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H I G H L I G H T S G R A P H I C A L A B S T R A C T

• Stochastic optimization framework to
reduce costs in the sizing phase of
hybrid energy systems comprising stor-
age devices.

• Innovative simulation method able of
accounting for performance degradation
in time maintaining low computational
cost.

• Complete description of component
models for alkaline electrolyzer, PEM
fuel cell, Li-Ion battery, and hydrogen
compressor.

• In-depth literature and market review to
estimate average prices of all considered
components.

• Comparison between the proposed
method and a simplified one to estimate
the error when neglecting the compo-
nents’ degradation.

A B S T R A C T

Due to additional complexity and computational cost, most of the techno-economic analyses presented to date on hybrid energy systems overlooked the long-term
performance decay of components. This study introduces a novel simulation approach that accounts for degradation effects while maintaining a reasonable
computational cost, achieving a 88.5 % time reduction in comparison to complete physics-based models, while introducing only a 0.015 % error in estimating long-
term impacts. The proposed approach is tested against standard simulation methods using a real-world case study, i.e., the upgrade of the hybrid energy system on
the island of Tilos to achieve full energy self-sufficiency through photovoltaic and wind power, supported by a combination of Lithium-Ion batteries and a hydrogen
chain (electrolyzer, compressor, tank, and fuel cell). The novel simulation approach was integrated into a stochastic optimization framework aimed at minimizing the
cost of supplying the entire energy request from the island. The economic analysis is also supported by an in-depth market review of average prices for RES and
storage components. First, and most importantly, the study demonstrates that accounting for components’ degradation is an absolute requirement to get robust and
sustainable energy systems capable of meeting the long-term demands of renewable energy systems. The proposed approach is shown to perfectly fit this scope.
Results on then selected case study indicate that incorporating a hydrogen chain as seasonal storage leads to more cost-effective solutions, reducing the cost by 17.5
%. The comparison with a simplified method reveals that ignoring degradation can lead to substantial errors in estimating the energy cost (by an average of 10.2 %)
and undersized designs: 103.1 % on average for the electrolyzer, 31.5 % for the H2 tank, 59.6 % for the battery, and up to 7.7 % for the fuel cell.
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1. Introduction

Hybrid energy systems (HESs) can integrate the most promising
renewable generation technologies (wind and photovoltaics [1]) with
energy storage systems (ESS) to enable the stand-alone operation of
fully-decarbonized grids [2]. In this context, lithium-ion batteries are
the most common technology for Battery Energy Storage Systems
(BESS). In some cases, the mismatch between production and request
can be on a seasonal basis. Hydrogen technologies, with the power-to-
gas-to-power (P2G2P) or “hydrogen chain” paradigm, are one possibil-
ity for addressing this issue. Using an electrolyzer (EL), the power excess
from renewables can be converted into green hydrogen (power-to-gas)
[3–6]. This green hydrogen can be then converted back to electricity by
a fuel cell (FC) when an energy deficit takes place (gas-to-power) [7].
The feasibility and profitability of hydrogen production, especially from
renewable sources, were widely investigated in literature in the past
years [8–19].

Integrating different RES and different energy storage technologies
that involve several separate components can be a complex task and
advanced computational methods may be required to define the best
combination of generators and storage. Optimization algorithms are
suited to fulfill this task: these tools can outline the best strategy to reach
a specific target by evaluating the techno-economic outcome of different
combinations of components and varying their sizes in defined ranges.
To evaluate the outcome of a configuration, the optimization framework

must comprehend a simulation framework able to estimate how the
system would behave in a certain time frame [20].

The most common cost metrics to evaluate the performance of en-
ergy systems are the Net Present Value (NPV) [21–32], the Levelized
Cost of Energy (LCOE) [33–40] or Levelized Cost of Storage [41–45]. All
of those metrics consider the entire lifetime of the plant to evaluate the
overall techno-economic outcome of an energy system (20–25 years on
average [46–48]). This long-term horizon means that an optimization
framework that aims to minimize those cost metrics should either
simulate the system behavior during the entire lifetime or, as it often
happens [49], assume that the performance related to a narrower time
window can be attributed to the rest of the expected lifetime.

Storage devices and, especially, electrochemical cells (e.g., battery
modules, electrolyzer stacks, or fuel cell stacks) are affected by the
degradation of their performance over time. This degradation depends
on the technology, the size, and the application type and the amount of
working hours in a year [50–52]. An accurate assessment of the degra-
dation of components is key for correctly estimating the techno-
economic outcome of an energy system: according to the type of
usage, a component may last longer or require a premature substitution
[53,54]. Consequently, a performance drop in one or more components
of an energy system affects not only the overall technical behavior but
also maintenance and replacement costs.

Even if often neglected [55–58], techno-economic optimizations that
aim to minimize LCOE/LCOS or maximize NPV should consider the

Nomenclature

Symbols
C Capacity[MWh]
d Daily damage [− ]
D Damage [− ]
E Energy [kWh]
I Current [A]
P Pressure [bar]
r Interest rate [%]
T Temperature [◦C]
V Voltage [V]
η Efficiency [%]
φ Conversion factor [kg/MWh]
t Time [s] [min] [year]
m mass [kg]
c specific hear [J/kgK]
β compression ratio [− ]
k ratio of specific heats [− ]

Subscripts
1 final value at the end of the first year of operation
avg average
comp compressor
el electrolyzer
eq equivalent
ext external
fc fuel cell
gw glass wool
id ideal
int internal
isen isentropic
op operating
spec specific
t tank
T_nom nominal temperature
th thermoneutral

Thermal,deg temperature cooling related degradation
time,deg time related degradation
work actual working hours

Acronyms
ALK Alkaline
BESS Battery Energy Storage System
c1 one-year simulation using complete models of components
c20 twenty-year simulation using complete models of

components
CAPEX Capital expenditures
DOD Depth Of Discharge
EES Energy Storage System
EL Electrolyzer
EOL End Of Life
FC Fuel Cell
HES Hybrid Energy System
HPS Hybrid Power Station
LCOE Levelized Cost of Electricity
LCOH Levelized Cost of Hydrogen
LCORE Levelized Cost of Required Storage
NIIs Non-Interconnected Islands
NPV Net Present Value
O&M Operation and Maintenance
OPEX Operating expenditures
P2G2P Power to Gas to Power
PEM Proton Exchange Membrane
PV Photovoltaic
RES Renewable Energy Sources
SCADA Supervisory Control And Data Acquisition
SOC State Of Charge
SOC State Of Charge
SOEC Solid Oxide Electrolysis Cell
SOH State OF Health
SSd Self-Sufficiency degree
WT Wind Turbine
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effect of performance decay, since the metric that they aim to optimize is
directly influenced by degradation effects [59,60]. If this effect is not
considered, results from economic optimizations can be misleading, as
shown in Section 4. This study proposes a novel simulation approach,
able to account for the long-term performance decay of storage com-
ponents in HESs, crucial for the correct estimation of cost metrics. The
method also aims at maintaining a limited computational cost, making
the approach compatible with stochastic optimization algorithms.

1.1. Degradation of performance in sizing optimization of HESs

HESs comprising hydrogen chains are getting increasing attention. In
their systematic review of renewable HESs with hydrogen storage, Modu
et al. [61] highlighted the recent advancements in the sizing and man-
agement of hybrid RES. However, the literature lacks studies that pro-
pose methods to optimize the sizing of hybrid systems that consider the
actual performance of components. In another review of renewable
HESs, Basnet et al. [62] highlighted that only a few research works
consider the effect of intermittency on the electrolyzer for the produc-
tion of hydrogen. Moreover, the performance degradation of electro-
chemical cells is often neglected and only a few studies tried to address
the problem of considering the drop in performance of different com-
ponents in the sizing optimization of energy systems.

The long-term effect of storage systems degradation on the overall
performance of hybrid energy systems has been proven to be a key issue
by previous studies. Ceran et al. [63] proposed a novel approach to
evaluate the performance of a PV system with H2 storage including
aging. The authors evaluated the long-term performance of case studies
using parametric components models for the PV, FC, electrolyzer, and
hydrogen tank. They found that the system performance decline is non-
linear since the performance decay of one component affects also the
other devices. Results from this study clearly show that not considering
aging will generate a significant error in any analysis. Ceran and
Orlowska [64] found similar implications of component degradation in
a study that considered PV, WT, and fuel cells. Jurasz et al. [65] proved
that the reliability of a PV-BESS system should be determined in the long
horizon due to the performance decay of the generator and capacity fade
of the storage system. The analysis proposed here confirms the potential
error caused by neglecting the degradation and presents a way to ac-
count for its long-term effect by keeping computational costs limited and
compatible with sizing optimization algorithms.

The effect of performance decay has a deep impact also in the
management of HESs. Degradationmodels have been also introduced for
the scheduling optimization of energy systems. One possible application
is the optimization of system operating conditions of hydrogen tech-
nologies. Parhizkar and Hafeznezami [66] proposed a degradation-
based model to optimize the operation of a SOFC. Bordin et al. [67]
considered the effect of battery degradation in a linear programming
approach to optimize the management of off-grid systems. Maluenda
et al. [11] included a degradation model in the optimal operation
scheduling of a hybrid system involving PV, BESS, and an electrolyzer.
Qin et al. [68] proposed an online lifecycle operating costs minimization
strategy for fuel cell buses considering power source degradation. The
state of health estimation was incorporated into the objective function to
reduce battery and fuel cell degradation. Abdelghany et al. [69] pro-
posed a sophisticated hybrid energy storage system dynamic model to
optimize the economical schedule of wind-solar microgrids with hybrid
energy storage systems considering the effect of degradation. Shen et al.
[70] considered degradation for the optimization of a dispatch method
for an integrated energy systemwith hybrid energy storage. The effect of
PEM electrolyzer degradation was considered in the device design and
implementation by Liu et al. [71]. Concerning control and schedule
optimizations of vehicles, Huang et al. [72] proposed the coupling be-
tween design and EMS optimization for a hybrid propulsion system
including Li-ion batteries and supercapacitors considering the effect of
the battery degradation. Fan et al. [73] developed a comprehensive

degradation model to accurately calculate the degradation costs of a fuel
cell to minimize the operation cost of a ship microgrid. The platinum
catalyst degradation in PEM fuel cells was included in the optimal
management strategy also by Sheng et al. [74]. He et al. [75] proposed
the quantification of fuel cell degradation and a techno-economic
analysis for fuel-cell-powered vehicles. In their analysis, the total fuel
cell degradation was 3.6 % per vehicle within one year. In [76–79], the
degradation effect was also considered to develop health-conscious EMS
for fuel-cell hybrid electric vehicles.

Methods used to include the effect of degradation in the management
optimization of HESs can be applied also to sizing problems. However,
sizing and management problems differ in simulation horizon, compu-
tational requirements and many other aspects. This work indeed focuses
on sizing optimization problems and robust design of HESs.

To the best of the authors’ knowledge, the problem of considering
the performance degradation of components in the optimum sizing of
renewable HESs was first considered by Erdinc and Uzunogl [55]. These
authors multiplied the output power capacity of each hybrid system
with a performance degradation constant to provide results from the
worst-case scenario.

The BESS is the most considered component in studies that account
for storage degradation in the sizing optimization of microgrids. Amni
et al. [80] considered capacity degradation and replacement year for the
optimal sizing of battery energy storage in a microgrid. They proposed a
linear model to use Mixed Integer Linear Programming (MILP) to
investigate the long-term effect of the BESS capacity degradation on
performance andmicrogrid total cost. In studies from Terlouw et al. [81]
and Shmidt et al. [82], authors included Li-ion battery degradation as a
constraint in the analysis of energy systems. Wang et al. [83] optimized
the system configuration and working modes of a vehicle-to-micro-grid
network considering the battery degradation of electric vehicles. Sufyan
et al. [56] tried to reduce the operating cost of isolated microgrids by
economic scheduling considering the optimal size of the battery. The
authors modeled the real battery operation cost considering the depth of
discharge that shortens the lifetime of the BESS. Rehman et al. [84]
proposed another MILP optimization for the sizing of battery energy
storage and PV systems considering uncertainties and battery degrada-
tion. Their modeling approach accounts for the cycle-life degradation of
the Li-ion based BESS to ensure that the BESS will not be replaced during
the lifetime of the project. Fioriti et al. [85] developed a rainflow-based
model of storage degradation to optimize the sizing of residential BESS.
They modeled the PV degraded capacity and proposed a multi-year
sizing methodology where the complete lifetime of batteries is simu-
lated at a 15-min time resolution until complete degradation. They
adopted a three-loop nested methodology, where they simulated the
BESS operation in the inner loop, estimated the BESS degradation in the
middle loop, and tested multiple BESS configurations in the external
loop to select the most profitable one. Shin and Roh [86] proposed a
framework for calculating the capacity of the energy storage supple-
menting PV that considers the effect of the size and operation on battery
degradation while maximizing profits. They also introduced an iterative
algorithm that finds a solution by accessing battery degradation and
optimizing profitability. Liu et al. [87] presented an operating cost
model for the sizing of an energy system involving wind and BESS that
considers capacity fading. They also proved that the global optimization
method of dynamic programming can reduce significantly capacity
degradation and operation costs. Mielcarek et al. [49] highlighted the
importance of long-term simulations considering the degradation of
components when simulating independent systems including PV and
BESS. Castillejo-Cuberos et al. [88] proved that assuming a constant
battery degradation can result in an underestimation of LCOE. Liu et al.
[89] included the annual degradation PV and an electric vehicle BESS in
the energy design and optimization for a net-zero energy building. On
the other hand, this study considers a more complex system that com-
bines RES generation with P2G2P, other than a BESS. The presence of
multiple components makes it mandatory to study the effect that the
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degradation of each component has on the average performance of the
other components.

Several attempts have been made to include the effect of storage
degradation in sizing and management optimization of hybrid power
trains: fuel cells and BESS combinations have indeed a wide application
range for vehicles and the transportation sector. The degradation effect
on hybrid Li-ion and PEMFC has been explored by works from Dall’Armi
et al. [90,91] and Pivetta et al. [92]. The authors proposed a multi-
objective optimization aiming at minimizing PEMFC degradation
while reaching other techno-economic objectives. Results have shown
that, due to this inclusion in the objective function, is possible to reduce
degradation by up to 65 %, highlighting the importance of including the
degradation factor. Those studies aim at solving MILP problems, thus
using linearized models of components. The effect of degradation was
included in other studies that propose MILP optimization with linearized
component models. One example is a study by Zhang et al. [93] that
included degradation costs for batteries and fuel cells in a MILP opti-
mization problem to identify the optimal fuel alternative for a ship.
Differently, the current study proposes a method to extrapolate the long-
term evolution of average performance indicators starting from a one-
year simulation that may use also non-linear components models.
Moreover, this study focuses on the introduction of a hydrogen chain for
stationary applications in which daily cycles, typical of transport ap-
plications, are much less dominant. The selected case study shows re-
sults related to an application in which hydrogen works mainly as
seasonal storage. The methodology proposed here also aims to account
for the mutual interaction of degradation processes affecting different
components and highlights implications on computational
requirements.

Some studies have included a fixed degradation rate for components
of the hydrogen chain in their analyses. Rezaei et al. [94] evaluated the
levelized cost of hydrogen produced by water electrolysis fed by solar
and wind energy. The authors considered the effect of performance
decay but they assumed a fixed plant degradation rate of 0.5 %/year, as
in [95]. Liu et al. [96] evaluated the short and long-duration energy
storage requirements in solar-wind hybrid systems. They also intro-
duced a fixed degradation rate of 0.2 % per year for the estimation of the
LCOE from [97]. The findings of the present studies have shown that this
hypothesis can lead to inaccurate results.

Zhang and Yuan [98] proposed an optimization and economic
evaluation of a PEM system subjected to variable power operations
considering its degradation. The authors propose three improved algo-
rithms to solve this optimization problem. Roshandel et Parhizkar [99]
developed a degradation-based optimization to consider the degrada-
tion effect when optimizing the profit of a SOFC power plant. However,
these case studies were limited to a single component, while the current
study aims to propose a framework capable of considering the long-term
interaction between several components that may compose a hybrid
energy system.

Pu et al. [57] proposed a two-level optimal sizing method to analyze
energy systems that combine power‑hydrogen-heat-cooling cogenera-
tion. They considered the degradation of the battery using a semi-
empirical model that estimates the SOH trend starting from the power
released or absorbed by the component. They also considered time
degradation and degradation due to start-and-stop operation for the
PEM fuel cell and the PEM electrolyzer. However, since the focus of their
study was the application of a MILP optimizer, all degradation con-
straints were linearized, and they used simplified component models to
optimize the operation on typical days. Authors simulated selected time
windows in the considered system lifetime and then they estimated the
remaining life of components with a linear fit of the obtained yearly
degradation trend. Results presented in the current work show that the
linear degradation hypothesis can lead to errors in estimating the long-
term performance of the system.

Guinot et al. [100] investigated an HES including batteries and a
hydrogen chain (electrolyzer, gas storages, and fuel cell i.e., P2G2P) for

an off-grid application. Authors considered the impact of performance
aging: linear voltage time degradation of +10 μV/h for the electrolyzer
and -5 μV/h the fuel cell, cyclic, and calendar aging for the BESS. They
minimized simultaneously the LCOE and the Maximum Daily Power
Failure Time using the Strength Pareto Evolutionary Algorithm 2. Their
results proved that not considering the degradation of performance over
time can lead to errors in the sizing of hybrid energy systems.

Li et al. [101] considered MILP optimization to determine the best
operating strategy for a stand-alone microgrid considering electric
power, cooling/heating, and hydrogen consumption and a genetic al-
gorithm to search for the best size of each component. They considered
the influence of several factors on sizing results, including degradation
of fuel cell, electrolyzer, and battery. However, they only used 12 days
as input data to obtain the optimal sizing results. Moreover, the 1-h
resolution that they used to simulate 365 days and test the validity of
sizing results can be inappropriate to accurately assess the cyclic
degradation of the battery and the average performance of the electro-
lyzer or the fuel cell.

Li et al. [102] investigated the planning and optimization for elec-
tricity‑hydrogen integrated energy systems considering the degradation
of storage devices to minimize life cycle costs. The authors proposed
tools to evaluate the voltage degradation of a PEMFC and a Li-ion BESS,
but the mutual influence of performance degradation of components on
each other in the long term is not considered.

Le et al. [103] presented the design and operation optimization of a
hybrid ESS comprising hydrogen and batteries, in which they also
considered components’ degradation and energy cost volatility. This
work proposed a Multi-Objective Modified Firefly Algorithm (MOMFA)
to optimize the size of a system involving PV, battery storage, and
hydrogen storage. Results found that, when the penetration of renew-
ables is higher than 80%, storage systems that involve hydrogen become
more effective. The battery was modeled using a fixed efficiency and
assumed a constant degradation rate of 2.9 % per year. They assumed a
linear degradation also for the electrolyzer (+10 μV/h) and the fuel cell
(-5 μV/h). Again, the linear hypothesis may potentially lead to
misleading results.

1.2. Design of 100 % self-sufficient HESs

Many studies have addressed the problem of reaching 100 % self-
sufficiency on HESs only using RES. Most of them have conducted
techno-economic optimizations to understand the best combination of
RES and storage to install, or to optimally size them.

One of the most interesting test cases for the introduction of
renewable HESs that aim to reach full self-sufficiency is represented by
small-to-medium islands, which have always been affected by some sort
of energy struggle. Several previous analyses considered case studies in
the non-interconnected islands (NIIs) cluster, in Greece. According to
the status of electricity generation in the NIIs for the Aegean Sea Region
from Tzanes et al. [104], the RES share in the area has stagnated in the
range between 15 and 18 % since 2010 due to existing technical limi-
tations. On the other hand, the current thermal power stations are
characterized by low capacity factors and high specific fuel consumption
that result in high operating costs and LCOE higher than 600 €/MWh.
The paradigm of the smart energy solution and battery-based HPS is
proposed as one of the methods to address the current situation. Sko-
petou et al. [105] examined short (2030) and mid-term (2050) imple-
mentations of novel technologies in NIIs and demonstrated that a NII can
realistically abolish the use of fossil fuels and enhance energy self-
sufficiency using the local RES. Results from Żołądek et al. [106] show
that the payback period for a self-sufficient microgrid in this area is
11–15 years. Kougias et al. [107] investigated whether the development
of renewable energy sources could lead to sustainable systems in islands
in the Aegean Sea. Results show that the RES additions to cover the
demand represent a more cost-effective option than traditional fossil
fuels.
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The current study presents the application of the proposed method-
ology for the robust design of a HESs targeted to sustain a small island
part of the NIIs, i.e., the island of Tilos. Results on this study case
allowed comparing different simulation approaches, assessing the ac-
curacy of the new proposed method, and evaluating the potential error
coming from the application of simulation techniques that neglect
degradation. Beyond contributing to the body of literature on 100 %
self-sufficient grids, by proposing a novel simulation approach, this
study underlines the possible issues in all analyses that consider the
long-term performance of renewable systems that include storage
devices.

1.3. Aims of the present study and novelty

The in-depth literature analysis has shown that the effect of perfor-
mance decay of components must be considered for correctly estimating
the long-term performance of HESs [65]. Moreover, several analyses
started accounting for degradation in optimization problems related to
control, scheduling, and sizing. However, many studies only included
the effects of time degradation in linearized problems or impose fixed
degradation rates to components.

This study proposes a simulation method able to account not only for
the linear time degradation of components, but also for the mutual
impact that the degradation of a device has on the yearly average per-
formance of other components. Mutual impact assessment is crucial
when studying multi-component systems that involve hybrid storage
technologies such as the combination of batteries and hydrogen chains.
Long-term simulations that employ complete components models, as
proposed in some studies (e.g., [63,64]), can provide insights into the
mutual effects of degradation on other components and the overall
system behavior. On the other hand, computational cost rises with
complexity of models and with the length of the time-horizon of simu-
lations. Consequently, those simulation approaches are not compatible
with sizing optimization algorithms that require several iterations to
reach the global optimum when the number of variables rises. Differ-
ently, the present work proposes a novel approach still able to consider
the long-term performance decay of while limiting the computational
costs and becoming compatible with stochastic optimizers.

First, trends of the long-term degradation of performance of BESS,
electrolyzer, and fuel cell were studied. Those trends are obtained from
the results of a complete simulation that uses complete component
models to simulate the system behavior over 20 years of operation (c20).
Then, this work introduces a novel hybrid simulation method able to
predict the long-term trend of the degradation, in a given simulation, by
exploiting results of only one year of simulation. The proposed method
can indeed be used to set up a set of accurate simplified simulations
starting from partial results coming from every kind of model. The
reduction of computational time can thus be achieved also starting from
non-linear models, commercial tools or empirical data. This hybrid
approach, which combines complex simulations with simplified ones, is
tailored for techno-economic optimizations, in which the tradeoff be-
tween the accuracy of results and computational times is key.

The proposed optimization framework is tested using a real case
study: the HPS of the island of Tilos. This work continues the analysis
started with [108], again considering the case study of the HESs
installed on the island of Tilos, comprising a wind turbine and a PV field.
The introduction of P2G2P, as well as an upgrade of the PV field and the
substitution of the ZEBRA battery with a larger lithium-ion battery, was
already discussed in the previous analyses. However, previous studies
employed simplified component models and neglected a key aspect
highlighted in the current work: the long-term performance decay of
storage components. Differently, the present study proposes an optimi-
zation framework for the sizing of renewable HESs that addresses the
problem of considering degradation. Moreover, a sensitivity analysis on
PV size shows how results vary when constraints are applied to the
maximum generation capacity.

The present work goes beyond the state of the art and contributes to
literature from several perspectives. More specifically, the study:

• presents an innovative simulation framework capable of considering
the performance degradation in time and accurately estimating the
lifetime of components while reducing computational costs.

• applies the innovative simulation method to a real case study to
highlight the potential error in component sizing and cost evaluation
when neglecting the long-term component degradation.

• presents and describes in detail parametric components models to
simulate the behavior of an alkaline electrolyzer, a PEM fuel cell, and
a Li-ion battery.

Contents are organized as follows. Section 2 describes the reference
case study of Tilos. Section 3 outlines the methodology of this study and
introduces the four considered simulation methods: three based on
standard approaches (labelled in the following as “simplified”, “c1”, and
“c20”) and the novel one (“hybrid”). Section 3.1 explains the activation
logic of the proposed hybrid ESS comprising batteries and hydrogen,
while Section 3.2 describes in detail how the electrolyzer, the fuel cell,
the compressor, hydrogen tanks, and the lithium-ion battery are
modeled for complete simulations. Section 3.3 explains how compo-
nents models can be simplified to reduce computational costs. Then,
Section 3.4 presents the hybrid simulation method and how degradation
trends of different devices were obtained. Section 3.5 presents the pro-
posed optimization framework and explains the reason behind using the
differential evolution algorithm to find the minimum LCORE. Section
3.6 presents the results of the market review that lead to the price values
considered in the economic analysis. Section 4 presents the results from
the proposed analyses. Section 4.1 first compares the outcome from
different simulation methods to assess the accuracy of the novel
approach. Then, Section 4.2 presents the results of a sizing optimization
carried out by using the novel approach. Results were compared to those
obtained using standard simplified approaches to assess the magnitude
of potential errors while neglecting degradation. Section 5 presents a
discussion about the obtained results. Finally, the main conclusions of
the study are outlined in Section 6.

2. Reference case study: The hybrid energy system of the island
of Tilos

This work applies the novel methodology to optimize the design of a
100% self-sustained HESs using a real case study. The economic analysis
considering the degradation of components is used to evaluate the
optimal upgrade of an actual microgrid based on renewables. The
application to a real case study allowed also the comparison between
different simulation methods, the evaluation of the accuracy of the
proposed approach, and an analysis on how this technique compares
with standard approaches.

Mediterranean islands have always struggled to achieve a reliable
energy supply. On the other hand, the high availability of solar irradi-
ance and sustained wind speeds make the installation of PV and wind
turbines favorable and pushed the introduction of RES in the electricity
mix of the area. In this context, the TILOS project [109] was born. Tilos
is a Greek island, part of the Dodecanese group, between Kos and
Rhodes. During that project, a Hybrid Power Station (HPS) comprising
an 800-kW wind turbine, a 160-kWp PV field, and a 2.88-MWh
sodium–nickel–chloride battery (ZEBRA) was installed on the island.
The load (3 MWh) mainly comes from two villages: Megalo Chorio and
Livadia. A more detailed description of the project and the current
layout of the HES installed in Tilos can be found in other studies by the
same authors [108,110].

The present study analyses the possibility of upgrading the current
energy system installed on the island by expanding the power produc-
tion capabilities and supporting this intermittent generation with two
kinds of energy storage systems: lithium-ion batteries and P2G2P. This
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upgrade aims to reach total energy independence on the island with
clean and local energy production, remove the need to import fossil fuels
or rely on external sources (Fig. 1).

One year of historical production from the wind turbine and the PV
field and one year of request from the island of Tilos were harvested by
the energy management system of the HPS. This dataset goes from
November 29th, 2020, to October 29th, 2021. The method used for the
reconstruction of the dataset is described in detail in [108].

Fig. 2 shows the overlap between the power production from the
renewable generators and the power required from the island. The shape
of the power request is characterized by an abrupt peak during the
summer season, when tourists arrive. On the other hand, the average
RES production is almost stable during the year and slightly higher
during the winter season due to the predominance of wind production.

The consistent mismatch between the RES production and the load
requires daily storage, to match the night power production with the
daily one, and seasonal storage, to shift the winter energy excess towards
the summer energy deficit. Therefore, this analysis considers the intro-
duction of a hybrid ESS that combines lithium-ion batteries with the
P2G2P. Open cells can decouple the nominal power with the energy
storage capacity. Electrolyzers can be used to slowly produce a buffer of
hydrogen by exploiting the power excess during winter. This hydrogen
can be compressed and stored in tanks and later used by fuel cells to
cover the demand during peaks of consumption. In this sense, the P2G2P
acts as a backup generator that produces the required fuel with the
excess from RES.

Even if the current energy excess (~ 1.08 GWh) is slightly higher
than the current energy deficit (~ 1 GWh), an entire shift of the energy
surplus towards the energy request would be economically unfeasible,
since this action would require oversized storage capacities if compared
to the load of the island and current generators. Moreover, a complete
shift would require round-trip efficiency close to unity, a condition
unfeasible with most current storage systems. Hence, this study also
considers the possibility of expanding the PV production capabilities of
the island to increase the load share that the RES generators can directly
cover. Solar production, thanks to modularity and the higher matching
degree with the summer deficit was selected as the best candidate for
upscaling.

2.1. Wind turbine

The current main source of renewable energy production in Tilos is a

800 kW wind turbine, mounted in the northwest region of the island.
The turbine model is an Enercon E-53 [111], with active pitch control.
As stated in the manufacturer datasheet, the cut-in speed is 2 m/s, the
nominal production is reached at 13 m/s, and the cut-out speed at 28 m/
s.

The wind turbine production was reconstructed from the historical
production dataset (one year of data, 1-min time resolution) while
missing points were estimated starting with the wind speed dataset and
the manufacturer’s power curve.

2.2. PV field

The second source of renewable energy generation on Tilos is a 160
kWp PV field. The field is composed of JA SOLAR panels, mounted with
a tilt angle of 30◦ towards the south and located in the central part of the
island.

As for the wind turbine, the PV production was reconstructed from
the historical dataset coming from the SCADA of the HPS (one year of
data, 1-min time resolution). Due to modularity and high matching
degree between the consumption peak because of tourists and higher PV
production during summer, solar was the power generation source that
the optimization framework was allowed to increase. The solar pro-
duction is scaled according to the upgrade that the optimizer considers.

3. Methodology

As stated in the introduction section, techno-economic analyses of
energy systems usually simulate only one year of operation. Then, the
cost metric formula (NPV, LCOE, or LCOS) attributes the same energy
production and the same performance of components to all the years of
the lifespan of the system. However, this approach can lead to inaccurate
results, especially when studying systems that involve a high number of
components subject to deterioration. To account for long-term degra-
dation of performance, the time horizon of simulations should match the
expected lifetime of the system. However, computational costs may
become unsustainable if complex components models are used to
simulate twenty or more years of operation. Time for computation can
be reduced by using simplified models, but the accuracy of the simula-
tion would be greatly reduced as well.

This work proposes a novel hybrid simulation method to match the
accuracy of a complete simulation across the while lifetime of a HESs but
with much lighter computational costs, making the simulation frame-
work compatible with the optimization tools required to obtain the best
sizing of parts.

This section presents four simulation methods: the novel hybrid
approach and three standard simulation systems (labelled as “c1”, “c20”,
and “simplified”) to evaluate results coming from standard approaches.
The time resolution is the same for every approach (1 min), but the
considered time frame and the models involved differ from each other.
The main characteristics of the four approaches are as follows:

1) The first method (simplified) involves the simulation of a single year
of operation using simplified models (described in Section 3.3).
Differently from the models presented in the previous section, here
the battery degradation and the consequent shrinking of the equiv-
alent capacity is neglected. The fuel cell and the electrolyzer are
modeled by considering only the nominal conversion factor and
neglecting temperature and time effect. This is the simplest method
and comes with the lowest computational cost.

2) The second method (c1) again involves simulating a single year of
operation but uses complete models of components. In this case, the
operation of the battery, the electrolyzer, and the fuel cell is modeled
using the approach described in Sections 3.2.5, 3.2.1, and 3.2.2
respectively. This method is more advanced if compared to the
previous approach and comes with a higher computational cost.
However, c1 still comes with the limitation of simulating only one

Fig. 1. Scheme of the proposed hybrid energy system to sustain the energy
production of the island of Tilos.
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year of operation instead of the whole lifetime of the plant. The
outcome of the first year is thus attributed to the remaining years of
operation of the system.

3) The third method (c20) is the most accurate one. Instead of simu-
lating only one year of operation, the complete models (Section 3.2)
are used to simulate the behavior of the system during the entire
lifetime of the plant (20 years in this case study). In this way,
degradation models can be applied to estimate the decline in per-
formance of all components and the impact on the overall system.
This is the most accurate method and comes with the highest
computational cost.

4) The fourth and final method (hybrid) follows the approach proposed
in Section 3.4. It hybridizes the second method (one year of simu-
lation with complete components models) with the first one (simu-
lating the other years with simplified models) to obtain accurate
results while maintaining a low computational cost. The hybrid
approach simulates the whole lifetime of the plant (as c20) but uses
complete models of components only for the first year.

Results from the first two approaches (simplified and c1) aim to show
the error that usual analyses may encounter if following procedures that
involve the simulation of a single year of operation. Results from the
third method (c20, the most accurate one) are a benchmark to assess the
accuracy of other simulation approaches. Results from the novel hybrid
method are indeed compared with the outcome from the three standard
simulation approaches in Section 4.1 and discussed in Section 5.

Section 3.1 describes the parametric activation logic of different
components to explain the considered hierarchy for the management of
a BESS in synergy with a hydrogen chain.

Section 3.2 describes the proposed models of components to simulate
the behavior of storage systems under a long-term intermittent opera-
tion: electrolyzer, tanks, compressor, fuel cell, and Li-ion battery. Those
models are used in c1, c20, and the first year of the hybrid simulation.
Section 3.3 describes instead the simplified components models used for
the simplified simulation and for the remaining years of the hybrid
simulation. Section 3.4 presents the hybrid simulation approach and
describes in detail how the set of simplified simulations can be tuned
starting from the outcome of a single year of simulation using complete
components models.

Section 3.5 presents the proposed optimization framework that uses

the newly proposed hybrid simulation to optimize the sizing of the
proposed system via a stochastic simulation approach.

Section 3.6 presents the list of component prices obtained from an
extensive literature and market review.

3.1. Components activation logic

This paper proposes the synergy between BESS and P2G2P since the
two storage systems have complementary characteristics. Alkaline
electrolyzers need over 20 % of their rated power to start hydrogen
production. Consequently, if the excess energy from renewable gener-
ators is lower than this threshold, the electrolyzer cannot absorb the
surplus. This limitation makes the hydrogen chain based on alkaline
electrolyzers unfeasible for managing low energy excesses. In contrast,
batteries can absorb all power levels, provided that technical constraints
on capacity and power variation are met. Batteries are also character-
ized by high round trip-efficiencies (generally higher than 90 % [112]).
Compressed hydrogen systems can, however, compensate for some of
the drawbacks of batteries. As mentioned by [113], batteries have a high
volume and weight, their capacity degrades over time and have material
limitations making them less suitable for long-term energy storage
[114].

A hierarchical control was developed to simulate the activation logic
of the different energy storage devices. The energy flows from the
renewable generators towards the load, after being modulated by the
BESS and the P2G2P. Models of components estimate the actual per-
formance of devices, while storage models track the state of charge
(SOC) of storage devices. The proposed control scheme (flowchart in
Fig. 3) is used for all the four proposed simulation methods.

The activation logic works as follows:

1) Power produced from renewable generators feeds the load.
2) The battery is the first storage component to be activated. BESS

charges when there is an energy excess and discharges when there is
a deficit.

3) The P2G2P block is activated to manage the hydrogen production or
consumption:
a. The fuel cell model activates in presence of a residual energy

deficit after the battery action.

Fig. 2. The mismatch between RES production and load.
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i. According to the FC cell temperature and number of working
hours, the conversion factor of the FC is updated. This factor
allows the calculation of the required hydrogen.

ii. The tank model checks if there is enough hydrogen to produce
the required power. If not, the power production from the FC
is corrected according to the maximum hydrogen available.

iii. The quantity of consumed hydrogen updates the SOC of the H2
tank.

b. The electrolyzer model activates in presence of a residual energy
excess after the battery action.
i. According to the EL cell temperature and number of working

hours, the conversion factor of the EL is updated. This factor
allows the calculation of producible hydrogen.

ii. The tank model checks if there is enough room for the
hydrogen that can be produced by processing the excess
power. If not, the hydrogen production from the EL is cor-
rected accordingly.

iii. The quantity of produced hydrogen updates the SOC of the H2
tank.

4) The power excess or deficit of the timestep is saved.

3.2. Complete components models

This section describes in detail the complete models of components
used in simulation approaches that involve the complete simulation of
one year of operation (c1), the complete simulation of twenty years of
operation (c20), and the first year of the hybrid simulation approach.

3.2.1. Electrolyzer
An electrolyzer uses electrical power to split water molecules into

oxygen and hydrogen [115]. The most commonly used technologies for
hydrogen production from water electrolysis are: alkaline electrolyzers
(ALK), proton exchange membrane electrolyzers (PEM), and solid oxide
electrolysis cell (SOEC) [116]. Alkaline is the most mature technology,
has an electric efficiency of up to 70 % [117], a competitive cost [118]
and works from 1 to 30 bar [119]. Moreover, those devices have a simple
structure, do not require precious materials as catalysts, and, conse-
quently, have the highest market share in the electrolysis field [120].
Because of these reasons, this study proposes the modeling of an ALK
electrolyzer.

The ALK electrolyzer model used in this work was developed by some

Fig. 3. Flowchart of the control strategy applied in the simulation framework.
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of the authors and described in depth in [117]. The model is based on a
high-current commercial model: electrolyzer cells work at a nominal
current of 5 kA. Considering a nominal operating voltage of 1.89 V, the
power absorption from each cell at nominal conditions is 9.45 kW. The
model considers the cell always operating at ideal current levels, while
the voltage is corrected according to time and temperature effects and
computed as in Eq. 1.

Vop,el = Videal + ΔVtime,deg⋅hwork + ΔVtemp,deg⋅(Trated − Tel) (1)

where the time degradation of the voltage ΔVtime,deg is set to 3 μV per
working hour, while the thermal degradation ΔVtemp,deg is 5 mV per de-
gree of cool down.

The temperature variation is computed through a thermal model.
Heat is generated during hydrogen production by the difference be-
tween the operating voltage of the cell and the thermoneutral voltage
required for the water split reaction. On the other hand, heat is lost to
the environment when the electrolyzer is off. The complete description
of the geometry considered for the modeling of heat losses is detailed in
[117].

The conversion factor of the electrolyzer stack (φel) is corrected ac-
cording to the estimated voltage level and calculated as in Eq. 2. The
nominal value of the electrolyzer conversion factor is 18 kg/MWh,
corresponding to an electrical efficiency of around 60 %.

φel =
H2,id

ncells⋅Vop⋅Iid
(2)

As in [121], the analysis considers a maximum lifetime of an elec-
trolyzer stack of 10 years, and the replacement costs 0.45 times the costs
of a new one. A premature substitution for the stack is required if the
voltage increases by more than 20 % compared to the initial nominal
value.

3.2.2. Fuel cell
Hydrogen can be converted back to electricity using a fuel cell [122].

Among the most widespread fuel cell technologies, the proton-exchange
membrane (PEM) fuel cell and Solid Oxide fuel cell (SOFC) [123–125]
have gained increasing attention. This study considers a PEM fuel cell,
because of the advantage of operating at relatively low temperatures,
the high efficiency, and the minimal noise production [126–128]. One
single PEM cell has a voltage near 1 V at open circuit and around 0.6 V at
rated conditions of power generation. Therefore, multiple cells must be
connected in series to increase power production, thus forming a stack
[129]. The PEM fuel cell stack used as a reference to develop this model
is the NEDSTACK FCS 13-XXL [130]. Table 1 gives an overview of some
important specifications of this stack.

At rated power (13.6 kW), the stack works at a current of 230 A and a
voltage of 59 V. To analyze the performance of the fuel cell, the polar-
ization curve for a fuel cell stack was modeled according to the datasheet
of the stack (Table 2).

The polarization curve points in Table 2 refer to the nominal case. As
for the alkaline electrolyzer, this condition changes during operation
because of time and thermal degradation.

The voltage degradation of the fuel cell stack can be caused by
several factors, such as dynamic operation, frequent on/off, and high

loads [131]. Several methods have been proposed in the literature to
predict the expected voltage variation and lifetime of a fuel cell
[132,133]. This model follows a simplified approach that attributes a
specific voltage increase per each working hour of the device. This value
was extrapolated from the findings by Stropnik et al. [131]: results from
this study show that the time degradation increases the voltage of each
cell by 5 μV (ΔVtime,deg) per working hour. This result is in line with the
values used in the model by Fowler et al. [52] and their literature
review.

Usually, the maximum lifetime of the stack PEM FC is estimated at
10 years [134,135], but a premature substitution could be required if the
performance of the cell goes below the required threshold. As for the
electrolyzer, this analysis assumes a premature replacement of the fuel
cell stack when the voltage drops by more than 20 % compared to the
initial nominal value due to time degradation [102,136].

Since the stack predominantly consists of semiconductors, a rising
temperature has a positive effect on the operation and performance of
the fuel cell, resulting in an increase of conductivity and therefore a
decrease in resistivity. Thermal degradation for cooling was estimated
by the effects of temperature on the cell voltage loss as 0.51 mV per
degree [137]. Fig. 4 shows that the stack voltage decreases over time,
while a lower temperature also results in a lower voltage. Overall, the
operating voltage is calculated according to Eq. 3.

Vop,fc = Videal − ΔVtime,deg⋅hwork − ΔVtemp,deg⋅
(
Trated − Tfc

)
(3)

where the rated temperature Trated is equal to 60 ◦C.
Similarly to the mathematical formulation used for the electrolyzer,

the conversion factor of the cell φfc represents a transfer function be-
tween the input hydrogen and power that can be delivered by oxidizing
it. In Eq. 4, H2,id is the maximum hydrogen inlet flow rate, Iid the ideal
current, while the voltage Vop is affected by time and thermal
degradation.

φfc =
H2,id

ncells⋅Vop⋅Iid
(4)

To track the stack temperature variation based on the hydrogen
request, a thermal model was developed for the fuel cell. The geometry
of the system is of importance since the shape of the device affects how
heat is distributed and dissipated. A single fuel cell stack has a rated
power of 13.6 kW, meaning that a connection of multiple stacks is
needed to cover the load (up to 960 kW). A layout consisting of a three-
by-two stacks arrangement was considered. Therefore, the length of the
connection is one-sixth the number of connected stacks, times the length
of one stack (580 mm). To calculate the heat losses from this rectangular
shape, the equivalent diameter was calculated using the formula in Eq.
5,

deq =
4S
P

(5)

where S is the cross-section and P is the perimeter [138]. Based on the
datasheet and due to the arrangement considered, the cross-section has a
width of 588 mm and a height of 576 mm. To prevent heat loss, the
module would be placed inside a container.

Since the thermal conductivity of graphite (4180 W/mK) is signifi-
cantly higher than other materials that are commonly used in PEM fuel
cells like platinum (95 W/mK) and Nafion (0.18–0.27 W/mK)
[139,140], the heat dissipation was modeled mainly considering the
properties of the first material [141]. Assuming that one-fifth of the fuel

Table 1
Specifications of fuel cell stack.

Specific Value

Rated power 13.6 kW
Voltage range 58–94 V
Current range 0–230 A
Electrical efficiency 51 %
Conversion factor 59 kg/MWh
Size 580 × 196 × 288 mm
Weight 39 kg

Table 2
Stack polarization curve points in the datasheet.

Current (A) 0 40 80 120 160 200 230

Stack voltage (V) 94 78 73 69 66 62 59
Stack power (kW) 0.0 3.1 5.8 8.3 10.5 12.4 13.6
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cell stack consists of graphite, the equivalent mass of the fuel cellmfc was
calculated by multiplying the total volume of the module times the
graphite density and dividing that value by five.

The temperature variation of the module during operation is then
calculated using Eq. 7,

ΔT =
Qgain − Qlost

mfc⋅cfc
(7)

where:

- Qgain: Heat generation
- Qlost : Heat loss
- mfc: Equivalent mass of the fuel cell.
- cfc: Heat capacity of the fuel cell, assumed equal to the heat capacity
of graphite (710 J/kgK [141])

To prevent overheating while hydrogen is processed, the tempera-
ture is kept at a maximum of 60 ◦C by a cooling mechanism. In the
context of the proposed parametric model, this component is neglected
and the cooling action is assumed to be ideal.

To compute the heat generation (Qgain), the mechanism responsible
for heat generation is considered. The thermoneutral voltage Vth of the
fuel cell is 1.48 V. The cell will operate at a voltage lower than this value
and this voltage difference, multiplied by the operating current, corre-
sponds to the power loss in the form of heat [142]. Therefore, Qgain can
be calculated as in Eq. 8.

Qgain =
(
nstacks⋅Vth − Vop

)
⋅I (8)

The module will have thermal losses (Qlost) to the surrounding
environment, calculated accordingly to Eq. 9. Heat is transmitted across
the following series of resistances: conduction of the container of the
module itself, convection with the air between the container of the
module and the external container, external container conduction, and
eventually external air convection. Table 3 summarizes meaningful

properties of the component geometry for the calculation of the tem-
perature variation.

Qlost =
(Tint − Text)⋅2πL

ln
(
Rt,e

Rt,i

)

kt
+

1
h1⋅Rgw,i

+

ln
(
Rgw,e

Rgw,i

)

kgw
+

1
h2⋅Rgw,e

(9)

Once the heat gain and the heat loss are known, the stack tempera-
ture variation can be calculated using Eq. 7.

Fig. 5 (a) gives an example of temperature variation during one year
of operation of the fuel cell. The temperature drops while the fuel cell is
not active and loses heat towards the environment, while the tempera-
ture increases to 60 ◦C during active operation.

Fig. 5 (b) shows how the temperature variation affects the conversion
factor φFC. When the temperature drops due to stand-by, the hydrogen
request for the same power delivery increases. The effect of the time
degradation is visible during the summer months when the module must
cover the residual demand. Hour by hour, the φFC increases due to the
voltage degradation. In terms of electrical efficiency, the performance of
the fuel cell may drop from 51 % (59 kg/kWh) to 48 % (62 kg/kWh).

3.2.3. High-pressure and low-pressure hydrogen tanks
Hydrogen can be stored in gaseous or liquified form, or absorbed into

materials [143]. Compressed hydrogen is a common way of storing
hydrogen since this method requires less energy than liquefaction
[144,145] and storing costs are usually contained [146,147].

This analysis assumes that the hydrogen is stored in compressed form
inside tanks at low (LP) and high pressure (HP). Since the electrolyzer
produces hydrogen at low and varying quantities, the compressor would
have to start running multiple times for a short amount of time if there is
no low-pressure storage. To avoid this intermittent operation, the
hydrogen that is produced by the electrolyzer will first be stored in a
low-pressure buffer tank. This first stage stores a small amount of
hydrogen (10 kg) at the outlet pressure of the device (30 bar).

The hydrogen compression starts when this buffer tank is full, thus
the compressor operates continuously at constant power. After
compression, the hydrogen will be stored in high-pressure storage tanks
for seasonal storage. The operating pressure of a high-pressure tank was
selected accordingly most considered pressure levels for commercially
available tanks and industry standards: 350 bar [148–152].

3.2.4. Hydrogen compressor
Hydrogen is produced at a pressure of 30 bar by the electrolyzer and

Fig. 4. a) Effect of temperature variation on the modeled polarization curve for a brand-new fuel cell stack b) Effect of working time on the modeled polarization
curve at rated working temperature (60 ◦C), considering a capacity factor of 10 % (876 working hours per year).

Table 3
Main characteristics and thermal parameters of different layers of the module.

Component material dimension coefficient

Tank steel Rt,i – Rt,e = 4 mm kt = 52 W/mK
Gap air Rgw,i = 1 m h1 = 10 W/m2K
Insulation glass wool Rgw,i – Rgw,e = 200 mm kgw = 0.05 W/mK
External air air – h2 = 20 W/m2K
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stored in LP tanks. A compressor is used to increase the pressure of the
gas to 350 bar and thus reducing the volume that is occupied for sea-
sonal storage (HP tanks). The proposed analysis considers a variable
operation for storage devices but always the same operation for the
compressor. Consequently, the proposed model, tailored for this specific
application, only aims at estimating a realistic energy absorption from a
multi-stage reciprocating compressor (as in [153]).

The required specific energy (Ėadiabatic) to compress one kilogram of
hydrogen from 30 bar to 350 bar was calculated using the formula for an
adiabatic multistage compression (Eq. 10).

Ėadiabatic = Nstages⋅
k

k − 1
⋅Rspec⋅T⋅

(

β
k− 1
k − 1

)

(10)

where:

- Nstages is the number of stages. The minimum number of stages to
manage a reasonable compression ratio (approximately 2.27 per
stage) in each cylinder is 3.

- k is the ratio of specific heat under constant pressure to specific heat
under constant volume. The average k value according to the tem-
perature range that the hydrogen is going to face during the trans-
formation was used. The value of this ratio (1.43) was calculated
using CoolProp [154].

- Rspec is the universal gas constant divided by the molar mass of
hydrogen, 3849 J/kgK.

- T is the initial temperature, assumed to be constant at 293.15 K
- β is the compression ratio, computed as in Eq. 11:

β =

(
Pout

Pin

) 1
Nstages (11)

- where Pout
Pin

is the fraction between outlet and inlet pressure.
- Nstages is the number of stages of compression.

Given these conditions, the Ėadiabatic is equal to 0.89 kWh/kg.
Considering an isentropic efficiency (ηisen) of 0.75, the actual required
specific electrical energy per kilogram (Ėcomp) is 1.18 kWh/kg (computed
as in Eq. 12).

Ėcomp =
Ėadiabatic

ηisen
(12)

To calculate the power that the compressor absorbs, the hydrogen
mass and the compression time are also needed. When the low-pressure
tanks are full, the compression of the 10 kg hydrogenmass (m) contained
starts. Given a compression time (t) of 10 min, the power absorbed by

the compressor can be calculated as in Eq. 13.

Pcomp =
3600⋅Ėcomp⋅m

t
(13)

To avoid an additional burden on the electrical load during moments
of low wind and solar production, the compressor starts working when
the produced RES power is enough to cover the load, including the
compressor. The battery supports compression in case the RES excess
stops before the operation ends. The compression time was tuned via a
preliminary analysis to find a tradeoff between exploiting sudden and
short excesses of production from renewables without excessively
increasing the electrical request. This choice is further discussed in
Section 5. The required compression power is indeed almost 70 kW, and
this power increases the total load of Tilos.

3.2.5. Battery
A BESS comprises electrochemical modules, inverters and con-

tainers. This study proposes the substitution of the current high-
temperature battery used in Tilos with a larger BESS based on NMC
lithium-ion modules. For safety reasons, the modules must be replaced
when the SOH drops below 70 %, or after 10 years of operation
[51,155]. The replacement cost of such modules was set at 80 % of the
cost of a BESS new installation [156].

The proposed BESSmodel imposes limits to the maximum power that
the component can absorb or release. Based on the same assumptions of
[51], maximum C-rates are imposed during the charging and discharg-
ing phase. The BESS can be fully charged in 1 h (C-ratemax,charge equal to
1C) and fully discharged in 20 min (C-ratemax,discharge equal to 3C).

To avoid harmful cycles, the simulated control cannot completely
discharge or charge the battery. Similar to what assumed in [51], the
SOC is confined between 15 and 95 % of the maximum capacity.

At each timestep, the control logic allows the battery to satisfy the
request of absorbing or releasing energy, as long as constraints on
minimum and maximum SOC and C-rate are met.

Batteries are also characterized by charging and discharging effi-
ciency. Both are influenced by SOC and C-rate. In this study, the effi-
ciency function was modeled as a surface in a 3D space, considering the
influence of both factors. The efficiency surfaces were obtained from a
fit of points extrapolated from the model proposed by Gonzalez-
Castellanos et al. [157] and they can be described by Eq. 14.

η = p00 + p01y+ p20x2 + p211xy+ p02y2 + p21x2y+ p12xy2 + p03y3 (14)

Where x is the SOC and y is the C-rate. Table 4 reports the fit co-
efficients for charge and discharge efficiency surfaces. Fig. 6 shows the
efficiency surface considered during the charging phase, while Fig. 7
shows the surface considered during the discharging phase.

Fig. 5. Time variation of the fuel cell a) temperature and b) conversion factor (φFC).
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A degradation model is used to estimate the capacity decline of the
BESS and the actual lifetime of the battery modules. The analysis con-
siders a precautionary maximum lifetime for Li-ion battery modules of
10 years. However, the decline in time of the State of Health (SOH) of
modules shrinks the actual available capacity of the BESS and, if the
SOH goes under a certain threshold (70 %), the modules will require a
premature substitution [51,155].

As in [51,117,155], this model estimates the SOH from the degra-
dation for cyclic operation, i.e., each time that the battery is charged and
discharged, the component deteriorates. By means of a rainflow-
counting algorithm, the number of cycles performed at a certain DOD
(cyclesi) can be extracted from the trend in time of the SOC of the BESS in
a certain time window [51]. The technique here applied compares the
number of equivalent charge/discharge cycles performed at a certain
depth of discharge (DOD), with the maximum number of cycles at that

amplitude that the device can perform before the End of Life (EOL). This
ratio corresponds to the damage to the battery in a certain time frame.
This technique can be applied each day of operation to compute the
daily damage (di), as in Eq. 15.

di =
∑

i

cyclesi
cycles to EoLi

(15)

Following the hypothesis of linear accumulation, the cumulative
damage (D) can be calculated as the summation of daily damages (Eq.
16). The battery must be substituted when D arrives to 1.

D =
∑

i
di (16)

The maximum number of cycles at a certain DOD that the BESS can
withstand (cycles to EoLi) can be estimated from a degradation curve: a
curve that links the number of cycles to EoL with the DOD performed by
the device. In this study, the degradation curve used to assess the cyclic
degradation (Fig. 8) was adapted from [50,51] and can be expressed
using the following equation (Eq. 17):

cycles to EOL = a⋅DODb (17)

where a is 1512.45, and b is - 0.968423.
Considering that the battery failure happens at a SOH of 70 %, the

SOH can be estimated from D as in Eq. 18.

SOH = 1 − (0.3⋅D) (18)

This assessment allows the model to consider the progressive ca-
pacity fade of the BESS, computing the actual capacity as the product
between the maximum one and the SOH (Eq. 19).

Cactual = SOH⋅Cmax (19)

3.3. Simplified component models

The component models proposed in Section 3.2 can be simplified to
reduce the complexity of the simulation and thus limit computational
costs. Simplified components models neglect several factors described in
the previous section:

Table 4
Fit coefficients for charge and discharge efficiency surfaces.

p00 p10 p01 p20 p11 p02 p21 p12 p03

Charge 100.968 − 0.259 − 6.415 0.080 1.844 0.255 − 0.563 − 0.171 0.055
Disch. 100.147 0.100 − 6.076 − 0.244 0.151 0.043 0.879 − 0.035 − 0.003

Fig. 6. Charging efficiency surface, fit from [157].

Fig. 7. Discharging efficiency surface, fit from [157].

Fig. 8. Battery maximum number of cycles to the end of life (EoL) versus depth
of discharge (DoD) curve, adapted from [50,51].
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- the battery degradation, thus the capacity of the storage is fixed to a
constant value.

- the variation of the conversion factor of the electrolyzer, fixed to a
constant value.

- the variation of the conversion factor of the fuel cell, fixed to a
constat value.

The present analysis makes use of simplified components’ models to
perform simplified simulation, a reference to understanding the order of
magnitude of the evaluation error that may affect analyses that use this
specific approach. This analysis considers the capacity of the battery
fixed to the initial value (Cbess,nom), the conversion factor of the elec-
trolyzer fixed to the nominal value (φel,nom) and the conversion factor of
the fuel cell again fixed to the nominal value (φfc,nom).

The simplified approach comes with the advantage of a light
computational cost, even when the simulation uses the same inputs and
the same time resolution (1-min). For this reason, the new proposed
hybrid strategy also adopts simplified but specifically tuned component
models to evaluate the long-term performance of system configurations.

3.4. Hybrid simulation approach

Due to degradation, the average performance of components varies
during the lifetime of an energy system. The battery capacity declines,
and the overvoltage that modifies the polarization curve of the elec-
trolyzer and fuel cell varies with time. Moreover, the capacity factor of
electrolyzer and fuel cell affects their average operating temperatures,
again influencing their average performance. In addition, those effects
have a mutual impact on each other: a smaller battery forces the system
to rely more on the P2G2P, affecting the capacity factor of hydrogen
production components with a consequent impact on the average con-
version efficiency. All those effects can be considered in a long-term
simulation using the components models described in Section 3.2
(c20). However, a simulation over the entire expected lifetime of a
system comes with high computational requirements.

The hybrid approach is based on the concept of simulating only one
year of operation using complete models (as in c1) and extracting key

performance indicators to set up a set of simplified simulations of the
remaining years of operation (nineteen in this specific case). Fig. 9
shows the scheme of the hybrid simulation approach. This approach le-
verages the fact that a simplified simulation, calibrated to specific pa-
rameters that characterize the unique combination of components, can
yield results almost as accurate as the outcome of simulations using
complete components models (c20). Section 4.1 presents results from
this comparison and Section 5 discusses the implications.

A hybrid energy system that involves multiple storage devices sub-
jected to specific degradation effects sees the average performance of
components evolve in a non-linear way. Therefore, a reliable and tested
method to predict the evolution of average performance of devices is
required. This approach can be based on results of a specific combina-
tion during a single year of operation.

The simulation of the first year of operation using complete com-
ponents models permits to accurately assess the trend of main compo-
nents efficiency, conversion factors, and degradation. The output of this
first year of simulation is not only an accurate assessment of the energy
flows of the system, translated on the self-sufficiency degree that the
analyzed combination can reach, but also the assessment of key pa-
rameters that allow tuning simplified simulations for the remaining
years.

More specifically, results from a year of simulation with complete
components models allow to extrapolate:

- Average conversion factors of electrolyzer and fuel cell: The
trend of the conversion factors characterizing the fuel cell and the
electrolyzer during their operation can be averaged to obtain fixed
coefficients φfc,avg and φel,avg. Those coefficients capture the behavior
of P2G2P components in the combination under analysis. For
example, a combination that considers a high-power electrolyzer will
see the component often work at partial load or intermittently (lower
capacity factors mean lower average performance), while a smaller
electrolyzer would work for longer periods (higher capacity factors
mean higher average performance).

The complete simulation is able to capture the influence that such
an operation would have on the conversion factor of the component.

Fig. 9. Scheme of the hybrid simulation approach.
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The average value of the variable φEL,avg can be used to tune
simplified simulations to model the remaining years. The expected
decline in φFC,avg and φEL,avg can be estimated according to a method
proposed in the following sections (3.4.2 and 3.4.3).

- BESS capacity decline: Due to degradation effects, the actual bat-
tery capacity “shrinks” in time with the cyclic operation. The battery
model used in the complete simulation updates every day the ca-
pacity of the battery. At the end of the simulated year, the yearly
degradation of battery capacity (SOHfin1) can be estimated. Accord-
ing to the method proposed in the next section (3.4.1), this value can
be used to estimate the decline of the BESS available capacity.

- Components lifetime: From the yearly degradation of the operating
voltage of the electrolyzer and the fuel cell, and the degradation of
the SOH of the battery, the expected lifetime of components can be
estimated. This estimation allows to understand when the electro-
lyzer stack, fuel cell stack, and Li-ion battery modules must be
substituted. Premature substitutions not only have a considerable
impact on the economic outcome of the system, but also affect the
technical operation: new stacks will be characterized by higher
conversion factors and new BESS modules will have higher
capacities.

Several complete simulations over 20 years of operation have been
run using the c20 approach to obtain data about the degradation of
components and the trend of average performance indicators in time.
Those trends have been studied and analyzed in depth to obtain func-
tions that allow the estimation of the future evolution of key parameters
only using results from a single year of complete simulation.

3.4.1. Battery SOH trend
Several configurations involving different battery sizes were tested

by means of a complete simulation over 20 years of operation. Points in
Fig. 10 are the scatter plots of the SOH at the end of each year simulated
by a complete simulation (c20).

As described in Section 3.2.5, the battery activation in time produces
a cyclic degradation that damages the component. The evolution of the
SOH of the BESS can be expressed as a function of time (t). The obtained
fit is close to the scatter of data coming from the complete simulation,
meaning that the trend can be well described by a function as Eq. 22.

SOH = a⋅t1.06 + 1 (22)

where the parameter a depends on the battery size and the specific
operation and can be obtained from the fit of the proposed curve (Eq.
22). A fit of this curve requires at least three points. A method for

estimating the required three points using the final SOH at the end of the
first year of complete simulation SOHfin1 was developed.

The first point describes the condition of a brand-new battery (year
0), while the second point describes the condition of the BESS at the end
of the first year of operation (year 1). A third point can describe the
condition after six months of operation (year 0.5).

To determine the third point without extrapolating the whole SOH
evolution during the year, a correction (corr) must be computed as a
function of the initial battery’s capacity (Cbess). From results coming
from 20 years of complete operation, the correction shows indeed a
linear dependence from the Cbess. This line can be used to estimate corr in
each case as in Eq. 23, whose parameters were also obtained from the
study of results of complete simulations.

corr =
(
− 5.42⋅10− 7)⋅Cbess +

(
7.63⋅10− 7) (23)

Table 5 reports the coordinates of the three points required for the
curve fit. The lines in Fig. 10 show the extrapolated evolution that can be
estimated by following the proposed method that only requires
computing the SOH at the end of the first year of operation.

To summarize, the method proposed here to predict the evolution of
the battery’s SOH requires two inputs:

- The initial capacity of the battery (Cbess)
- The SOH after one year of operation (SOHfin1), available after the
simulation of the first year using the complete simulation method.

The method outputs the list of nineteen SOH values that will char-
acterize the operation during the nineteen remaining years. The trend of
the average BESS capacity that the set of simplified simulations in the
hybrid approach require as input is obtained by the SOH trend.

3.4.2. Electrolyzer conversion factor trend
As for the SOH of the BESS, the set of simplified simulations requires

the average conversion factor of the electrolyzer (φel,avg) to estimate the
average performance in converting electricity into hydrogen. The results
from the 20 years of complete simulation (scatter data in Fig. 13) have
shown that φel,avg is characterized by a particular evolution in time,
trivial to directly estimate. Therefore, this parameter must be analyzed
by considering the two main factors influencing the variation of φel.

As reported in the description of the complete model of the elec-
trolyzer, the efficiency of the device is affected by time and temperature
degradation. The time degradation affects the conversion factor at the
nominal temperature φel,T nom. The φel,avg can thus be obtained by sub-
tracting from φel,T nom a delta Δφel that represents the effect of the
average cool-down that the device faces during the operation (Eq. 24).

φel,avg = φel,T nom − Δφel (24)

Points in Fig. 11 show the scatter of the φel,T nom of the electrolyzer
due to time degradation. Fig. 11 (a) considers a variation in the elec-
trolyzer power, while Fig. 11 (b) considers a variation in the BESS size.

The evolution of the conversion factor at nominal temperature
φel,T nom depends on time degradation and, consequently, on the num-
ber of hours that the electrolyzer work during a year. A linear depen-
dence on time (t) has been hypothesized (Eq. 25).

φel,T nom = m⋅t + q (25)

Fig. 10. Battery degradation trend. Points are the scatter plot of the SOH at the
end of each year simulated by a complete simulation (c20), while lines repre-
sent the proposed fit.

Table 5
Required points for the SOH time evolution fit.

t [year] SOH [¡]

0 1

0.5 1+ SOHfin1

2
+ corr

1 SOHfin1
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The gradient (m) and the intercept (q) of this line can be obtained by
the fit of Eq. 25 on the two points in Table 6. The first point refers to the
new stack condition. The second point corresponds to the condition at
the end of the first year of operation.

Lines in Fig. 11 show the obtained trend of the φel,T nom of the
electrolyzer from the proposed fit, on results from complete simulations
that consider different electrolyzer sizes (a) and different battery sizes
(b).

Points in Fig. 12 are the scatter of the Δφel of the electrolyzer due to
thermal degradation. Fig. 12 (a) considers a variation in the electrolyzer
power, while Fig. 12 (b) considers a variation in the BESS size.

The analysis of results from the 20 years of complete simulation has
shown that there is a correspondence between the Δφel due to the
average cooling of the electrolyzer and the SOH of the battery: with the
decrease of SOH, the available battery capacity shrinks, and, to
compensate, more energy must be fed to the electrolyzer for hydrogen
production. This effect increases the utilization factor of the electrolyzer
and mitigates the cool-down of the stack. Thus, the Δφel to be subtracted
from the φel,T nom decreases with the SOH of the battery and slows down
the decrease of the φel,avg.

A linear fit represents quite well the trend of the Δφel with the SOH
of the BESS. This line (Eq. 26) can be obtained by considering the state at
the end of the complete simulation of the first year of operation ( Δφel1 at
SOHfin,1).

Δφel = 1.1⋅
(
SOH+ SOHfin,1

)
+ Δφel1 (26)

The slope factor of 1.1 was again obtained by the fit of results from
the complete simulations. The SOH trend is known after the application
of the method proposed in the previous section.

Finally, lines in Fig. 13 compare the obtained trend for the φel,avg
with the scatter of points from the 20 years of complete simulation,
considering different electrolyzer sizes (a) and different battery sizes (b).
The comparison shows that the superposition of the considered effects
and the proposed fits well describes the overall behavior of the
electrolyzer.

The method proposed here can be used to estimate the evolution of
the average conversion factor of the electrolyzer and requires
estimating:

- The evolution of the SOH of the battery that supports the operation
(previous method).

- The conversion factor at rated temperature after one year of opera-
tion (φel,Tnom1

), available after the simulation of the first year using the
complete simulation method.

- The difference between the φel,Tnom1
and the φel,avg during the first

year of operation (Δφel1), also available after the simulation of the
first year using the complete simulation method.

Fig. 11. A scatter of the resulting and plot of the estimated trend of the φel,T nom of the electrolyzer due to time degradation. Variation considering a) different
electrolyzer sizes and b) different BESS sizes.

Table 6
Required points for the φel,T nom time evolution
fit.

t [year] SOH [¡]

0 17.95
1 φel,T nom1

Fig. 12. A scatter of the resulting and plot of the estimated trend of the Δφ of the electrolyzer due to temperature effects. Variation considering a) different elec-
trolyzer sizes and b) different BESS sizes.
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3.4.3. Fuel cell conversion factor trend
The points in Fig. 14 show the scatter of the average φ of the fuel cell

due to time degradation and temperature effects, varying the BESS size.
The φfc,avg degrades with time and follows an exponential evolution

(Eq. 27). The fit requires the computation of the average performance of
the fuel cell during the first year of operation (φfc,avg1).

φfc,avg = k⋅t1.25 + φfc,avg1 (27)

The analysis of results from the 20 years of operation has shown that
the parameter k can be expressed as a function of the initial BESS ca-
pacity (Cbess), as in Eq. 28:

k =
700⋅e− 0.386⋅

Cbess
1000

1000
(28)

Curves in Fig. 14 compare the obtained trend with the scatter of the φ
of the fuel cell. In this case, an accurate prediction of the φfc,avg can be
obtained by:

- knowing the capacity of the battery that supports the operation
(Cbess)

- computing the value of the conversion factor after the first year of
operation (φfc,avg1), available after the simulation of the first year
using the complete simulation method.

3.5. Optimization framework

The proposed optimization framework uses the hybrid simulation
approach to simulate the long-term behavior of the system and to
evaluate:

1. if the power generators and storage devices can satisfy the island
load demand (Eisland).

2. the degradation of components to understand if they must be pre-
maturely substituted.

3. optimize the sizing of components to minimize the cost of providing
energy to the island.

3.5.1. Self-sufficiency degree
The combinations of energy generation and storage considered in the

current work must provide the island with all the energy required. In
other words, the self-sufficiency degree (SSd - defined as in Eq. 21) must
be 100 %.

SSd =
Edelivered

Erequested
⋅100 (21)

During the optimization of sizes of components, it is key to consider
the degradation of performance that the storage device has in time. Over
the 20 years of operation, the SSd of the system can decrease when the
battery capacity shrinks, or when the electrolyzer and the fuel cell
become less efficient. At the time of substitution of stacks and modules,
the performance parameters return to their initial value.

To ensure that the proposed solutions are able to maintain the full
SSd for the whole lifetime of the system, a high price is attributed to
residual deficit energy. In this way, the techno-economic optimization
combinations unable to reach 100 % SSd.

3.5.2. Levelized cost of required energy
The optimization should consider only combinations able to cover

the whole energy demand of the island (Eisalnd) and aims find the system
configuration that minimizes the cost of each MWh that the HESs should
deliver to the load, i.e., the SSd of all considered solutions must be 100
%. In this sense, the objective is to minimize a cost metric that expresses
the cost of delivering the required energy at the instant of request.

A standard Levelized Cost Of Energy (LCOE) is not suitable for this
purpose, since this cost metric considers the gross amount of energy
produced from a generator, without accounting for the instant of pro-
duction. Consequently, the Levelized Cost of Required Energy (LCORE),
expressed as in Eq. 20, was introduced.

Fig. 14. The trend of the average φ of the fuel cell due to time degradation and
temperature effects, varying the BESS size.

Fig. 13. The trend of the average φ of the electrolyzer due to time degradation and temperature effects. Variation considering a) different electrolyzer sizes and b)
different BESS sizes.
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LCORE =

∑T
t=0

CAPEX + OPEX
(1+ r)t

∑T
t=0

Eisland

(1+ r)t
(20)

In the denominator, the LCORE considers only the energy fed to the
load from the island, thus accounting for the time match between RES
production and demand.

The economic analysis was performed considering average prices of
components obtained by averaging several literature sources. Section
3.6 summarizes the main economic assumptions, while the complete
market analysis is in Appendix A. CAPEX and OPEX of the various tested
configurations were calculated considering the economic assumptions
summarized in Table 7.

The capital expenditures (CAPEX) include the investment cost for the
whole system (I0), comprising the wind turbine, the PV field, the Li-ion
BESS, the alkaline electrolyzer, the PEM fuel cell, the H2 tanks, and the
H2 compressor. Moreover, the OPEX and the premature substitutions of
parts of components were computed as a percentage of the initial in-
vestment of the corresponding component (I0).

The considered time horizon for the investment (T) is set at 20 years.
As depicted in the description of models of components (Section 3.2),
the premature substitution of the stacks of the electrolyzer and the FC,
and modules of the BESS are accounted for if precise operating condi-
tions are reached during cyclic operation or time effects. Otherwise,
replacement is forced after 10 years of operation based on industrial
experience.

Renewable energy installations aiming at decarbonizing the energy
supply of remote or rural areas may benefit from financial support from
governments or supranational institutions. In their review of hybrid
renewable mini-grids on non-interconnected small islands, Eras-
Almeida and Egido-Aguilera [158] stated that incentives are required
to reach the ambitious target of decarbonizing an island using RES. They
compared projects developed all over the world and discovered that only
islands in developed countries succeeded in the decarbonization pro-
cess, while least developed islands must strengthen their regulatory
framework and define suitable business models to reach the same tar-
gets. Consequently, this analysis considers a low-risk investment char-
acterized by an interest rate r of 3 %.

3.5.3. Optimization algorithm
The shape of a function describing the techno-economic outcome of

an HESs may present several local minima. A stochastic optimization
algorithm was used to solve this issue. To achieve this goal, a differential
evolution algorithm was implemented through the differential_evolution
library [159] from the SciPy package on Python [160]. Among the
various options, this optimization tool was chosen due to the ease of
parallelizing the computation and enforcing integer constraints on the
variables. Results from this algorithm were validated by comparison
with the outcome from other optimization techniques such as the Par-
ticle Swarm Optimizer (PSO).

The differential evolution algorithm optimizes simultaneously five
variables i.e., the sizes of the PV field, the Li-ion BESS, the ALK elec-
trolyzer, the PEM fuel cell, and the high-pressure H2 tank. Since those
components cannot assume every possible value in the considered size
range for commercial reasons, these variables were forced to assume
integer values. The optimal combination of the five components is the
configuration that minimizes the LCORE of the system, over 20 years of
operation.

Due to computational reasons, it was unfeasible to include inside the
optimization algorithm a simulation of 20 years of operation with a 1-
min time resolution using the complete model of all considered com-
ponents (c20). On the other hand, the proposed hybrid simulation
framework (Section 3.4) is compatible with the stochastic optimization
framework since the approach limits the required computational cost by
combining a complete and complex simulation with simpler

simulations. Fig. 15 shows the flowchart of the proposed optimization
framework and the simulation logic based on the hybrid simulation
framework that incorporates.

3.6. Components prices and economic assumptions

This analysis considers current generators and storage devices prices
obtained after an extensive literature and market review. The complete
list of sources considered for each component is reported in Appendix A.

The average prices, the OPEX, the substitution costs, and the
maximum lifetime for each component are summarized in Table 7.
Premature substitutions of the Li-ion BESS modules, fuel cell stack, or
electrolyzer stack are considered if the thresholds outlined in the pre-
vious sections are reached before the end of life (Max Lifetime) of
components.

Fig. 15. Flowchart of the logic that the proposed optimization frame-
work follows.

Table 7
Main components costs.

Component Specific
cost

OPEX
(% I0)

Subst. cost
(% I0)

Max Lifetime

Wind Turbine 1509 €/kW 2.5 % – 20 y
PV field 1080 €/kW 2.5 % – 20 y
Li-ion BESS 298 €/kWh 2.5 % 80 % 10 y
ALK electrolyzer 883 €/kW 2.75 % 40 % 10 y
PEM FC 958 €/kW 2.75 % 40 % 10 y
H2 compressor 1200 €/kW 2.5 % – 20 y
H2 Tanks 464 €/kg 1 % – 20 y
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4. Results

This section outlines the results coming from the application of the
proposed novel method.

First, results from the comparison between three simulation methods
based on standard approaches (c1, c20, and simplified) and the novel
method (hybrid) are presented. Two possible configurations of the pro-
posed HES were selected to perform a long-term analysis using the four
considered simulation strategies. Then, results from the application of
the new proposed hybrid method to the case study of the island of Tilos
are reported. Those results enable the assessment of the computational
cost and the accuracy of the method, and the impact of degradation
while performing an actual sizing optimization.

The self-sufficiency degree that can be reached with only an increase
in PV generation is analyzed to confirm the importance of including
storage devices in the selected case study. Then, the effect that the
introduction of a BESS has (first scenario) is presented. Finally, the
hybrid storage that combines BESS with P2G2P is introduced and the
results from the complete optimization framework (second scenario) are
presented.

Global results outlined from the newly proposed simulation method
are compared to results from the complete method (c20) to assess the
accuracy of the proposed approach. Results from sensitivity analyses are
also compared with results from the simplified method to highlight the
error that two common simulation approaches may commit while
evaluating the long-term performances of HESs. Insights about the po-
tential impact of neglecting component degradation are detailed in
Section 5.

4.1. Comparison between different simulation approaches

The long-term evolution of performance indicators resulting from
the application of the hybrid simulation framework was compared with
the outcome from the three standard methods presented in Section 3.
Fig. 16 shows results from of the four methods when applied to simulate
the same configuration involving a 300 kW electrolyzer, a 900 kW fuel
cell, a 5 MWh BESS, a 2800 kg H2 tank, and a PV power of 1760 kWp.

The trend outlined by c20 serves as the reference and the accuracy of
the other three methods is evaluated by comparing their result to this
reference.

- Fig. 16 (a) shows the evolution of the yearly average conversion
factor of the electrolyzer (φel,avg). The simplified simulation considers
a constant φ equal to the nominal value. The c1 simulation considers
time and temperature effects and draws near to the actual behavior.
The hybrid simulation considers the time degradation across the 20
years of operation, but slightly underestimates the performance.
However, the absolute value of differences is negligible.

- Fig. 16 (b) shows the evolution of the yearly average conversion
factor of the fuel cell (φFC,avg). Again, c1 has an advantage over
simplified simulation since this approach considers a higher φ due to
time and temperature degradation. However, only the hybrid simu-
lation can capture the increasing trend that characterizes the
operation.

- Fig. 16 (c) shows the evolution of the yearly average capacity of the
battery (Cbess). The outcome from different simulation approaches is

Fig. 16. Comparison between the time variation of a) average electrolyzer conversion factor,
b) average fuel cell conversion factor, c) average BESS capacity,
d) self-sufficiency due to battery effect and P2G2P effect.
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similar to the previous case, even though the hybrid estimation is
even closer to the actual one this time.

- Fig. 16 (d) shows the evolution of the self-sufficiency that the system
can reach due to the BESS introduction (dashed lines) and P2G2P
introduction (solid lines). This graph shows the result that the
working parameters have on the general performance of the system.
Only the hybrid approach can correctly estimate the actual drop in
SSd.

Fig. 17 shows another comparison between the time variation of key
performance indicators. In this case, the simulations were applied to the
same configuration considered in Fig. 16 but with a smaller battery
capacity (3 MWh). A smaller BESS causes a higher degradation of the
component and a premature substitution of the modules. The hybrid
simulation approach succeeded in capturing the degradation trend of
the SOH (Fig. 17 (c)), and in estimating the correct lifetime of the
modules, key in the correct assessment of the substitution cost of the
component. The hybridmethod was also able to follow the peculiar trend
of the φel,avg, affected by the fast decline of the SOH and the premature
substitution of BESS modules.

Twenty-three configurations were simulated using the most accurate
approach (c20), testing different electrolyzer sizes, fuel cell sizes, battery
sizes, and PV power levels. Then, the same configurations were simu-
lated using the other three approaches (simplified, c1, and hybrid).
Finally, the difference between results coming from each of the three
previous simulation methods and results from c20 was analyzed to un-
derstand the degree of error that affects the electrolyzer and fuel cells
conversion factors, the BESS capacity, and the self-sufficiency that the

system can reach using batteries and P2G2P.
Table A8 and Table A9 in Appendix B report the full list of the tested

configurations and all the corresponding errors, while Table 8 summa-
rizes the results by reporting the average error that characterizes each
simulation approach. For the sake of the comparison, results from sim-
ulations that reach 100 % H2 self-sufficiency were not considered for the
average results of such error.

Fig. 18 compares the required computational time to complete 20
years of simulation by using the simplified, c1, c20, and hybrid frame-
work. The simplified framework only requires 5 s to complete the
simulation of one configuration and compute the LCORE. If complete
models are employed, the simulation time rises to 71 s with the c1
method. If all 20 years of operations are simulated, this time becomes 20
times bigger i.e., 1481 s (almost 25 min). The hybrid simulation can
capture the effects that the degradation of components has on the results
but reduces the computational time to 169 s (88.5 % less than the c20).

Fig. 17. Comparison between the time variation of a) average electrolyzer conversion factor,
b) average fuel cell conversion factor, c) average BESS capacity,
d) self-sufficiency due to the battery effect and P2G2P effect.

Table 8
Average error on key performance indicators and self-sufficiency assessment
from simplified, c1, and hybrid simulations approaches.

Avg.
error

Electrolyzer φ
[%]

Fuel
Cell φ
[%]

Battery
Capacity [%]

BESS
SSd [%]

H2
SSd
[%]

simplified 7.281 1.181 14.862 0.959 0.467
c1 0.384 1.052 14.862 0.911 0.456
hybrid 0.244 0.069 1.466 0.014 0.015
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4.2. Optimization results

After the evaluation of the accuracy of the novel hybrid method and
the potential time reduction, this section presents results from the
application of the proposed optimization framework that involves the
new simulation method.

Table 9 summarizes the main technical assumptions made, lists the
size range that bounds the global optimization of components, and de-
fines the resolution used to find integer results. As stated in Section
3.5.3, integrality was forced to variables to obtain a realistic solution
that involves only commercially reasonable sizes for components.

4.2.1. PV expansion
The analysis presented in this section aims to study the maximum

contribution that the upgrade of the PV generation can have. To this end,
sizes up to 8 MWp are considered, two times higher than the maximum
size limit set for the global optimization (Table 9). Fig. 19 shows the SSd
that the system can reach by increasing only the PV installed power.
With only the increase in power production, SSd saturates at a value of
around 77.5 %.

The SSd trend in Fig. 19 shows that the introduction of a storage
system is required. Although the PV production has a higher matching
degree with the power consumption with respect to wind generation, the
RES generators alone are unable to cover the load demand of the island.
Even when capacities fifty times the current one are installed, the SSd
cannot reach 100 % in absence of an ESS.

4.2.2. System supported by the lithium-ion BESS – Scenario 1
The first scenario considers only the possibility of expanding the

current PV field up to 4 MWp and introducing a Li-ion BESS up to 25
MWh. Table 10 reports results from the size optimization using the
differential evolution algorithm considering average component prices
listed in Appendix A.

Optimizations required from 1425 to 1650 iterations to converge,

with a computational time between 14 and 17 h. Optimal configurations
were tested also using the most accurate approach (c20) to ensure if the
computed LCORE is reasonable.

Theminimum LCORE that the system can reach when supported only
by a BESS is 320.85 €/MWh. The optimal configuration involves a 15
MWh battery and the increment of the PV peak power to 2610 kWp,
2450 more than the current configuration.

Results presented in Table 10 came from an optimization that poses
no limit to the optimal PV power capacity. However, geographical
constraints or technical requirements may restrict the maximum power
generation capacity that the system can have. Therefore, this section
presents results from a sensitivity analysis that aims to investigate the
optimal storage combination at different installed PV power levels.
Again, this level indicates the PV peak power that adds to the WT gen-
eration (800 kW).

Fig. 20 compares the LCORE that a system supported only by BESS
can reach varying PV installed power. The analysis considers prices
averaged from references listed in Appendix A. Even if the tested PV
power levels range from 160 to 4160 kW, with a resolution of 160 kW,
Fig. 20 does not show results from configurations that involved a PV
power lower than 1440 kW. Low PV power configurations would indeed

Fig. 18. Comparison between computational times required by simplified, c1,
c20 and hybrid simulation methods.

Table 9
Technical assumptions of the main components of the system: Wind Turbine, PV field, Li-ion BESS, ALK electrolyzer, PEM fuel cell, H2 compressor, and H2 tank.

Component Characteristics Technical parameters Considered size range
in global optimization

Resolution
in global optimization

Wind Turbine real prod. – 800 kW –
PV field real prod. (scaled) – 0–4.16 MW 10 kW

Li-ion BESS model (ideal)
ηavg = 90 %
C-ratecharge = 1C
C-ratedischarge = 3C

0–25 MWh 50 kWh

ALK electrolyzer model (comm.)
φEL,init = 17.95 kg/MWh
Pmin = 20 % Pnom

0–700 kW 50 kW (5 cells)

PEM FC model (comm.) φfc,init = 59 kg/MWh 0–1.2 MW 65 kW (5 stacks)
H2 compressor model (ideal) Es = 1.18 kWh/kg 50 kW –
H2 Tank model (ideal) – 0–10 t 100

Fig. 19. Self-sufficiency degree of the HPS increasing the PV installed power
(no storage means).

Table 10
Results from the size optimization considering the system supported only by
BESS.

BESS
[MWh]

PV
[kWp]

LCORE
[€/MWh]

LCORE (c20)
[€/MWh]

Iter.
[¡]

Time
[h]

15 2610 320.85 319.78 1425 14.4
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require an economically unsustainable BESS capacities to reach full SS.
The orange line in Fig. 20 indicates the optimal BESS size at each

considered PV power level. Initially, the optimal BESS size strongly
decreases with the increase in the PV installed power. However, when
the PV power reaches 2.4 MW, the optimal BESS size stabilizes at around
14–15 MWh. This represents the minimum BESS capacity required to
support the system in reaching 100 % self-sufficiency. When the
contribution of installing additional PV modules stops having a tangible
impact on the SSd, the BESS becomes the only way to cover the residual
demand. The minimum of the LCORE indeed corresponds to the point at
which the optimal BESS size starts saturating. The minimum is reached
with a PV size of 2560 kW and a BESS size of 14,950 kWh.

The red line in Fig. 20 indicates instead the optimal BESS size ac-
cording to the simplified simulation. Results show that the simplified
method inevitably underestimates the required BESS size: by neglecting
the BESS degradation, the optimization using the simplified method
outputs configurations unable to maintain 100 % self-sufficiency in the
long run. The hybrid simulation, on the other hand, considers that
additional capacity is required to maintain the performance in time.

Fig. 21 shows the scatter of the difference between the two outcomes.
When the installed PV is small, both optimizations converge to a similar
result. When the PV capacity increases and the BESS size decreases, the
error made by the simplifiedmethod increases. An error of 1.2 MWh on a
BESS capacity of around 14.5 MWh means that the required BESS ca-
pacity is underestimated by 8 % if the degradation of the component is
not considered.

4.2.3. System supported by BESS and P2G2P – Scenario
The second scenario considers also the introduction of the P2G2P,

along the upgrade of the PV generation and the introduction of the BESS.
Table 11 reports results from the size optimization of the system sup-
ported by BESS and P2G2P.

Optimizations required from 2275 to 3450 iterations before reaching
the target tolerance and, this time, the computational time took from 38
to almost 48 h.

Considering average prices (see Appendix A), the optimal solution
consists of the installation of an 1810 kWp PV field, supported by a 6.7
MWh BESS. The P2G2P system produces hydrogen slowly during winter
with a 250 kW electrolyzer and stores the gas in a 2000 kg hydrogen
tank. Then, a high-power FC of 890 kW is required to cover the load
during consumption peaks. With this configuration, the minimum
LCORE that the system can reach is 264.55 €/MWh. The same config-
uration was simulated using the most accurate approach and produced a
slightly lower LCORE (263.43 €/MWh).

This study presents a sensitivity analysis to assess the best HES
configuration at different installed solar power levels also for the second
scenario (BESS and P2G2P). The PV ranges from 800 to 4160 kW, again
with a resolution of 160 kW. Similar to the first scenario (only BESS),
configurations with a PV capacity lower than 800 kWwere excluded due
to the proven financial unfeasibility of solutions involving outsized
storage capacities.

Fig. 22 presents the results from the economic analysis considering
average prices from references in Appendix A. The plot shows the trend
of LCORE (light blue line), optimal electrolyzer installed power (red
line), hydrogen tank size (blue line), and Li-ion battery capacity (orange
line) varying the PV installed power in the second scenario (BESS and
P2G2P).

The minimum LCORE (264.29 €/MWh) is next to the one provided
by the unbounded optimization. This configuration involves 1760 kW
PV power, 200 kW electrolyzer, 890 kW FC, 2800 kg tanks, and a 7.1

Fig. 20. Minimum LCORE and required BESS size varying the PV installed power.

Fig. 21. Difference in optimal BESS size according to optimization results
based on simplified simulations and hybrid simulations.
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MWh BESS.
When the PV size is limited to 800 kW, the system can reach 100 %

self-sufficiency using the combination of a large BESS (14.25 MWh) and
a large H2 tank (10 tons). Hydrogen is produced using a 400 kW elec-
trolyzer, while the optimal fuel cell size is 945 kW. With this configu-
ration, the LCORE is 421.17 €/MWh. The optimal BESS size drops when
the PV power can reach 960 kW and, with higher PV power levels the
optimal BESS size ranges around smaller sizes between 4.65 MWh and
7.4 MWh. The optimal configuration varies between layouts that rely
more on BESS and layouts that use more the P2G2P. Overall, the elec-
trolyzer size increases with the PV size. However, the solution highly
varies between only 100 kW to 700 kW, depending on the size of the
BESS that supports the operation. The optimal H2 tank decreases with
the PV size since a higher generation during summer reduces the deficit
that P2G2P must cover. The decreasing trend of this variable is more
pronounced but still presents a degree of variability. The LCORE trend
drops to 295 €/MWh as soon as the PV size can reach 960 kW. Then, the
cost metric gradually decreases until the optimal PV size is reached
(1760–1920 kW). From those sizes on, the LCORE increases again since
the overall optimal storage capacity is reached. The solution shifts be-
tween configurations that rely more upon BESS and configurations that
value more P2G2P, but additional PV power generation is no longer
economically convenient.

The left column of Fig. 23 shows the comparison between the
optimal size of components according to optimizations based on
simplified simulation (dashed lines) and hybrid simulation (continuous
lines). The right column of Fig. 23 shows plots of the percentage error
between the two. Even in this case, the simplified simulation approach
led to an underestimation of the required components sizes to maintain
100 % self-sufficiency and a consequent error on the LCORE estimation.

4.2.4. Comparison between scenarios: “Only BESS” vs “BESS + P2G2P”
Fig. 24 compares the trend of the LCORE varying the PV installed

power between the first scenario (only BESS) and the second scenario
(BESS and P2G2P. Dots highlight the overall minimum that the price
metric can reach in each condition. With each of the considered price
combinations of components, the second scenario can reach a lower
LCORE than the first scenario.

4.3. Energy flows before and after the application of storage devices

Fig. 25 shows the time variation of the energy deficit and excess
before and after the application of the two storage systems: BESS and
P2G2P. The analyzed configuration is the optimal result from the hybrid
optimization when the maximum PV size is limited to 800 kWp, i.e., the
lowest PV upgrade considered in the sensitivity analysis presented in
section 4.3.1. Even if the BESS can cover most of the winter deficit, there
is still a consistent residual demand during the summer season. The
electrolyzer consumes most of the winter energy surplus to produce
enough green hydrogen for seasonal storage. This H2 feeds the fuel cell
to cover the summer needs. After the introduction of the P2G2P, the
energy deficit is reduced to zero (red flat line).

Fig. 26 shows the time variation of the energy flows involved in the
optimal configuration when no constraints are applied to the PV size.
This configuration involves an 1810 kWp PV field, in addition to the
already present 800 kW wind turbine.

Fig. 27 shows the time variation of the SOC of the BESS (a) and the
amount of hydrogen stored inside high-pressure tanks (b). As in Fig. 26,
this figure refers to the optimal configuration found without constraints
to the PV size. Fig. 27 (a) shows that the SOC trend varies between the
maximum (15 %) and minimum (95 %) value for most part of the
considered year of operation. On the other hand, Fig. 27 (b) shows that
amount of H2 stored in HP tanks continues to rise during winter and
suddenly drops during summer.

5. Discussion

This study proposes a novel simulation method able to consider the
long-term degradation of components, while limiting the computational
cost of simulations. This trade-off allows the adoption of this kind of
approach also by stochastic optimization algorithms that require several
iterations before reaching the global minimum. Even if presented results
are specific to the presented case study, the application allows general
comments on the approach, as the computational time required in a real
case study, the accuracy of the method, and the evaluation of the error
that simulation methods that neglect the degradation effect may induce.

Fig. 16 and Fig. 17 have shown that the simplified simulation method
and the one-year simulation approach that uses complete components
models (c1) may attribute the 100 % self-sufficiency that the system can
reach in the first year of operation to all the remaining years. However,
results from the twenty-years long simulation using complete compo-
nent models (c20) show that the actual behavior differs quite signifi-
cantly from the ideal case. The decay of the SOH shrinks the available
BESS capacity, the electrolyzer becomes less efficient in storing the
excess energy in the form of hydrogen, and the fuel cell cannot convert
the gas back into electricity with the same effectiveness as a brand-new
device. A totally self-sustained system during the first year of operation
may fail to reach total autonomy even from the second year on. Only the
novel hybrid simulation approach can effectively capture the trend
highlighted by c20.

Compared to results by Pu et al. [57], the resulting average lifetimes
of the modeled electrolyzer and fuel cell stacks are longer: the optimi-
zation converges on combinations that allow the stack to work until
reaching the expected 10 years before replacement (as in Fig. 16 and
Fig. 17). The expected lifetime of the stack is closer to results from Le
et al. [103]. These results affected by the kind of operation that this
analysis considers: being paired with high-capacity BESSs, hydrogen
chains work mainly as seasonal storages, diminishing the working hours

Table 11
Results from the size optimization considering the system supported by BESS and P2G2P.

EL [kW] FC [kW] BESS
[MWh]

Tank [kg] PV [kWp] LCORE [€/MWh] LCORE (c20) [€/MWh] Iter. Time
[h]

250 890 6.7 2000 1810 264.55 263.43 2275 38.3

Fig. 22. The trend of LCORE (light blue line), optimal electrolyzer installed
power (red line), hydrogen tank size (blue line), and Li-ion battery capacity
(orange line) varying the PV installed power in the second scenario (BESS and
P2G2P). (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)
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during a year of operation and thus extending the expected lifetime of
components.

Results from Section 4.1 have also shown that the average outcome
from the hybrid simulation is characterized by errors of at least one order
of magnitude lower than outcomes from other approaches (Table 8 and
Tables A8 - A9 in Appendix B). Both c1 and hybrid performed well in
estimating the average conversion factor of the electrolyzer (φel,avg), but
only the novel approach was able to capture the actual trend of the BESS
capacity. Overall, the accuracy of the hybrid simulation in estimating the
self-sufficiency degree of the system is characterized by an error of only
0.015 %. Moreover, only the novel method was able to correctly eval-
uate the lifetime of components, crucial when assessing the actual
techno-economic outcome of a HES configuration in the long term.

While maintaining a high accuracy, the hybrid simulation framework
reduces the computational time of 85 % with respect to c20 (Fig. 18).
This reduction is necessary to perform HES sizing optimizations using
stochastic methods as the differential evolution. Indeed, results from
Table 10 and Table 11 have shown that the algorithm required to

explore from 2250 to 3500 different configurations before reaching the
selected tolerance.

Results from the application of the hybrid simulation method to the
case study of the HES of the island of Tilos proved that the proposed
approach can be used to evaluate the optimal design of a 100 % self-
sustained microgrid. The application proved that the method is
compatible with a stochastic optimization algorithm, required to avoid
local minima.

The number of iterations required for the optimization algorithm to
find the global optimum and the consequent computational time was
evaluated both for analyses involving only PV expansion and battery
(scenario 1 - Table 10) and analyses including also the hydrogen chain
(scenario 2 - Table 11). Results highlighted the importance of reducing
computational time: necessitating from 1424 iterations (14 h) to 2275
iterations (38 h on a supercomputer), these types of problems may
highly benefit from the newly proposed approach. The comparison in
Fig. 18 indicates that the hybrid method requires 88.5 % less time to
simulate 20 years of operation. This means that, if an approach as c20 is

Fig. 23. Comparison between the optimal size of components according to optimizations based on simplified simulations and hybrid simulation (left column) and plot
of the percentage error between the two (right column).
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used to perform the same analysis, it would take up to 330 h on a su-
percomputer to obtain a solution as the one for the BESS + P2G2P case.

Simplified simulations may reduce the computational cost even more
but may also compromise the accuracy of results. The outcome of
optimization frameworks using the hybrid simulation method was
compared to the outcome of optimization frameworks using the simpli-
fied approach. These comparisons have confirmed that the degradation
assessment is crucial to correctly estimate the required size of storage
systems. If the degradation is neglected, the optimizations converge to
undersized combinations that cannot cover the entire energy request in
the long run.

The comparison of results related to the first scenario (Fig. 20 and
Fig. 21) clearly shows that the simplified framework underestimates the
required BESS size by up to 8 %. These results are in line with findings
from Omar [161]: comprehending and integrating BESS lifetime and
degradation to optimize the economic feasibility of RES systems is
crucial.

The comparison made for the second scenario (Fig. 23) have

confirmed that, even in this case, the simplified simulation clearly tends
to underestimate the required BESS capacity and the sizes of compo-
nents of the hydrogen chain. By neglecting the degradation of cells,
simplified optimizations converge on undersized storage combinations
unable to maintain 100 % self-sufficiency in the long run. The mismatch
on the optimal sizing of components in the hydrogen chain is variable.
The H2 tank can be undersized by 31.5 % on average (up to 84 %), while
the electrolyzer size can characterized by a remarkable error up to
103.1 % (up to 361.5 %). The fuel cell can be undersized up to 7.7 %, but
only 1 % on average. For all the considered PV sizes, the optimal BESS
capacity determined by the simplified simulation is consistently lower
(59.6 % under-sizing error on average). Consequently, the simplified
simulation always underestimates the optimal LCORE that configura-
tions can reach, committing an error of 10.2 % on average.

The estimated difference in fuel cell size between a simulation
considering degradation and a simulation that neglects performance
decay was up to 8 %. A considerable difference even if lower than the 25
% obtained by Erdnic and Uzunoglu [55]. Again, this result is case-
sensitive and may be affected by several factors, but still remarks the
importance of estimating degradation.

Optimal configurations identified by the proposed optimization
framework using the hybrid method were tested by simulating the same
combinations of components using the c20 approach (Table 10 and
Table 11). These comparisons confirmed that resulting combinations
can actually maintain 100% SSd for the whole lifetime of the system and
that the computed LCORE is quite accurate. The mismatch between the
two results can be caused by the method used to ensure that optimiza-
tions do not propose solutions unable to maintain the full SSd, i.e., to the
price attributed to the missing energy. Even with infinitesimally small
missing quantities, the high price attributed can produce a difference in
the computed LCORE.

The comparison between the minimum LCORE from the two
considered scenarios (Fig. 24) have shown that hybrid storage solutions
involving both the Li-ion BESS and the P2G2P are always more conve-
nient that solutions involving only a BESS. Due to the peculiar shape of
the load of Tilos, seasonal storage represents a cost-effective way to
reach full self-sufficiency. Because of consumption peaks, it is more
convenient to use a fuel cell as a backup generator than oversizing the

Fig. 24. Comparison between the trend of LCORE varying the PV installed
power between the first scenario (only BESS) and the second scenario (BESS
and P2G2P).

Fig. 25. Time variation of the energy deficit and excess before and after the application of P2G2P. Energy flows referred to the optimal configuration from the second
scenario with the maximum PV size equal to 800 kWp.
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RES generation or only relying on a BESS. The latter, being a closed
electrochemical cell, cannot decuple power from energy capacity. These
results are in line with the results of Marocco et al. [162], who
demonstrated that hydrogen allows the battery and RES not to be
oversized in off-grid hybrid renewable energy systems.

However, the P2G2P solution comes with the installation of several

devices to make the hydrogen chain work. The electrolyzer absorbs
power from renewables for the hydrogen production, but also the
compressor requires energy to drive the gas transformation and increase
the volumetric energy density of the storage. This operation adds 70 kW
to the electrical load that the RES generation must cover. Since during
winter the total load of the island of Tilos varies between 200 and 600

Fig. 26. Time variation of the energy deficit and excess before and after the application of P2G2P. Energy flows referred to the optimal configuration from the second
scenario without constraints to the PV size.

Fig. 27. Time variation of the a) BESS SOC bounded between the allowed minimum (15 %) and maximum (95 %) value and b) H2 stored in high-pressure tanks.
Trend referred to the optimal configuration from the second scenario without constraints to the PV size.
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kW, the compressor may increase the load considerably. On the other
hand, this load is stable for a certain amount of time and more pre-
dictable than the usual electrical request from the island. Results show
that, even if configuration involving P2G2P must add this electrical
consumption to the overall energy request, the LCORE is still lower
when the hydrogen chain is considered. The ratio between the power
absorption from the compressor and the load from the network is close
to what was considered by Maestre et al. [152] for a self-sufficient social
home (1.5 kW compressor added to a 0.5–6 kW load).

The yearly time variations of the SOC of the BESS and the H2 stored
in high-pressure tanks (Fig. 27) show the complementarity of the two
storage means. While the BESS SOC highly varies between the minimum
and maximum allowed value, the stored H2 shows a clear rising trend
during winter (high energy excess) and a sudden drop during summer
(abrupt peak of consumption and consequent energy deficit). These
trends show that the first technology mainly covers hourly and daily
power unbalances, while the second technology mainly acts as seasonal
storage. The variation of the H2 contained in storage tanks has a similar
shape to what was obtained by Bielmann et al. [113] and Maestre et al.
[152] in their seasonal energy storage system based on hydrogen. The
BESS SOC trend varies on a daily basis as in results from Le et al. [103]
and Yang et al. [163]. As found by Gabrielli et al. [164], the behavior of
an H2 storage shifts towards the seasonal role when paired with a
battery.

Energy flows from the optimized configurations (Fig. 26) show that
the BESS can cover most of the energy deficit that arises from the
mismatch between RES production and load request. The residual deficit
consists of occasional peaks during winter and a consistent remaining
request during summer. After the introduction of the P2G2P, the energy
deficit is removed but the residual energy excess is still considerable.
This behavior results from the competitive PV prices that make the
excessive RES generation still more convenient than the installation of
high-capacity storage technologies.

The residual excess of the HES has the potential to be exploited.
Energy can be sold to the nearby islands by means of submarine con-
nections, used to power a desalination plant to cover the request for
freshwater of the island, or to feed a new fleet of electric vehicles on the
island.

Another possibility is to convert this electrical energy excess into
green hydrogen, a fuel that can be exported via shipping. Participation
in the hydrogen market may be financially beneficial as proved by re-
sults from Pavić et al. [58]. A consequent increase in the capacity factor
of the electrolyzer would raise the average conversion factor of the
machine but would decrease the expected lifetime of the component. A
careful analysis would be required to find the optimal trade-off between
the two effects.

The methodology proposed in this work to establish the degradation
of performance of components aims to capture the main influences that
affect their operation. The estimation of degradation of components
could be improved by the application of machine learning methods. If a
wider sample of complete results is generated, data-driven methods
have the potential to extract deeper correlations between the perfor-
mance trends of components during the first year of operation and their
future behavior.

Further developments could also regard the assessment of the per-
formance degradation of generators. This study focused only on the
degradation of storage devices because the historical production of
renewable generators was available from the SCADA of an actual HPS. A
degradation model of the PV field and the wind turbine could be used to
forecast the decreasing production and balance sizing errors also in the
design of generators.

6. Conclusions

This study proposes an innovative simulation method designed to
reduce computational costs while maintaining high accuracy in long-
term techno-economic analyses of energy systems. This method is
tailored for applications supported by multiple storage technologies (i.
e., batteries and hydrogen storage). Even if neglected by most studies, an
accurate estimation of the degradation of components is crucial. By
hybridizing a detailed simulation for the first year with simplified long-
term degradation models, the method reduces computational costs by
88.5 % while accurately estimating component performance and
lifespan.

To assess the feasibility of using the novel simulation approach for
the robust design of a real HES, an optimization framework involving
the proposed method was applied to a real case study: the design of a
100 % self-sufficient microgrid. Results revealed that storage solutions
combining BESS with P2G2P are more cost-effective (264 €/MWh) than
solutions involving only batteries (320 €/MWh). Furthermore, neglect-
ing degradation can lead to under-sizing errors: 103.1 % on average for
electrolyzer, 31.5 % for H2 tank, 59.6 % for the battery, and up to 7.7 %
for the fuel cell. As a result, undersized designs can produce an error in
the evaluation of energy cost of 10.2 % on average. The proposed hybrid
approach to simulation and optimization thus offers a valuable tool for
designing robust and sustainable HESs capable of meeting the long-term
energy needs of 100 % self-sufficient grids.

The current study described in detail the proposed simulation
methodology and results from the application of two concurrent ap-
proaches in a real-world case study. A future study will focus on the
specific application, considering also the expected drop in price of
renewable generators and storage devices, that could be allowed by the
application of the method.
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Appendix A

Table A1
Li-ion BESS prices.

Study Ref Price Prop Price [€/kWh]

Mauler (2021) [165] 234 $/kWh 234
Penisa (2020) [166] 100 $/kWh 100
Beuse (2020) [167] 316 $/kWh 316
NREL (2023) [168] 338 $/kWh 10 h 338

537 $/kWh 2 h 537

Table A2
PEM fuel cell prices.

Study Ref Price range Price [€/kW]

IRENA (2020) [169] 700–1400 Min 700
Max 1400

Gallardo (2021) [170] 1000 1000
Baldi (2022) [6] 730 730

Table A3
ALK electrolyzer prices.

Study Ref Price range Price [€/kW]

IEA (2019) [171] 500–1400 Min 500
Max 1400

IEA (2020) [172] 1320 1320
NetZero (2021) [173] 750–1160 Min 750

Max 1160
IRENA (2020) [169] 500–1000 Min 500

Max 1000
Gallardo (2021) [170] 500–700 Min 500

Max 700
IRENA (2019) [174] 840 840
ESCG (2022) [175] 1320 1320
Bohm (2020) [176] 1100 1100
Grigoriev (2020) [177] 500–1400 Min 500

Max 1400
Roos (2021) [178] 419–1153 Min 419

Max 1153

Table A4
Hydrogen tank prices.

Study Ref Price Prop Price [€/kg]

Leeuwen (2018) [179] 490 €/kg 490
Kharel (2018) [180] 430 €/kg 430
Niaz (2015) [147] 400–530 €/kg 400
Ulleberg (2020) [181] 250 bar: 550 €/kg 250 bar 550
Parks (2014) [182] 172 bar: 470 $/kg 172 bar 470
Ikäheimo (2018) [183] 700 bar: 500 €/kg 700 bar 500
SANDIA (2011) [184] 500 $/kg 500
Shin (2023) [185] 350 bar: 400 $/kg 350 bar 400
Villalonga (2021) [186] 438 USD/kg 438

Table A5
Hydrogen compressor prices.

Study Ref Price

ESCG (2022) [175] 39.30 [€/kW]
39.30 [€/kW]

Richardson (2015) [187] Avg: 50 k–140 k [€/unit]
[187] Case study: 54 k€

Ulleberg(2020) [181] 60 k€/unit
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Table A6
PV field prices.

Study Ref Price range Price [€/kW]

Ozden (2017) [134] 1600–5000 $/kW Min 1600
Max 5000

IRENA (2019) [188] 1210 USD/kW 1210
IEA (2020) [189] 667–1321 USD/kW Avg 1055

Min 677
Max 1321

Statista [190] 876 USD/kW 876
983 USD/kW 983
917 USD/kW 917

Appendix B

Table A7
Onshore wind turbine prices.

Study Ref Price range Price [€/kWh]

Sens (2022) [191] 1325 1325
IEA (2020) [189] 1055–2213 USD/kW Avg 1591

Min 1055
Max 2213

IRENA (2022) [192] 1626 USD/kW Avg 1626
Min 990
Max 1998

1274 USD/kW 1274

Table A8
Error on BESS SSd and H2 SSd from simplified, c1 and hybrid simulations.

Error on BESS SSd [%) Error on H2 SSd [%]

EL [kW] FC [kW] BESS [MWh] PV [kWp] simpl. c1 hyb. simpl. c1 hyb.

1 300 938 5.27 1440 0.917 0.927 0.005 0.461 0.471 − 0.012
2 300 938 5.27 1760 1.083 1.034 − 0.009 0.609 0.602 − 0.021
3 300 938 5.27 2080 1.158 1.086 0.028 0.377 0.377 0.000
4 300 938 5.27 2400 1.125 1.048 0.003 0.244 0.244 − 0.021
5 300 938 5.27 2720 1.135 1.087 0.019 0.172 0.172 − 0.023
6 100 938 5.27 1760 1.087 0.998 0.005 0.759 0.679 0.038
7 200 938 5.27 1760 1.064 1.010 0.018 0.657 0.615 0.009
8 300 938 5.27 1760 1.083 1.034 − 0.009 0.609 0.602 − 0.021
9 400 938 5.27 1760 1.065 1.028 0.019 0.441 0.441 − 0.017
10 500 938 5.27 1760 1.082 1.032 0.022 0.331 0.331 − 0.001
11 600 938 5.27 1760 1.094 1.021 0.013 0.231 0.231 − 0.017
12 300 420 5.27 1760 1.088 1.039 0.006 0.326 0.318 − 0.004
13 300 560 5.27 1760 1.084 1.035 − 0.006 0.483 0.480 − 0.014
14 300 700 5.27 1760 1.084 1.035 − 0.009 0.574 0.574 − 0.020
15 300 840 5.27 1760 1.083 1.034 − 0.009 0.602 0.602 − 0.021
16 300 560 5.27 1760 1.084 1.035 − 0.006 0.483 0.480 − 0.014
17 300 938 3 1760 1.486 1.364 0.009 0.640 0.623 0.003
18 300 938 4 1760 1.484 1.349 0.031 0.685 0.628 0.020
19 300 938 6 1760 0.760 0.736 0.004 0.185 0.185 − 0.006
20 300 938 7 1760 0.527 0.505 − 0.004 0.001 0.001 0.001
21 300 938 8 1760 0.254 0.267 − 0.028 4E-04 4E-04 3E-04
22 300 938 9 1760 0.136 0.138 − 0.035 2E-04 2E-04 2E-04
23 300 938 10 1760 0.093 0.108 − 0.026 2E-04 1E-04 2E-04

Table A9
Error on Electrolyzer φ, Fuel Cell φ and Battery Capacity from simplified, c1 and hybrid simulations.

Error on Electrolyzer φ [%] Error on Fuel Cell φ [%] Error on Battery Capacity [%]

simpl. c1 hyb. simpl. c1 hyb. simpl. c1 hyb.

1 6.698 0.682 0.054 − 1.528 − 1.170 − 0.101 15.792 15.792 − 1.424
2 7.156 0.233 − 0.306 − 1.239 − 1.131 − 0.059 16.080 16.080 − 1.508

(continued on next page)
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Table A9 (continued )

Error on Electrolyzer φ [%] Error on Fuel Cell φ [%] Error on Battery Capacity [%]

simpl. c1 hyb. simpl. c1 hyb. simpl. c1 hyb.

3 7.423 0.125 − 0.353 − 1.110 − 1.015 0.058 16.035 16.035 − 1.520
4 7.633 0.198 − 0.284 − 1.025 − 0.938 0.137 15.953 15.953 − 1.458
5 7.771 − 0.105 − 0.518 − 0.972 − 0.892 0.184 15.846 15.846 − 1.490
6 3.183 1.798 − 0.055 − 1.200 − 0.992 0.081 16.109 16.109 − 1.451
7 5.659 0.985 − 0.069 − 1.217 − 1.061 0.011 16.069 16.069 − 1.468
8 7.156 0.233 − 0.306 − 1.239 − 1.131 − 0.059 16.080 16.080 − 1.508
9 7.785 0.285 − 0.065 − 1.251 − 1.144 − 0.072 16.052 16.052 − 1.519
10 8.037 0.177 − 0.037 − 1.255 − 1.147 − 0.076 16.030 16.030 − 1.458
11 8.091 − 0.067 − 0.169 − 1.256 − 1.148 − 0.077 16.031 16.031 − 1.498
12 7.178 − 0.196 − 0.620 − 1.261 − 1.153 − 0.082 16.060 16.060 − 1.518
13 7.130 0.145 − 0.369 − 1.245 − 1.137 − 0.066 16.080 16.080 − 1.508
14 7.127 0.173 − 0.353 − 1.242 − 1.134 − 0.062 16.079 16.079 − 1.509
15 7.156 0.233 − 0.306 − 1.238 − 1.130 − 0.059 16.080 16.080 − 1.508
16 7.130 0.145 − 0.369 − 1.245 − 1.137 − 0.066 16.080 16.080 − 1.508
17 4.472 1.071 − 0.342 − 3.067 − 2.687 − 0.180 14.667 14.667 − 2.235
18 5.822 0.675 − 0.299 − 2.036 − 1.755 − 0.025 15.357 15.357 − 1.903
19 7.664 0.218 − 0.246 − 0.963 − 0.877 − 0.065 14.290 14.290 − 1.288
20 8.528 0.021 − 0.291 − 0.630 − 0.571 − 0.016 12.329 12.329 − 1.215
21 9.129 0.308 − 0.015 − 0.415 − 0.374 0.004 10.790 10.790 − 1.092
22 9.603 0.481 0.159 − 0.303 − 0.270 − 0.013 9.470 9.470 − 1.061
23 9.929 0.289 0.031 − 0.237 − 0.209 − 0.034 8.466 8.466 − 1.071
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and grid integrated hybrid renewable energy systems: system optimization and
energy management strategies. Renew Energy Focus 2023;46:103–25. https://
doi.org/10.1016/j.ref.2023.06.001.

[63] Ceran B, Mielcarek A, Hassan Q, Teneta J, Jaszczur M. Aging effects on modelling
and operation of a photovoltaic system with hydrogen storage. Appl Energy 2021;
297:117161. https://doi.org/10.1016/j.apenergy.2021.117161.

[64] Ceran B, Orłowska A. The impact of power source performance decrease in a PV/
WT/FC hybrid power generation system on the result of a multi-criteria analysis
of load distribution. Energies 2019;12:3453. https://doi.org/10.3390/
en12183453.

[65] Jurasz J, Ceran B, Orłowska A. Component degradation in small-scale off-grid PV-
battery systems operation in terms of reliability, environmental impact and
economic performance. Sustain Energy Technol Assess 2020;38:100647. https://
doi.org/10.1016/j.seta.2020.100647.

[66] Parhizkar T, Hafeznezami S. Degradation based operational optimization model
to improve the productivity of energy systems, case study: solid oxide fuel cell
stacks. Energy Convers Manag 2018;158:81–91. https://doi.org/10.1016/j.
enconman.2017.12.045.

[67] Bordin C, Anuta HO, Crossland A, Gutierrez IL, Dent CJ, Vigo D. A linear
programming approach for battery degradation analysis and optimization in
offgrid power systems with solar energy integration. Renew Energy 2017;101:
417–30. https://doi.org/10.1016/j.renene.2016.08.066.

[68] Qin D, He K, Liu F, Wang T, Chen J. Online lifecycle operating costs minimization
strategy for fuel cell buses considering power sources degradation. Energ Technol
2024;12:2301115. https://doi.org/10.1002/ente.202301115.

[69] Abdelghany MB, Al-Durra A, Daming Z, Gao F. Optimal multi-layer economical
schedule for coordinated multiple mode operation of wind–solar microgrids with
hybrid energy storage systems. J Power Sources 2024;591:233844. https://doi.
org/10.1016/j.jpowsour.2023.233844.

[70] Shen W, Zeng B, Zeng M. Multi-timescale rolling optimization dispatch method
for integrated energy system with hybrid energy storage system. Energy 2023;
283:129006. https://doi.org/10.1016/j.energy.2023.129006.

[71] Liu H, Ren H, Gu Y, Lin Y, Hu W, Song J, et al. Design and on-site implementation
of an off-grid marine current powered hydrogen production system. Appl Energy
2023;330:120374. https://doi.org/10.1016/j.apenergy.2022.120374.

[72] Huang J, An Q, Zhou M, Tang R, Dong Z, Lai J, et al. A self-adaptive joint
optimization framework for marine hybrid energy storage system design
considering load fluctuation characteristics. Appl Energy 2024;361:122973.
https://doi.org/10.1016/j.apenergy.2024.122973.

[73] Fan F, Aditya V, Xu Y, Cheong B, Gupta AK. Robustly coordinated operation of a
ship microgird with hybrid propulsion systems and hydrogen fuel cells. Appl
Energy 2022;312:118738. https://doi.org/10.1016/j.apenergy.2022.118738.

[74] Sheng C, Guo Z, Lei J, Zhang S, Zhang W, Chen W, et al. Optimal energy
management strategies for hybrid power systems considering Pt degradation.
Appl Energy 2024;360:122764. https://doi.org/10.1016/j.
apenergy.2024.122764.

[75] He Y, Zhou Y, Wang Z, Liu J, Liu Z, Zhang G. Quantification on fuel cell
degradation and techno-economic analysis of a hydrogen-based grid-interactive
residential energy sharing network with fuel-cell-powered vehicles. Appl Energy
2021;303:117444. https://doi.org/10.1016/j.apenergy.2021.117444.

[76] Zhang Z, Guan C, Liu Z. Real-time optimization energy management strategy for
fuel cell hybrid ships considering power sources degradation. IEEE Access 2020;8:
87046–59. https://doi.org/10.1109/ACCESS.2020.2991519.

[77] Yue M, Jemei S, Gouriveau R, Zerhouni N. Review on health-conscious energy
management strategies for fuel cell hybrid electric vehicles: degradation models
and strategies. Int J Hydrog Energy 2019;44:6844–61. https://doi.org/10.1016/j.
ijhydene.2019.01.190.

[78] Fletcher T, Thring R, Watkinson M. An energy management strategy to
concurrently optimise fuel consumption & PEM fuel cell lifetime in a hybrid
vehicle. Int J Hydrog Energy 2016;41:21503–15. https://doi.org/10.1016/j.
ijhydene.2016.08.157.

F. Superchi et al. Applied Energy 377 (2025) 124645 

30 

https://doi.org/10.1016/j.apenergy.2023.122346
https://doi.org/10.1016/j.apenergy.2023.122346
https://doi.org/10.1016/j.apenergy.2023.122060
https://doi.org/10.1016/j.apenergy.2023.122060
https://doi.org/10.1016/j.apenergy.2022.119916
https://doi.org/10.1016/j.apenergy.2024.123278
https://doi.org/10.1016/j.apenergy.2024.124137
https://doi.org/10.1016/j.apenergy.2024.124137
https://doi.org/10.1016/j.apenergy.2024.124019
https://doi.org/10.1016/j.apenergy.2024.124224
https://doi.org/10.1016/j.apenergy.2024.124224
https://doi.org/10.1016/j.apenergy.2024.124089
https://doi.org/10.1016/j.apenergy.2024.124089
https://doi.org/10.1016/j.apenergy.2022.118843
https://doi.org/10.1016/j.apenergy.2022.118843
https://doi.org/10.1016/j.apenergy.2017.01.070
https://doi.org/10.1016/j.apenergy.2020.115525
https://doi.org/10.1016/j.apenergy.2024.122738
https://doi.org/10.1016/j.apenergy.2024.123829
https://doi.org/10.1016/j.apenergy.2024.123938
https://doi.org/10.1016/j.apenergy.2024.123938
https://doi.org/10.1016/j.apenergy.2024.122954
https://doi.org/10.1016/j.apenergy.2023.121501
http://refhub.elsevier.com/S0306-2619(24)02028-2/rf0230
http://refhub.elsevier.com/S0306-2619(24)02028-2/rf0230
http://refhub.elsevier.com/S0306-2619(24)02028-2/rf0230
http://refhub.elsevier.com/S0306-2619(24)02028-2/rf0235
http://refhub.elsevier.com/S0306-2619(24)02028-2/rf0235
https://doi.org/10.1016/j.energy.2018.02.158
https://doi.org/10.3390/en16186642
https://doi.org/10.1016/j.apenergy.2018.08.058
https://doi.org/10.1016/j.apenergy.2018.08.058
https://doi.org/10.1016/j.jclepro.2021.129753
https://doi.org/10.1016/S0378-7753(01)01029-1
https://doi.org/10.1016/S0378-7753(01)01029-1
https://doi.org/10.3389/fenrg.2017.00001
https://doi.org/10.3389/fenrg.2017.00001
https://doi.org/10.1007/978-1-4471-5677-2
https://doi.org/10.1007/978-1-4471-5677-2
https://doi.org/10.1016/j.ijhydene.2012.04.071
https://doi.org/10.1016/j.ijhydene.2012.04.071
https://doi.org/10.1371/journal.pone.0211642
https://doi.org/10.1371/journal.pone.0211642
https://doi.org/10.1016/j.apenergy.2021.117542
https://doi.org/10.1016/j.apenergy.2022.120103
https://doi.org/10.1016/j.apenergy.2022.120103
https://doi.org/10.1016/j.apenergy.2023.120742
https://doi.org/10.1016/j.apenergy.2023.120846
https://doi.org/10.1016/j.ijhydene.2023.06.126
https://doi.org/10.1016/j.ijhydene.2023.06.126
https://doi.org/10.1016/j.ref.2023.06.001
https://doi.org/10.1016/j.ref.2023.06.001
https://doi.org/10.1016/j.apenergy.2021.117161
https://doi.org/10.3390/en12183453
https://doi.org/10.3390/en12183453
https://doi.org/10.1016/j.seta.2020.100647
https://doi.org/10.1016/j.seta.2020.100647
https://doi.org/10.1016/j.enconman.2017.12.045
https://doi.org/10.1016/j.enconman.2017.12.045
https://doi.org/10.1016/j.renene.2016.08.066
https://doi.org/10.1002/ente.202301115
https://doi.org/10.1016/j.jpowsour.2023.233844
https://doi.org/10.1016/j.jpowsour.2023.233844
https://doi.org/10.1016/j.energy.2023.129006
https://doi.org/10.1016/j.apenergy.2022.120374
https://doi.org/10.1016/j.apenergy.2024.122973
https://doi.org/10.1016/j.apenergy.2022.118738
https://doi.org/10.1016/j.apenergy.2024.122764
https://doi.org/10.1016/j.apenergy.2024.122764
https://doi.org/10.1016/j.apenergy.2021.117444
https://doi.org/10.1109/ACCESS.2020.2991519
https://doi.org/10.1016/j.ijhydene.2019.01.190
https://doi.org/10.1016/j.ijhydene.2019.01.190
https://doi.org/10.1016/j.ijhydene.2016.08.157
https://doi.org/10.1016/j.ijhydene.2016.08.157


[79] Balestra L, Schjølberg I. Modelling and simulation of a zero-emission hybrid
power plant for a domestic ferry. Int J Hydrog Energy 2021;46:10924–38.
https://doi.org/10.1016/j.ijhydene.2020.12.187.

[80] Amini M, Khorsandi A, Vahidi B, Hosseinian SH, Malakmahmoudi A. Optimal
sizing of battery energy storage in a microgrid considering capacity degradation
and replacement year. Electr Power Syst Res 2021;195:107170. https://doi.org/
10.1016/j.epsr.2021.107170.

[81] Terlouw T, AlSkaif T, Bauer C, van Sark W. Multi-objective optimization of energy
arbitrage in community energy storage systems using different battery
technologies. Appl Energy 2019;239:356–72. https://doi.org/10.1016/j.
apenergy.2019.01.227.

[82] Schmidt TS, Beuse M, Zhang X, Steffen B, Schneider SF, Pena-Bello A, et al.
Additional emissions and cost from storing Electricity in Stationary Battery
Systems. Environ Sci Technol 2019;53:3379–90. https://doi.org/10.1021/acs.
est.8b05313.

[83] Wang B, Yu X, Xu H, Wu Q, Wang L, Huang R, et al. Scenario analysis,
management, and optimization of a new vehicle-to-Micro-grid (V2μG) network
based on off-grid renewable building energy systems. Appl Energy 2022;325:
119873. https://doi.org/10.1016/j.apenergy.2022.119873.

[84] Ur Rehman W, Bo R, Mehdipourpicha H, Kimball JW. Sizing battery energy
storage and PV system in an extreme fast charging station considering
uncertainties and battery degradation. Appl Energy 2022;313:118745. https://
doi.org/10.1016/j.apenergy.2022.118745.

[85] Fioriti D, Pellegrino L, Lutzemberger G, Micolano E, Poli D. Optimal sizing of
residential battery systems with multi-year dynamics and a novel rainflow-based
model of storage degradation: An extensive Italian case study. Electr Power Syst
Res 2022;203:107675. https://doi.org/10.1016/j.epsr.2021.107675.

[86] Shin H, Roh JH. Framework for sizing of energy storage system supplementing
photovoltaic generation in consideration of battery degradation. IEEE Access
2020;8:60246–58. https://doi.org/10.1109/ACCESS.2020.2977985.

[87] Liu Y, Wu X, Du J, Song Z, Wu G. Optimal sizing of a wind-energy storage system
considering battery life. Renew Energy 2020;147:2470–83. https://doi.org/
10.1016/j.renene.2019.09.123.

[88] Castillejo-Cuberos A, Cardemil JM, Escobar R. Techno-economic assessment of
photovoltaic plants considering high temporal resolution and non-linear
dynamics of battery storage. Appl Energy 2023;334:120712. https://doi.org/
10.1016/j.apenergy.2023.120712.

[89] Liu J, Wu H, Huang H, Yang H. Renewable energy design and optimization for a
net-zero energy building integrating electric vehicles and battery storage
considering grid flexibility. Energy Convers Manag 2023;298:117768. https://
doi.org/10.1016/j.enconman.2023.117768.

[90] Dall’Armi C, Pivetta D, Taccani R. Uncertainty analysis of the optimal health-
conscious operation of a hybrid PEMFC coastal ferry. Int J Hydrog Energy 2022;
47:11428–40. https://doi.org/10.1016/j.ijhydene.2021.10.271.

[91] Dall’Armi C, Pivetta D, Taccani R. Health-conscious optimization of long-term
operation for hybrid PEMFC ship propulsion systems. Energies 2021;14:3813.
https://doi.org/10.3390/en14133813.

[92] Pivetta D, Dall’Armi C, Taccani R. Multi-objective optimization of hybrid PEMFC/
Li-ion battery propulsion systems for small and medium size ferries. Int J Hydrog.
Energy 2021;46:35949–60. https://doi.org/10.1016/j.ijhydene.2021.02.124.

[93] Zhang W, He Y, Wu N, Zhang F, Lu D, Liu Z, et al. Assessment of cruise ship
decarbonization potential with alternative fuels based on MILP model and cabin
space limitation. J Clean Prod 2023;425:138667. https://doi.org/10.1016/j.
jclepro.2023.138667.

[94] Rezaei M, Akimov A, Gray EMA. Levelised cost of dynamic green hydrogen
production: a case study for Australia’s hydrogen hubs. Appl Energy 2024;370:
123645. https://doi.org/10.1016/j.apenergy.2024.123645.

[95] Nicita A, Maggio G, Andaloro APF, Squadrito G. Green hydrogen as feedstock:
financial analysis of a photovoltaic-powered electrolysis plant. Int J Hydrog
Energy 2020;45:11395–408. https://doi.org/10.1016/j.ijhydene.2020.02.062.

[96] Liu T, Li J, Yang Z, Duan Y. Evaluation of the short- and long-duration energy
storage requirements in solar-wind hybrid systems. Energy Convers Manag 2024;
314:118635. https://doi.org/10.1016/j.enconman.2024.118635.

[97] Zhai R, Liu H, Chen Y, Wu H, Yang Y. The daily and annual technical-economic
analysis of the thermal storage PV-CSP system in two dispatch strategies. Energy
Convers Manag 2017;154:56–67. https://doi.org/10.1016/j.
enconman.2017.10.040.

[98] Zhang H, Yuan T. Optimization and economic evaluation of a PEM electrolysis
system considering its degradation in variable-power operations. Appl Energy
2022;324:119760. https://doi.org/10.1016/j.apenergy.2022.119760.

[99] Roshandel R, Parhizkar T. Degradation based optimization framework for long
term applications of energy systems, case study: solid oxide fuel cell stacks.
Energy 2016;107:172–81. https://doi.org/10.1016/j.energy.2016.04.007.

[100] Guinot B, Champel B, Montignac F, Lemaire E, Vannucci D, Sailler S, et al.
Techno-economic study of a PV-hydrogen-battery hybrid system for off-grid
power supply: impact of performances’ ageing on optimal system sizing and
competitiveness. Int J Hydrog Energy 2015;40:623–32. https://doi.org/10.1016/
j.ijhydene.2014.11.007.

[101] Li B, Roche R, Paire D, Miraoui A. Sizing of a stand-alone microgrid considering
electric power, cooling/heating, hydrogen loads and hydrogen storage
degradation. Appl Energy 2017;205:1244–59. https://doi.org/10.1016/j.
apenergy.2017.08.142.

[102] Li Z, Xia Y, Bo Y, Wei W. Optimal planning for electricity-hydrogen integrated
energy system considering multiple timescale operations and representative time-
period selection. Appl Energy 2024;362:122965. https://doi.org/10.1016/j.
apenergy.2024.122965.

[103] Le TS, Nguyen TN, Bui D-K, Ngo TD. Optimal sizing of renewable energy storage:
a techno-economic analysis of hydrogen, battery and hybrid systems considering
degradation and seasonal storage. Appl Energy 2023;336:120817. https://doi.
org/10.1016/j.apenergy.2023.120817.

[104] Tzanes G, Zafeiraki E, Papapostolou C, Zafirakis D, Konstantinos M, Kavadias K,
et al. Assessing the status of electricity generation in the non-Interconnected
Islands of the Aegean Sea region. Energy Procedia 2019;159:424–9. https://doi.
org/10.1016/j.egypro.2018.12.065.

[105] Skopetou N, Zestanakis PA, Rotas R, Iliadis P, Papadopoulos C, Nikolopoulos N,
et al. Energy analysis and environmental impact assessment for self-sufficient
non-interconnected islands: the case of Nisyros island. J Clean Prod 2024;447:
141647. https://doi.org/10.1016/j.jclepro.2024.141647.
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[183] Ikäheimo J, Kiviluoma J, Weiss R, Holttinen H. Power-to-ammonia in future north
European 100% renewable power and heat system. Int J Hydrog Energy 2018;43:
17295–308. https://doi.org/10.1016/j.ijhydene.2018.06.121.

F. Superchi et al. Applied Energy 377 (2025) 124645 

32 

https://doi.org/10.1016/B978-0-12-387710-9.00001-1
https://doi.org/10.1016/B978-0-12-387710-9.00001-1
https://doi.org/10.1016/j.ijhydene.2017.09.013
http://refhub.elsevier.com/S0306-2619(24)02028-2/rf0650
https://doi.org/10.1016/j.ijhydene.2022.04.011
https://doi.org/10.1016/j.apenergy.2014.12.062
https://doi.org/10.1016/j.apenergy.2014.12.062
https://doi.org/10.1016/j.apenergy.2024.123289
https://doi.org/10.1016/j.apenergy.2024.123289
https://doi.org/10.1016/j.ijhydene.2017.04.017
https://doi.org/10.1016/j.ijhydene.2017.04.017
https://doi.org/10.1016/j.renene.2005.08.031
https://doi.org/10.1016/j.ijhydene.2022.11.092
https://doi.org/10.1016/j.ijhydene.2022.11.092
https://doi.org/10.3390/en13123144
https://doi.org/10.1016/B978-0-444-62700-1.00020-6
https://doi.org/10.1016/B978-0-12-803581-8.04006-6
https://doi.org/10.1016/B978-0-12-803581-8.04006-6
https://doi.org/10.1016/j.ijhydene.2014.03.206
https://doi.org/10.1016/j.proeng.2012.07.376
https://doi.org/10.1016/j.proeng.2012.07.376
https://doi.org/10.1002/9781118706992
https://doi.org/10.1002/9781118706992
https://doi.org/10.1016/j.ceja.2021.100172
http://refhub.elsevier.com/S0306-2619(24)02028-2/rf0720
https://doi.org/10.1016/j.apenergy.2022.118552
https://doi.org/10.1016/j.apenergy.2022.118552
https://doi.org/10.1016/j.egyr.2023.08.072
https://doi.org/10.1016/j.egyr.2023.08.072
https://doi.org/10.1016/j.rser.2015.05.011
https://doi.org/10.1016/j.rser.2015.05.011
https://doi.org/10.1016/j.apenergy.2018.03.099
https://doi.org/10.1016/j.egypro.2012.09.024
https://doi.org/10.1016/j.egypro.2012.09.024
https://doi.org/10.1016/j.apenergy.2023.121333
https://doi.org/10.1016/j.apenergy.2024.123966
https://doi.org/10.1016/j.apenergy.2024.123061
https://doi.org/10.1016/j.apenergy.2024.123061
https://doi.org/10.1016/j.ijhydene.2023.07.008
https://doi.org/10.1016/j.ijhydene.2023.07.008
https://doi.org/10.1021/ie4033999
https://doi.org/10.1021/ie4033999
https://doi.org/10.3390/en14082184
https://doi.org/10.1016/j.jpowsour.2019.02.051
https://doi.org/10.1016/j.jpowsour.2019.02.051
https://doi.org/10.1109/TPWRS.2019.2930450
https://doi.org/10.1109/TPWRS.2019.2930450
https://doi.org/10.1016/j.rser.2019.109417
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.differential_evolution.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.differential_evolution.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.differential_evolution.html
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.3390/en17010103
https://doi.org/10.3390/en17010103
https://doi.org/10.1016/j.est.2021.103893
https://doi.org/10.1016/j.apenergy.2024.123914
https://doi.org/10.1016/j.rser.2019.109629
https://doi.org/10.1016/j.rser.2019.109629
https://doi.org/10.1039/D1EE01530C
https://doi.org/10.3390/en13205276
https://doi.org/10.1016/j.joule.2020.07.017
https://doi.org/10.1016/j.joule.2020.07.017
http://refhub.elsevier.com/S0306-2619(24)02028-2/rf0840
http://refhub.elsevier.com/S0306-2619(24)02028-2/rf0840
http://refhub.elsevier.com/S0306-2619(24)02028-2/rf0840
http://refhub.elsevier.com/S0306-2619(24)02028-2/rf0840
http://refhub.elsevier.com/S0306-2619(24)02028-2/rf0845
https://doi.org/10.1016/j.ijhydene.2020.07.050
https://doi.org/10.1016/j.ijhydene.2020.07.050
http://refhub.elsevier.com/S0306-2619(24)02028-2/rf0855
http://refhub.elsevier.com/S0306-2619(24)02028-2/rf0860
http://refhub.elsevier.com/S0306-2619(24)02028-2/rf0860
http://refhub.elsevier.com/S0306-2619(24)02028-2/rf0860
http://refhub.elsevier.com/S0306-2619(24)02028-2/rf0865
https://doi.org/10.1016/j.apenergy.2020.114780
https://doi.org/10.1016/j.ijhydene.2020.03.109
https://doi.org/10.1016/j.ijhydene.2021.08.193
https://doi.org/10.1016/j.ijhydene.2021.08.193
https://doi.org/10.1016/j.apenergy.2018.09.217
https://doi.org/10.1016/j.apenergy.2018.09.217
https://doi.org/10.3390/en11102825
https://doi.org/10.3390/en11102825
https://doi.org/10.1016/j.ijhydene.2019.05.170
https://doi.org/10.2172/1130621
https://doi.org/10.2172/1130621
https://doi.org/10.1016/j.ijhydene.2018.06.121


[184] Schoenung SM. Economic analysis of large-scale hydrogen storage for renewable
utility applications. Albuquerque, NM, and Livermore, CA (United States): Sandia
National Laboratories (SNL); 2011. https://doi.org/10.2172/1029796.

[185] Shin HK, Ha SK. A review on the cost analysis of hydrogen gas storage tanks for
fuel cell vehicles. Energies 2023;16:5233. https://doi.org/10.3390/en16135233.

[186] Villalonga S, Laguionie T, Toulc’Hoat J, Desprez B, Baudry G, Ramage M, et al.
On board 70 MPA hydrogen composite pressure vessel safety factor. 2021.

[187] Richardson IA, Fisher JT, Frome PE, Smith BO, Guo S, Chanda S, et al. Low-cost,
transportable hydrogen fueling station for early market adoption of fuel cell
electric vehicles. Int J Hydrog Energy 2015;40:8122–7. https://doi.org/10.1016/
j.ijhydene.2015.04.066.

[188] Future of photovoltaic. IRENA; 2019.
[189] Attracting private investment to fund sustainable recoveries: The case of

Indonesia’s power sector – Analysis. IEA; n.d.
[190] Solar PV installation cost worldwide. Statista n.d; 2022. https://www.statista.

com/statistics/809796/global-solar-power-installation-cost-per-kilowatt/.
[Accessed 17 January 2024].

[191] Sens L, Neuling U, Kaltschmitt M. Capital expenditure and levelized cost of
electricity of photovoltaic plants and wind turbines – development by 2050.
Renew Energy 2022;185:525–37. https://doi.org/10.1016/j.renene.2021.12.042.

[192] Renewable power generation costs in 2022. IRENA; 2023.

F. Superchi et al. Applied Energy 377 (2025) 124645 

33 

https://doi.org/10.2172/1029796
https://doi.org/10.3390/en16135233
http://refhub.elsevier.com/S0306-2619(24)02028-2/rf0920
http://refhub.elsevier.com/S0306-2619(24)02028-2/rf0920
https://doi.org/10.1016/j.ijhydene.2015.04.066
https://doi.org/10.1016/j.ijhydene.2015.04.066
http://refhub.elsevier.com/S0306-2619(24)02028-2/rf0930
https://www.statista.com/statistics/809796/global-solar-power-installation-cost-per-kilowatt/
https://www.statista.com/statistics/809796/global-solar-power-installation-cost-per-kilowatt/
https://doi.org/10.1016/j.renene.2021.12.042
http://refhub.elsevier.com/S0306-2619(24)02028-2/rf0945

	On the importance of degradation modeling for the robust design of hybrid energy systems including renewables and storage
	1 Introduction
	1.1 Degradation of performance in sizing optimization of HESs
	1.2 Design of 100 % self-sufficient HESs
	1.3 Aims of the present study and novelty

	2 Reference case study: The hybrid energy system of the island of Tilos
	2.1 Wind turbine
	2.2 PV field

	3 Methodology
	3.1 Components activation logic
	3.2 Complete components models
	3.2.1 Electrolyzer
	3.2.2 Fuel cell
	3.2.3 High-pressure and low-pressure hydrogen tanks
	3.2.4 Hydrogen compressor
	3.2.5 Battery

	3.3 Simplified component models
	3.4 Hybrid simulation approach
	3.4.1 Battery SOH trend
	3.4.2 Electrolyzer conversion factor trend
	3.4.3 Fuel cell conversion factor trend

	3.5 Optimization framework
	3.5.1 Self-sufficiency degree
	3.5.2 Levelized cost of required energy
	3.5.3 Optimization algorithm

	3.6 Components prices and economic assumptions

	4 Results
	4.1 Comparison between different simulation approaches
	4.2 Optimization results
	4.2.1 PV expansion
	4.2.2 System supported by the lithium-ion BESS – Scenario 1
	4.2.3 System supported by BESS and P2G2P – Scenario
	4.2.4 Comparison between scenarios: “Only BESS” vs “BESS + P2G2P”

	4.3 Energy flows before and after the application of storage devices

	5 Discussion
	6 Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	Appendix A
	Appendix B
	References


