the crop yield indicator is probably 

the most worrying for the future, as we noticed that even under the best-performing scenarios where crop 

yields are predicted to increase, they will remain very low, threatening food security. If we were to exclude 

this concern about future crop yields, the interpretation of the results of this assessment would be 

encouraging at least for SSPs 126 and 585. It is also important to keep in mind that agro-hydrological 

modelling is based on simplified processes. Further improvements would be to consider additional inputs, 

crops and climate models to optimize the model and the robustness of the assessment methodology. Also, 

the land use map used in this study showed some inconsistencies compared to the land use produced within 

the FAO SWALIM project. Moreover, we focused only on agriculture and cereal crops, but in Somalia, a large 

part of the income and diet depends on livestock. In addition, in our study, we did not simulate any 

agricultural transformative change such as agroforestry, optimized crop distribution or other practices (Davis 

et al., 2017; Fedele et al., 2019; Vermeulen et al., 2018) but we argue that process-based crop models should 

be applied for this scope within the framework of risk assessment. Finally, critical social science that engages 

with politics and inequalities should start to be included in this kind of climate risk assessment (Savelli et al., 

2022). 

5.6 Conclusions 

Integrating approaches, methodologies and definitions of different research communities, we estimated the 

current and future climate risk for Somalia. According to our results, future hazard in Somalia will decrease 
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for all the scenarios considered. Future extreme events will be more related to heavy precipitation and heat 

waves since a hotter and wetter climate is projected under all scenarios. Without considering adaptation 

strategies, irrigated crop yields will mostly decrease. Rainfed crop yields might benefit from increased 

precipitation. Despite improvements after adopting longer crop cycle varieties and shifting the sowing dates, 

yields will remain very low. Vulnerability will decrease compared to the present even if with different 

magnitudes, while exposure will highly increase in SSPs 245, 370 and 460 mainly due to the demographic 

increase. 

This paper is, to our knowledge, the first attempt to explicitly include indicators produced with a process-

based crop-growth model in the risk assessment framework where risk is defined as the interaction between 

hazard, exposure and vulnerability. Using the SWAT+ agro-hydrological model, we estimated indicators based 

on physical processes instead of relying on proxy indicators. We argue that this is a step forward towards a 

better representation not only of future hazard, but also of future coping and adaptive capacities. Potentially, 

process-based models can be used to simulate even more complex adaptation strategies and transformative 

changes, hence providing an interesting methodology to operationalize the resilience concept.  

To conclude, we will need all the skills and methodologies developed within the disaster, climate change and 

development research communities to cope and adapt to future climate change challenges. Avoiding further 

integration between different approaches would be a missing opportunity to achieve greater policy impact. 
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Chapter 6 Conclusions 

6.1 Discussion 

O1. To evaluate the future climate impacts, risk and its components and to quantify the adaptive 

capacity of agricultural systems in the selected study areas, highlighting uncertainties and 

neglected issues. 

6.1.1 Future climate and risk in the study areas 

For the study areas considered, Southern and Central Tuscany in Italy and the Juba and Shabelle catchment 

in Somalia, future temperatures will increase. The increase is proportional to the radiative forcing, being 

higher in RCP 8.5 or SSP585. This will have negative implications due to heat waves, contributing to higher 

evapotranspiration and shortening the crop cycles. However, increased average temperatures below heat 

stress thresholds might also be beneficial for some crops. 

A much higher uncertainty is related instead to future precipitation. This is surprising for the Italian case study 

since the Mediterranean basin is a hotspot for climate change due to projected decreased precipitation 

(Lionello and Scarascia, 2018). Nevertheless, this assertion is made considering the whole Mediterranean 

region. In many climate change studies, Central and Northern Italy are crossed by the zero-change 

precipitation line (Evin et al., 2021; Mariotti et al., 2015; Spano et al., 2020). This is also confirmed by analysing 

the RCMs considered in this thesis, which project a minor annual average increase in precipitation. The 

increase is mainly driven by winter precipitation and this is, interestingly, the opposite of the outcomes of the 

review of Caporali et al. (2021) for past precipitation trends over Italy. The plausible decrease in summer 

precipitation is concerning for Southern and Central Tuscany, and even more for the coastal areas. Summer is 

the season with the highest evapotranspiration and irrigation, which sums up an already critical situation of 

high water demand for domestic use and groundwater over-abstraction. The climate models used in this 

thesis and other studies for Somalia indicate a likely increase in annual average precipitation, even if with 

uncertain magnitudes. This would be an opportunity to enhance food security if the water is used 

productively both as green and blue water. On the other hand, the increased hazard due to heavy 

precipitation and hence floods is a concern. Furthermore, for both Italy and Somalia, I analyzed annual and 

seasonal average trends, but the interannual variability which might increase will also possibly have negative 

consequences. 

Drought and other climate hazards are fundamental drivers of risk, necessary to evaluate future water 

shortage. The other components of risk, namely exposure and vulnerability, are equally important to 

understanding the future dynamics of water demand and, hence, scarcity. The population is usually 

considered the main indicator of exposure and socioeconomic characteristics of vulnerability. Demographic 

issues are particularly concerning for Somalia and Sub-Saharan Africa in general. The findings of Chapter 5 

confirm that increased population is one of the main drivers for future risk. In Italy, I analysed spatial patterns 

of exposure and vulnerability only for the present due to data unavailability at the required spatial scale. 

However, it is possible to affirm that agriculture in the Northern Mediterranean will face different, reduced – 

yet not small – challenges on the water demand side. 
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6.1.2 The uncertainty in estimating future drought and aridity 

In drought analysis, the role of temperature and evapotranspiration is considered always more important. 

This is the reason why some authors consider the Standardized Precipitation Evapotranspiration Index (SPEI, 

Vicente-Serrano et al., 2010) more accurate and complete as compared to the simpler Standardized 

Precipitation Index (McKee et al., 1993). In this thesis, I considered both indicators based solely on 

precipitation in the drought and climate risk assessments (Chapters 2 and 5) and temperature-related ones 

(Chapters 2, 3 and 5). How drought is defined influences the selection of the indicators, that for drought are 

numerous (Kchouk et al., 2022). Indeed, the drought definition is extremely subtle and its choice has 

tremendous consequences on the outcomes of the studies (Hall and Leng, 2019; Satoh et al., 2021). For 

example, studies that include the SPEI have much worse predictions compared to those that rely on SPI. In 

Somalia, the analyses that use SPEI report increasing drought hazard (Ahmadalipour et al., 2019; Tabari et al., 

2023b), while those that consider only precipitation show the opposite trend (Ogallo et al., 2018; Tabari et 

al., 2023a). Results of Spinoni et al. (2021) highlight that, in the worst-case scenario, the global population 

exposed to drought will increase by 14% and 60% if considering SPI or SPEI respectively. 

Including evapotranspiration in the indexes to estimate drought hazard has a remarkable influence. At the 

same time, the estimation of future evapotranspiration is highly uncertain. As discussed in Chapter 3, there 

is a discrepancy between the future drought calculated with the outputs of the climate models and simple 

metrics of water scarcity, such as the aridity index and the SPEI, with the former showing heterogeneous 

patterns of change while the latter depicting much drier conditions (Berg, 2022). A crucial difference is that 

the vegetation responses to increased CO2 concentration are typically not represented when using simple 

indicators (Greve et al., 2019; Scheff et al., 2022; Yang et al., 2019). 

Even if often neglected, there are many approaches to include vegetation responses to CO2 in the calculation 

of future evapotranspiration when considering simple metrics. However, as shown in Chapter 3, this entails 

high uncertainties, especially for very high CO2 concentrations. The SWAT+ model includes a modification of 

the Penman-Monteith approach to account for the suppression effect on stomatal conductance, but 

simulation outcomes beyond 660 ppm are doubtful. The equations included in the SWAT+ model were 

developed in the nineties (Easterling et al., 1992) based on experiments performed in the eighties (Morison, 

1987). Below the 660 ppm threshold, the SWAT+ model simulates hydrological fluxes coherently with the 

theory and with similar magnitudes of changes compared to other studies. The effects are not too high, as 

the decrease in evapotranspiration caused by the reduced stomatal conductance is counterbalanced by the 

CO2 fertilization effect that increases biomass production and leaf area (Manzoni et al., 2022). Fatichi et al. 

(2016) quantified the changes in actual evapotranspiration to be lower than 8%, which is consistent with the 

outputs of the SWAT+ model under RCP 4.5. On the other hand, when considering values much higher than 

this threshold, the potential evapotranspiration drastically decreases, as well as related variables, highly 

influencing hydrological fluxes such as water yield that significantly rise. A similar behaviour in future potential 

evapotranspiration was also reported by Lemaitre-Basset et al. (2022), who applied the equations used by 

SWAT+ to calculate potential evapotranspiration including vegetation responses to CO2. It is difficult to 

evaluate how models simulate future evapotranspiration as there is much uncertainty in the theory, especially 

for elevated concentrations (Toreti et al., 2020). Other research communities, such as the Agricultural Model 

Intercomparison Project (AGMIP), are active in finding alternative improved equations. The problem is 

therefore not strictly related to the SWAT+ model but to the larger research community. It is possible to 

conclude that vegetation responses are sufficiently known and represented in models, and there is no need 

anymore to perform simulations without CO2 increase (Toreti et al., 2020), and the SWAT+ model is no 
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exception in this. Nevertheless, the model outputs with CO2 concentration beyond the 660 ppm threshold 

have to be analysed cautiously. 

6.1.3 The adaptive capacity of agricultural systems  

Regardless of the climate change impacts on future crop yield and water availability and the dynamics of 

exposure that influence water demand, adaptation strategies will be fundamental to contain losses by 

reducing vulnerability. Within sustainable development, the adaptation strategies are framed and promoted 

as best practices to make better use of resources, increase crop yields and reduce the yield gap. In the study 

areas considered in this thesis, crop yield decreases are simulated under specific scenarios and for some 

crops. As precipitation is not projected to reduce, the main reason for the crop yield loss is the shrinking in 

crop cycle duration caused by increased temperatures. Nevertheless, the adaptive capacity of the agricultural 

systems analysed in Chapters 4 and 5 is high. Crop yield losses are strongly reduced with simple agronomic, 

autonomous adaptation strategies. The most effective strategy is the adoption of varieties with longer crop 

cycles, to balance the reduction induced by increased temperatures. For specific crops, contexts and 

scenarios, benefits are produced also by other management changes, such as earlier sowing, supplemental 

irrigation and cover crops. Interestingly, the combination of adaptation strategies shows more beneficial 

synergies than detrimental trade-offs for crop yields, water footprints and hydrological fluxes. Considering 

only the ensembles, twelve synergies and only two trade-offs are detected.  

Water should be managed at the catchment scale and the field-scale agricultural practices should be 

evaluated at larger scales (Giordano et al., 2017; Ruane, 2012). Furthermore, agronomic practices should 

produce real water savings, meaning that water consumed should be reduced and not the water withdrawn 

as occurs in the apparent water savings (van Opstal et al., 2021; Whiting et al., 2023). In Chapter 4, an 

integrated, multi-scale climate change impact assessment is performed in which the effects of the 

management changes are evaluated considering not only crop yields but also the water footprints and 

hydrological fluxes at the catchment scale. Results show that for some variables, the impacts of the 

management changes are comparable to those of climate change. This is further evidence proving that the 

promotion of alternative agronomic strategies should be evaluated not only at the field scale but also at the 

catchment scale. As also discussed in Villani et al. (2021), more attention should be paid to the management 

and land cover changes, as they influence the microclimate and might represent a third way to cope with 

climate change (Ismangil et al., 2016; van Woesik et al., 2023). 

Comparing climate and management change impacts, results show that adaptation strategies have a much 

higher impact on crop yields. The magnitude of changes is higher for rainfed crops, wheat and sunflower, and 

when combinations of adaptation strategies are considered. On the other hand, the impact of management 

changes on hydrological variables, when considering the catchment scale, is negligible. However, when 

evaluating the outputs for cropland, practices belonging to conservation agriculture show a significant impact, 

mainly in reducing water yield by almost 40% when considering the maximum absolute change. Still, the 

impacts of climate change are higher for water yield, percolation, streamflow and soil moisture. Also for water 

footprint the impact of climate change is higher, especially for the rainfed crops. The differences between the 

effects of management and climate changes are minimal for maize water footprint, drought and temperature 

stresses, evaporation and evapotranspiration. It is important to underline that, even if the magnitudes of 

change caused by adaptation strategies on hydrological fluxes are not high, the simulated management 

changes consist of minor modifications, such as the shift in sowing dates of only two weeks, and still they 

have some impacts. Concluding, the impacts of management changes on hydrological variables should not 

be neglected in intensively cultivated catchments.  
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In this thesis, I evaluated quantitatively the effects of a limited number of agronomic strategies. Of course, 

there are many other strategies, both autonomous and planned, contributing to the adaptive and 

transformative capacities which are not quantified in this thesis. During the PhD, I collaborated on projects 

and co-authored papers that focused on adaptation strategies to drought and climate change. In the 

AGRIWATER (Innovative and Sustainable Measures for Keeping Water in the Agricultural Landscape) Erasmus+ 

Project, we listed 40 best practices in six European countries to cope with drought and water scarcity, already 

implemented by European farmers. These were divided into technological, technical, agronomic and 

economic/institutional measures. Particularly important were the practices related to water harvesting and 

those that increased irrigation efficiency. Moreover, in the ongoing AG-WaMED (Advancing non-conventional 

water management for innovative climate-resilient water governance in the Mediterranean Area) PRIMA 

project, the Orcia catchment was selected as the Italian case study. After the first participatory phases of the 

project, farmers and water authorities suggested new reservoirs and farm ponds for supplemental irrigation 

as the main solutions to cope with water shortage, confirming the usefulness of some adaptations suggested 

in Chapter 2. These adaptation strategies will be simulated with the SWAT+ model in the remaining years of 

the project. In a Sub-Saharan context, the FAO’s Aquacrop model was applied to quantify the effect of soil 

bunds to cope with increased temperatures and decreased precipitation (Setti et al., 2023). This autonomous 

adaptation measure showed to be useful if precipitation drastically decreases. Moreover, in Renzi et al. (2023) 

SWAT outputs were used to estimate irrigation amount to run Aquacrop simulations and evaluate the 

performance of a macro-catchment water harvesting technique, Marab farming, in Jordan. Finally, sand dams 

are extremely promising transformative solutions in drylands that, differently from other strategies, will need 

institutional support and coordination (Castelli et al., 2022; Villani et al., 2018). 

O2. To improve the climate risk assessment methodology and integrate it with agro-hydrological 

modelling, to perform more relevant and comprehensive climate change risk/impact 

assessments. 

6.1.4 Improving drought/climate risk assessments 

Most of the drought risk assessments reviewed by Hagenlocher et al. (2019) did not perform any form of 

validation. The outcomes of risk assessments highly depend on the procedure applied to calculate the 

composite index and mainly, but not only, on the selection of indicators and weighting scheme. Validation 

with external data is useful but usually impossible or not accurate enough. The robustness evaluation 

introduced in Chapter 2 and improved in Chapter 5 adds valuable information to better interpret and 

understand the outcomes of the assessment, providing a range of values which represent the uncertainty or 

the sensitivity. This method also has advantages compared to similar methodologies applied considering 

distributions of weights and indicators (Marzi et al., 2019; Naumann et al., 2014), which might be more robust 

from a statistical point of view, but at the cost of less interpretability. The robustness evaluation performed 

for Chapter 5 was very helpful in understanding the effect of the choice to consider different crops and climate 

models. Of course, this kind of internal validation should always be coupled with external validation when 

possible, hence using external data or experts’ opinions to validate the results. This could not be applied in 

Chapters 2 and 5 since for the former no data at the required spatial resolution was available and for the 

latter, I focused on future conditions. Additionally, robustness evaluation can be very useful and can 

potentially address most of the decisions that are made in the establishment of the methodology of the 

drought risk assessment. However, it is also difficult to evaluate which are the “uncertain” decisions and this 

depends a lot on the expertise and background of those who developed the methodology. A critical aspect 

consists of the assumptions that are made when selecting indicators and their relationship with risk and its 
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dimensions. For example, in Chapter 2 I assumed that youngest farmers and organic farms were less 

vulnerable to drought. This is justified considering the current characteristics of Southern and Central Tuscany, 

but it might be wrong somewhere else or in a different period. Instead, in Chapter 5 I considered more 

cropland as a factor that increased exposure, but this could be debated. 

Another crucial problem is that most drought risk assessments do not report any hints or suggestions about 

possible adaptation strategies (Hagenlocher et al., 2019), even if they should be performed to start the 

discussion about how to shift towards proactive drought risk management. Their final outputs are generally 

maps or tables that rank the units considered in the assessment. These outputs are surely informative and 

useful, but at the same time, they can be very confusing and might lead to wrong conclusions and 

maladaptation. To explicitly link the outcomes of the assessment with actionable adaptation strategies, 

archetype analysis is proposed as an additional and final step in the drought risk assessment methodology.  

Archetype analysis is an emerging methodology to find recurrent patterns within cases and provide a 

simplified, but contextual, interpretation of results, which is used in sustainability research to ease 

communication between the academy and decision-makers (Oberlack et al., 2019). For example, Paumgarten 

et al. (2020) applied archetype analysis to delineate climate risk profiles in South Africa considering 

households’ livelihoods and proposing adaptation strategies according to each profile. Piemontese et al. 

(2021) coupled cognitive and spatial archetypes to evaluate barriers to the scaling up of sustainable land 

management strategies. Similarly, Riach et al. (2023) constructed climate risk archetypes for municipalities in 

Germany to build the knowledge necessary to discuss adaptation strategies. In the application presented in 

Chapter 2 of this thesis, archetype analysis is suggested as the final methodological step to link the outcomes 

of the drought risk assessment with possible adaptation strategies. This can be done of course also for the 

smallest units of analysis, in Chapter 2 the municipalities, but archetype analysis allows an intermediate level 

of abstraction (Oberlack et al., 2019), which is very useful to ease the interpretation of the results. Archetype 

analysis would be only the basis to start the discussion about how to shift towards proactive drought 

management. The actual promotion of adaptation strategies requires extra analysis and specific knowledge 

of the local experts and decision-makers. 

6.1.5 Integrating climate impact and risk assessments 

Composite indexes are extremely effective tools with great potential for knowledge transfer between 

academics and decision-makers (OECD, 2008). Well-known examples are the Human Development Index and 

the World Press Freedom Index. Composite indexes are largely used in disaster risk research dealing with 

climate risk to guide the emergency response and the allocation of funds. As a result of the enhanced 

knowledge-sharing between different academic communities, the InfoRM climate change risk (Marzi et al., 

2021) represents one of the first attempts to include information related to climate change impact 

assessments within composite risk indexes. Here, the authors considered future projections to estimate 

future hazards such as drought and floods. However, climate change impact assessments are not limited to 

the estimation of future occurrence of extreme events, but also to many other impacts. For example, 

agronomists and crop modellers apply crop models to estimate future climate change impacts and possible 

adaptation strategies. 

Risk assessment results are reported as relative statistics, and therefore they are useful to compare the spatial 

or temporal units considered in the analysis. In this thesis, for example, these are municipalities for the Italian 

case study and different future scenarios for the Somalian case study. Hence, compared to climate change 

impact assessments, results are not quantitative estimates. Coupling the outcomes of the two approaches 
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provides quantitative impacts and the relative rankings of the various units, diminishing the possibility of 

misunderstanding and maladaptation. In this way, the composite risk index gains in representativeness of 

climate change impacts on agriculture, which is fundamental for water scarcity issues, especially in countries 

of the South of the world. At the same time, the integration is useful to present effectively and simply the 

complex outcomes of climate change impact assessments with standardized maps and rankings. In Chapter 

5, for example, average crop yields are not drastically affected by climate change after adaptation. Hence, 

considering the outcomes as relative statistics, future crop yields would not be a major concern. Nevertheless, 

the quantitative estimates lead to the conclusion that they remain very low and will unlikely be able to ensure 

food security. 

The direct inclusion of indicators estimated with process-based models is innovative but also critical, as the 

hazard indicators typically represent only extreme events such as droughts, floods and heat waves. The 

solution proposed also addresses the concern raised by Enenkel et al. (2020) who argued that researchers 

focus too much on hazards while the impacts should be studied. In general, the rationale for considering that 

a drought indicator is representative is to check how it correlates with drought impacts (Hall and Leng, 2019). 

Recent reports applied a data-driven estimation of drought risk, where drought hazard is linked to impacts 

with machine learning models (Rossi et al., 2023). In other drought risk assessments, precipitation change 

has been already considered an indicator of hazard. Furthermore, vegetation status is often used to infer 

agricultural drought with indexes such as the Vegetation Health Index (Kogan, 1995, 2001). Finally, the IPCC 

(2014) define hazards as “the potential occurrence of a natural or human-induced physical event or trend or 

physical impact […]”. Climate change is a trend and crop yield change is a physical impact, so the categorization 

used here is also theoretically sound. 

Hall and Leng (2019) argue that calculating drought risk, especially when considering agricultural impacts, is 

not useful since it is impossible to unambiguously distinguish between drought and non-drought conditions. 

The problem is mainly related to the estimation of the drought hazard, while exposure and vulnerability 

patterns can help to target countries, regions or municipalities for drought risk adaptation, since “prioritizing 

adaptation actions does not actually require calculation of drought risk” (Hall and Leng, 2019). They propose 

simulations with physically-based models to perform stress tests to understand thresholds of vulnerability or 

tipping points, when impact data are not available. According to them, it is important to simulate different 

alternative portfolios of interventions in a wide range of possible hydro-climatic conditions. This is very similar 

to the approach applied in Chapter 5, where the ambiguous drought hazard definition is not used alone, but 

a physically-based model is directly used to simulate crop yields and possible adaptation strategies with 

changed climate variables.  

The other critical component that can be better represented using process-based crop models is adaptive 

capacity, framed in this research as a part of resilience. As previously mentioned, resilience is interpreted 

differently according to the various academic fields. Similarly, the coping, adaptive and transformative 

capacities are studied by different communities with variable approaches, interpretations and implications. 

For example, in the approach of the climate change adaptation community, applied in this thesis in Chapters 

3 and 4, the adaptive capacity of agricultural systems is frequently evaluated. The adaptation strategies are 

typically framed as autonomous, soft, or farmer-led, and planned, hard, or institutional (Bindi and Olesen, 

2011). When adaptations are not simulated, the “dumb” farmer scenario is an effective way to name it. 

Despite being unrealistic, this scenario is by far the most represented in climate change studies (Cline, 1996).  

In resilience thinking, there is consensus that resilience should be represented by the coping (or resilience), 

adaptive and transformative capacities. Following the definitions of Folke et al. (2010), the coping (resilience) 
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capacity resembles the engineering resilience concept, adaptability refers to minor adjustments of the 

systems, and transformability involves the capacity of the systems to cross thresholds. These three capacities 

are also interpreted similarly by the disaster risk reduction community and, in this thesis, I adopted the 

definitions and interpretations of Mochizuki et al. (2018). Here, the coping, adaptive and transformative 

capacities are respectively the abilities of systems or individuals to “respond to adverse shocks […]”, “reduce 

direct and indirect risk through marginal or incremental changes to the system”, and “to address fundamental 

drivers of risk that are outside of the scale of interest or to amend the major functioning of a system […]” 

(Mochizuki et al., 2018). 

It is evident how the aspects of resilience, as addressed in resilience thinking and elaborated within the risk 

community by Mochizuki et al. (2018), resemble the typical scenarios used in crop modelling by the climate 

change adaptation community and the types of adaptations described by Bindi and Olesen (2011). Hence, in 

Chapter 5 resilience is represented in climate risk assessments with different sets of model simulations. 

Specifically, the coping capacity is represented by the “dumb” farmer scenario simulations, the adaptive 

capacity by simulations with simple, autonomous adaptation strategies, and the transformative capacity by 

planned, institutional adaptation strategies. Representing adaptations with process-based models is a step 

forward as nowadays these capacities are typically represented in climate risk assessments with static proxy 

indicators, which would be better included within the socioeconomic or physical vulnerability dimensions. 

6.2 Limitations and future work 

The objectives of the thesis were conceived to be broad on purpose, and the four Chapters based on 

manuscripts are linked by assessment research questions but mainly by the methodological approaches used 

(Fig. 1.2). Each Chapter also has research questions that cover more generic, but relevant, issues that are 

interesting for the larger research communities and not only to stakeholders that deal with water resource 

management in the selected study areas. The answers to these research questions were addressed with the 

methodologies used and in the study areas considered in this thesis, but more research is necessary to 

improve the knowledge regarding these topics.  

Despite always having the general objective in mind, each study was conceived at different moments of the 

PhD and experienced multiple rounds of revision and contributions by the co-authors involved in the studies. 

Hence, in some aspects the consequentiality of the studies is affected. For example, to limit the simulation 

time and the number of outputs to be reported in the results’ sections, at the beginning I mainly focused on 

the far future period (2071-2100). Most of the studies referenced in this thesis also consider the far future, 

and it makes sense because the climate change effects are exacerbated by the end of the century. This is the 

main reason why in Chapters 4 and 5 the far future period is considered. Instead, in Chapter 3 the focus is on 

the effect of vegetation responses to CO2 and, as already largely discussed, the SWAT+ model outputs are 

dubious over the 660 ppm threshold of CO2 concentration. Hence, in Chapter 3 the whole future period is 

considered, but the analysis related to the effect of vegetation responses is focused on the near future (2041-

2070). In the following studies, the SWAT+ model is used for the far future period and with RCP 8.5, hence 

with a CO2 concentration higher than 660 ppm. This is of course mentioned in Chapter 4 and it is also the 

reason why the main results that are discussed are those related to RCP 4.5, while RCP 8.5 outputs are rarely 

commented and reported only in the appendix. In Chapter 5, the SWAT+ model outputs for SSPs 370 and 585 

are considered in the analysis; nevertheless, here the outputs are normalized and aggregated with many 

other indicators, and hence it is possible to affirm that the uncertainty related to the stomatal conductance 

suppression effect is negligible. However, in future studies, until the equations in the model are not updated, 
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the best solution would probably be to use a maximum CO2 concentration of 660 ppm (as done in 

Marcinkowski and Piniewski, 2024). A similar issue emerged in the conceptualization of (drought) hazard in 

Chapters 2 and 5. Chapter 2 started as a preliminary study to select one of the five catchments to apply the 

SWAT+ model, hence I mainly used easily retrievable indicators also to represent drought hazard. The 

selection of many indicators to represent drought hazard was motivated by the fact that there is no single 

drought index that can perfectly describe it. Hence, by considering many drought indices I expected a better 

representation of this crucial risk dimension. As with all the choices performed in drought risk assessments, 

this is reasonable but also has many drawbacks. For example, in Chapter 5 I opted to represent the drought 

hazard only with one specific indicator. From the criticalities that emerged within Chapter 2 and the following 

reflections, I decided to find an alternative way to represent the hazard dimension and I applied it in Chapter 

5.   

One of the main limitations of the studies carried out in the thesis is the lack of involvement of local 

stakeholders. Especially for the drought and climate risk assessments of Chapters 2 and 5, including interested 

stakeholders from the very first steps significantly contributes to the final adoption of the outcomes of the 

studies. Nevertheless, the research questions of the two Chapters were mainly methodological, linked to the 

improvement of the methodology and the integration of agro-hydrological modelling. Furthermore, an 

interesting characteristic of drought or climate risk assessment is that they can be easily updated when some 

changes are required or new datasets emerge. For example, the drought risk assessment of Chapter 2 is based 

on the sixth agricultural census carried out in 2010, and it could be updated with the results of the new 

seventh agricultural census that should be published soon. Finally, the studies presented in this thesis are 

carried out within the activities of the research group and contributed to promoting collaborations with local 

experts or stakeholders in the selected study areas. For example, the SWAT+ model used in Chapters 3 and 4 

for the Ombrone catchment is being improved and applied in the AG-WaMED project, where local 

stakeholders are involved in the participatory modelling activities.  

When the climate change impact assessment was conceived, the idea was to analyze future precipitation and 

temperatures and then focus on the impacts on crop yield, water footprint and adaptive capacity. The 

hypothesis was that precipitation would reduce in the future, as indicated in the reports for the 

Mediterranean region. Results showed that local climate patterns are uncertain also within the 

Mediterranean region, and further research and improved communication are required when dealing with 

local climate change dynamics. Furthermore, the role of vegetation responses to CO2 has a high effect on 

future evapotranspiration and therefore aridity, which can be used as a proxy for drought conditions. This 

topic emerges from highly-cited literature (Greve et al., 2019; Milly and Dunne, 2016; Roderick et al., 2015; 

Vicente Serrano et al., 2022), but surprisingly most drought analyses do not consider it. Coupling climate 

models with offline hydrological models has some issues when the representation of vegetation responses to 

CO2 is accounted for differently (Boé, 2021; Milly and Dunne, 2017). Hence, the different representation of 

the vegetation responses to CO2 is one of the main reasons for the discrepancy in future drought 

representation. Further research is being planned to understand if the role of plant physiological responses 

to CO2 is sufficiently considered, or at least known, by researchers involved in assessing drought in a changing 

climate. The hypothesis is that future drought analyses that use indexes such as SPEI or the aridity index are 

systematically overestimating drought hazards. 

Integrating different types of models is already a common practice to perform, for example, climate change 

impact assessments. These are generally performed by coupling climate models with crop and hydrological 

models. Often, studies related to crop yields are separated from those that evaluate future hydrological fluxes. 

Nevertheless, practices should be evaluated for producing real water savings and therefore water should be 
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managed at the catchment scale. To accomplish this goal, crop and hydrological models can be coupled or it 

is possible to use, as in this thesis, integrated hydrological models that include a module to simulate crop 

growth, such as SWAT+. As shown in Chapter 4, SWAT+ is useful for studying the effects of adaptation 

strategies both at field and catchment scales, permitting a comprehensive evaluation of management 

changes. Every crop or hydrological model has a simplified representation of processes and certainly more 

research is necessary to better quantify the impacts of the management changes especially on hydrological 

fluxes. Furthermore, applying ensembles of agro-hydrological models, as already common practice in climate 

research and always more applied in crop modelling (e.g. Jägermeyr et al., 2016), might be an interesting 

solution for more robust predictions and estimations. An interesting alternative to study the impacts of 

management changes is to directly use GCMs that allow the simulation of land-atmosphere interactions and 

land management strategies, though at a coarse resolution. For example, Gormley-Gallagher et al. (2022) 

used the Community Earth System Model to estimate the effects of irrigation and conservation agriculture 

on temperature trends. Adaptation strategies in this thesis are not evaluated based on economic or social 

factors but only for the effects on agricultural and hydrological outputs. Despite the simulated adaptation 

strategies are mostly autonomous and simple, meaning that they could be easily adopted by farmers 

themselves without the support of external institutions, there might be some hidden factors that hamper 

their application. In addition, in this thesis the concepts related to adaptation to climate change are simplified, 

with management changes and adaptation strategies that are used as synonyms. The effect of the proposed 

alternative strategies in the current climate was not always considered and, in any case, not used to estimate 

the “true” adaptation potential as described by Lobell (2014). Even if this might create some confusion, for 

the applications proposed in this thesis the concept of true adaptation is not fully relevant. 

As already discussed in Chapter 5 and Section 6.1.5, the inclusion of indicators calculated with process-based 

models within the climate risk assessment framework is innovative and critical at the same time. Further 

research is needed to improve the theoretical justification, enhance the positive aspects of the combination 

of the approaches and limit the issues that arise due to increased complexity. Furthermore, in agriculture, 

the hazard and their impacts are studied with many approaches, while this might not be the case for other 

sectors. Hence, the coupling of the approaches of the disaster and climate communities, as presented in this 

thesis, might be not possible for sectors other than agriculture. Additionally, agro-hydrological models were 

used in this thesis to simulate a limited number of simple agronomic adaptation strategies that resembled 

the adaptive capacity. Nevertheless, it is theoretically possible to simulate more complex adaptations and 

deep transformations of the agricultural systems. These aspects should be explored in further research. 

6.3 Key messages 

Uncertain future climate: 

• Evaluating future drought hazard is extremely difficult due to the uncertain precipitation projections, 

the vegetation responses to CO2, and the ambiguous drought definitions. 

• We need to assess climate change impacts at small scales since they might be counterintuitive, as in 

the case of Central Italy, where climate models did not show decreasing precipitation as compared 

to the rest of the Mediterranean region. 

Agro-hydrological modelling: 
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• The SWAT+ model is very effective in simulating various aspects of crop growth and hydrological 

fluxes, taking easily into account management, soil, climate and crop variabilities.  

• Integrated agro-hydrological models are extremely useful for evaluating real/apparent water savings 

at the catchment scale. 

Adaptive capacity of agricultural systems: 

• In prevalently agricultural catchments, management changes can have impacts that can be compared 

to those of climate change. 

• The adaptive capacity of agricultural systems is generally high, even if crop yields in Sub-Saharan 

Africa remain very low. 

• Combinations of adaptation strategies show interesting synergies that should be studied and 

considered. 

Improving risk assessment frameworks: 

• Climate/drought risk/vulnerability assessments are fundamental to fuel the discussion about 

possible adaptation strategies. It is fundamental to summarize and present the results effectively and 

the robustness evaluation and archetype analysis are useful for this scope. 

• Agro-hydrological modelling can be used to represent climate hazard and resilience within risk 

assessment frameworks. 

• Quantitative estimates of climate change impact assessments can improve the quality, 

representativeness, and reliability of climate risk assessments. 

Final remarks: 

• Future water scarcity is expected to be a greater challenge compared to future water shortages in 

Somalia and very likely in most of Sub-Saharan Africa. 

• There are great opportunities to improve current methodologies and approaches if the disaster risk 

reduction, climate change adaptation and sustainable development research communities share 

their knowledge and collaborate. 
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Appendix 

A2: Supplementary materials chapter 2 

 

Figure A2.1: Tuscany region with the watersheds and municipalities included in the analysis. 

 
Figure A2.2: Correlograms calculated with the Spearman method for a) exposure and b) vulnerability indicators. Positive and negative 

values indicate positive and negative correlations, respectively. 
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Figure A2.3: Cluster dendrogram created with the Ward method considering the normalized exposure and vulnerability indicators.   

 

Figure A2.4: Summary boxplot of the uncertainty analysis; in the x-axis, it is reported the reference ranking (the ranking of the 

municipalities calculated through the main procedure, that is equal weights), while on the y-axis the values of the rankings assigned 

with the alternative methods considered in the uncertainty analysis. The line represents the median, the box the upper and lower 

quartiles, the whiskers the highest and lowest values excluding outliers, and dots potential outliers.   
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A3: Supplementary materials chapter 3 

Table A3.1: Code (in the SIR archive), latitude, longitude and elevation of the climate stations used as input data for calibration and 

validation and bias correction. 

  

ID SIR CODE Latitude Longitude 
Elevation 
(m.a.s.l.) 

Calibration and Validation Bias Correction 

Precipitation Temperature 
Solar 

radiation 
Relative 
humidity 

Wind 
speed 

Precipitation Temperature 

1 01000831 43.45 11.531 553      X  

2 01001284 43.486 11.379 509 X       

3 01002779 43.102 11.039 490 X X      

4 03002531 43.016 11.165 494 X       

5 03002613 43.329 11.555 224 X       

6 03002643 43.414 11.456 430 X       

7 03002701 43.050 11.491 592 X       

8 03002733 43.203 11.077 368 X       

9 03002761 43.276 11.230 258 X       

10 03002789 43.062 11.323 318 X       

11 03002801 42.984 11.365 82 X       

12 03002819 42.951 11.853 622 X       

13 03002869 43.067 11.725 492 X       

14 03002888 43.155 11.650 404 X       

15 03002901 42.894 11.527 561 X       

16 03002921 42.940 11.284 71 X       

17 03002941 42.804 11.303 148 X       

18 03002961 42.765 11.166 20 X       

19 03003071 42.694 11.329 548 X       

20 11000005 42.706 11.145 32 X X X X X X X 

21 11000008 42.93 11.08 41   X X    

22 11000013 42.769 11.016 2 X X  X X X X 

23 11000015 43.033 11.064 466 X X  X  X X 

24 11000019 43.370 11.423 308 X X   X   

25 11000022 43.512 11.236 436       X 

26 11000025 43.366 11.151 229       X 

27 11000041 43.021 10.865 186      X X 

28 11000042 42.789 11.176 50 X X    X X 

29 11000051 42.951 11.439 195 X X  X X X X 

30 11000052 42.854 11.556 812       X 

31 11000054 42.796 11.406 363 X X   X X X 

32 11000056 43.24 11.42 165   X     

33 11000058 42.961 11.618 670 X X  X X  X 

34 11000059 43.027 11.582 497 X X     X 

35 11000061 42.948 11.733 612 X X   X  X 

36 11000067 43.092 11.439 188 X X   X X X 

37 11000080 43.209 11.18 452  X  X X X X 

38 11000082 43.243 11.417 165 X X X X X  X 

39 11000087 43.457 11.422 369 X X  X    

40 11000103 42.661 11.017 2  X      

41 11000115 42.890 11.625 1671 X X      

     32 17 4 9 10 10 16 
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Table A3.2: Parameters considered in the sensitivity analysis and selected for calibration, with the relative sensitivity rankings for 

monthly streamflow.  

 

 

 

 

 

 

 

 

 

 

Table A3.3: Statistics used for model evaluation. 

   

Sensitivity 

ranking 
Parameter 

Selected for 

calibration 

1 bd Yes 

2 esco Yes 

3 cn2 Yes 

4 epco Yes 

5 revap_co Yes 

6 revap_min No 

7 cbn No 

8 canmx No 

9 flo_min No 

10 z No 

11 awc No 

12 perco No 

13 surlag No 

14 biomix No 

15 k No 

Statistic Variable 
Time 

scale 
Reference 

Performance rating 

Very good Good Satisfactory Unsatisfactory 

NSE Streamflow Monthly 
Moriasi et 

al., 2015 
> 0.8 0.7 – 0.8 0.5 – 0.7 < 0.5 

Pbias Streamflow Monthly 
Moriasi et 

al., 2015 
< 5% 5-10% 10-15% > 15% 

RSR Streamflow Monthly 
Moriasi et 

al., 2007 
< 0.5 0.5 – 0.6 0.6 – 0.7 > 0.7 
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Table A3.4: Multi-site calibration for streamflow, with the parameters selected, the type of change, and the change in terms of 

percentage or new value. 

 

 

Figure A3.1: Boxplots of average annual precipitation for RCP 4.5 and 8.5 for the five climate models, with the historical period, the 

medium- and long-term futures, considering the outputs of the 28 years. 

  

Parameters 

streamflow 
Type of change Range 

Final change 

Subbasins 

Buonconvento 

Subbasins Sasso 

d’Ombrone 
Subbasins Istia 

bd Percentage -20, +20% 19.83% 11.02% 19.92% 

esco Replace 0.05, 0.99 0.14 0.05 0.08 

cn2 Percentage -20, +20% 18.06% 7.96% 19.92% 

epco Replace 0.05, 0.99 0.19 0.17 0.05 

revap_co Replace 0.02, 0.19 0.11 0.16 0.08 
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Table A3.5: Absolute difference between the long-term future (2071-2100) and historical (1976-2005) periods, considering the average 

values of precipitation and temperatures of the five climate models considered. Results are reported with the standard deviation for 

RCPs 4.5 and 8.5 and annual, summer, and winter seasons, in terms of 5th and 95th percentiles and mean. The 5th and 95th percentiles 

and the mean are calculated considering the 28 years of the 5 climate models.  

 

 

Figure A3.2: Water balance components change (%) of the long-term (2071-2100) climate change between the cases of considering 

and not considering the plant physiological responses to CO2 for RCPs 4.5 (blue) and 8.5 (orange). The simulated water balance 

components are potential and actual evapotranspiration, evaporation, streamflow, water yield, percolation, and soil moisture. Crop 

yields and LAI are also reported in the figure. The uncertainty (black bar) is reported considering the five climate models.  

Variable 

(unit) 
Period 

RCP 4.5 RCP 8.5 

5th percentile Mean 95th percentile 5th percentile Mean 95th percentile 

Precipitation 

(mm) 

Annual 32 ± 79.4 70 ± 66.1 145 ± 124.9 36 ± 80.2 32 ± 98.9 57 ± 142.9 

DJF 6 ± 12.6 34 ± 6.8 77 ± 42.3 3 ± 10.5 22 ± 30.7 68 ± 80.6 

JJA -0.7 ± 2.8 5 ± 18.9 20 ± 65.6 1 ± 4.5 -7 ± 22.3 -15 ± 47.4 

Maximum 

temperature 

(°C) 

Annual 2.1 ± 0.26 2.0 ± 0.26 2.0 ± 0.43 3.9 ± 0.36 3.9 ± 0.34 4.1 ± 0.56 

DJF 2.1 ± 0.90 1.9 ± 0.24 1.9 ± 0.16 4.0 ± 0.83 3.6 ± 0.17 3.5 ± 0.12 

JJA 2.2 ± 0.31 2.1 ± 0.63 2.3 ± 1.20 4.6 ± 0.74 4.4 ± 0.83 4.3 ± 1.15 

Average 

temperature 

(°C)  

Annual 2.1 ± 0.19 2.1 ± 0.23 2.1 ± 0.40 3.9 ± 0.27 4.0 ± 0.26 4.2 ± 0.45 

DJF 2.0 ± 0.74 1.9 ± 0.31 2.0 ± 0.34 3.7 ± 0.64 3.5 ± 0.14 3.6 ± 0.26 

JJA 2.3 ± 0.32 2.3 ± 0.47 2.5 ± 1.00 4.8 ± 0.54 4.8 ± 0.62 4.8 ± 0.97 

Minimum 

temperature 

(°C) 

Annual 2.0 ± 0.12 2.2 ± 0.23 2.1 ± 0.34 3.9 ± 0.20 4.1 ± 0.19 4.2 ± 0.45 

DJF 1.9 ± 0.59 1.9 ± 0.40 1.9 ± 0.45 3.5 ± 0.67 3.5 ± 0.12 3.6 ± 0.33 

JJA 2.4 ± 0.36 2.5 ± 0.32 2.8 ± 0.72 4.9 ± 0.38 5.1 ± 0.42 5.3 ± 0.78 
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Table A3.6: Absolute difference between the long-term future (2071-2100) and historical (1976-2005) periods, considering the average 

values of potential and actual evapotranspiration, evaporation, flow, and other water balance components of the five climate models 

considered. Results are reported with the standard deviation for simulations considering the increase and stable CO2 values, RCPs 4.5 

and annual, summer, and winter seasons, in terms of 5th and 95th percentiles and mean. The 5th and 95th percentiles and the mean 

are calculated considering the 28 years of the 5 climate models. 

  

Variable (unit) Period 
5th percentile Mean 95th percentile 

Constant CO2 Increasing CO2 Constant CO2 Increasing CO2 Constant CO2 Increasing CO2 

Potential 

evapotranspiration 

(mm) 

Annual 123.9 ± 31.3  37.1 ± 30.2 110.0 ± 32.9 16.1 ± 29.6 106.9 ± 56.5 6.1 ± 45.7 

DJF 4.5 ± 2.4 -3.1 ± 1.8 5.7 ± 4.3 -4.8 ± 3.1 3.7 ± 4.7 -10.0 ± 3.8 

JJA 55.6 ± 11.3 24.2 ± 9.9  54.4 ± 19.8 17.0 ± 17.9 70.7 ± 21.8 26.6 ± 19.8 

Actual 

evapotranspiration 

(mm) 

Annual 10.5 ± 27.2 -5.6 ± 26.3 0.2 ± 23.4 -23.7 ± 21.7 -8.1 ± 23.8 -37.2 ± 24.7 

DJF -3.3 ± 2.2  -7.4 ± 2.3 -5.5 ± 1.2 -11.4 ± 1.9 -10.4 ± 1.7 -18.4 ± 2.6 

JJA 4.9 ± 8.7  4.6 ± 7.4 6.1 ± 11.5 1.9 ± 10.3 2.7 ± 16.8 -5.6 ± 18.0 

Evaporation (mm) 

Annual 12.7 ± 7.1 4.2 ± 7.2 14.0 ± 4.6 3.8 ± 5.1 18.6 ± 4.7 6.1 ± 4.8 

DJF 2.8 ± 1.4 0.7 ± 1.1 3.7 ± 1.4 0.8 ± 1.2 4.8 ± 1.8 0.8 ± 1.4 

JJA 3.8 ± 0.8 3.1 ± 0.8 8.6 ± 3.5 7.3 ± 3.5 12.0 ± 6.6 9.1 ± 6.8 

Istia streamflow 

(m3/s) 

Annual 2.0 ± 1.6 2.8 ± 1.9 5.6 ± 3.2 7.0 ± 3.5 13.5 ± 9.0 15.9 ± 9.5 

DJF 1.3 ± 2.5 1.9 ± 2.7  9.5 ± 4.8 12.3 ± 5.2 27.8 ± 11.7 33.4 ± 11.6 

JJA 0.1 ± 0.2 0.1 ± 0.3 1.0 ± 2.1 1.3 ± 2.1 4.9 ± 13.1 5.6 ± 13.4 

Water yield (mm) 

Annual 4.9 ± 11.4 7.6 ± 12.7 34.9 ± 19.1 43.2 ± 20.7 86.6 ± 69.1 101.8 ± 71.2 

DJF 0.8 ± 1.6 1.2 ± 1.8 14.8 ± 6.7 18.9 ± 7.1 44.5 ± 19.8 54.2 ± 19.6 

JJA 0.1 ± 0.3 0.2 ± 0.3  2.2 ± 4.7 2.4 ± 4.7 9.8 ± 33.9 10.4 ± 34.4 

Percolation (mm) 

Annual 21.9 ± 16.4 31.4 ± 17.9  34.9 ± 21.8 47.0 ± 22.4 64.1 ± 37.6 77.6 ± 37.3 

DJF 5.6 ± 7.6 8.4 ± 8.3 14.0 ± 8.0 17.9 ± 8.1 27.1 ± 19.3 31.4 ± 18.6 

JJA 1.3 ± 1.6 2.1 ± 1.8 1.9 ± 2.4 3.6 ± 2.6 4.5 ± 7.0 7.8 ± 7.3 

Soil moisture (mm) 

Annual 28.2 ± 20.0 44.4 ± 18.6 15.2 ± 12.5 29.7 ± 10.0 14.5 ± 11.6 25.4 ± 9.0 

DJF 22.4 ± 20.8 39.0 ± 19.7 19.7 ± 13.6 33.1 ± 10.4 23.6 ± 23.9 32.0 ± 20.7 

JJA 19.8 ± 19.6 35.7 ± 18.1 10.0 ± 10.3 24.6 ± 7.7 10.3 ± 13.3 22.4 ± 12.1 
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Table A3.7: Absolute difference between the long-term future (2071-2100) and historical (1976-2005) periods, considering the average 

values of potential and actual evapotranspiration, evaporation, flow, and other water balance components of the five climate models 

considered. Results are reported with the standard deviation for simulations considering the increase and stable CO2 values, RCPs 8.5 

and annual, summer, and winter seasons, in terms of 5th and 95th percentiles and mean. The 5th and 95th percentiles and the mean 

are calculated considering the 28 years of the 5 climate models. 

 

 

 

 

  

Variable (unit) Period 
5th percentile Mean 95th percentile 

Constant CO2 Increasing CO2 Constant CO2 Increasing CO2 Constant CO2 Increasing CO2 

Potential 

evapotranspiration 

(mm) 

Annual 203.0 ± 37.6  -192.4 ± 58.6  225.4 ± 45.4  -211.7 ± 52.6  260.4 ± 75.9  -227.7 ± 52.3  

DJF 12.3 ± 4.3  -19.6 ± 5.1  13.1 ± 4.9 -29.7 ± 5.9  12.0 ± 6.7 -42.0 ± 7.3  

JJA 113.1 ± 35.6  -45.2 ± 32.6  116.7 ± 26.7  -70.8 ± 30.3  125.6 ± 40.0  -93.4 ± 27.3  

Actual 

evapotranspiration 

(mm) 

Annual -18.7 ± 46.9  -83.9 ± 23.8  -10.9 ± 36.7  -109.8 ± 22.4  -0.4 ± 29.7  -126.8 ± 33.6  

DJF -2.8 ± 8.0  -17.0 ± 4.1  -3.0 ± 2.6  -25.3 ± 4.5  -6.1 ± 2.5  -35.9 ± 5.7  

JJA -8.9 ± 22.8  -10.6 ± 5.4  -2.6 ± 17.9  -20.5 ± 11.4  -6.0 ± 15.2  -37.9 ± 14.7  

Evaporation (mm) 

Annual 10.4 ± 10.8  -18.9 ± 8.7  16.9 ± 6.9  -18.2 ± 7.1  25.9 ± 5.7  -15.5 ± 8.2  

DJF 2.9 ± 3.7  -3.8 ± 1.5  4.9 ± 0.7  -5.8 ± 1.5  7.1 ± 1.0  -7.7 ± 1.7  

JJA 4.4 ± 3.1  2.8 ± 2.3  9.0 ± 3.2  5.4 ± 3.2  13.5 ± 4.9  5.4 ± 3.7 

Istia streamflow 

(m3/s) 

Annual 1.2 ± 2.2  4.4 ± 3.4  3.8 ± 4.8  10.1 ± 6.7  7.3 ± 10.5  16.1 ± 11.7  

DJF 0.8 ± 2.6  5.0 ± 4.7  5.7 ± 7.0  17.4 ± 10.5  16.5 ± 19.4  39.3 ± 23.1  

JJA -0.1 ± 0.1  0.03 ± 0.1  0.3 ± 1.9 1.4 ± 2.2 1.5 ± 7.5 4.8 ± 7.1 

Water yield (mm) 

Annual 6.8 ± 16.0  22.5 ± 23.4  27.8 ± 33.4  63.2 ± 44.1  35.7 ± 69.9  94.4 ± 83.6  

DJF 0.5 ± 1.6  2.5 ± 2.6  10.0 ± 11.6  26.8 ± 16.3  32.5 ± 34.8  73.9 ± 44.6  

JJA -0.1 ± 0.2  0.3 ± 0.2  1.3 ± 3.9 2.2 ± 4.0 5.5 ± 19.6  8.8 ± 18.1  

Percolation (mm) 

Annual 12.0 ± 19.2  50.2 ± 26.3  17.2 ± 31.0  67.8 ± 36.9  26.8 ± 47.8  86.1 ± 40.5  

DJF 5.4 ± 8.5  17.1 ± 12.2  8.5 ± 13.2  24.1 ± 14.3  20.0 ± 31.6  36.7 ± 28.2  

JJA -0.4 ± 0.7  3.0 ± 1.9 -0.9 ± 2.8  6.9 ± 4.2 -1.8 ± 8.0  13.3 ± 10.2  

Soil moisture (mm) 

Annual -5.1 ± 29.0  63.4 ± 19.0  -7.6 ± 26.2  52.1 ± 14.6  -3.3 ± 20.8  45.4 ± 10.1  

DJF 3.7 ± 39.6  74.4 ± 28.6   -1.4 ± 32.6  52.1 ± 17.8  5.6 ± 43.1 41.0 ± 23.0  

JJA -12.8 ± 18.0  54.3 ± 17.5   -15.2 ± 21.5  46.7 ± 11.9  -11.0 ± 22.3  42.6 ± 12.3  
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A4: Supplementary materials chapter 4 

Part 1: SWAT+ sensitivity analysis, calibration, validation 

We performed a manual sensitivity analysis by calculating the relative sensitivity (Sr) of the whole set of crop 

parameters by individually perturbing them by +/- 20%, as in Brouziyne et al. (2018), with the equation: 

𝑆𝑟 =  
[(𝑂𝑃+∆𝑃 − 𝑂𝑃−∆𝑃) / 𝑂𝑃]

2∆𝑃  𝑃⁄
    

where OP is the model output with the input parameters set as base value, OP+ΔP and OP-ΔP are the model 

outputs with input parameters perturbed, ΔP is the absolute change in the value of the input parameter, and 

P is the base value of the input parameter.  

The results of the sensitivity analysis are reported in Table A4.1. Table A4.2 shows the performance criteria 

used in this research from Jamieson et al. (1991) and Moriasi et al. (2007). The management applied in this 

study is reported in Table A4.3, while the performance of the model for monthly streamflow is reported in 

Table A4.4. 

Differently from most of the studies found in the literature, with some exceptions, such as the study of Sun 

and Ren (2013), we used the whole set of crop parameters to perform calibration and validation. As in 

Sinnathamby et al. (2017), we also decided to include esco and epco in the calibration with crop yield, which 

are usually considered in the calibration for streamflow. In Sinnathamby et al. (2017), epco was reduced to 

0.9 and esco to 0.6 for maize. The maximum leaf area index (lai_pot) for maize was frequently reduced to 5 

(Hu et al., 2007; Palazzoli et al., 2015; Sinnathamby et al., 2017) while it was set to 3.5 in Nair et al. (2011) 

and to 4 in Wang et al. (2017). The harvest index (harv_idx) and the radiation use efficiency (bm_e) of maize 

were also mostly reduced, except for harv_idx in Musyoka et al. (2021) which was increased to 0.6 and bm_e 

in Hu et al. (2007) which was set to 46. For winter wheat, Brouziyne et al. (2018), Palazzoli et al. (2015) and 

Musyoka et al. (2021) increased harv_idx from the default up to 0.5, while Nair et al. (2011) decreased 

harv_idx to 0.35, lai_pot to 3 and bm_e to 25. Sun and Ren (2013) performed a multi-site calibration for wheat 

and maize and used the whole range of parameters reported in the previous studies. Additionally, they 

considered the light extinction coefficient (ext_co) and modified it in the range of 0.5-0.6. For sunflower, 

Brouziyne et al. (2018) increased harv_idx to 0.35 and lai_pot to 4 and decreased bm_e to 42 and ext_co to 

0.7. The calibrated parameters in our study generally are within the ranges reported in the literature. To match 

some low yields, we drastically reduced esco and epco for sunflower in the Grosseto province to 0.35 and 0.6, 

respectively, and harv_idx and lai_pot for maize in the Siena province by 17.5% to 0.45 and 4.95, respectively.  
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Table A4.1: Rankings of the most sensitive parameters for durum wheat, maize and sunflower yield. 

 

 

 

 

 

 

 

 

 

 

 

Table A4.2: Statistics used for model evaluation. 

Statistic Variable Time scale Reference 

Performance rating 

Excellent / 

Very good 
Good 

Fair / 

Satisfactory 

Poor / 

Unsatisfactory 

NRMSE Crop yield Annual 
Jamieson et al., 

1991 
< 10% 10 – 20% 20 – 30% > 30% 

NSE Flow Monthly 
Moriasi et al., 

2007 
> 0.75 0.65 – 0.75 0.5 – 0.65 < 0.5 

Pbias 
Flow, crop 

yield 

Monthly, 

annual 

Moriasi et al., 

2007 
< 10% 10 – 15 % 15 – 25% > 25% 

 

  

Durum wheat yield Maize yield Sunflower yield 

Sensitivity 

ranking 

Parameter Sensitivity 

ranking 

Parameter Sensitivity 

ranking 

Parameter 

1 (HS) harv_idx 1 (HS) harv_idx 1 (HS) hu_lai_decl 

2 (HS) bm_e 2 (HS) bm_e 2 (HS) harv_idx 

3 (HS) days_mat 3 (HS) days_mat 3 (HS) bm_e 

4 (MS) lai_pot 4 (MS) ext_co 4 (HS) days_mat 

5 (MS) ext_co 5 (MS) lai_pot 5 (HS) lai_pot 

6 (MS) hu_lai_decl 6 (MS) frac_hu1 6 (MS) frac_hu2 

7 (MS) frac_hu2 7 (MS) lai_max2 7 (MS) lai_max2 

8 (MS) lai_max2 8 (MS) lai_max1 8 (MS) ext_co 

9 (LS) frac_hu1 9 (MS) frac_hu2 9 (MS) dlai_rate 

10 (LS) dlai_rate 10 (LS) ru_vpd 10 (LS) frac_hu1 

11 (LS) lai_max1 11 (LS) rt_dp_max 11 (LS) ru_vpd 

12 (LS) ru_vpd 12 (LS) hu_lai_decl 12 (LS) lai_max1 

13 (LS) rt_dp_max 13 (LS) dlai_rate 13 (LS) rt_dp_max 

14 (NS) can_ht_max 14 (NS) can_ht_max 14 (NS) can_ht_max 

14 (NS) harv_idx_ws 14 (NS) harv_idx_ws 14 (NS) harv_idx_ws 

14 (NS) stcon_max 14 (NS) stcon_max 14 (NS) stcon_max 

14 (NS) vpd 14 (NS) vpd 14 (NS) vpd 

14 (NS) frac_stcon 14 (NS) frac_stcon 14 (NS) frac_stcon 
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Table A4.3: The management schedule used for calibration and validation, in the historical simulation and the future simulations 

without adaptation strategies. 

Crop Operation Date 

Durum 

wheat 

Mouldboard tillage 1st August 

Fertilization (18-46), 165 kg/ha 14th October 

Harrow tillage 15th October 

Sowing period 16th October – 1st November 

Fertilization (33-00), 200 kg/ha 10th February 

Fertilization (urea), 120 kg/ha 1st April 

Latest harvesting date 19th July 

Sunflower 

Mouldboard tillage 1st December 

Fertilization (18-46), 180 kg/ha 14th March 

Harrow tillage 15th March 

Sowing period 16th March – 1st April 

Fertilization (urea), 130 kg/ha 1st May 

Latest harvesting date 22nd October 

Maize 

Mouldboard tillage 1st December 

Fertilization (18-46), 220 kg/ha 14th March 

Harrow tillage 15th March 

Sowing period 16th March – 1st April 

Fertilization (33-00), 210 kg/ha 1st May 

Fertilization (urea), 200 kg/ha 1st June 

Latest harvesting date 22nd October 

Sprinkler irrigation Automatic 

Table A4.4: Calibration and validation statistics for monthly streamflow at the three gauging stations. 

 

 

 

 

 

Monthly streamflow Calibration Validation 

Station NSE Pbias NSE Pbias 

Buonconvento 0.77 1 17.38% 3 - - 

Sasso d’Ombrone 0.79 1 3.96% 2 0.72 2 18.25% 3 

Istia 0.53 3 25.27% 4 0.72 2 18.8% 3 

1 Very good; 2 Good; 3 Satisfactory; 4 Unsatisfactory. 
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Figure A4.1: Boxen plots of the 28-years average wheat yield and water footprint for the five climate models and the historical, RCP 

4.5 and 8.5 scenarios. 
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Part 2: Additional results 

 

Figure A4.2: Boxen plots of the 28-years average sunflower yield and water footprint for the five climate models and the historical, 

RCP 4.5 and 8.5 scenarios. 
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Figure A4.3: Boxen plots of the 28-years average maize yield and water footprint for the five climate models and the historical, RCP 

4.5 and 8.5 scenarios.  
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Figure A4.4:  Effect of adaptation strategies on crop yield. Heatmaps created with the percentage changes for durum wheat, sunflower 

and maize yields, calculated considering the “no adaptation” and the different adaptation scenarios, for RCP 8.5. 
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Figure A4.5:  Effect of adaptation strategies on water footprint. Heatmaps created with the percentage changes for durum wheat, 

sunflower and maize water footprints, calculated considering the “no adaptation” and the different adaptation scenarios, for RCP 8.5. 
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Figure A4.6:  Effect of adaptation strategies on drought and temperature stresses. Heatmaps created with the percentage changes for 

durum wheat and sunflower drought and temperature stresses, calculated considering the “no adaptation” and the different 

adaptation scenarios, for RCP 8.5. 
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 Figure A4.7: Effect of adaptation 

strategies on evaporation, 

evapotranspiration, water yield, soil 

moisture and percolation, considering 

only cropland, and streamflow at the 

outlet. Heatmaps created with the 

percentage changes, calculated 

considering the adaptation and no 

adaptation scenarios, for RCP 8.5.  
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Figure A4.8: Effect of adaptation 

strategies on evaporation, 

evapotranspiration, water yield, soil 

moisture and percolation, considering the 

whole catchment, and streamflow at the 

outlet. Heatmaps created with the 

percentage changes, calculated 

considering the adaptation and no 

adaptation scenarios, for RCP 4.5. 
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 Figure A4.9: Effect of adaptation 

strategies on evaporation, 

evapotranspiration, water yield, 

soil moisture and percolation, 

considering the whole catchment, 

and streamflow at the outlet. 

Heatmaps created with the 

percentage changes, calculated 

considering the adaptation and no 

adaptation scenarios, for RCP 8.5. 
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Figure A4.10: Comparison of the effects of adaptation strategies on water balance components for the whole catchment and only for 

cropland where the adaptation strategies are implemented. The barplots are created considering the percentage relative differences 

between adaptation and no adaptation scenarios. The graphs use outputs of RCP 8.5 simulations. 
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A5: Supplementary materials chapter 5 

Part 1: Set up, calibration, validation and simulation of the SWAT+ model for the Juba and Shabelle 

catchments 

0- Purpose of the model 

This SWAT+ model setup is aimed at performing a climate risk assessment including model outputs to 

calculate indicators of climate hazards and adaptive capacity. The main focus is on water and agriculture, and 

therefore particular attention is given to crop yields.  

1- Model setup 

Data availability is a huge constraint especially in Somalia but also in Ethiopia. We had to rely on global 

datasets and reanalysis data. The list of inputs is reported in Table A5.1.  

Table A5.1: List of inputs used to set up the model and for the simulations. 

Data Product Resolution Source 
DEM SRTM Resampled 250 m earthexplorer.usgs.gov/ 

Soil FAO Approximately 7.5 km  swat.tamu.edu/data/ 

Land use Copernicus Global Land cover map 250 m wapor.apps.fao.org/ 

pr, tasmax, tasmin, rsds 
(cal&val) 

CHELSA-W5E5 Approximately 55 km data.isimip.org/ 

hurs, sfcWind (cal&val) EWEMBI Approximately 55 km data.isimip.org/ 

Climate variables (climate 
change) 

ipsl-cm6a-lr_r1i1p1f1_w5e5 
mri-esm2-0_r1i1p1f1_w5e5 

Approximately 55 km data.isimip.org/ 

Fertilizers LUH2  luh.umd.edu/data.shtml 

Crop calendar FAO crop calendar National cropcalendar.apps.fao.org/#/home 

Cropping pattern Reports Regional 
Basnyat, 2007; FAO and WFP, 
1997; EU, 2010 

 

The model was set up for the period 1979-2016. To optimize crop simulation in the Somalian part of the basin 

maintaining a reduced simulation time, we did not set any slope threshold to create additional HRUs. Also, 

we reduced the number of subbasins in the upland Ethiopia. We based our representation of Somalian 

cropping patterns on reports from FAO and the European Union (Basnyat, 2007; FAO and WFP, 1997; EU, 

2010). We split the rainfed agricultural land use into sorghum and maize, double-cropped in both rainy 

seasons. In the regions of Bay, Lower Shabelle and Lower Juba we set rainfed maize, while in the other regions 

rainfed sorghum. In the irrigated cropland we always set maize double-cropping, again cultivated only during 

the rainy seasons, for consistency.  

The final basin delineation counted 32 subbasins, 1085 landscape units, and 6551 HRUs (Figure A5.1). The 

total area of the basin is 517740 km2. Rangeland covers about 71%, followed by forests, slightly higher than 

15%. Irrigated maize covers 1.06% of the whole basin, sorghum 0.15%, and rainfed corn 0.37%. We considered 

as irrigated cropland the WaPOR land use map class “Cropland, irrigated or under water management”, and 

it is worthwhile to note that the irrigated area is much higher compared for example to the Land Use 

Harmonization 2 (LUH2) dataset which we used as input in the following simulations of this study. Hence, we 

did not consider the total aggregated yield in the creation of our indicator, but we considered the yield/ha of 

rainfed maize and sorghum and irrigated maize. The cropland area is instead very similar to the land cover 

map used to set up the model and LUH2. 
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Figure A5.1: Elevation, subbasins, channels, and streams created in the delineation phase of the model, with the Somalian border. 

The fertilization was set based on the LUH2 dataset, by calculating the average of the C4 crops, weighted 

considering the cropland area. We considered only C4 crops as they are the largest type of crop cultivated in 

Somalia and it is also reflected in LUH2 data. The dataset reports only nitrogen fertilization, and we assume 

the same amount of phosphorus applied. The annual amount was split between the two crops for each 

growing season, applied after sowing. The initial sowing and crop cycle length were retrieved from the FAO 

crop calendar data, even if these were then adjusted when calibrating with LAI and also considering other 

documents (Basnyat et al., 2007). More in detail, we created decision tables to better simulate the sowing 

strategy of farmers, which consists of sowing when the soil is wet enough in a given time window. Tillage was 

also scheduled before sowing. Automatic furrow irrigation was applied for irrigated maize, triggered by a 

water stress threshold of 0.1. Management operations are specified in Table A5.2.  

Table A5.2: Management operations with date, description and crops used in the study. 

Operation 
Date 
(dd/mm) 

Description Crops 

1st growing season (Gu) 

Tillage 15/03 Springplow All 

Sowing 21/03 – 10/04 Sowing time window All 

N fertilization 15/04 Elemental nitrogen, broadcast application All 

P fertilization 15/04 Elemental phosphorous, broadcast application All 

Harvest <= 25/07 Later harvesting date allowed All 

Irrigation Automatic 
Furrow irrigation: 50 mm applied with 0.7 of efficiency, triggered by a 
0.5 water stress threshold.  

Irrigated maize 

2nd growing season (Deyr) 

Tillage 05/09 Springplow All 

Sowing 11/09 -30/09 Sowing time window All 

N fertilization 05/10 Elemental nitrogen, broadcast application All 

P fertilization 05/10 Elemental phosphorous, broadcast application All 

Harvest <= 15/01 Later harvesting date allowed All 

Irrigation Automatic 
Furrow irrigation: 30 mm applied with 0.5 of efficiency, triggered by a 
0.1 water stress threshold.  

Irrigated maize 
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2- Calibration and validation strategy 

We applied a multi-step calibration process with multiple variables (Table A5.3) starting from Leaf Area Index 

(LAI) calibration to correctly match the two growing seasons and adjust the LAI parameters of crops, 

considering monthly average values. We then used the SWAT+Toolbox (v 1.0) to calibrate the model for 

discharge at Luuq and Belet Weyne gauging stations. Finally, we calibrate and validate the model for rainfed 

sorghum and rainfed and irrigated maize yield in representative HRUs. The parameters modified are reported 

together in Table 7. 

Table 3: the data used with the period, time step, zones of application and the source. 

Variable Period Time step Zones Source 

LAI 2004-2014 
Monthly 
average 

Selected HRUs with cropland in 
Somalia 

Copernicus, CGLOPS-1 (v. 2) 

Streamflow 
1984-1986 for calibration, 
1987-1989 for validation 

Monthly Juba and Shabelle catchments FAO-SWALIM 

Crop yield 
2004-2009 for validation,  
2010-2014 for calibration 

Gu and Deyr 
crop yields 

Representative HRUs in Somalia FEWS NET 

 A - Leaf area index 

The selection of the HRUs considered in this calibration was based on an area threshold of 50 hectares and 

by visually checking the correspondence between LAI maps and land use, to be sure to include herbaceous 

crops and not perennial crops, characterized by high LAI throughout the year. We modified the parameters 

related to the LAI of sorghum and maize and we adapted the sowing date decision table and the days to 

maturity of the crops. The LAI remote sensing product has a low resolution and in the pixels there is mixed 

vegetation and also bare soil. For each HRU included in this part of the calibration, we considered the mean 

value of the remote sensing LAI. Considering these limitations, we did not completely rely on the values, but 

we focused on temporally matching the growing seasons. Results are shown in Fig. A5.2. 

 

Figure A5.2: Monthly LAI for default and calibrated simulations. 
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B - Streamflow 

We used the SWAT+ Toolbox to perform automatic calibration for the Luuq and Belet Weyne gauging stations. 

Satisfactory performances were obtained only for Luuq (Fig. A5.3, Table A5.4) and the Juba river, and 

therefore we only considered them in the calculation of the indicators to be used in the climate risk 

assessment. The calibrated values for Belet Weyne and the Shabelle river were kept to at least have a 

reasonable average representation of flow, which was highly overestimated by SWAT+. Performances at Luuq 

are satisfactory or better according to the criteria of Moriasi et al. (2007). Given the very low quality of the 

input data and the exploratory nature of the study, we consider the model validated for streamflow.  

 

Figure A5.3: Hydrograph for Luuq with the monthly streamflow for calibration and validation. 

Table A5.4: Performance statistics at the Luuq gauging station. 

Streamflow Calibration Validation 

NSE 0.79 0.65 

Pbias 15.4% 18.1% 

RSR 0.46 0.62 

R2 0.84 0.79 

 

C-  Crop yield 

At the end of the process, we optimized the performance of the model in the simulation of maize (irrigated 

and rainfed) and sorghum (rainfed) yields. We selected the largest HRUs that are representative of cropping 

patterns in Somalia. The representative HRU for rainfed sorghum is in Bakool, in the Tiyeeglow and Xudur 

districts. The representative HRU for rainfed maize is in Bay, in the Baydhabo district. The representative HRU 

for irrigated maize is in Lower Shabelle, mainly in the Qoryooley district but also in Kuntuwaaray, Afgooye 

and Marka. Since Gu is the main growing season, we considered it for calibration and validation. We coupled 

a manual calibration to modify the plants.plt input file, to achieve similar magnitudes of values, with 

automatic calibration with the SWAT+ Toolbox, where we optimized RMSE by modifying parameters related 

to soil water. 

SWAT+ model performances were satisfactory for irrigated maize (Fig. A5.4, Table A5.5) and rainfed sorghum 

(Fig. A5.5, Table A5.6), which we finally considered in the calculation of the indicators to be used in the 

climate risk assessment. Pbias and RMSE values were always satisfactory or better according to the criteria 

of Jamieson et al. (1991), while yield variability was captured only in the calibration period, with good values 

of R2.  
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We had to strongly reduce yields, especially of maize, and we mostly did it by reducing the harvest index and 

LAI. We avoided modifying the radiation use efficiency parameter since it is also used in the equations to 

simulate the effect of CO2 concentration. It is important to keep in mind that SWAT+ does not simulate yield 

reductions due to pests, diseases and extreme events such as floods, but only considers nutrients, 

temperature and water stresses. Despite the severe limitations in data availability and the simplified 

representation that we adopted, we could obtain satisfactory performances. Furthermore, it is known that 

the SWAT+ model is not optimal for estimating interannual crop yield variability, but it is reliable when 

estimating long-term average yields. For the purpose of this study, we considered the SWAT+ model validated 

for rainfed sorghum and irrigated maize crop yields.  

 

 

Figure A5.4: Calibration and validation for irrigated maize. 

Table A5.5: Performance statistics for irrigated maize.  

 

 

 

 

 

 

 

 

Figure A5.5: Calibration and validation for rainfed sorghum. 

Table A5.6: Performance statistics for rainfed sorghum. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Maize Calibration Validation 

Pbias -2.2% 4.6% 

RMSE 64.3 kg/ha 100.5 kg/ha 

R2 0.63 0.00 

Sorghum Calibration Validation 

Pbias 12.8% -16.6% 

RMSE 43.1 kg/ha 46.2 kg/ha 

R2 0.82 0.21 
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Table A5.7: Parameters and setting changed during the calibration process. 

Parameters / 
setting 

Zones/crops File changed 
Default 
value 

Final value / 
%change 

cn2 Juba calibration.cal  -19.94% 

cn2 Shabelle calibration.cal  -18.76% 

esco Juba calibration.cal  0.187 

esco Shabelle calibration.cal  0.985 

epco Juba calibration.cal  0.454 

epco Shabelle calibration.cal  0.975 

awc Juba calibration.cal  17.79% 

awc Shabelle calibration.cal  19.44% 

canmx Juba calibration.cal  -17.72% 

canmx Shabelle calibration.cal  18.29% 

k Juba calibration.cal  19.83% 

k Shabelle calibration.cal  18.89% 

perco Juba calibration.cal  19.78% 

perco Shabelle calibration.cal  19.90% 

surlag Juba calibration.cal  14.84 

surlag Shabelle calibration.cal  7.25 

esco Rainfed sorghum (HRU 932) calibration.cal  0.326 

esco Irrigated maize (HRU 1656) calibration.cal  0.640 

epco Rainfed sorghum (HRU 932) calibration.cal  0.028 

epco Irrigated maize (HRU 1656) calibration.cal  0.119 

awc Rainfed sorghum (HRU 932) calibration.cal  -19.39% 

awc Irrigated maize (HRU 1656) calibration.cal  5.91% 

z Rainfed sorghum (HRU 932) calibration.cal  -13.84% 

z Irrigated maize (HRU 1656) calibration.cal  6.67% 

k Rainfed sorghum (HRU 932) calibration.cal  16.85% 

k Irrigated maize (HRU 1656) calibration.cal  -7.72% 

perco Rainfed sorghum (HRU 932) calibration.cal  -14.43% 

perco Irrigated maize (HRU 1656) calibration.cal  -10.57% 

harv_idx Maize plants.plt 0.55 0.14 

harv_idx Sorghum plants.plt 0.45 0.14 

lai_pot Maize plants.plt 6 1.5 

lai_pot Sorghum plants.plt 3 1.5 

frac_hu1 Maize plants.plt 0.15 0.1 

frac_hu1 Sorghum plants.plt 0.15 0.1 

frac_hu2 Maize plants.plt 0.5 0.45 

frac_hu2 Sorghum plants.plt 0.5 0.45 

hu_lai_decl Maize plants.plt 0.8 0.75 

hu_lai_decl Sorghum plants.plt 0.64 0.6 

days_to_maturity Maize plants.plt  95 

days_to_maturity Sorghum plants.plt  95 

harv_idx_ws Maize plants.plt 0.3 0.1 

harv_idx_ws Sorghum plants.plt 0.25 0.1 

can_ht_max Maize plants.plt 2.5 1.5 

rt_dp_max Maize plants.plt 2 1.5 

rt_dp_max Sorghum plants.plt 2 1.5 
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3- Simulations 

The historical simulations were set up for the period 1982-2014 while the future simulations were for the 

period 2068-2100, with three years of warm-up. We considered all the SSPs available in the CMIP6 

simulations, and we retrieved bias-corrected climate input data from the ISIMIP data repository. While for 

SSPs 126, 245, 370 and 585 more General Circulation Models (GCMs) can be downloaded, for the SSP460 only 

the ipsl-cm6a-lr and the mri-esm2-0 are available. Hence, we considered only these two GCMs for all the SSPs 

(Table A5.1). All climate variables needed are available, except for relative humidity in SSPs 245 and 460. CO2 

values were retrieved from the ISIMIP repository (Büchner and Reyer, 2022), and we used the averaged 30 

years as SWAT+ does not allow dynamical simulation of CO2 concentrations (Table A5.6).  

Table A5.6: CO2 concentration values used in the simulations. 

Simulation CO2 concentration (ppm) 

base 366 

historical 366 

SSP126 461 

SSP245 590 

SSP370 757 

SSP460 635 

SSP585 940 

 

The management was not changed in the main simulations to estimate the impacts of climate change on crop 

yields. Days to maturity are modified considering the increased temperatures due to climate warming (Table 

A5.8). The heat units are calculated for the calibration and validation simulation, considering the calibrated 

days to maturity for sorghum and maize. By subtracting the base temperature from the average temperature 

calculated by SWAT+ at HRU level, and averaged per month, we calculated the days to maturity required to 

reach the same amount of heat units, per scenario and GCM.  

Table A5.7: Fertilization and irrigated areas used in the different scenarios considered. 

Simulation N fertilization (kg/ha/yr) Irrigated area (%) 

base 13 6 

historical 13 6 

SSP126 24.1 20 

SSP245 100.1 1 

SSP370 10 2 

SSP460 14.9 2 

SSP585 37.1 30 

 

Adaptive capacity is simulated with SWAT+ simulating adaptation strategies, namely change in sowing dates 

and longer crop cycles. In these simulations, we also modified fertilizer application which was retrieved from 

LUH2 for the year 2100 (Table A5.7). Decision tables for sowing are modified moving the time window for 

sowing 20 days earlier and 20 days later. Days to maturity of the crops simulated are increased considering 

224 more heat units required to reach maturity. We calculated the 224 heat units as the average increase in 

heat units with the increasing temperatures with constant days to maturity at 95 days, under all scenarios. 

We preferred to use this approach to remain consistent with the heat units’ concept and not to favour the 

highest emission scenarios with the highest increases in temperature. As can be seen in Table A5.8, the 

maximum increase is 13 days and the minimum 9 days.   



135 
 

Table A5.8: Calculated heat units and days to maturity used in the simulations. 

Scenario GCM Crop 
Days to 

maturity 
Heat 
units 

New 
days to 

maturity 

New 
heat 
units 

Adapted 
heat 
units 

Adapted 
days to 

maturity 

base \ sorghum 95 1723   1947  

base \ irrigated corn 95 1986   2210  

base \ rainfed corn 95 1950   2174  

historical ipsl-cm6a-lr sorghum 95 1718 \ \   

historical ipsl-cm6a-lr irrigated corn 95 1982 \ \   

historical ipsl-cm6a-lr rainfed corn 95 1944 \ \   

historical mri-esm2-0 sorghum 95 1716 \ \   

historical mri-esm2-0 irrigated corn 95 1980 \ \   

historical mri-esm2-0 rainfed corn 95 1942 \ \   

ssp126 ipsl-cm6a-lr sorghum 95 1825 89 1715 1954 102 

ssp126 ipsl-cm6a-lr irrigated corn 95 2089 90 1983 2216 101 

ssp126 ipsl-cm6a-lr rainfed corn 95 2050 90 1946 2175 101 

ssp126 mri-esm2-0 sorghum 95 1793 91 1722 1954 104 

ssp126 mri-esm2-0 irrigated corn 95 2052 92 1991 2218 103 

ssp126 mri-esm2-0 rainfed corn 95 2011 92 1950 2173 103 

ssp245 ipsl-cm6a-lr sorghum 95 1944 84 1724 1944 95 

ssp245 ipsl-cm6a-lr irrigated corn 95 2206 85 1979 2206 95 

ssp245 ipsl-cm6a-lr rainfed corn 95 2166 85 1942 2166 95 

ssp245 mri-esm2-0 sorghum 95 1861 88 1730 1954 100 

ssp245 mri-esm2-0 irrigated corn 95 2122 89 1993 2207 99 

ssp245 mri-esm2-0 rainfed corn 95 2082 89 1956 2166 99 

ssp370 ipsl-cm6a-lr sorghum 95 2047 80 1729 1942 90 

ssp370 ipsl-cm6a-lr irrigated corn 95 2309 82 1997 2213 91 

ssp370 ipsl-cm6a-lr rainfed corn 95 2268 82 1961 2175 91 

ssp370 mri-esm2-0 sorghum 95 1973 82 1713 1953 94 

ssp370 mri-esm2-0 irrigated corn 95 2233 84 1983 2211 94 

ssp370 mri-esm2-0 rainfed corn 95 2193 84 1948 2171 94 

ssp460 ipsl-cm6a-lr sorghum 95 1988 82 1722 1947 93 

ssp460 ipsl-cm6a-lr irrigated corn 95 2250 84 1994 2203 93 

ssp460 ipsl-cm6a-lr rainfed corn 95 2209 84 1958 2164 93 

ssp460 mri-esm2-0 sorghum 95 1917 85 1724 1955 97 

ssp460 mri-esm2-0 irrigated corn 95 2177 86 1978 2221 97 

ssp460 mri-esm2-0 rainfed corn 95 2136 86 1941 2179 97 

ssp585 ipsl-cm6a-lr sorghum 95 2135 76 1713 1958 86 

ssp585 ipsl-cm6a-lr irrigated corn 95 2394 79 1995 2220 88 

ssp585 ipsl-cm6a-lr rainfed corn 95 2353 79 1960 2182 88 

ssp585 mri-esm2-0 sorghum 95 2020 80 1734 1940 91 

ssp585 mri-esm2-0 irrigated corn 95 2278 82 1977 2210 92 

ssp585 mri-esm2-0 rainfed corn 95 2235 82 1940 2168 92 

 

  



136 
 

4- Physical indicators  

A set of outputs from SWAT+ and climate models are produced representing hazard, environmental 

susceptibility and, indirectly, resilience (Table A5.9), to be coupled with the socio-economic indicators which 

represent exposure and vulnerability. Even if we performed an analysis with agronomic adaptation and no 

adaptation measures to quantify the adaptive capacity, in the final composite indicator we consider only the 

yield outputs of the best-performing adaptation simulation. Additionally, we are using the dataset produced 

by Khan et al. (2023) to estimate historical and future water consumption, considering respectively the years 

2015 and 2100. Five climate models were used in that study, but for consistency with the models available in 

ISIMIP, we only used the ipsl climate model.  

Table A5.9: Indicators used derived from SWAT+ or from climate models. 

Indicator Component Method Description Reference 
Crop yield change 
(CYLavg) 

Hazard, 
resilience 

SWAT+ 
Average yield, to take into account climate 
change impacts 

/ 

Crop yield change 
(CYL25) 

Hazard, 
resilience 

SWAT+ 
First quartile yield, to take into account 
yield variability 

/ 

Meteorological 
drought (CDD) 

Hazard GCMs 
Longest dry spell, the maximum number 
of consecutive dry days with P < 1 mm 

RICCAR, Mysiak et al. 
2018 

Extreme 
precipitation (R20) 

Hazard GCMs Annual number of days with P > 20 mm RICCAR, ETCDDI 

Extreme 
temperature 
(SU40) 

Hazard GCMs Annual number of days with TMAX > 40 °C RICCAR, ETCDDI 

Water availability 
(WTRav) 

Environmental 
susceptibility 

SWAT+ 
Sum of annual average water yield and 
recharge weighted for the area 

 

Water 
consumption 
(WTRco) 

Environmental 
susceptibility 

Tethys Total water consumption Khan et al. 2023 
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Part 2: Exploratory analysis of the socio-economic indicators to be used in the climate risk assessment  

Here, the variables evaluated to be included as indicators are analyzed (Table A5.10).  

A- Total population 

Population is expected to increase under all scenarios except for SSP585. Large differences in the magnitudes 

of the increase are observed, ranging from minor to very high increases for SSPs 126 and 370, respectively.  

 

Figure A5.6: Total population in the scenarios considered. 

B- Female population 

The six scenarios considered are very similar, with values slightly higher than 50%.  

Despite the importance of the gender issue, we are not including this indicator as it is not adding information 

to our composite indicator.  

 

Figure A5.7: Female population in the scenarios considered. 

C- Age 

A huge change in the demography of the Somalian population is expected under all scenarios compared to 

2010. Now, more than 40% of the population is under 15, and this percentage is expected to decrease 

especially under SSPs 126 and 585. On the other hand, the population over 65 is expected to increase, with 

the same scenarios that showed the highest increases. We consider young and old populations equally 

vulnerable, and therefore the impact of age is not as high as if we were to differentiate between different age 

groups. Operationally, we consider as an indicator the sum of the percentage of young and old age groups. 
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Figure A5.8: Age in the scenarios considered. 

D- Urbanization 

The share of urban population is expected to increase under all scenarios compared to 2010 (<40%). In 

particular, the share of people living in cities will be higher than 80% under SSPs 126, 460 and 585. 

 

Figure A5.9: Urbanization in the scenarios considered. 

E- Gross Domestic Products 

The GDP is expected to increase by 2100 under all scenarios. The highest value is reached with SSP585, 

followed by SSPs 126 and 245. SSPs 370 and 460 show increases compared to the actual situation, but it is 

important to keep in mind that the figure shows the aggregated value and not per capita, and the population 

in these two scenarios is projected to drastically increase.  
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Figure A5.10: GDP in the scenarios considered. 

F- Income Gini coefficient 

Income inequality is projected to slightly increase for SSPs 370 and 460, while it significantly decreases for 

SSPs 126, 245, and 585. Despite the availability of projections for Somalia, the main model on which estimates 

are based did not include Somalia (Rao et al., 2019). Also, the two main explanatory variables are education 

and total factor productivity, which we also include directly or indirectly in our composite indicator. Hence, 

we are not considering the Income Gini coefficient as a vulnerability indicator. For the same reasons, we did 

not consider data about projected poverty headcounts, generated in the same study. 

 

Figure A5.11: Gini coefficient in the scenarios considered. 

G- Conflicts 

Conflicts are very likely to occur in 2100 under SSPs 370 and 460, with probabilities higher than 50%, while 

for the other scenarios, the probability is lower than 10%.  

The model used by Hegre et al. (2016) showed that conflict incidence declines as GDP and education increase 

while it increases with larger populations. The probabilities are available for the year 2100, but of course not 

for our baseline period since it is senseless to calculate probabilities for the past. As we included the GDP, 

population and education indicators in our analysis, and since our aim is also to compare with the present 

and historical situations, we are excluding conflict probability from our composite indicator.  
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Figure A5.12: Conflicts in the scenarios considered. 

H- Education 

Future projections show an increase in literacy. The percentage of the population without education will 

decrease from more than 70% to 60% for SSPs 370 and 460 scenarios and below 20% for the other scenarios. 

Most of the people with education in SSPs 370 and 460 have only primary education. More than 50% have a 

secondary education level under SSP 245, the highest share. Under SSPs 126 and 585 slightly less than 40% 

of the population have tertiary education, a value slightly lower than secondary education.  

To assign weights to the different levels of education, we consider no education the most vulnerable (weight 

value of 10) and tertiary education the least vulnerable (weight value of 0). The two intermediate primary 

and secondary education levels have weights of 3.33 and 6.66. 

 

 

Figure A5.13: Education in the scenarios considered. 
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Table A5.10:  The data considered, the unit, the categories, the motivation for considering them in the analysis, the sources and references are reported. Also, in the column “included” is specified if 

the data were used as indicator and how.  

Data (unit) Categories Motivation Included Source Reference 

Total 
population 

(million) 
/ 

Population is often 
used as the main 
exposure indicator 

Yes, as exposure 
indicator 

SSP Database - 
Version 2.0 
(IIASA) 

Samir KC, Wolfgang Lutz, The human core of the shared socioeconomic pathways: 
Population scenarios by age, sex and level of education for all countries to 2100, Global 
Environmental Change, Volume 42, 2017, 181-192, 3780, 
DOI:10.1016/j.gloenvcha.2014.06.004 

Female 
population (%) 

/ 
Female population is 
generally considered 
more vulnerable  

No, value is always 
around 50% 

SSP Database - 
Version 2.0 
(IIASA) 

Samir KC, Wolfgang Lutz, The human core of the shared socioeconomic pathways: 
Population scenarios by age, sex and level of education for all countries to 2100, Global 
Environmental Change, Volume 42, 2017, 181-192, 3780, 
DOI:10.1016/j.gloenvcha.2014.06.004 

Age (% of 
population) 

Young, adult, old 
population (<15 
years, between 15 
and 65 years, >65 
years, respectively) 

Young and old 
population is 
generally considered 
more vulnerable 

Yes, considering young 
and old share of 
population 

SSP Database - 
Version 2.0 
(IIASA) 

Samir KC, Wolfgang Lutz, The human core of the shared socioeconomic pathways: 
Population scenarios by age, sex and level of education for all countries to 2100, Global 
Environmental Change, Volume 42, 2017, 181-192, 3780, 
DOI:10.1016/j.gloenvcha.2014.06.004 

Urbanization 
(%) 

/ 
Rural population is 
generally considered 
more vulnerable 

Yes 
SSP Database - 
Version 2.0 
(IIASA) 

Leiwen Jiang, Brian C. O’Neill, Global urbanization projections for the Shared 
Socioeconomic Pathways, Global Environmental Change, Volume 42, 2017, 193-199, 
DOI:10.1016/j.gloenvcha.2015.03.008 

GDP (billion 
US$2005/year) 

/ 
Poor population is 
generally considered 
more vulnerable 

Yes, considering the 
aggregate value 

SSP Database - 
Version 2.0 
(IIASA) 

Jesús Crespo Cuaresma, Income projections for climate change research: A framework 
based on human capital dynamics, Global Environmental Change, Volume 42, 2017, 
226-236,, DOI:10.1016/j.gloenvcha.2015.02.012 

Income Gini 
coefficient (/) 

/ 
The higher the 
inequality the higher 
the vulnerability 

No, we already consider 
the explanatory 
variables and Somalia is 
not included in the 
original model used  

SSP Database - 
Version 2.0 
(IIASA) 

Rao, N. D., Sauer, P., Gidden, M., & Riahi, K. (2019). Income inequality projections for 
the Shared Socioeconomic Pathways (SSPs). Futures, 105 (June 2018), 27–39. 
https://doi.org/10.1016/j.futures.2018.07.001 

Conflict 
probability (%) 

/ 

Conflicts can be 
considered to 
increase the 
vulnerability of the 
population, even if 
some studies consider 
conflicts as human 
hazards 

No, we already consider 
the main explanatory 
variables and data for 
the present are not 
available. 

Hegre et al., 
2016 

Hegre, H., Buhaug, H., Calvin, K. V, Nordkvelle, J., Waldhoff, S. T., & Gilmore, E. (2016). 
Forecasting civil conflict along the shared socioeconomic pathways. Environmental 
Research Letters, 11(5), 054002. https://doi.org/10.1088/1748-9326/11/5/054002 

Education (% 
of population) 

Population without 
education and with 
primary, secondary 
and tertiary 
education 

A less educated 
population is 
generally considered 
more vulnerable 

Yes, assigning weights 
to the different 
education levels 

SSP Database - 
Version 2.0 
(IIASA) 

Samir KC, Wolfgang Lutz, The human core of the shared socioeconomic pathways: 
Population scenarios by age, sex and level of education for all countries to 2100, Global 
Environmental Change, Volume 42, 2017, 181-192, 3780, 
DOI:10.1016/j.gloenvcha.2014.06.004 
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Part 3: Future climate in the Juba and Shabelle catchments, Somalia 

The two climate models used in this study partially disagreed on future precipitation (Fig. A5.14). ipsl-cm6a-

lr predicted a strong increase in annual average precipitation, ranging from 21.7% for SSP126 to 73.5% for 

SSP585. The increases were consistent also for the individual rainy seasons, even if they were higher in the 

Deyr season (September-October-November-December) as compared to the Gu season (April-May-June-

July). On the other hand, the annual increases predicted by mri-esm2-0 were much smaller, less than 10.6% 

for all the SSPs. In the Gu season, the precipitation will decrease according to this model, with the highest 

decrease under SSP585 of -14.7%. In the Deyr season, MRI predicted increased precipitation, with the highest 

increase again being observed for SSP585, amounting to 38.2%. 

The models showed a clear increasing trend in future temperatures under all SSPs (Fig. A5.14). Overall, the 

increases predicted by ipsl-cm6a-lr were slightly higher as compared to mri-esm2-0. The minimum increases 

(<5%) were found for SSP126, while the maximum (up to 18%) for SSP585. No significant differences in 

patterns or trends were observed comparing annual, Gu and Deyr average temperatures. 

 

Figure A5.14: Percentage relative changes in precipitation and average temperature, considering the 30-years averages of the 

historical and future periods, and annual, Gu and Deyr seasons temporal scales.  
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