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A B S T R A C T

We prove that the basic structures of phase-field models for phase-transitions in non-isothermal setting
can be derived all together from a unique principle requiring structure invariance of the second law of
thermodynamics, written as a Clausius-Duhem inequality, under orientation-preserving diffeomorphism-based
changes of observer and standard regularity conditions. We thus prove that the independent scalar balance of
actions driving phase transitions does not require to be postulated, as it was in Gurtin’s 1996 proposal, rather it
is a natural consequence of the invariance requirement adopted and maintains independence from constitutive
choices. The approach discussed here is also a model-building framework for the dynamics of complex bodies
and allows one to show that the microstructural behavior can be responsible of effects leading to wave-type
heat propagation. The results indicate another role for the second law of thermodynamics, in addition to being
a source of constitutive restrictions and compatibility or stability conditions.
1. Introduction

The introduction of fields as peculiar descriptors of phase transitions
has been raised at the status of paradigm in Landau’s work [1], in which
phase fields enter the description of states and their evolution laws have
variational origin: the time derivative of these field is determined by
the variational derivative of a free energy (see also [2–4]). Transport
of matter during the transition has been then considered by Cahn
and Hilliard [5,6], who also followed a variational view. The derived
evolution law, commonly known as the Cahn-Hilliard equation con-
verges to the Hale-Shaw model in a suitable sense [7]. Its structure and
physical significance stimulated interest for mathematical analyses with
consequent significant results. They deal with solution estimates [8],
stability conditions [9], existence of weak solutions even for variants of
the Cahn-Hilliard equation [10–13], stochastic perturbations [14], and
statistical mechanics based non-local extensions [15,16]. Miranville’s
book describes the scenario of pertinent analyses [17].

Balance equations, however, are independent in structure from
constitutive prescriptions, as repeatedly pointed out by Truesdell’s
school [18–20]. Constitutive restrictions emerge then from the second
law once the list of state variables has been chosen [21,22]. On this cul-
tural ground, in 1996 Gurtin [23] derived the Cahn-Hilliard equation
in a not necessarily variational setting by postulating a scalar balance
of microstructural actions driving the phase transition, which he called
a microforce balance; precisely, he considered first an integral balance
of the type

∫b
(𝛽 − 𝑧) d𝑥 + ∫𝜕b

h ⋅ 𝑛 d2(𝑥) = 0 (1)

and presumed it holds for any body part b (the interposed dot means
scalar product). In the previous equation, 𝛽 is a scalar external bulk
action, while 𝑧 is an internal one, and h a vector contact action.
Under appropriate (obvious) regularity, the arbitrariness of b implies
the pointwise scalar balance

𝛽 − 𝑧 + divh = 0 . (2)

Gurtin [23] exploited the postulated balance in its pointwise scalar
form (2). His approach justified various extensions of the Cahn-Hilliard
equation including dissipative terms [24–28]. Constitutive structures
enter, indeed, at a later stage and are restricted by the second law of
thermodynamics.

Indeed, independent scalar balances of interactions associated with
material changes at a certain spatial scale were already postulated by
Nunziato and Cowin in the case of scalar (or pseudo-scalar) fields [29]
(see also [30]). Above all, Capriz considered balances of interactions
associated with manifold-valued phase fields [31,32], a choice that
unified available models of the influence of microstructural events on
the overall macroscopic material behavior. These models postulated
balance equations in strong or weak form, the latter also called the
principle of virtual power, or virtual work (see [33] for a postulate of
the weak form of the balance equations for interactions associated
with phase fields). However, if we would accept such a principle, we
would have the need to presume a priori an explicit expression for
the internal power, besides the one of external actions; that means we
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should assume as granted a priori the existence of a microstructural
self-action (which is not present in the external power, while it appears
only in the internal one) and the representation of microstructural
contact actions in terms of microstress (in the case of Eq. (2), self-
actions and contact actions associated with the phase transition are
represented—we repeat—by 𝑧 and h, respectively). Such assumptions
are not necessary when we start only from the external power and,
for non-scalar (and non-pseudo-scalar) phase fields, we impose the
invariance of such a power under rigid-body type changes of ob-
server [34,35]. This approach allows one to derive the representation
of microstructural contact actions in terms of microstress and the need
of a microstructural self-action [36,37]. However, it fails for scalar
(or pseudo-scalar) phase fields because a rotating observer does not
perceive changes of R-valued fields.

To overcome the difficulty we follow a new path based on a require-
ent of structure invariance of the second law written in a Clausius-
uhem form, and generalize a view proposed first in [38] and refined

n [39,40].
From the invariance in structure of the second law of thermody-

amics and without specifying the list of state variables we derive the
so-called “microforce balance’’ [23] only postulated by Gurtin in [23]
(see also [41,42]). Along the way we also obtain the representation
of contact microscopic actions in terms of a vector map with values
h and the necessary occurrence of a self-action 𝑧. The approach pre-
serves the independence of the balance equations from the constitutive
prescriptions.

The results justify not only the viscous-type generalization of the
Cahn-Hilliard equation, but also, in the non-isothermal setting treated
here, it allows possible non-Fourier effects in the heat propagation
(for an account of other hyperbolic-type schemes of heat propagation
see [43]). We thus extend the procedure to general complex bodies,
paying particular attention to fluids, so we refer in Section 11 to generic
manifold-valued phase-fields as descriptors of the material morphology
at a micro-scale 𝜆.

For the sake of simplicity, until Section 10 included we will refer
to orthonormal frames of reference unless otherwise stated. In Sec-
tion 11 we will consider general frames of reference, so that we will
distinguish between contravariant and covariant tensor components;
also we will distinguish between the (spatial) derivative operator 𝐷
and the gradient ∇, which is the vector-type operator associated with
the covector-type operator 𝐷, namely ∇ = 𝐷♯ and 𝐷 = ∇♭. We
will also distinguish between transpose (indicated by the superscript
⊤) and adjoint (indicated by the superscript ∗) of seconod-rank 1-
contravariant, 1-covariant tensors, the two operations being coincident
when we refer to orthonormal frames of reference.

2. Basic fields

Let  a simply connected open domain in R3 with surface-like
Lipschitz boundary oriented by the outward unit normal 𝑛 to within a
finite number of corners and edges. The domain  represents here the
macroscopic current configuration of a two-phase continuous body; so,
 depends on time. Thus, we adopt an Eulerian representation and do
not call upon any reference configuration.

A vector field 𝑣 ∶= �̃�(𝑥, 𝑡) ∈ R3 represents at every place 𝑥 ∈  and
time 𝑡 the velocity of material elements. We take �̃� to be continuous and
continuously differentiable; so, at first we avoid considering the shock set
for the sake of simplicity.

A scalar field (𝑥, 𝑡) ⟼ 𝖼 ∶= �̃�(𝑥, 𝑡) ∈ [0, 1] indicates the void volume
fraction density of one phase. We presume that

• 𝖼 ∶= �̃�(𝑥, 𝑡) refers at instant 𝑡 to a spatial window with diameter
𝜆 > 0 and mass center at 𝑥, so that 𝜆 defines the microscopic scale
at which we look at, and

• the field �̃� is twice continuously differentiable.
2

t

We compute

∇̇𝖼 = ∇�̇� − ∇𝖼∇𝑣 .

Finally, a continuous and continuously differentiable real-valued
field �̃� describes at 𝑥 ∈  and 𝑡 ∈ R the absolute temperature 𝜗 ∶= �̃�(𝑥, 𝑡)
in Eulerian representation.

3. Mass balance

Let 𝜌𝖼 ∶= �̃�𝖼(𝑥, 𝑡) be the mass density of a phase at 𝑥 and 𝑡, with �̃�𝖼 a
continuous and continuously differentiable function. We have 𝜌𝖼 = 𝜌𝖼𝖼,

ith 𝜌𝖼 the (positive) constant mass density per unit volume of the pure
hase.

Let b be any connected subset of  with non-vanishing volume and
urface-like Lipschitz boundary oriented by the outward unit normal 𝑛
o within a finite number of corners and edges. We call b a part of .
or the mass balance of a single phase in b, we thus write

d
d𝑡 ∫b

𝜌𝖼 d𝑥 = −∫𝜕b
h̄𝖼 ⋅ 𝑛 d2(𝑥) , (3)

here h̄𝖼 is a mass flux depending on 𝑥 and 𝑡. If h̄𝖼(⋅, 𝑡) ∈ 𝐶1(,R3) ∪
(̄,R3) at every 𝑡, after using transport and divergence theorems, the
rbitrariness of b implies

̇𝖼 + 𝜌𝖼 div𝑣 = −divh̄𝖼 .

y setting h𝖼 = 𝜌𝖼
−1h̄𝖼, we thus get

̇ + 𝖼 div𝑣 = −divh𝖼 . (4)

he whole mass density is 𝜌 ∶= 𝜌𝖼 + 𝜌1−𝖼, where 𝜌1−𝖼 is the mass
ensity of the complementary phase, with h̄1−𝖼 the associated flux. If
e presume full conservation, that is h̄𝖼 = −h̄1−𝖼, we have

̇ + 𝜌 div𝑣 = 0 .

. Diffeomorphism-based changes of observer

Observers are frames of reference in all spaces adopted to describe
he geometry of a body and its motion.

We consider changes of observer leaving invariant the time scale.
e thus take a parameterized family

{

𝖿𝑠
}

of orientation-preserving
iffeomorphisms 𝖿𝑠 ∈ Diff(R3,R3), which is differentiable with respect
o 𝑠 and is such that

0(𝑥) = 𝑥 ,

rite 𝖿𝑡,𝑠 for the flux defined by 𝖿𝑡,𝑠 ∶= 𝖿𝑡◦𝖿
−1
𝑠 . The vector field with

alues

̄(𝑥, 𝑡) ∶=
d𝖿𝑡,𝑠
d𝑡

|

|

|

|𝑠=𝑡
(𝑥)

s the infinitesimal generator of the action of
{

𝖿𝑠
}

at 𝑠 = 𝑡.
Let 𝑣 the velocity evaluated by an observer  and 𝑣′ the one

ecorded by ′, an observer linked with  by 𝖿𝑠,𝑡. We indicate by 𝑣⋄

he pull-back along 𝖿𝑠, at 𝑠 = 𝑡, of 𝑣′ to ; it is given by
⋄(𝑥, 𝑡) ∶= 𝑣(𝑥, 𝑡) + �̄�(𝑥, 𝑡) . (5)

Since 𝖿𝑡,𝑠 deforms the space, in principle an observer ′ linked to 
y 𝖿𝑠 may record a value of 𝖼 different from the one measured by .
ith �̇� and �̇�′ the time rates of 𝖼 recorded by  and ′, respectively,

or the pull-back �̇�⋄ of �̇�′ to  we write

̇ ⋄(𝑥, 𝑡) ∶= �̇�(𝑥, 𝑡) + v(𝑥, 𝑡) , (6)

here v(⋅, ⋅) is a differentiable function.
Being associated with the volume measure, 𝖼 behaves as a pseudo-

calar because it transforms as (det ∇𝖿𝑡,𝑠)𝖼(𝖿𝑡,𝑠(𝑥), 𝑡). Thus, by computing
he derivative with respect to 𝑡 and setting 𝑡 = 𝑠, we obtain formula (6).
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When 𝖿𝑠 is an isometric orientation-preserving map, thus �̄�(𝑥, 𝑡) =
�̂�(𝑡)+𝐪(𝑡)×(𝑥−𝑥0), with �̂�(𝑡) and 𝐪(𝑡) the values in R3 of time-dependent
smooth maps, and 𝑥0 an arbitrary point, v(𝑥, 𝑡) vanishes at every 𝑥 and
𝑡. Indeed, 𝖼 is insensitive to rigid translations in space because at 𝑥 and
𝑡 it refers to a property that is inner to the material element at 𝑥 in the
instant 𝑡.

Assumption 4.1. We consider admissible those changes of observer
such that �̄� and v are differentiable and bounded, and their derivatives
are also bounded.

5. External power of actions

The fields describing how instantaneously the body morphology
changes are �̃� and �̃�. Given any arbitrary part b of the current configu-
ration , we consider bulk and contact actions external to b. They are
defined by the power 𝑒𝑥𝑡

b
(𝑣, �̇�) that they develop, namely

𝑒𝑥𝑡
b

(𝑣, �̇�) ∶= ∫b
(𝑏‡ ⋅ 𝑣 + 𝛽�̇�) d𝑥 + ∫𝜕b

(𝗍𝜕 ⋅ 𝑣 + 𝜏𝜕 �̇�) d2(𝑥) ,

where d2 is the surface measure. 𝗍𝜕 = �̃�𝜕(𝑥, 𝑡) is a vector-valued density:
𝗍𝜕 is a covector, namely it is dual to 𝑣; it represents first-neighbor
interactions across 𝜕b, so it depends on the boundary itself, as indicated
by the subscript 𝜕. 𝜏𝜕 ∶= 𝜏𝜕(𝑥, 𝑡) is a scalar density representing first-
neighbor interactions across 𝜕b due to phase changes, so it depends
on 𝜕b, as indicated by the subscript 𝜕. 𝑏‡ and 𝛽 represent, respectively,
standard bulk forces and a possible scalar (𝛽) external bulk direct action
on the phase change. In particular, as usual, 𝑏‡ is taken to be the sum
of inertial 𝑏𝑖𝑛 and non-inertial 𝑏 components, namely 𝑏‡ = 𝑏𝑖𝑛 + 𝑏.

Remark 1. In the general model-building framework for the mechanics
of complex materials, fields �̃� describing the material morphology at a
small scale 𝜆 enter the stage [32,36,44]. By maintaining the treatment
as general as possible to include a variety of special cases, we select �̃�
as a map with values 𝜈 ∶= �̃�(𝑥, 𝑡) on a finite-dimensional, differentiable,
geodesic-complete, Riemannian manifold . (Here the role of 𝜈 is
played by 𝖼.) In that general setting, the above expression of 𝑒𝑥𝑡

b
also

holds, provided that the product 𝜏𝜕 �̇� be substituted by 𝜏𝜕 ⋅ �̇�, where �̇�
belongs to the tangent space 𝑇𝜈 to  at 𝜈 = �̃�(𝑥, 𝑡). In this case 𝜏𝜕 is
an element of the cotangent space 𝑇 ∗

𝜈 , that is the space of linear maps
over 𝑇𝜈. The interposed dot means duality pairing. When we consider
changes of observer determined by rigid-body motions, and 𝜈 ∈  is
not a scalar (or a pseudo-scalar), 𝜈 is generically affected by rotations.
So, asking invariance of the external power alone under this rigid-body-
motion-type changes of observer is a reliable way to obtain and justify
balances of standard and microstructural interactions, independently of
their constitutive structures (see pertinent proofs in [36], [34], [35],
where, also, the notion of a relative power is introduced to derive from
its invariance independent balances of standard, microstructural, and
configurational actions, all together from a unique source). Here we
cannot follow such a path because 𝖼 is not sensitive to rigid-body-
type changes of observer. This is a reason pushing us to follow the
alternative that we discuss.

6. Balance of energy

For any part b ∈ , we presume that its internal energy (b) is a time-
dependent Radon measure. Since R3 is a locally compact topological
space, the assumption implies that there exists an energy density 𝑒 =
𝑒(𝑥, 𝑡) such that

(b) = ∫b
𝑒 d𝑥 .

We assume that 𝑒 is continuous and continuously differentiable, and
that the derivatives of 𝑒 are bounded over  at every 𝑡.
3

i

We thus write the balance of energy in its Eulerian representation as
follows:
d
d𝑡 ∫b

𝑒 d𝑥−∫𝜕b
𝑒𝑛 ⋅𝑣 d2(𝑥)−𝑒𝑥𝑡

b
(𝑣, �̇�)+∫𝜕b

𝑎𝜕 d2(𝑥)−∫b
𝑟 d𝑥 = 0 , (7)

hich we presume to hold for any choice of 𝑣, �̇�, and b. In Eq. (7), 𝑎𝜕
s a scalar heat flux, which depends on space, time, and the boundary
b, while 𝑟 is a heat source.

Set 𝑣 = 0 and �̇� = 0. By using the standard transport theorem on the
irst integral, the previous balance reduces to

b
�̇� d𝑥 + ∫𝜕b

𝑎𝜕 d2(𝑥) − ∫b
𝑟 d𝑥 = 0 .

s assumed above, �̇� is bounded. Thus, if 𝑟 is also bounded over (𝑡)
t every instant and 𝑎𝜕 is continuous with respect to 𝑥, the classical
auchy theorem on fluxes implies that 𝑎𝜕 depends on 𝜕b only through
he normal 𝑛 at all points where 𝑛 is well-defined, that is there exist

function �̃� such that 𝑎𝜕(𝑥, 𝑡) = �̃�(𝑥, 𝑡, 𝑛) = −�̃�(𝑥, 𝑡,−𝑛), and also it is
inear with respect to 𝑛, namely there exist a vector function �̃� with
alues 𝗊 ∶= �̃�(𝑥, 𝑡) ∈ R3 such that

𝜕(𝑥, 𝑡) = �̃�(𝑥, 𝑡, 𝑛) = �̃�(𝑥, 𝑡) ⋅ 𝑛 = 𝗊 ⋅ 𝑛 .

o, 𝗊 is the vector heat flux.
Thus, we rewrite Eq. (7) as

b
�̇� d𝑥 − 𝑒𝑥𝑡

b
(𝑣, �̇�) + ∫𝜕b

𝗊 ⋅ 𝑛 d(𝑥) − ∫b
𝑟 d𝑥 = 0 . (8)

e take �̃� ∈ 𝐶1(,R3) ∪ 𝐶(̄,R3). Thus, we get

∫b
�̇� d𝑥 − 𝑒𝑥𝑡

b
(𝑣, �̇�) − ∫b

(𝑟 − div𝗊) d𝑥 = 0 . (9)

. Entropy inequality

For any b, we also presume that its entropy 𝖧(b) is a time-dependent
adon measure. Thus, there is a density 𝜂 = �̃�(𝑥, 𝑡) such that

(b) = ∫b
𝜂 d𝑥 .

s for the internal energy density, we assume that �̃� is continuous and
ontinuously differentiable, and that the derivatives of �̃� are bounded
ver  at every 𝑡. We thus write the entropy inequality as

d
d𝑡 ∫b

𝜂 d𝑥 − ∫𝜕b
𝜂𝑛 ⋅ 𝑣 d2(𝑥) + ∫𝜕b

𝓁𝜕 d2(𝑥) − ∫b
𝑠 d𝑥 ≥ 0 , (10)

hich we presume to hold for any choice of b. The boundary term 𝓁𝜕
s a scalar entropy flux, while 𝑠 is an entropy source. More in detail, 𝓁𝜕
epends on 𝑥, 𝑡, and the boundary 𝜕b.

If in addition to �̇� also 𝑠 is bounded over (𝑡) at every 𝑡, and 𝓁𝜕(⋅, 𝑡) is
ontinuous with respect to 𝑥 at every 𝑡, by Cauchy’s theorem we obtain
hat 𝓁𝜕 depends on 𝜕b only through 𝑛 at all places in which 𝑛 is well-
efined, namely there exists a function 𝓁 such that 𝓁𝜕(𝑥, 𝑡) = 𝓁(𝑥, 𝑡, 𝑛) =
𝓁(𝑥, 𝑡,−𝑛). Moreover, 𝓁 is linear in 𝑛; it means that there exists a vector
ntropy flux �̃� with values 𝗁 = �̃�(𝑥, 𝑡) such that

𝜕(𝑥, 𝑡) = 𝓁(𝑥, 𝑡, 𝑛) = �̃�(𝑥, 𝑡) ⋅ 𝑛 = 𝗁 ⋅ 𝑛 .

onsequently, we write the entropy inequality as

∫b
�̇� d𝑥 + ∫𝜕b

𝗁 ⋅ 𝑛 d2(𝑥) − ∫b
𝑠 d𝑥 ≥ 0 . (11)

e take �̃�(⋅, 𝑡) ∈ 𝐶1(,R3) ∪ 𝐶(̄,R3) and assume that both �̇� and 𝑠 are
ontinuous; so, due to the arbitrariness of b, we get the local entropy
nequality

�̇� ≥ 𝑠 − div𝗁 (12)
n .
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Remark 2. A crucial step in the proof of Cauchy’s theorem for fluxes
is an estimate for the boundary flux (see common treatises, for exam-
ple [45, Ch. 1]). Consequently, for the theorem itself an integral balance
is not strictly necessary; it may be relaxed, in fact, to an inequality like
(10), for example. This circumstance is the key point on which we base
the whole argument developed in this paper.

8. The second law in terms of the free energy

We accept the following relations between heat flux, source, and
their entropy-type counterparts:

𝑠 = 𝑟
𝜗
, 𝗁 =

𝗊

𝜗
+ 𝜔 ,

here 𝜔 is an extra entropy flux, with respect to what can be attributed
to the heat flux 𝗊.

By inserting these relations into the local entropy inequality (12),
we get

𝜗�̇� + 𝜗div𝜔 − 1
𝜗
𝗊 ⋅ ∇𝜗 ≥ 𝑟 − div𝗊 .

With 𝜓 the Helmoltz free energy density defined by

𝜓 ∶= 𝑒 − 𝜗𝜂,

we eventually get

∫b
(�̇� + 𝜂�̇�) d𝑥 − 𝑒𝑥𝑡

b
(𝑣, �̇�) + ∫b

(𝜗−1𝗊 ⋅ ∇𝜗 − 𝜗div𝜔) d𝑥 ≤ 0 , (13)

which is a version of the Clausius-Duhem inequality that we exploit here
as a source of all ingredients describing the motion of bodies with phase
transitions.

Remark 3. In non-isothermal setting, still under large strain regime,
but with no phase transitions and the extra entropy flux 𝜔, such an
nequality has been introduced first by Coleman and Noll [21,22],
nd exploited for determining constitutive restrictions, admissibility
onditions for the shock set, and stability. Here, we extend such a view
nd assign a further role to the Clausius-Duhem inequality.

. Structure invariance under the action of diffeomorphism-based
hanges of observers: derivation of Gurtin’s postulate

.1. Free energy as a density of the volume form

The free energy density 𝜓 is a function of state 𝜍 left unspecified for
the moment. Also, 𝜓 is a density associated with the volume form. Thus,
according to a proposal in [46], we assume that 𝜓 varies tensorially
under the action of 𝖿𝑠 on the ambient space. By interpreting such a
tensoriality as in [38], we consider the change �̇� ⟼ �̇�⋄, where

̇ ⟼ �̇�⋄ = �̇� + 𝜑(𝜍; ∇�̄�, v,∇v,…) (14)

and 𝜑 is a state function that depends also on ∇�̄�, v, ∇v, and possibly
on higher-order derivatives of 𝗏 and v, as indicated by the presence of
dots. Precisely, �̇�⋄ is a pull-back to the observer  of the time rate of
𝜓 evaluated by another observer ′. The relation (14) is a counterpart
for �̇� of (5) and (6).

Also, 𝜑 is chosen to be independent of �̄� alone; when 𝖿𝑠 is an
orientation-preserving isometric map 𝜑 = 0 by assumption.

Remark 4. Imposing 𝜑 = 0 when 𝖿𝑠 represents a rigid-body motion is
equivalent to require free energy objectivity (that is invariance under
the action of 𝑆𝑂(3)).

Remark 5. Considering 𝜑 to be independent of �̄� alone is tantamount
to require (superposed) Galilean invariance for 𝜑. Indeed, consider 𝜑
to be such that

𝜑 = 𝜑(𝜍; �̄�,∇�̄�, v,∇v,…)
4

and superpose a further Galilean change of observer so that 𝗏 becomes
�̄�+𝑎, with 𝑎 ∈ R3 a constant vector field. Impose now that 𝜑 be Galilean
invariant under this superposed change of observer. It means that

𝜑(𝜍; �̄�,∇�̄�, v,∇v,…) = 𝜑(𝜍; �̄� + 𝑎,∇�̄�, v,∇v,…)

for any 𝑎. Thus, 𝜑 = 𝜑(𝜍; ∇�̄�, v,∇v,…).

Remark 6. The nature of 𝜑 is specified when we assign the list of state
variables entering 𝜓 . For example, assume 𝜓 = �̃�(𝑥, 𝑔, 𝖼,∇𝖼, 𝜗), with 𝑔
the spatial metric, and require tensoriality to 𝜓 in the sense specified
in [46], namely impose that after a change of observer the energy
should be the same evaluated over 𝖿∗𝑡,𝑠◦𝑔. Consider, in addition, the
pertinent changes of 𝖼 and ∇𝖼. Also, leave invariant the temperature.
Thus, by computing the time derivative of 𝜓 at 𝑡 = 𝑠 we get

�̇�⋄ = �̇� +
𝜕𝜓
𝜕𝑔

⋅ L�̄�𝑔 +
𝜕𝜓
𝜕𝖼

v +
𝜕𝜓
𝜕∇𝖼

⋅ ∇v , (15)

where L�̄�𝑔 is the Lie derivative of 𝑔 along �̄�; so in this specific case

𝜑(𝜍; ∇�̄�, v,∇v,…) =
𝜕𝜓
𝜕𝑔

⋅ L�̄�𝑔 +
𝜕𝜓
𝜕𝖼

v +
𝜕𝜓
𝜕∇𝖼

⋅ ∇v .

Since 𝜓 involves also the entropy density, accepting a rule like (14)
mplies the acceptance of a transformation given by

�̇� ⟼ �̇�⋄ = �̇� + �̄�(𝜍; ∇�̄�, v,∇v,…) , (16)

where �̄� is a different function from 𝜑 but with the same properties.

Assumption 9.1. We assume that both 𝜑 and �̄� are bounded over (𝑡)
at every instant.

We leave invariant the temperature and the whole term 𝗊 ⋅ ∇ ln 𝜗
appearing in the inequality (13).

Remark 7. Invariance under diffeomorphism-based changes of ob-
server has been taken in [46] for the first law of thermodynamics,
while in [38,39] for the second law in isothermal setting. In those
cases, however, the list 𝜍 of state variables has been specified, while
here 𝜍 is left unspecified while deriving balance equations. The circum-
stance maintains conceptually distinguished the balance equations from
constitutive laws.

Remark 8. If we think in terms of a discrete-to-continuum view, thus
starting from molecular dynamics and reaching a continuum scheme as
a coarse-grained representation of the molecular agitation, we may see
that the heat flux depends on relative velocities, namely, fluctuations
with respect to the average velocity of a molecular cluster (see [47] and
the amended translation [48]). Consequently, although the records of
velocity can vary from an observer to another, due to the action of 𝖿𝑠,
differences of velocities (fluctuations) do not vary.

9.2. Covariance principle in dissipative setting

Write in short the inequality (13) as A ≤ 0 and consider it as
referred to a given observer . For another observer ′ the inequality
writes (say) A′ ≤ 0. Assume that the change  ⟶ ′ is induced by
𝖿𝑠 ∈ Diff

(

R3,R3), with consequences on 𝑣, �̇�, and �̇� already described.
The pull-back of A′ into  along the action of 𝖿𝑠 gives a relation that,

according to Eqs. (5), (6), and (14), reads A∙ ≤ 0, with A∙ = A + A†,
where A† involves the rates �̄� and v̇.

If we reverse the process and consider the change ′ ⟶  as
induced by 𝖿−1𝑠 , the pull-back of A ≤ 0 into the frame defining ′ reads
A′ + A‡ ≤ 0, where A‡ is in principle different from A†.

We impose the following covariance principle in dissipative setting : it
states that both A† and A‡ are always non-positive.



Physica D: Nonlinear Phenomena 467 (2024) 134258P.M. Mariano

a
b
e
p
t

a
s
r
c
t
t
i
r
i
i
s
i
m

9
n

c

Axiom 9.1. In any diffeomorphism-based change of observer, the addi-
tional term arising after pulling-back the Clausius-Duhem inequality (13)
evaluated by the second observer in a frame defining the first observer is
always non positive and vanishes when observer changes are rigid.

A previous version of this axiom dates back 2013 [38]; it was
introduced with reference to finite strain plasticity. Then, it has been
rewritten for general classical field theories involving maps between
finite-dimensional Riemannian manifolds [39]. In both cases, it has
been referred to a non-isothermal Clausius-Duhem inequality written in
Lagrangian representation; its expression also involved the so-called rel-
tive power, which extends the notion of external power to cover possi-
le structural mutations in the body structure, due to the occurrence of
volving defects. In this case, indeed, a Lagrangian representation may
rofitably exploit a family of infinitely many reference configurations
hat differ one another only by a (say) defect pattern.

Differences with what has been discussed in [38,39] (see also [40])
re as follows: (i) We refer to a full Eulerian representation of the
econd law. (ii) We consider a non-isothermal setting. (iii) We do not
efer to the relative power because we do not include any reference
onfiguration (however, we could account for it, even by resorting
o the inverse motion, when, for example, we would like to describe
he relative motion of a solid body embedded into a fluid). (iv) More
mportant: in [38,39] the state variables are specified before stating a
ule analogous to (14); at variance, here such a list of state variables
s left unspecified at first; the specification of state variables enters
nto play only when we evaluate constitutive restrictions, while it
hares no matter with the first consequences of the covariance axiom
n dissipative setting. This peculiar aspect allows us—we repeat—to
aintain distinguished balance laws from constitutive issues.

.3. First consequence of the covariance axiom: representation of first-
eighbor interactions and local balances

From inequality (13), the covariance axiom under the rules of
hanges of observers considered implies

∫b
(𝜑 + �̄�) d𝑥 − 𝑒𝑥𝑡

b
(�̄�, v) ≤ 0 . (17)

• Step 1. Fix v = 0, leaving �̄� to be arbitrary. The inequality (17)
reduces to

∫b
(𝜑 + �̄�)||

|v=0
d𝑥 − ∫b

𝑏‡ ⋅ �̄� d𝑥 − ∫𝜕b
𝗍𝜕 ⋅ �̄� d2(𝑥) ≤ 0 .

Under Assumptions 4.1 and 9.1, if |𝑏‡| is also bounded over  and
𝗍𝜕 is continuous with respect to 𝑥, Cauchy’s theorem on fluxes,
applied to �̂�𝜕 ∶= −𝗍𝜕 , assures that 𝗍𝜕 depends on 𝜕b only through
the normal 𝑛 at all points where it is well-defined, that is there
exists a vector-valued map �̃� such that 𝗍𝜕 = �̃�(𝑥, 𝑡, 𝑛) = −�̃�(𝑥, 𝑡,−𝑛),
which is also linear with respect to 𝑛, namely there exists a
second-rank tensor-valued map �̃� with values 𝝈 = �̃�(𝑥.𝑡) such that
the standard relation

�̃�(𝑥, 𝑡, 𝑛) = �̃�(𝑥, 𝑡)𝑛 = 𝝈𝑛

holds true. When �̃�(⋅, 𝑡) ∈ 𝐶1(,R3 ⊗ R3) ∪ 𝐶(̄,R3 ⊗ R3), we
compute

∫b
(𝜑 + �̄�)||

|v=0
d𝑥 − ∫b

((𝑏‡ + div𝝈) ⋅ �̄� + 𝝈 ⋅ ∇�̄�) d𝑥 ≤ 0 .

Thus, the arbitrariness of �̄� and the independence of (𝜑+ �̄�) on �̄�
imply the local balance of forces

𝑏‡ + div𝝈 = 0 . (18)

As already recalled, the standard bulk force 𝑏‡ is traditionally as-
sumed to be sum of inertial, 𝑏𝑖𝑛, and non-inertial, 𝑏, components,
with 𝑏𝑖𝑛 defined to be such that
d 1𝜌|𝑣|2 d𝑥 − 1𝜌|𝑣|2(𝑣 ⋅ 𝑛) d2(𝑥) + 𝑏𝑖𝑛 ⋅ 𝑣 d𝑥 = 0 ,
5

d𝑡 ∫ 2 ∫𝜕 2 ∫
for any choice of compactly supported velocity fields; 𝜌 is mass
density. The arbitrariness of 𝑣 and the standard transport theo-
rem (recall that we are working in Eulerian representation, so
 is the current configuration and depends on time) imply the
identification 𝑏𝑖𝑛 = −𝜌�̇� to within powerless (Corioli’s type) terms.

• Step 2. Consider v ≠ 0 and arbitrary as �̄�. With the results of Step
1, the inequality (17) reads now

∫b
(𝜑 + �̄�) d𝑥 − ∫b

(𝝈 ⋅ ∇�̄� + 𝛽v) d𝑥 − ∫𝜕b
𝜏𝜕v d2(𝑥) ≤ 0 .

Under Assumptions 4.1 and 9.1, and the boundedness of ∫b 𝝈 ⋅
∇�̄� d𝑥 assured by the results in Step 1, if |𝛽| is also bounded
over (𝑡) at every instant 𝑡 and 𝜏𝜕 is continuous as a function
of 𝑥, Cauchy’s theorem on fluxes, applied to 𝜏𝜕 ∶= −𝜏𝜕 , allows
us to assures that 𝜏𝜕 depends on 𝜕b only through 𝑛 at all points
where 𝑛 is well-defined, namely there exists a function 𝜏 such that
𝜏𝜕 = 𝜏(𝑥, 𝑡, 𝑛) = −𝜏(𝑥, 𝑡,−𝑛), which is also linear with respect to 𝑛,
so that there exists a vector-valued map h̃ with values h = h̃(𝑥.𝑡)
such that

𝜏(𝑥, 𝑡, 𝑛) = h̃(𝑥, 𝑡) ⋅ 𝑛 = h ⋅ 𝑛 .

When h̃(⋅, 𝑡) ∈ 𝐶1(,R3) ∪ 𝐶(̄,R3), we compute

∫b
(𝜑 + �̄�) d𝑥 − ∫b

(𝝈 ⋅ ∇�̄� + v(𝛽 + divh) + h ⋅ ∇v) d𝑥 ≤ 0 .

Since (𝜑+�̄�) depend on v, we can only say that there is a function
�̃�, with values 𝑧 ∶= �̃�(𝑥, 𝑡) such that

𝛽 + divh = 𝑧 (19)

and the inequality

∫b
(𝜑 + �̄�) d𝑥 − ∫b

(𝝈 ⋅ ∇�̄� + 𝑧v + h ⋅ ∇v) d𝑥 ≤ 0 (20)

holds true for every choice of v, ∇v, and ∇�̄�. The equality sign
holds only when �̄� is determined by an isometry, namely �̄�(𝑥, 𝑡) =
�̂�(𝑡)+𝐪(𝑡)×(𝑥−𝑥0), where 𝑥0 is fixed and arbitrarily chosen in space,
while 𝑐(𝑡) and 𝑞(𝑡) are translational and rotational velocities, so
that v = 0.

We remark once again that in our derivation of Eq. (19), otherwise
postulated by Gurtin in [23] (and called a “microforce balance’’ in that
paper), we do not touch constitutive issues.

9.4. Exploiting the invariance requirement for the second law in a different
way

We can revisit Step 1 above by restricting �̄� to �̂�(𝑡) + 𝐪(𝑡) × (𝑥 − 𝑥0).
In this case v = 0, 𝜑 = 0, as already assumed, and the inequality (17)
reduces to the identity

𝑒𝑥𝑡
b

(�̂�(𝑡) + 𝐪(𝑡) × (𝑥 − 𝑥0), 0) = 0

for any choice of b, 𝑐(𝑡), and 𝑞(𝑡). Thus, we recover the setting described
by Noll [49], namely the invariance requirement for the external power
of standard forces under rigid-body type changes of observers. The
arbitrariness of b implies the integral balance of forces

∫b
𝑏‡ d𝑥 + ∫𝜕b

𝗍𝜕 d2(𝑥) = 0 (21)

and the one of couples, namely,

∫b
(𝑥 − 𝑥0) × 𝑏‡ d𝑥 + ∫𝜕b

(𝑥 − 𝑥0) × 𝗍𝜕 d2(𝑥) = 0 . (22)

Standard regularity assumptions already recalled in the previous
sections allow us to derive common results, such as dependence of 𝗍𝜕 on
𝜕b only through 𝑛, action-reaction principle, linearity with respect to 𝑛,

which is the existence of a stress tensor 𝝈, and the pointwise balance
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(18), when 𝑏‡(⋅, 𝑡) and 𝝈(⋅, 𝑡) have the regularity mentioned above. Thus,
from Eq. (22) and the local balance of forces, at every 𝑡 and 𝑥 we get

𝝈 ∈ Sym(R3,R3) , (23)

ith Sym(R3,R3) the space of symmetric second-rank tensors mapping
3 onto itself.

An analogous invariance argument cannot be adopted for 𝖼 because,
eing a pseudoscalar, it is insensitive to rigid-body type changes of ob-
ervers. At variance, for different types of microstructural descriptors,
he procedure based on external power invariance can be adopted and
eads to a nonstandard integral balance of couples, as we summarize in
ection 11 (see also [36,37]).

.5. Symmetry of 𝝈 from the inequality (20)

Let us identify �̄�(𝑥, 𝑡) with 𝑣(𝑥, 𝑡) and v with �̇�. The term 𝝈 ⋅∇�̄�+𝑧v+
h ⋅∇v in (20) becomes 𝝈 ⋅∇𝑣+𝑧�̇�+h ⋅∇�̇�; it is the internal power density:
the power performed in the relative change of place of neighboring
material elements and in the development of phase transitions, when
first-neighbor interactions are accounted for.

When �̄�(𝑥, 𝑡) = �̂�(𝑡) + 𝐪(𝑡) × (𝑥 − 𝑥0), we have 𝜑 = 0, v = 0, and the
identity sign holds in (20). Thus, arbitrariness of b and continuity of 𝝈
imply

𝝈 ⋅𝑊 = 0 ,

where 𝑊 = 𝑞× is skew-symmetric. Identity to zero and arbitrariness of
𝑊 imply once again the inclusion (23).

Attributing to the sum 𝝈 ⋅∇𝑣+ 𝑧�̇�+ h ⋅∇�̇� the role of internal power
is justified by the identity

𝑒𝑥𝑡
b

(𝑣, �̇�) = ∫b
(𝝈 ⋅ ∇𝑣 + 𝑧�̇� + h ⋅ ∇�̇�) d𝑥 , (24)

which follows by using the Gauss theorem and exploiting the validity
of the pointwise balances.

Remark 9. In other common approaches to multi-field descriptions of
non-simple bodies (see, e.g., [33]), the identity (24) is taken as a basic
principle. Accepting it, however, implies presuming a priori h and 𝑧,
without deriving them. In other words, initial acceptance of (24) would
reduce essentially to take Gurtin’s postulate expressed in a weak form,
which is unnecessary, as we have shown here.

10. Further consequences of the second law

Below, for the sake of simplicity, we restrict the analysis to con-
ducting viscous fluids with phase transitions. Extensions concerning
constitutive choices are straightforward. If we develop the analysis in
a purely Eulerian representation, so without involving any reference
configuration, as we do here, in the case of solids the spatial metric
enters the list of state variables (see [46]). However, we leave out this
case in the following developments because we just aim at showing
skeletal conceptual structures.

Consider the entropy extra flux 𝜔. We assume

𝜔 = 𝜇h𝖼 +𝜛 , (25)

where 𝜇 is the chemical potential given by the difference 𝜇 = 𝜇𝖼 −
𝜇1−𝖼 between the chemical potentials pertaining to the phase with
concentration 𝖼 and its complement, respectively. Here 𝜇 is taken to
e a continuous and continuously differentiable function. 𝜛 is the re-
aining part of the entropy extra flux not associated with the transport
escribed by h𝖼, rather possibly determined by further microstructural
ffects; it requires an appropriate constitutive law.

By taking into account Eqs. (24), (25), and (4), continuity of densi-
ies in the volume integrals and arbitrariness of b imply from (13) the
ocal inequality

�̇�−�̇�𝜂−𝝈 ⋅∇𝑣−(𝑧+𝜇)�̇�−h⋅∇�̇�+ 1
𝗊⋅∇𝜗−𝜗div𝜛−h ⋅∇𝜇−𝖼div𝑣 ≤ 0 . (26)
6

𝜗 𝖼 𝖼
We consider volume-preserving flows, a circumstance described by the
internal constraint

div 𝑣 = 0 . (27)

To account for it we adopt the standard additive decomposition of
𝝈 into active and reactive components, the former taken to be the
sum of energetic (𝝈𝑒), meaning determined by 𝜓 , and dissipative (𝝈𝑑)
omponents, the latter indicated by a superscript 𝑟. So, we have

= 𝝈𝑟 + 𝝈𝑒 + 𝝈𝑑 , (28)

ith 𝝈𝑟 presumed to be powerless, namely
𝑟 ⋅ ∇𝑣 = 0 (29)

or any choice of ∇𝑣. This implies the standard result
𝑟 = −𝜋𝐼 , (30)

here 𝜋 ∈ R is the pressure, and 𝐼 the unit tensor (when the frame
f reference is not orthonormal, 𝐼 is substituted by the specific spatial
etrics chosen). So, the inequality (26) reduces to

�̇�−�̇�𝜂−(𝝈𝑒+𝝈𝑑 )⋅∇𝑣−(𝑧+𝜇)�̇�−h⋅∇�̇�+ 1
𝜗
𝗊⋅∇𝜗−𝜗 div𝜛−h𝖼 ⋅∇𝜇 ≤ 0 . (31)

We assume that 𝜓 , 𝜂, 𝑧, 𝜇, h all depend on the list

𝖼,∇𝖼, 𝜗) .

e thus distinguish two cases that we think to be of particular promi-
ence. In discussing them, for the sake of simplicity we do not consider
iscous-type components for h and 𝑧. Taking them into account is rather
traightforward.

0.1. Case 1: 𝜛 = 0

By computing �̇� , the inequality (31) becomes

𝜕𝜓
𝜕𝜗

+ 𝜂
)

�̇� −
(

∇𝖼⊗
𝜕𝜓
𝜕∇𝖼

+ 𝝈𝑒
)

⋅ ∇𝑣 +
(

𝜕𝜓
𝜕𝖼

− (𝑧 + 𝜇)
)

�̇�

+
(

𝜕𝜓
𝜕∇𝖼

− h

)

⋅ ∇�̇� − 𝝈𝑑 ⋅ ∇𝑣 + 1
𝜗
𝗊 ⋅ ∇𝜗 − h𝖼 ⋅ ∇𝜇 ≤ 0 .

(32)

he arbitrariness of time rates involved implies the identities

= −
𝜕𝜓
𝜕𝜗

, 𝝈𝑒 = −∇𝖼⊗
𝜕𝜓
𝜕∇𝖼

, 𝑧 + 𝜇 =
𝜕𝜓
𝜕𝖼

, h =
𝜕𝜓
𝜕∇𝖼

, (33)

and

𝝈𝑑 ⋅ ∇𝑣 − 1
𝜗
𝗊 ⋅ ∇𝜗 + h𝖼 ⋅ ∇𝜇 ≥ 0 . (34)

his last (reduced) inequality is in general compatible with a structure
f 𝝈𝑑 , 𝗊, and h𝖼 that is a linear combination of ∇𝑣, ∇𝜗, and ∇𝜇, with
oefficients that are different for 𝝈𝑑 , 𝗊, and h𝖼. Here, we accept the
implest option for the sake of simplicity:
𝑑 = �̄�∇𝑣 , 𝗊 = −𝜅∇𝜗 , h𝖼 = 𝛼∇𝜇 , (35)

ith �̄�, 𝜅, and 𝛼 positive constants.
Also, the balance of couples (23) implies that the dyad ∇𝖼 ⊗ 𝜕𝜓

𝜕∇𝖼
must be symmetric. So, when 𝜕𝜓

𝜕∇𝖼 is proportional to ∇𝖼 the symmetry
s satisfied and we have

= 𝑓 (𝖼, 𝜗) + 1
2
𝖺(𝑥, 𝖼, 𝜗)|∇𝖼|2 , (36)

ith 𝖺(⋅, ⋅, ⋅) a differentiable function. The expression (36) has the
inzburg–Landau free energy structure. When 𝖺(𝑥, 𝖼, 𝜗) = �̄� = cost, the
alance of mass (4) becomes

̇ = −𝛼 𝛥
( 𝜕𝑓
𝜕𝖼

− 𝛽 − �̄�𝛥𝖼
)

. (37)

In particular, when 𝛽 = 0 and the process considered is isothermal, so
that 𝜓 = �̃�(𝖼,∇𝖼), Eq. (37) reduces to

̇ = 𝛼 𝛥
(

�̄�𝛥𝖼 − 𝑓 ′) , (38)
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which is in essence the Cahn-Hilliard equation, where the prime indi-
cates derivative of 𝑓 with respect to 𝖼. Further viscous regularization is
dmissible by considering for h a dissipative component that we leave
ut here for the sake of simplicity.

Eq. (38) does not account directly for the activation of the transi-
ion. As it is chosen in some standard descriptions of plastic phenom-
na, we could refer to an activation criterion saying that the right-hand
ide term of Eq. (38) belongs to the subdifferential of the indicator
unction of some admissibility set, which in the present case can be
0, 1] or some its sub-interval. Details on this (convex analysis) issue,
rimarily referred to first order phase transitions, can be found in [50,
h. 11].

Also, if we investigate existence of (at least) weak solutions for (37),
oupled with the balance of forces supplemented by pertinent constitu-
ive structures, we need to involve a maximum principle assuring that
remains in [0, 1] (see, for example, analyses in [51], although related

o a different physical setting).
By taking into account the identity (24) and exploiting the arbitrari-

ess of b and the continuity of the integral densities, from the energy
alance (9) we get the local form

̇ − 𝝈 ⋅ ∇𝑣 − 𝑧�̇� − h ⋅ ∇�̇� + div𝗊 − 𝑟 = 0 . (39)

Due to the constitutive restrictions (33) and (35), for non-viscous
odies (that is when 𝝈𝑑 = 0), the local balance (39) changes into

𝜕𝑒
𝜕𝜗
�̇� + 𝜗

(

𝜕𝜂
𝜕𝖼

�̇� +
𝜕𝜂
𝜕∇𝖼

⋅ ∇�̇� − ∇𝖼⊗
𝜕𝜂
𝜕∇𝖼

⋅ ∇𝑣
)

+ 𝜇�̇� + 𝜅 𝛥𝜗 − 𝑟 = 0 . (40)

Since 𝖼 refers to a spatial scale 𝜆, so it is of order 𝜆, and we
write 𝑂(𝜆) for this, given a differentiable function 𝓁(𝖼,∇𝖼), its partial
derivatives are of the order 𝜆 too, namely
𝜕𝓁
𝜕𝖼

∼ 𝑂(𝜆) and 𝜕𝓁
𝜕∇𝖼

∼ 𝑂(𝜆) .

Thus, since 𝜂 = �̃�(𝖼,∇𝖼, 𝜗) and 𝜇 = 𝜕𝜓
𝜕𝖼 − 𝑧, we have

𝜕𝜂
𝜕𝖼

�̇� ∼ 𝑂(𝜆2) ,
𝜕𝜂
𝜕∇𝖼

⋅∇�̇� ∼ 𝑂(𝜆2) , ∇𝖼⊗
𝜕𝜂
𝜕𝖼

⋅∇𝑣 ∼ 𝑂(𝜆2) , 𝜇�̇� ∼ 𝑂(𝜆2) .

Consequently, to within terms of order 𝑂(𝜆2), Eq. (40) reduces to the
standard parabolic description of heat propagation

c �̇� − 𝜅 𝛥𝜗 − 𝑟 = 0 ,

where c ∶= 𝜕𝑒
𝜕𝜗 is the specific heat.

Neglecting 𝑂(𝜆2) terms is a condition characterizing a range that we
an call the one of nearly isentropic flows in the present setting.

0.2. Case 2: 𝜛 ≠ 0: emergence of non-Fourier heat propagation

When 𝜛 ≠ 0, with the assumptions above we obtain the constitutive
estrictions (33), while the inequality (34) changes into

𝑑 ⋅ ∇𝑣 − 1
𝜗
𝗊 ⋅ ∇𝜗 + h𝖼 ⋅ ∇𝜇 ≥ 𝜗 div𝜛 , (41)

when viscous-type microstructural interactions are absent as in the pre-
vious section. The identities (35)1 and (35)3 are once again compatible
with the inequality (41), while, under (35)1 and (35)3, the inequality
itself is compatible with an extended structure for the heat flux given
by

𝗊 = −𝜅∇𝜗 + �̄� , (42)

where �̄� is an extra flux such that

�̄� ⋅ ∇𝜗 + 𝜗2 div𝜛 = 0 .

Let us assume �̄� = �̄�(𝜗, �̇�), with �̄�(𝜗, 0) = 0, meaning that �̄� has
non-equilibrium character. Such a choice is minimalist; by Truesdell’s
equipresence principle we would be free to admit that �̄� depends on
istory and present values of all state variables and their derivatives;
7

owever, we try to maintain a skeletal structure, to sketch only the
potentialities of what is discussed here. Thus, with the choice (42), the
local energy balance (39) becomes

c�̇�+𝜗
(

𝜕𝜂
𝜕𝖼

�̇�+
𝜕𝜂
𝜕∇𝖼

⋅∇�̇�−∇𝖼⊗
𝜕𝜂
𝜕𝖼

⋅∇𝑣
)

+𝜇�̇�−𝜅 𝛥𝜗+
𝜕�̄�
𝜕𝜗

⋅∇𝜗+
𝜕�̄�
𝜕�̇�

⋅∇�̇�−𝑟 = 0 .

(43)

In the nearly isentropic regime defined above, Eq. (43) reduces to

a�̇� − 𝜅 𝛥𝜗 + a1 ⋅ ∇𝜗 + a2 ⋅ ∇�̇� − 𝑟 = 0 , (44)

here a1 ∶= 𝜕�̄�
𝜕𝜗 and a2 ∶= 𝜕�̄�

𝜕�̇� . Eq. (44) describes hyperbolic-type
eat propagation. Its analogous has been derived in [44] by neglecting
acroscopic strain and attributing the emergence of �̄� to the power due

o microstructural interactions in the absence of external bulk actions.
he result in [44] is independent of the type of microstructure. The
yperbolic character of Eq. (44) has been analyzed in [52] where the
elocities of temperature propagation have been obtained when scalar
nd vector coefficients are constant. Analyses involving �̄� have been
arried out in [53,54].

0.3. Gross-scale interactions

In both cases considered above, the balance of standard forces (18),
ith the identification 𝑏𝑖𝑛 = −𝜌�̇�, becomes
𝜕𝑣
𝜕𝑡

+ (𝑣 ⋅ ∇)𝑣 − �̄�𝛥𝑣 = 𝑏 − ∇𝜋 − (∇𝖼)div
( 𝜕𝜓
𝜕∇𝖼

)

−
𝜕𝜓
𝜕∇𝖼

𝛥𝖼 . (45)

The last two terms in the previous balance are of the order 𝜆2, so to
within 𝑂(𝜆2) terms, Eq. (45) reduces to the Navier–Stokes system with
bulk external force 𝑏. When the viscosity �̄� depends on temperature,
Eq. (45) becomes

𝜌 𝜕𝑣
𝜕𝑡

+ (𝑣 ⋅∇)𝑣− �̄�𝛥𝑣− d�̄�
d𝜗

∇𝑣∇𝜗 = 𝑏−∇𝜋 − (∇𝖼)div
( 𝜕𝜓
𝜕∇𝖼

)

−
𝜕𝜓
𝜕∇𝖼

𝛥𝖼 . (46)

If we neglect terms of the order 𝑂(𝜆2), the previous equation reduces
to

𝜌 𝜕𝑣
𝜕𝑡

+ (𝑣 ⋅ ∇)𝑣 − �̄�𝛥𝑣 − d�̄�
d𝜗

∇𝑣∇𝜗 + ∇𝜋 = 𝑏 . (47)

1. Extending the results to a model-building framework for com-
lex fluids

1.1. Morphology and changes of observers

The methodology constructed on the requirement of structure in-
ariance of the Clausius-Duhem inequality under diffeomorphism-based
hanges of observer has an intrinsic perspective going far beyond what
eals with Gurtin’s postulate and the Cahn-Hilliard equation

To verify such a claim, consider a generic complex fluid, namely one
ndowed with active microstructure, which we leave unspecified for the
ake of generality. The adjective active refers to the circumstance that
icrostructural events (as the phase transition described in the previous

ections) occur and are driven by actions hardly representable in terms
f standard stresses.

Examples range from fluids with densely scattered polymers or
articles of other types (pollutants in general) to those suffering polar-
zation under the action of external fields, to bubbly liquids, or liquid
rystals. To account for a variety of different specific cases, we consider
differentiable field

�̃� ∶  × R ⟼  ,

here  is a geodetically complete, differentiable Riemannian man-
fold with finite dimension differing from an interval of the real line.
he field �̃�, with values 𝜈 ∶= �̃�(𝑥, 𝑡) ∈ , brings at continuum scale
eometrical features of a microstructure at a scale 𝜆 (𝜈 can be a vector,
second-rank tensor, an element of the projective plane etc.). Thus,
collects degrees of freedom that are relative to the material element
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T

at 𝑥 in the instant 𝑡. So, when we consider a rigid translation of an
observer in the physical space, 𝜈 is insensitive to it. At variance, when
an observer rotates with respect to another, the two observers may
record a microstructure as described by different values of 𝜈 (consider
for example the case in which 𝜈 is a 3𝐷 vector). In this sense, 𝜈 is an
bservable entity.

Consider a change of observer in R3 due to a diffeomorphism 𝖿𝑠,𝑡
hat is an isometry so that �̄�(𝑥, 𝑡) = �̂�(𝑡) + 𝐪(𝑡) × (𝑥− 𝑥0). We introduce a
possibly empty) family  of differentiable homeomorphisms given by

∶= {𝜙 ∶ 𝑆𝑂(3) × R ⟶ Diff (,)} , (48)

here Diff (,) is the group of diffeomorphisms mapping  onto
tself. 𝜙 takes values 𝜙(𝐐𝜖) ∈ Diff (,), with 𝐐𝜖 ∈ 𝑆𝑂(3), 𝜖 ∈ R, and
0 = 𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑦. In particular, 𝜙 transfers over  a possible discrepancy
n the observation of microstructure between two observers rotating
elatively one with respect to the other.

We indicate by 𝜉 the time rate of 𝜈 in Eulerian representation and
e have �̇�𝜈 = 𝐷𝜉 −𝐷𝜈𝐷𝑣. After an isometry-based change of observer

n R3, the counterpart of 𝑣⋄ for 𝜉 is
⋄ ∶= 𝜉 +(𝜈)𝐪 , (49)

where 𝐪 is the axial vector of the skew-symmetric second-rank tensor
𝐐⊤
𝜖 �̇�𝜖

|

|

|𝜖=0
and, when the set  is not empty, with 𝜈𝜙(𝐐𝜖) the value

of 𝜈 after the action of 𝜙
(

𝐐𝜖
)

∈ Diff (,), the linear operator
 (𝜈) ∈ Hom

(

R3, 𝑇𝜈
)

is given by

 (𝜈) =
d𝜈𝜙(𝐐𝜖)
d𝐐𝜖

d𝐐𝜖
d𝐪𝜖

|

|𝜖=0 , (50)

after choosing 𝜖 = 𝑠− 𝑡 (recall that 𝐐𝜖 = exp(𝖾𝗊𝜖), with 𝖾 the third-rank
alternating index in 3𝐷 space) [34,36].

Also, always with �̄�(𝑥, 𝑡) = �̂�(𝑡) + 𝐪(𝑡) × (𝑥 − 𝑥0), a counterpart of the
above assumptions that 𝜑 and �̄� vanish under rigid-body motions is

𝜑 = 𝜑(𝜍,𝐪×,𝐪,…) = 0 , �̄� = �̄�(𝜍,𝐪×,𝐪,…) = 0 ,

for any 𝐪.
However, besides this special case, the general change of observer

in R3 is described by 𝖿𝑠,𝑡 ∈ Diff(R3,R3). Thus, we extend  to

̂ ∶=
{

�̂� ∶ Diff(R3,R3) × R2 ⟶ Diff (,)
}

, (51)

where �̂� tales values �̂�(𝖿𝑠,𝑡) ∈ Diff (,). So, the transformation rule
(49) becomes

𝜉⋄ ∶= 𝜉 + �̂� , (52)

where �̂� ∶= d
d𝑠 �̂�(𝖿𝑠,𝑡)

|

|

|𝑠=𝑡
.

For the sake of generality, we thus refer to frames of references
that are not necessarily orthonormal. So, we will distinguish between
covariant and contravariant tensor components, adjoint and transpose
of a linear operator, derivative symbol 𝐷 and gradient ∇, the relation
between these two differential operators being ∇(⋅) = 𝐷(⋅)𝑔−1, where 𝑔
is a metric in the space where 𝐷 and ∇ are computed.

11.2. External power in the case of -valued phase-fields

The external power of standard and microstructural actions on any
part b is now given by

𝑒𝑥𝑡
b

(𝑣, 𝜉) ∶= ∫b
(𝑏‡ ⋅ 𝑣 + 𝛽‡ ⋅ 𝜉) d𝑥 + ∫𝜕b

(𝗍𝜕 ⋅ 𝑣 + 𝜏𝜕 ⋅ 𝜉) d2(𝑥) , (53)

where 𝛽‡ and 𝜏𝜕 represent, respectively, bulk and contact microstruc-
tural actions and are at 𝑥 and 𝑡 elements of the cotangent space 𝑇 ∗

𝜈 
so that the interposed dot means duality pairing.

The generality considered does not preclude a decomposition of 𝛽‡
into the sum of inertial (𝛽𝑖𝑛) and non-inertial (𝛽) components, namely
‡ 𝑖𝑛
8

𝛽 = 𝛽 + 𝛽. i
11.3. The dissipation inequality and consequences of the covariance axiom

In the present setting, the inequality (13) changes into

∫b
(�̇� + 𝜂�̇�) d𝑥 − 𝑒𝑥𝑡

b
(𝑣, 𝜉) + ∫b

(𝜗−1𝗊 ⋅ ∇𝜗 − 𝜗div𝜔) d𝑥 ≤ 0 , (54)

and is presumed to hold for any body part and any choice of the time
rates involved.

Axiom 9.1 implies

∫b
(𝜑 + �̄�) d𝑥 − 𝑒𝑥𝑡

b
(�̄�, �̂�) ≤ 0 , (55)

for every choice of �̄�, �̂�, and b. When we choose �̄� = �̂�(𝑡) + 𝐪(𝑡) × (𝑥− 𝑥0)
and, consequently, �̂� = (𝜈)𝐪, we thus get

𝑒𝑥𝑡
b

(�̂�(𝑡) + 𝐪(𝑡) × (𝑥 − 𝑥0),(𝜈)𝐪) = 0 . (56)

This relation emerges directly also from the request of invariance
under rigid-body-type change of observer for the external power alone,
as adopted in [36] and progressively refined in [34,39]. Thus, the
invariance axiom for the external power alone under rigid-body-type
changes of observers is included in the covariance axiom for the
Clausius-Duhem inequality.

We basically summarize here consequences emerging from the iden-
tity (56) (see also [34,39]).

The arbitrariness of �̂� and 𝐪 implies the integral balance (21) and a
variant of Eq. (22) given by

∫b
((𝑥− 𝑥0) × 𝑏‡ +∗𝛽‡) d𝑥+ ∫𝜕b

((𝑥− 𝑥0) × 𝗍𝜕 +∗𝜏𝜕) d2(𝑥) = 0 , (57)

where the asterisk in superscript position indicates formal adjoint. The
presence of microstructural actions 𝛽‡ and 𝜏𝜕 only in the balance (57)
does not means that they are couples per se, rather it means that their
projections in R3 through the linear operator ∗ ∈ Hom(𝑇 ∗

𝜈 ,R3) are
couples.

Since  is assumed to be bounded, we can choose 𝑥0 so that the
boundedness of |𝑏‡| assures the one of |(𝑥 − 𝑥0) × 𝑏‡| and, by the balance
(21), the one of |(𝑥 − 𝑥0) × 𝗍𝜕|. In addition, if |∗𝛽| is also bounded
and 𝜏𝜕(⋅, 𝑡) is continuous, Cauchy’s theorem applied to Eq. (57) implies
the existence of a map 𝜏 such that 𝜏𝜕(𝑥, 𝑡) = 𝜏(𝑥, 𝑡, 𝑛) and ∗𝜏(𝑥, 𝑡, 𝑛) =
−∗𝜏(𝑥, 𝑡,−𝑛). Also, 𝜏 results to be linear with respect to 𝑛; thus there
xists a second-rank tensor , depending on 𝑥 and 𝑡, which maps 𝑛 into

the cotangent space of  at 𝜈, namely 𝜏(𝑥, 𝑡, 𝑛) = (𝑥, 𝑡)𝑛 ∈ 𝑇 ∗
�̃�(𝑥,𝑡).

e call  a microstress. The proof of its existence does not require
o embed  into a linear space although the embedding is always
vailable because  is with finite dimension. Exploiting an embedding
an be surely convenient but the embedding itself is not unique and a
heory aiming to be intrinsic needs to avoid it, as we do in the present
nalysis.

When (⋅, 𝑡) is 𝐶1 over  and continuous over ̄ while 𝛽‡ is also
ontinuous, use of Eq. (18) and arbitrariness of b imply the existence of
n element 𝐳 of 𝑇 ∗

𝜈 , defined to within an arbitrary element of ker∗,
uch that
‡ − 𝐳 + div = 0 (58)

nd

kew(𝝈) = 1
2
𝖾(∗𝐳 + (𝐷∗)𝑡) (59)

see also [32,36]). So, Cauchy’s stress is symmetric only if we neglect
(𝜆2) terms. Also, the validity of pointwise balances implies the identity

𝑒𝑥𝑡
b

(𝑣, 𝜉) = ∫b
(𝝈 ⋅𝐷𝑣 + 𝐳 ⋅ 𝜉 +  ⋅𝐷𝜉) d𝑥 . (60)

he right-hand-side integral is what we call internal power and indicate
𝑖𝑛𝑡
n short it by 
b
(𝑣, 𝜉).
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11.4. Further constraints imposed by the second law

The identity (60) allows us to rewrite the inequality (54) as

∫b
(�̇� + 𝜂�̇�) d𝑥 −  𝑖𝑛𝑡

b
(𝑣, 𝜉) + ∫b

(𝜗−1𝗊 ⋅ ∇𝜗 − 𝜗div𝜔) d𝑥 ≤ 0 . (61)

rbitrariness of b and assumed continuity of the integral densities imply
he local inequality

̇ − �̇�𝜂 − (𝝈𝑒 + 𝝈𝑑 ) ⋅𝐷𝑣 − 𝐳 ⋅ 𝜉 −  ⋅𝐷𝜉 + 1
𝜗
𝗊 ⋅𝐷𝜗 − 𝜗 div𝜛 ≤ 0 . (62)

We presume to adopt once again the incompressibility constraint, so
that (27), (28), and (29) hold once again and give rise to the emergence
of a pressure as in relation (30). Also, we assume that both 𝐳 and  ad-
mit additive decompositions into energetic and dissipative components,
namely

𝐳 = 𝐳𝑒 + 𝐳𝑑 ,  = 𝑒 + 𝑑 . (63)

Then, we consider 𝜓 , 𝜂, 𝝈𝑒, 𝐳𝑒, and 𝑒 to depend on the list

(𝜈,𝐷𝜈, 𝜗)

with 𝜓 , 𝜂, 𝝈𝑒, and 𝑒 that are also assumed to be differentiable. By
adopting the same procedure used for deriving and exploiting (32), we
get

𝜂 = −
𝜕𝜓
𝜕𝜗

, 𝝈𝑒 = −(𝐷𝜈)∗
𝜕𝜓
𝜕𝐷𝜈

, 𝐳𝑒 = 𝜕𝜓
𝜕𝜈

, 𝑒 = 𝜕𝜓
𝜕𝐷𝜈

(64)

and

𝝈𝑑 ⋅𝐷𝑣 + 𝐳𝑑 ⋅ 𝜉 + 𝑑 ⋅𝐷𝜉 − 1
𝜗
𝗊 ⋅𝐷𝜗 + 𝜗 div𝜛 ≥ 0 , (65)

which is required to hold for every choice of the rate fields involved.
The inequality (65) is compatible with the choices

𝝈𝑑 = 𝑎1𝐷𝑣 , 𝐳𝑑 = 𝑎2𝜉 , 𝑑 = 𝑎3𝐷𝜉 ,

with 𝑎𝑖, 𝑖 = 1, 2, 3, positive constants or state functions, and

𝗊 = −𝜅𝐷𝜗 + �̄�

with �̄� once again such that

�̄� ⋅ ∇𝜗 + 𝜗2 div𝜛 = 0 .

The inertial components of 𝑏‡, namely 𝑏𝑖𝑛, and the one of 𝛽‡, namely
𝛽𝑖𝑛 require to be characterized. A reasonable and rather standard way
we can follow is to adapt a prescription that the power developed by
inertial terms over a generic body part plus the pertinent kinetic energy
vanishes for every part of .

11.5. Inertia

We consider the kinetic energy density of a complex body to be the
sum
1
2
𝜌|𝑣|2 + k(𝜈, 𝜉) , (66)

here we still consider the constraint div𝑣 = 0, and k is a twice
ifferentiable non-negative function over the tangent bundle of ,
amely the disjoint union 𝑇 ∶=

⨆

𝜈∈ 𝑇𝜈, such that 𝜕2k
𝜕𝜉𝜕𝜉 ⋅ 𝜉 ⊗𝜉 > 0

and k(𝜈, 0) = 0 [32]. We thus consider the identity

d
d𝑡 ∫

( 1
2
𝜌|𝑣|2 + k(𝜈, 𝜉)) d𝑥 − ∫𝜕

( 1
2
𝜌|𝑣|2 + k(𝜈, 𝜉))(𝑣 ⋅ 𝑛) d2(𝑥)

= ∫
(𝑏𝑖𝑛 ⋅ 𝑣 + 𝛽‡ ⋅ 𝜉) d𝑥 ,

(67)

which is presumed to hold for any choice of the velocity fields involved.
Then, we take a function 𝜒 ∶ 𝑇 ⟼ R, with values 𝜒(𝜈, 𝜉), such that

k(𝜈, 𝜉) =
𝜕𝜒

(𝜈, 𝜉) ⋅ 𝜉 − 𝜒(𝜈, 𝜉) . (68)
9

𝜕𝜉 a
Arbitrariness of the time rates involved in the balance (67) and use
of a standard transport theorem in evaluating d

𝑑𝑡 ∫ imply that (67) is
compatible with the identifications

𝑏𝑖𝑛 = −𝜌�̇�♭ , 𝛽𝑖𝑛 =
𝜕𝜒
𝜕𝜈

− d
d𝑡
𝜕𝜒
𝜕𝜉

, (69)

o within powerless terms.
We can do other choices. For example we can accept

1
2
𝜌|𝑣|2 + k(𝜈, 𝜉𝑟) , (70)

here

(𝜈, 𝜉𝑟) =
𝜕𝜒
𝜕𝜉𝑟

⋅ 𝜉𝑟 − 𝜒(𝜈, 𝜉𝑟) , (71)

nd 𝜉𝑟 is a relative velocity given by 𝜉𝑟 ∶= 𝜉 −(curl𝑣) so that, by the
bove procedure, we can have

𝑖𝑛 = −𝜌�̇�♭ , 𝛽𝑖𝑛 =
𝜕𝜒
𝜕𝜈

− d
d𝑡
𝜕𝜒
𝜕𝜉𝑟

, (72)

to within powerless terms. In this case, when 𝑣 is the velocity of a rigid-
body motion with spin 𝐪, the expression of k is quadratic 𝜉𝑟, namely
k(𝜈, 𝜉𝑟) =

1
2 (𝛺(𝜈)𝜉𝑟) ⋅ 𝜉𝑟, with 𝛺(𝜈) ∈ Hom(𝑇𝜈, 𝑇 ∗

𝜈 ), and 𝜉 = 𝐪, the
ntegral of (70) over , gives the standard inertial tensor, while with
he choice (66), with k(𝜈, 𝜉) = 1

2 (𝛺(𝜈)𝜉) ⋅ 𝜉, the resulting inertia tensor is
ugmented by a term due to k, namely ∫ ∗𝛺 d𝑥. Choosing between
he two options is matter of specific physical circumstances.

2. Additional remarks

(1) In addition to the results concerning Gurtin’s postulate, the previ-
ous analyses shed further (and unusual) light on the role played
by the Clausius-Duhem inequality in the construction of con-
tinuum models. Indeed, the second law appears to be even a
source of the representation of contact actions and their balance
besides limiting possible constitutive structures and furnishing
admissibility conditions for shock waves or other discontinuities.

(2) Balance of actions at various spatial scales and heat propagation
can be expressed in terms of a dissipative-type version of the
Poisson brackets. Such an approach involves dissipative pseudo-
potentials, which are not always available, and (to an extent) it
requires specification of state variables (see [26,55–58]).

(3) Microstructural actions can induce effects of various nature; they
may imply hyperbolic-type heat propagation described in terms
of balance equations of true interactions (see further analyses
in [37,59–61]).

(4) Non-equilibrium states (and pertinent heat propagation) can be
described in various ways. In addition to what has been already
mentioned above, we can, for example, mention the introduction
of internal non-observable variables with postulated pertinent
evolution laws. They do not involve true interactions, rather they
include thermodynamic affinities, which contribute only to the
entropy production and do not play role at equilibrium (see,
e.g., [62,63]). Also, looking directly at molecular kinetics, espe-
cially when kinetics is dominant, we can look at the Boltzmann
equation and consider an expansion of the distribution function
in terms of moments. The emerging elegant procedure leads to a
cascade of hyperbolic equations, which apply essentially to gases,
better if they are in a rarefied state [64,65], while at limit the
cascade restores a parabolic character [66].
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